АЛКАНЫ

Алканами называются углеводороды, в которых все валентности атомов углерода, не затраченные на образование простых С–С-связей, насыщены атомами водорода. Атомы углерода в алканах насыщены атомами водорода до предела, поэтому их называют *предельными*, или *насыщенными углеводородами*. Их также называют *парафинами* от латинского сочетания *parum affinitas*, что означает «мало сродства». Последнее название характеризует низкую реакционную способность этого класса соединений.

5.1. Гомологический ряд алканов

Первым представителем гомологического ряда алканов является метан CH₄. Если в метане заменить один атом водорода группой атомов CH₃, то получится следующий представитель ряда — этан и т.д. Названия и формулы некоторых алканов представлены в табл. 5.1.

Таблица 5.1 Названия и формулы некоторых алканов

Формула	Название	Формула	Название
CH ₄	метан	C_9H_{20}	нонан
C_2H_6	этан	$C_{10}H_{22}$	декан
C_3H_8	пропан	$C_{11}H_{24}$	ундекан
C_4H_{10}	бутан	$C_{12}H_{26}$	додекан
C_5H_{12}	пентан	$C_{13}H_{28}$	тридекан
C_6H_{14}	гексан	$C_{14}H_{30}$	тетрадекан
C_7H_{16}	гептан	$C_{16}H_{34}$	гексадекан
C_8H_{18}	октан	$C_{20}H_{42}$	эйкозан

Видно, что углеводород данного ряда отличается по составу от других членов ряда на одну или несколько групп – CH_2 –. Эту группу называют гомологической разностью.

Гомологическим рядом называют совокупность органических соединений, обладающих сходным строением и свойствами и отличающихся друг от друга по составу на одну или несколько групп $-CH_2$ —. Представители одного гомологического ряда называются *гомологами*.

Общая формула ряда алканов – C_nH_{2n+2} .

5.2. Строение метана

Простейшим представителем ряда алканов и, конечно, одним из простейших органических соединений является метан CH₄.

Каждый из четырех атомов водорода в метане связан с атомом углерода ковалентной связью, т.е. за счет общей электронной пары. Как уже говорилось

в главе 2, в насыщенных углеводородах тип гибридизации атомных орбиталей углерода — sp^3 . Связывающие sp^3 -орбитали атома углерода направлены к углам тетраэдра. При таком расположении орбитали максимально удалены друг от друга. Для образования наиболее прочной связи с атомами водорода необходимо, чтобы ядра атомов водорода располагались в углах тетраэдра. Углы между связями — $109^{\circ}28'$ (рис. 5.1).

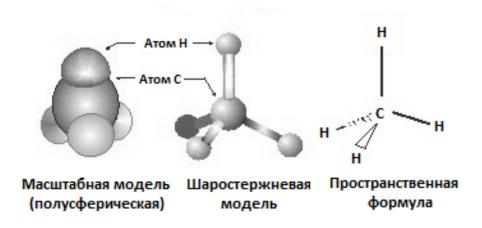


Рис. 5.1. Модель молекулы метана

5.3. Строение гомологов метана. Конформации

Строение других алканов определяется типом гибридизации орбиталей атома углерода. Связи углерод — углерод образованы перекрыванием sp^3 -орбиталей. Длина связи составляет 0,154 нм. Цепочка углеродных атомов не линейна, а зигзагообразна из-за угла между связями $109^{\circ}28'$, причем вокруг связи С—С возможно относительно свободное вращение, что приводит к существованию *поворотных изомеров* (конформеров). Конформеры, или конформации, — это различные положения атомов одной молекулы в пространстве, которые могут взаимно превращаться друг в друга путем вращения вокруг простых углерод-углеродных связей.

Эти конформации могут быть изображены разными способами – с помощью перспективных формул (рис. 5.2) и с помощью так называемых проекций, или формул Ньюмена (рис. 5.3):

Рис. 5.2. Перспективные формулы двух конформаций этана

Рис. 5.3. Формулы Ньюмена для двух конформаций этана: a — заторможенная, δ — заслоненная

В заслоненной конформации молекулы этана расстояния между водородными атомами минимальны, а в заторможенной — максимальны. В заслоненной конформации потенциальная энергия отталкивания будет больше, однако разница энергии составляет всего 12 кДж/моль, поэтому переход из одной конформации в другую осуществляется легко, и выделить их в качестве отдельных устойчивых изомеров нельзя.

Для бутана энергетический барьер для перехода из одной конформации в другую может составлять от 18 до 26 кДж/моль.

При обычных температурах различные поворотные изомеры алканов свободно переходят друг в друга за счет вращения относительно связей С–С.

5.4. Изомерия алканов

Для алканов возможны два вида изомерии: структурная и оптическая. Об этих видах изомерии говорилось в гл. 2.

