ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Е.О. Кулешова, В.А. Колчанова, В.Д. Эськов, С.В. Пустынников

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ В ЭКСПЕРИМЕНТАХ И УПРАЖНЕНИЯХ. ПРАКТИКУМ В СРЕДЕ ELECTRONICS WORKBENCH

Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета

Издательство Томского политехнического университета 2011 УДК 621.3.11(075.8) ББК 31.211я73 К 845

Кулешова .Е.О.

К 845

Теоретические основы электротехники в экспериментах и упражнениях. Практикум в среде Electronics Workbench: учебное пособие /Е.О. Кулешова, В.А. Колчанова, В.Д. Эськов, С.В. Пустынников; Национальный исследовательский Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2011. – 140 с.

В пособии приведены основные сведения о системе схемотехничекого моделирования Electronics Workbench. На примерах решения типовых задач по электротехнике показаны основные возможности программы. Сборник содержит описания лабораторных работ по установившимся режимам линейных электрических цепей с сосредоточенными параметрами, переходным процессам линейных электрических цепей и установившимся режимам нелинейных цепей с методическими указаниями по их выполнению с учетом специфики среды Electronics Workbench.

Предназначено для самостоятельной работы студентов Энергетического института Томского политехнического университета.

> УДК 621.3.11 (075.8) ББК 31.211я73

Рецензенты

Кандидат технических наук, доцент кафедры общей электротехники и автоматики ТГАСУ, *В.М. Педиков*

Доктор физико-математических наук, ведущий сотрудник Института оптики атмосферы СО РАН им. В.Е.Зуева, Ф.Ю. Канев

- © ГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2011
- © Кулешова Е.О., Колчанова В.А., Эськов В.Д., Пустынников С.В., 2011
- © Оформление. Издательство Томского политехнического университета, 2011

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 5
Система моделирования Electronics Workbench
Работа 1. Исследование линейной разветвленной цепи постоянного тока
Работа 2. Исследование активного двухполюсника 25
Работа 3. Конденсатор и катушка индуктивности в цепи синусоидального тока
Работа 4. Исследование цепей с индуктивно связанными элементами
Работа 5. Исследование воздушного трансформатора 40
Работа 6. Исследование резонанса напряжений 45
Работа 7. Исследование резонанса токов 48
Работа 8. Исследование пассивного четырехполюсника 52
Работа 9. Исследование трехфазной цепи, соединенной звездой
Работа 10. Исследование трехфазной цепи, соединенной треугольником
Работа 11. Электрические цепи с источником несинусоидального напряжения
Работа 12 Исследование переходных процеессов в цепя первого порядка
Работа 13 Изучение обобщенных законов коммутации 80

Работа 14 Апериодический переходный процесс в цепи второго порядка
Работа 15 Переходный процесс в цепи второго порядка
Работа 16 Исследование нелинейных цепей постоянного тока 92
Работа 17 Нелинейный резистивный элемент в цепи с источником гармонического напряжения
Работа 18 Исследование нелинейных цепей переменного тока 101
Работа 19 Катушка с ферромагнитным сердечником в цепи источника гармонического напряжения105
Работа 20 Электрические цепи с вентилями 110
Работа 21. Интегрирующий операционный усилитель 122
Работа 22. Дифференцирующий операционный усилитель 127
Работа 23. Исследование цепи с распределёнными перемерами 131
Список литературы 139

введение

Руководство предназначено для студентов всех направлений и специальностей Электроэнергетического института и Института дистанционного образования Томского политехнического университета учебные планы которых включают дисциплину «Теоретические основы электротехники» (ТОЭ). Оно может быть полезно студентам электротехнических специальностей Физико-технического института, Института инженерного предпринимательства, Института физики высоких технологий, Института природных ресурсов и Института кибернетики, изучающих курс «Электротехника», «Электротехника и электроника» или «Общая электротехника», а также студентам Института дистанционного образования, которые изучают вышеназванные курсы в условиях отсутствия экспериментальной лабораторной базы.

Данное учебное пособие посвящено исследованию установившихся режимов линейных электрических цепей с сосредоточенными параметрами, лабораторных работ по переходным процессам линейных электрических цепей и установившимся режимам нелинейных цепей, цепей с распределёнными параметрами. В нем содержатся методические указания по моделированию лабораторных работ в программной среде **Electronics Workbench** (далее **EWB**).