Структурная изомерия или изомерия углеродного скелета для алканов начинается с бутана C_4H_{10} . Для него известны два изомера: нормальный бутан — соединение с неразветвленной углеродной цепью и изобутан, имеющий разветвленную углеродную цепь:

$${
m CH_3\text{-}CH_2\text{-}CH_3}$$
 ${
m CH_3\text{-}CH\text{--}CH_3}$ ${
m CH_3}$ ${
m H-}$ бутан изобутан

Для вещества состава C_5H_{12} известны три изомера:

$$\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3$$
 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_3$ $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_3$ $\mathsf{CH}_3\mathsf{C}_1\mathsf{CH}_3$ $\mathsf{CH}_3\mathsf{C}_1\mathsf{CH}_3$ CH_3

С увеличением числа углеродных атомов в молекуле возрастает и число теоретически возможных изомеров. Так, для гексана оно составляет 5, для гептана – 9, для октана – 18, для нонана – 35, для декана – 75, а для эйкозана $(C_{20}H_{42})$ – 366319.

В качестве алкана с хиральным (асимметрическим – *) атомом, существующего в виде двух зеркальных изомеров, можно предложить 3-метилгексан:

$$CH_3$$
- CH_2 - CH_2 - CH_2 - CH_3 - CH_3
 CH_3
 C_3H_7
 C_3H_7
 C_3H_7
 C_2H_5
 C_2H_3

энантиомеры 3-метилгексана

5.5. Типы углеродных атомов

Каждый атом углерода в молекуле алкана принято классифицировать с точки зрения числа связанных с ним других углеродных атомов. Различают 4 типа атомов углерода:

- *первичный* углеродный атом связан только с одним другим атомом углерода;
- *вторичный* углеродный атом связан только с двумя другими атомами углерода;
- *тремичный* углеродный атом связан только с тремя другими атомами углерода;
- *четвертичный* углеродный атом связан с четырьмя атомами углерода.

Рассмотрим это на примере 2,2,4-триметилпентана (изооктана):

Аналогично классифицируют атомы водорода, их обозначают как первичные, вторичные или третичные, в зависимости от типа атома углерода, с которым они связаны. В приведенной формуле первичных атомов водорода – 15 (они связаны с пятью первичными атомами углерода), вторичных атомов водорода – 2.

Такая классификация используется при рассмотрении относительной реакционной способности различных частей молекулы алкана.

5.6. Номенклатура алканов

Первые четыре алкана названы – метан, этан, пропан и бутан. Эти названия, наряду с названиями изобутан, неопентан, считаются случайными, или

тривиальными. Начиная с пятого члена ряда, названи я алканов происходят от названия греческих числительных, обозначающих число атомов углерода в молекуле с добавлением общего для всего гомологического ряда алканов окончания -ah, например: C_5 – пентан, C_8 – октан и т.д.

Приставка H- (н-пентан) используется для обозначения неразветвленных алканов независимо от величины; приставка u3o — для алканов с шестью или менее атомами углерода, имеющих только одну метильную группу у второго по счету атома углерода (CH_3) $_2CH$ —, например изогексан:

$$\mathrm{CH_3}\text{-}\mathrm{CH}\text{-}\mathrm{CH_2}\text{-}\mathrm{CH_2}\text{-}\mathrm{CH_3}$$
 $\mathrm{CH_3}$ изогексан

Приставка *нео*- используется, если в составе молекулы присутствует группировка $(CH_3)_3C$ — на конце неразветвленной прямой цепи, например неогексан:

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

Существует два способа составления названий алканов: по рациональной номенклатуре и систематической (IUPAC) номенклатуре.

Рациональная номенклатура

Исторически первой возникла **рациональная номенклатура**. Для алканов её называют *метановой*. За основу названия любого алкана принимают метан, в котором один или несколько атомов углерода замещены алкильными группами (разд. 1.2).

Название алкана начинается с перечисления алкильных групп в порядке усложнения структуры; если имеется несколько одинаковых радикалов, то число их указывается с помощью приставок — числительных: ди (две)-, три (три)-, тетра (четыре)-; заканчивается название словом «метан». Например:

$$CH_3$$
 $CH_3 \cdot CH_- CH_2 \cdot CH_3$ $CH_3 \cdot CH_2 \cdot CH_- CH_2 \cdot CH_3$ $CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3$ $CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3$

Номенклатура IUPAC

Сложные молекулы алканов называть по рациональной номенклатуре трудно, а иногда и невозможно. Поэтому их называют по систематической номенклатуре (IUPAC номенклатуре).

Правила номенклатуры IUPAC одинаковы для всех классов органических соединений и рассмотрены в гл. 1.

Для составления названий разветвленных алканов по ИЮПАК поступают следующим образом:

- а) в качестве основы выбирают самую длинную цепь атомов углерода и считают, что соединение образуется из данной структуры путем замены атомов водорода алкильными группами;
- б) атомы углерода главной цепи нумеруют таким образом, чтобы сумма цифр, указывающая положение заместителей, была наименьшей:

верно! сумма цифр 2+4=6

неверно! сумма цифр 3+5=8

- в) если одна и та же алкильная группа встречается более одного раза, то перед её названием ставят приставку, соответствующую числу групп ∂u -, mpu-, тетра-, пента- и т.д., цифрами обозначают положение групп в основной цепи;
- при построении названия вначале перечисляют заместители в алфавитном порядке с указанием номеров углеродных атомов, при которых они стоят; в конце называют алкан, соответствующий самой длинной цепи;
- д) цифры, указывающие положение заместителей отделяют друг от друга запятыми, буквы от цифр – дефисом, название пишут без пробелов. Если при одном атоме углерода находятся два заместителя, его номер повторяют дважды (например, 2,2-диметилбутан):

Примеры названий алканов по IUPAC-номенклатуре:

4-изопропил-3-метилгептан

5-трет-бутил-2,7-диметилнонан

5.7. Физические свойства

Первые четыре члена гомологического ряда алканов при обычных условиях – газообразные вещества, соединения от C_5 до C_{16} – жидкости, от C_{17} и выше – твердые вещества. В гомологическом ряду алканов постепенно

повышаются температуры кипения, плавления, а также относительная плотность. Это позволяет предвидеть свойства неизвестного члена ряда, основываясь на свойствах его соседа. Например, температура кипения гексана $-68.8\,^{\circ}$ С, гептана $-98.4\,^{\circ}$ С. Разница в составе на одну группу CH_2 приводит к повышению температуры кипения на $29.6\,^{\circ}$ С (гомологическая разность температур кипения). Для октана на основании этого можно рассчитать температуру кипения: $98.4\,+\,29.6\,=\,128\,^{\circ}$ С; это всего на $2\,^{\circ}$ С отличается от экспериментально найденной. Алканы с разветвленной цепью кипят при более низкой температуре, чем изомеры с нормальной цепью. Так, например,

$$CH_3$$
- CH_2 - CH_2 - CH_3 CH_3 - CH_2 - CH_3 CH_3 - CH_3 CH_3 - CH_3 CH_3

Плотность алканов меньше единицы. Они практически нерастворимы в воде, однако растворимы в эфире и других неполярных растворителях. Метан, этан, пропан и бутан — газы, не имеющие цвета и запаха, углеводороды C_5 — C_{17} — бесцветные жидкости, имеющие запах бензина или керосина; высшие члены ряда (с C_{18}) — твердые вещества белого цвета, лишенные запаха из-за их малой летучести.

5.8. Нахождение в природе

Основными и наиболее важными источниками различных предельных углеводородов состава от C_1 до C_{30-40} являются нефть и природный газ. В состав нефти наряду с алканами входят циклоалканы и ароматические углеводороды. Различные сорта нефти содержат от 30 до 90 % алканов.

Метан является основным компонентом (от 75 до 99 %) природного газа, оставшаяся часть приходится на этан и пропан. Тот же метан с примесью углекислого газа, водорода и азота в небольших количествах выделяется в виде «болотного газа» при анаэробном брожении, вызываемом жизнедеятельностью некоторых микроорганизмов.

Твердые, относительно высокоплавкие парафины встречаются в виде залежей озокерита (горного воска). Очищенный озокерит — церезин применяется в тех же областях, что и воск.

5.9. Способы получения

Различные способы получения алканов можно разделить на три группы.

1. Реакции, не сопровождающиеся изменением числа углеродных атомов в молекуле.

Гидрирование непредельных углеводородов (разд. 5.9.1):

$$H_3C-CH_2-CH=CH_2$$
 $\xrightarrow{H_2, Ni}$ $H_3C-CH_2-CH_2-CH_3$ 1-бутен

Восстановление алкилгалогенидов (разд. 5.9.2):

$$H_3C-CH_2-CH_2-I \xrightarrow{[H]} H_3C-CH_2-CH_2-CH_3$$

Гидролиз металлорганических соединений (разд. 5.9.3):

$$CH_3CH_2MgCI + H_2O \longrightarrow CH_3CH_3 + Mg(OH)CI$$

 $AI_4C_3 + 12 H_2O \longrightarrow 3 CH_4 + 4 AI(OH)_3$

Восстановление кетонов (разд. 5.9.4):

а) по Кижнеру

$$H_3C$$
 CH_2 CH_3 + NH_2 NH_2 NH_3 C CH_3 CH_3 CH_4 CH_5 C

б) по Клемменсену

2. Реакции, сопровождающиеся уменьшением числа углеродных атомов в молекуле.

Крекинг нефти (разд. 5.9.5):

Сплавление солей одноосновных карбоновых кислот со щелочами (разд. 5.9.6):

3. Реакции, сопровождающиеся удлинением углеродного скелета.

Синтез из оксида углерода (метод Фишера – Тропша (разд. 5.9.7)):

$$n \text{ CO} + 2 (n+1)H_2 \longrightarrow C_nH_{2n+2} + nH_2O$$

Реакция Вюрца — Шорыгина — действие металлического натрия на алкилгалогениды (разд. 5.9.8):

$$2 \text{ CH}_3\text{-CH}_2\text{Cl} + 2 \text{ Na} \longrightarrow \text{H}_3\text{C}-\text{CH}_2\text{-CH}_3 + 2 \text{ NaCl}$$

Получение из алкилгалогенидов и диалкилкупратов лития R_2 CuLi (разд. 5.9.9):

Li(CH₃)
$$_2$$
Cu + CH $_3$ CH $_2$ CH $_2$ CH $_2$ I \longrightarrow CH $_3$ CH $_2$ CH $_2$ CH $_2$ CH $_3$ диметил- пентан купрат лития

Прямой синтез из элементов (разд. 5.9.10):

$$C + 2 H_2 \longrightarrow CH_4$$

Электролиз солей карбоновых кислот (разд. 5.9.11):

$$2 \text{ CH}_3\text{-CH}_2\text{-C} \xrightarrow{\text{O}} \xrightarrow{\text{9лектролиз}} \text{H}_3\text{C}\text{-CH}_2\text{-CH}_2\text{-CH}_3 + 2 \text{CO}_2 + \text{H}_2\text{+ NaOH}}$$
 натриевая соль бутан пропановой кислоты

5.9.1. Гидрирование алкенов

Гидрирование алкенов — один из наиболее важных методов синтеза алканов. В присутствии таких катализаторов, как никель, платина или палладий алкены под небольшим давлением присоединяют водород и количественно превращаются в алканы с тем же строением углеродного скелета. Метод ограничен только доступностью алкенов. Это не очень серьезное ограничение, т.к. алкены можно получать из соответствующих спиртов:

$$H_3C-CH_2-CH=CH_2$$
 $\xrightarrow{H_2, \text{ Ni}}$ $H_3C-CH_2-CH_2-CH_3$ 1-бутен

5.9.2. Восстановление алкилгалогенидов

Алкилгалогениды можно восстанавливать каталитическими или химическими методами.

Каталитическое восстановление осуществляют водородом в присутствии металлического палладия:

$$H_3C-CH_2-CI + H_2 \xrightarrow{Pd} H_3C-CH_3 + HCI$$

Чем слабее связь C–Hal, тем легче осуществить каталитическое восстановление. Каталитическое восстановление замедляется в ряду

алкилиодиды > алкилбромиды > алкилфториды.

Для химического восстановления используют водород в момент выделения, который получают при взаимодействии активных металлов с кислотами, водой или спиртами:

$$H_3C-H_2C-HC-CH_3$$
 $\xrightarrow{Zn, HCI}$ $H_3C-H_2C-H_2C-CH_3$ + HBr Br $\xrightarrow{CCI_4}$ $\xrightarrow{Fe, H_2O, t}$ °C $\xrightarrow{CCI_4}$ $\xrightarrow{CHCI_3}$ четыреххлористый хлороформ углерод

Исходные алкилгалогениды, как и алкены, можно получать из спиртов.

5.9.3. Гидролиз металлорганических соединений

При прибавлении раствора алкилгалогенида в сухом диэтиловом эфире к металлическому магнию происходит бурная реакция; раствор мутнеет, начинает кипеть, а магний постепенно растворяется. При этом образуется алкилмагнийгалогенид, названный по имени ученого *реактивом Гриньяра*:

Виктор Гриньяр (Лионский университет) за открытие и изучение реакций с участием магнийорганических соединений в 1912 г. был награжден Нобелевской премией по химии.

Алкан — очень слабая кислота и вытесняется из реактива Гриньяра любыми более сильными кислотами:

$$CH_{3}CH_{2}MgCI + CH_{3}OH \longrightarrow CH_{3}CH_{2}-H + Mg(CH_{3}O)CI$$
 более сильная кислота более слабая кислота

 $CH_{3}-CH-CH_{2}MgBr + NH_{3} \longrightarrow CH_{3}-CH-CH_{2}-H + Mg(NH_{2})Br$ CH_{3} более сильная CH_{3} более слабая кислота

 $CH_{3}MgI + H_{2}O \longrightarrow CH_{4} + Mg(OH)I$ более сильная кислота более слабая кислота

Для получения алкана можно использовать любую кислоту, на практике берут наиболее доступную и удобную – воду.

Гидролиз карбида алюминия — это пример специфического способа получения метана. Для проведения этого процесса можно использовать не только воду, но и раствор кислоты:

$$AI_4C_3 + 12 H_2O \longrightarrow 3 CH_4 + 4 AI(OH)_3$$

 $AI_4C_3 + 12 HCI \longrightarrow 3 CH_4 + 4 AICI_3$

5.9.4. Восстановление кетонов

Реакция восстановления кетонов гидразином и сильным основанием была открыта Кижнером в Томском технологическом институте на кафедре органической химии в 1911 г.:

$$H_3C$$
 СН-С-С H_3 + NH₂-NH₂ \longrightarrow H_3C СН-С-С H_3 КОН H_3C П-NH₂ H_3C П-С-С H_3 H_3C П-С-С H_3 H_3C П-С-С H_3 H_3C П-С-С H_3 H_3C СН-С H_3 H_3C СН-С H_3 H_3C СН-С H_4 -С H_3

При действии гидразина на карбонильное соединение сначала образуется соответствующий гидразон, который при нагревании в щелочной среде теряет азот и превращается в углеводород. Этот метод применим для восстановления соединений, чувствительных к кислотам.

Восстановление карбонильных соединений по Клемменсену амальгамой цинка в соляной кислоте используется для соединений, чувствительных к основаниям:

5.9.5. Крекинг нефти

При крекинге нефти цепи высших алканов под действием высоких температур и катализаторов разрушаются, образуя смеси низших алканов (начиная с метана) и олефинов:

Крекинг служит одним из важнейших источников промышленного получения алканов в смеси с олефинами. Алканы с низкой молекулярной массой, образующиеся в процессе крекинга, можно разделить и очистить. Из алканов, получаемых при крекинге, особенно ценны как сырье для химической промышленности пропан, бутан, изобутан и изопентан. Из непредельных соединений, образующихся в процессе крекинга с водяным паром, наиболее ценными являются — этилен, пропилен, бутадиен, изопрен и циклопентадиен.

Однако главное назначение крекинга – получение топлива, особенно бензиновой фракции.

Механизм образования смеси алканов и алкенов можно представить приведенными ниже схемами реакций.

При высокой температуре высшие алканы распадаются в любом месте углеводородной цепи, образуя радикалы:

Свободные радикалы подвергаются следующим превращениям:

1) рекомбинации (соединение). При рекомбинации двух радикалов образуется алкан, содержащий суммарное число атомов углерода двух радикалов:

2) диспропорционированию (происходит по β-связи С–Н). При диспропорционировании отрывается один из атомов водорода по β-связи и присоединяется к другому радикалу. При этом образуются алкан и алкен:

3) распаду (происходит по β -связи С–С). При распаде радикала по β -связи С–С образуется другой радикал и алкен. Возникновение π -связи в алкене происходит при взаимодействии неспаренного электрона и одного из электронов σ -связи:

$$CH_3$$
 $\beta \wedge | \sim \bullet$
 $CH_2 - CH_2 - CH_3 - CH_3 + H_2C - CH = CH - CH_2 - CH_3$
 $CH_3 - CH_3 - CH_2 - CH_2 - CH_3 - CH_3$

5.9.6. Сплавление солей карбоновых кислот со щелочами (реакция Дюма)

При нагревании солей карбоновых кислот со щелочами происходит декарбоксилирование (отщепление CO_2) и образуется алкан, который содержит на один атом углерода меньше, чем исходная кислота:

$$H_3C-CH_2-CH_2$$
 + NaOH $\xrightarrow{\text{сплавление}}$ $H_3C-CH_2CH_3$ + Na₂CO₃ натриевая соль пропан бутановой кислоты

5.9.7. Синтез из оксида углерода (метод Фишера – Тропша)

Синтез из оксида углерода — это один из важных промышленных процессов. Суть его состоит в том, что при пропускании смеси окиси углерода с водородом при температуре около 200 °C и атмосферном давлении над катализатором (обычно смеси железа с кобальтом) образуется смесь алканов, состоящая главным образом из нормальных парафинов с примесью разветвленных. Полученная смесь служит сырьем для производства бензинов:

$$n \text{ CO} + 2 (n+1)H_2 \longrightarrow C_nH_{2n+2} + nH_2O$$

5.9.8. Реакция Вюрца – Шорыгина

Реакция Вюрца — Шорыгина — это взаимодействие алкилгалогенидов с металлическим натрием, приводящее к образованию новой углеродуглеродной связи и удвоению углеродного скелета. Реакция применима в первую очередь для получения высших симметричных алканов:

В случае использования разных галоидалканов получается смесь всех трех возможных продуктов реакции, что снижает препаративную ценность реакции:

Кроме того, реакцию Вюрца нельзя применить для соединений, в которых, кроме галогена, имеются гидроксильные или карбоксильные группы, т.к. натрий будет вступать с ними в реакцию.

5.9.9. Реакции диалкилкупратов лития с алкилгалогенидами

Реакции диалкилкупратов лития с алкилгалогенидами — это более современный вариант, позволяющий селективно объединять любые две молекулы алкилгалогенидов, состоит в промежуточном получении алкилкупратов лития R_2 CuLi с дальнейшим взаимодействием их с алкилгалогенидом.

Диалкилкупраты получают в две стадии. Сначала алкилгалогенид реагирует с литием с образованием алкиллития:

Затем алкиллитий реагирует с иодидом меди, образуя диалкилкупрат лития:

Диалкилкупрат вводят в реакцию с алкилгалогенидом для получения необходимого алкана, например:

5.9.10. Прямой синтез из элементов

Метан образуется в вольтовой дуге между угольными электродами в присутствии водорода:

$$C + 2 H_2 \longrightarrow CH_4$$

Реакции такого типа, проводимые в иных условиях, получили практическое значение в процессе гидрирования угля. Для этого суспензию каменного угля в тяжелых нефтяных маслах нагревают с водородом под давлением в присутствии железных и марганцевых катализаторов при температуре около 400 °C; при этом получается смесь углеводородов — синтетический бензин.

5.9.11. Электролиз солей карбоновых кислот (синтез Кольбе, 1849 г.)

При электролизе водных растворов натриевых и калиевых солей карбоновых кислот на аноде выделяется CO_2 и образуются алканы. На катоде образуется водород и гидроксид соответствующего щелочного металла:

Механизм реакции

Соль в водном растворе диссоциирует:

$$CH_3$$
- CH_2 - C
 O
 ONa
 CH_3 - CH_2 - C
 O
 O
 ONa

На аноде сначала происходит окисление анионов до ацетильных радикалов:

$$CH_3-CH_2-C \stackrel{\bigcirc}{\sim} O - e^{\bigcirc} \longrightarrow CH_3-CH_2-C \stackrel{\bigcirc}{\sim} O$$
.

Затем радикалы распадаются по β-связи, образуя алкильные радикалы и углекислый газ:

$$CH_3-CH_2-\xi-C \stackrel{\circ}{<}_O$$
. \longrightarrow $CH_3-CH_2+CO_2$

Алкильные радикалы соединяются друг с другом, образуя алкан:

Реакцию Кольбе, как и синтез Вюрца, можно использовать для получения симметричных алканов.

5.10. Химические свойства

Алканы за свою химическую инертность были названы *парафинами* (от латинского *parum affinitas* — лишенный сродства). М.И. Коновалов назвал предельные углеводороды «химическими мертвецами». Действительно, в обычных условиях алканы не реагируют с концентрированными кислотами и щелочами и устойчивы к действию сильных окислителей (перманганат калия, хромовая смесь).

Поскольку в алканах связи С–С неполярны, а С–Н слабополярны, то наиболее вероятно, что они будут разрушаться по гомолитическому

механизму. Следовательно, для алканов предпочтительны радикальные реакции. Алканы – насыщенные углеводороды, и для них характерны реакции замещения водорода на другие атомы или функциональные группы. Кроме того, они могут отщеплять водород и превращаться в непредельные углеводороды.

Реакции радикального замещения:

а) галогенирование (разд. 5.10.1):

$$CH_3$$
- CH - CH_3 + CI_2 hv CH_3 - CH - CH_2 CI + CH_3 - C - CH_3 + HCI CH_3 CH_3

Реакционная способность галогенов:

$$F_2 > Cl_2 > Br_2 > l_2$$

Реакционная способность Н:

третичный > вторичный > первичный > СН₃—Н;

б) сульфохлорирование (разд. 5.10.2):

$$CH_3$$
- CH_3 + CI_2 + SO_2 \xrightarrow{hv} CH_3 - CH_2 - SO_2 CI + HCI этансульфохлорид

в) нитрование (разд. 5.10.3):

$$CH_4$$
 + HNO_3 $\xrightarrow{500\, ^{\circ}C}$ CH_3NO_2 + H_2O нитрометан

Пиролиз/крекинг (разд. 5.10.4):

а) пиролиз метана и других алканов:

2 CH₄
$$\xrightarrow{1000 \text{ °C}}$$
 CH \equiv CH + 3 H₂

б) получение низших алканов и алкенов из нефти:

Дегидрирование (разд. 5.10.5):

$$CH_3$$
- CH_2 - CH_3 \longrightarrow CH_3 - $CH=CH_2$

Окисление (разд. 5.10.6):

а) горение

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + 880 (кДж)$$

б) каталитическое окисление:

$$R-CH_2-CH_2-R_1 \longrightarrow R-COOH + R_1-COOH$$

5.10.1. Галогенирование алканов

Реакция фтора с углеводородами экзотермична: со свободным фтором она идет со взрывом и сопровождается полной деструкцией молекулы углеводорода. Это происходит потому, что при фторировании выделяется 435,4 кДж/моль, а для разрыва связи С–С требуется всего 350 кДж/моль. Продуктами реакции являются CF_4 и HF:

$$C_2H_6 + 7 F_2 \longrightarrow 2 CF_4 + 6 HF$$

Разбавление фтора азотом, гелием или применение растворителей (полностью фторированных углеводородов) позволяет получать полифторпроизводные с хорошими выходами:

$$CH_4 + 4F_2 \xrightarrow{N_2} CF_4 + 4HF$$

Очень хорошие результаты дает непрямое фторирование углеводородов с использованием фторида кобальта (III). CoF_3 действует более умеренно, чем элементарный фтор:

$$C_7H_{16} + 32 \text{ CoF}_3 \xrightarrow{200 \text{ }^{\circ}\text{C}} C_7F_{16} + 32 \text{ CoF}_2 + 16 \text{ HF}$$

Реакция иодирования алканов не имеет практического применения ввиду обратимости. Выделяющийся иодоводород, в отличие от других галогеноводородов, является восстановителем, и равновесие смещается влево:

Наиболее широко применяются реакции хлорирования и бромирования. Эти процессы инициируются ультрафиолетовым светом или высокой температурой.

Смесь метана и хлора бурно реагирует с образованием хлорметана и хлористого водорода. Хлорметан может подвергаться дальнейшему хлорированию с образованием дихлорметана, трихлорметана и тетрахлорметана. Тетрахлорметан, или четыреххлористый углерод, является

продуктом исчерпывающего (полного) хлорирования. Такие соединения называются *перхлоралканами*, они не содержат водорода и поэтому негорючи:

При хлорировании алканов более сложного строения образуется смесь продуктов. Так при монохлорировании (замещении одного атома водорода на хлор) пропана образуются монохлорпропаны почти в равных количествах:

$$CH_3$$
- CH_2 - CH_3 + CI_2 \xrightarrow{hv} CH_3 - CH - CH_3 + CH_3 - CH_2 - CH_2 CI + HCI CI 2 -хлорпропан $45\,\%$

При бромировании образуются соответствующие монобромиды, но в другом соотношении:

Таким образом, бромирование протекает с высокой степенью селективности, что обусловлено низкой реакционной способностью атомов брома.

Механизм галогенирования

Механизмом реакции называют детальное описание химической реакции, которое включает элементарные стадии. Галогенирование алканов относится к реакциям цепного свободно-радикального замещения (S_R). Следует вспомнить, что свободный радикал — это атом (или группа атомов), имеющий неспаренный (нечетный) электрон.

Общепринятый механизм галогенирования алканов может быть описан тремя основными стадиями:

Инициирование (зарождение цепи). Под действием УФ-облучения или при нагревании происходит гомолитический разрыв связи и галоген распадается на атомы:

CI: CI
$$\xrightarrow{hv}$$
 CI + CI

Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые молекулы и новые радикалы).

Образовавшиеся на первой стадии радикалы (атомы хлора) атакуют молекулы алканов, отрывая у них атом водорода:

$$CH_3-CH-CH_3$$
 + CI^{\bullet} \longrightarrow $CH_3-CH-CH_3$ + HCI

Образовавшиеся алкильные радикалы (в нашем случае это радикал изопропил) сталкиваются с молекулами галогена и гомолитически разрушают их. При этом получаются новые радикалы галогена и образуется алкилгалогенид:

$$CH_3-CH-CH_3 + CI: CI \longrightarrow CH_3-CH-CH_3 + CI$$

Обрыв цепи (соединение радикалов друг с другом с образованием неактивных молекул).

Столкновение двух короткоживущих частиц маловероятно, но все же оно иногда происходит и приводит к обрыву какой-либо стадии реакции:

$$CI^{\bullet} + CI^{\bullet} \longrightarrow CI_{2}$$
 $CI^{\bullet} + CH_{3} - \overset{\bullet}{CH} - CH_{3} \longrightarrow CH_{3} - \overset{\bullet}{CH} - CH_{3}$
 CI
 $CH_{3} - \overset{\bullet}{CH} - CH_{3} + CH_{3} - \overset{\bullet}{CH} - CH_{3} \longrightarrow CH_{3} - \overset{\bullet}{CH} - CH_{3}$
 $CH_{3} - \overset{\bullet}{CH} - CH_{3} \longrightarrow CH_{3} - \overset{\bullet}{CH} - CH_{3}$

В результате последней реакции образуется 2,3-диметилбутан. Это побочный продукт реакции.

Галогенирование алканов – пример цепной радикальной реакции. **Цепная** *реакция* включает ряд стадий, на каждой из которых образуется реакционноспособная частица, вызывающая следующую стадию.

За разработку теории цепных реакций советский академик Семёнов Николай Николаевич и английский химик, член Лондонского королевского общества Хиншелвуд Сирил Норман в 1956 г. были удостоены Нобелевской премии по химии.

Семёнов Николай Николаевич (1896–1986 гг.)

Хиншелвуд Сирил Норман (1897–1967 гг.)

5.10.2. Сульфохлорирование алканов

При освещении ультрафиолетовым светом алканы реагируют со смесью диоксида серы и хлора с образованием хлоридов алкансульфоновых кислот. Эта реакция протекает по цепному радикальному механизму, сходному с механизмом галогенирования:

$$Cl_{2} \xrightarrow{hv} 2 Cl^{\bullet}$$

$$H_{3}C-CH_{2}-CH_{2}-CH_{3} + Cl^{\bullet} \xrightarrow{\bullet} H_{3}C-CH_{2}-CH-CH_{3} + HCl^{\bullet}$$

$$H_{3}C-CH_{2}-CH-CH_{3} + SO_{2} \xrightarrow{\bullet} H_{3}C-CH_{2}-CH-CH_{3}$$

$$\stackrel{\bullet}{SO_{2}}$$

$$H_{3}C-CH_{2}-CH-CH_{3} + Cl_{2} \xrightarrow{\bullet} H_{3}C-CH_{2}-CH-CH_{3} + Cl^{\bullet}$$

$$\stackrel{\bullet}{SO_{2}}Cl$$

Хлориды алкансульфоновых кислот широко используются в производстве моющих средств.

5.10.3. Нитрование алканов

Прямое нитрование алканов происходит при повышенной температуре в жидкой или газовой фазе *разбавленной* азотной кислотой или оксидами азота.

Реакцию нитрования алканов в 1888 г. осуществил русский химикорганик Михаил Иванович Коновалов. Эта реакция названа его именем. При нитровании используется разбавленная азотная кислота (12–25 %) и температура 140–150 °C. В этих условиях в первую очередь замещаются третичные атомы водорода:

$$CH_3$$
- CH - CH_2 - CH_3 + HNO_3 \longrightarrow CH_3 - CH_2 - CH_3 + H_2O CH_3 изопентан 2-метил-2-нитробутан

При высокотемпературном нитровании (более 400 °C) избирательности нет. Метан нитруется при температуре 500 °C азотной кислотой и окислами азота с образованием нитрометана. Этан в этих условиях дает два продукта:

$${\rm CH_3\text{-}CH_3}$$
 + HNO₃ $\xrightarrow{500\,{\rm ^{o}C}}$ ${\rm CH_3CH_2NO_2}$ + ${\rm CH_3NO_2}$ + ${\rm H_2O}$ нитроэтан нитрометан

Дело в том, что процесс нитрования, как правило, сопровождается частичной деструкцией исходного алкана из-за окислительного расщепления С–С-связей. Так, при нитровании пропана образуется трудноразделяемая смесь 1- и 2-нитропропанов, нитрометана и нитроэтана.

Реакция происходит по свободно-радикальному механизму. Свободные радикалы возникают в результате термического расщепления азотной кислоты:

5.10.4. Пиролиз алканов

Пиролиз — это разрушение соединений при нагревании. Этот термин происходит от греческих слов pyr — огонь и lysis — разрушение и обозначает расщепление при нагревании.

При нагревании алканов без доступа воздуха до 1000 °C они разлагаются на углерод и водород.

Пиролиз природного газа позволяет получить два важных продукта — сажу и водород.

Метан наиболее термически устойчивый из алканов. Это связано с тем, что энергия образования связи С–Н, равная 98,5 ккал, выше энергии образования связи С–С (81 ккал). Поэтому высшие парафины менее устойчивы; их термический распад начинается при температуре около 450 °C. Метан термически разрушается при температуре выше 1400 °C:

2 CH₄
$$\xrightarrow{1400 \, ^{\circ}\text{C}}$$
 CH≡CH + 3 H₂

Этот эндотермический процесс положен в основу одного из промышленных способов получения ацетилена.

Этан при нагревании до 500-600 °C превращается в этилен:

$$CH_3$$
- CH_3 $\xrightarrow{500 \text{ °C}}$ CH_2 = CH_2 + H_2

Алканы с более длинными цепями атомов углерода разрушаются в любом случайном месте цепи и образуют смесь алканов и олефинов. Пиролиз алканов, особенно когда речь идет о нефти, называется *крекингом* (разд. 5.9.5).

5.10.5. Дегидрирование алканов

Дегидрирование — это процесс отщепления водорода от молекулы исходного вещества. Дегидрирование алканов проводят в присутствии катализатора (Ni, Pd, Cr₂O₃). В процессе дегидрирования из алканов получают алкены и сопряженные диены. Реакция имеет важное промышленное значение, т.к. образующиеся диены (например, 1,3-бутадиен) используются в производстве синтетического каучука:

$$CH_3$$
- CH_2 - CH_2 - CH_3 - CH_2 - CH_3 -

5.10.6. Окисление алканов

Газообразные и жидкие алканы используют в качестве топлива. При сгорании 1 моль метана (16 г) выделяется 880 кДж теплоты. В быту применяют сжиженный пропан или пропан-бутановую смесь. Горение алканов относится к реакциям полного окисления. Если кислорода достаточно, то при горении образуются углекислый газ и вода:

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Смеси газообразных алканов при контакте с воздухом или кислородом взрываются, поэтому утечка бытового газа или накопление метана в шахтах очень опасны.

Разработаны каталитические методы окисления алканов, не приводящие к их полному разрушению до углекислого газа и воды. Так, окисляя метан в присутствии различных катализаторов и условий реакции, можно получить разные продукты окисления:

$$CH_{4} + O_{2} \xrightarrow{t \circ C} H-C \overset{O}{\vdash} H$$
 метаналь (формальдегид); H -СООН метановую (муравьиновую) кислоту.

Алканы с большим числом атомов углерода не удается окислить по концевому атому углерода, и они могут разрушаться по связи С–С. Так, в промышленном масштабе окислением бутана получают уксусную кислоту:

Следует отметить, что окисление алканов протекает по радикальному механизму.

5.11. Применение алканов

Алканы являются не только простым и относительно дешевым топливом, но и исходным сырьем для крупнотоннажного производства. Полученные из нефти смеси алканов и других углеводородов применяются в качестве моторного топлива для двигателей внутреннего сгорания и реактивных двигателей.

При разгонке нефти получают несколько фракций: бензин (температура кипения 40–180 °C, углеводороды C_6 – C_{10}), керосин (температура кипения 180–230 °C, углеводороды C_{11} – C_{12}), дизельное топливо (температура кипения 230–305 °C, углеводороды C_{13} – C_{17}), мазут, из которого перегонкой под уменьшенным давлением или с водяным паром получают солярное масло (углеводороды C_{18} – C_{25}), и смазочные масла (углеводороды C_{28} – C_{38}), вазелин, твердый парафин.

Высшие фракции разгонки нефти подвергают крекингу для получения высокосортных бензинов. Кроме того, получаются алкены — этилен, пропен, бутены — важнейшее сырье для химической промышленности.

Метан – бесцветный газ без запаха, малорастворимый в воде. Встречается в природе как болотный газ, рудничный газ. Наибольшее содержание метана находится в природном газе. Значительное количество метана образуется при сухой перегонке каменного угля, в процессах гидрирования угля.

Метан широко используется в качестве топлива с большой теплопроводностью (50 000 кДж/кг). С воздухом он образует опасные взрывчатые смеси. Метан служит важным сырьем для химической промышленности и используется главным образом для получения синтез-газа (смесь СО и H_2), который идет на производство метанола и ряда других продуктов.

Вазелин (смесь жидких и твердых предельных углеводородов с числом углеродных атомов до 25) применяется для приготовления мазей, используемых в медицине.

Парафин (смесь твердых алканов C_{19} - C_{35}) — белая твердая масса без запаха и вкуса (температура плавления 50— 70° C) применяется для изготовления свечей, пропитки спичек и упаковочной бумаги, для тепловых процедур в медицине и т.д.

Нормальные предельные углеводороды средней молекулярной массы используются как питательный субстрат в микробиологическом синтезе белка из нефти.