Параметры схем обычно выбираются в соответствии с номером шифра расчетно-графических работ для студентов дневного отделения или с номером шифра контрольных работ для студентов-заочников (последней цифре шифра соответствует номер столбца таблицы вариантов параметров). Если одной из целей работы является обучение студента экспериментальному определению параметров конкретных двухполюсников или четырехполюсников, то предусматривается включение в схему соответствующих блоков, которые могут быть вызваны по известному паролю из файла, указанного в программе работы.

Прежде, чем приступить к работе, студент должен изучить соответствующий теоретический материал по учебнику, рекомендованному преподавателем [1,2], а также раздел «Пояснения к работе», чтобы ответить на вопросы в разделе «Подготовка к работе». Разумеется, необходимо иметь определенные навыки работы в программной среде **EWB**. Для этого с помощью компьютера следует изучить ее особенности, например, по практикуму на Electronics Workbench под ред. П. И. Панфилова [4]. Некоторые из этих особенностей, наиболее часто встречающиеся при выполнении лабораторных работ, и рекомендации по сборке схем лабораторных работ по теоретическим основам электротехники описаны ниже. Программа Electronics Workbench, предназначенная для конструирования и моделирования работы электронных схем, получила у специалистов достаточно широкое распространение благодаря своим функциональным возможностям и удобному пользовательскому интерфейсу. Существует несколько версий этой программы, различающихся функциональными возможностями и платформами запуска (для DOS, Windows). В частности, версия 4.1/5.12 работает в ОС Windows и предъявляет следующие требования к аппаратному обеспечению: процессор не ниже 80386, математический сопроцессор, видеоадаптер VGA, память не менее 4 МБ, манипулятор мышь. Несмотря на имеющиеся различия, все версии программы Electronics Workbench имеют общие принципы организации работы.

Система моделирования Electronics Workbench

Система схемотехнического моделирования Electronics Workbench предназначена для моделирования и анализа электрических схем. После первого запуска основную часть экрана занимает рабочее поле, первоначально пустое.

В верхней части окна системы (рис. 1) видны пять характерных панелей, которые перечислены ниже:

- 1. строка заголовка строка с именем системы;
- командная строка строка с пунктами главного меню, открывающая доступ к подменю с различными командами (после щелчка мышью по любому пункту главного меню на экране появляется соответствующее падающее меню);
- стандартная панель инструментов панель с кнопками, обеспечивающими быстрое выполнение наиболее важных команд при работе с системой;
- 4. панель компонентов библиотеки элементов и приборов;
- 5. строка имени строка с именем файла.

Находящаяся в правом верхнем углу окна кнопка 6 (рис. 1) производит запуск моделирования (начала анализа), кнопка 7 – остановку моделирования.

Краткая инструкция по сборке схем.

Экспериментальное исследование электрических цепей с помощью программы **EWB** подобно исследованию их физических моделей на лабораторном столе. Роль последнего играет рабочее поле в окне программы **EWB**. Вычислительный эксперимент, как и реальный, проводится с обычной последовательностью операций: сборка схемы электрической цепи, установка параметров ее пассивных и активных элементов, подключение измерительных приборов и их настройка, запуск моделирования. Результаты измерений считываются с панелей приборов: амперметра, вольтметра, ваттметра, фазометра или в виде осциллограмм.

Рабочее окно программы **EWB** версий 5.0 и выше начинается с командной строки, содержащей разделы **File** (работа с файлами), **Edit** (редактирование схемы), **Circuit** (преобразование и оформление схемы), **Analysis** (параметры моделирования), **Window** (упорядочивание информации в окне программы), **Help** (сведения о программе, командах и компонентах). Средняя строка окна дублирует основные команды первой строки (на ее кнопках изображены вполне понятные символы - пиктограммы). Нижняя строка меню представляет собой библиотеку компонентов электрических цепей и содержит, в частности, разделы, широко используемые при сборке схем лабораторных работ по ТОЭ. Ниже они перечисляются слева направо.

1. Поле вспомогательных компонентов **Favorites** находится у левого края нижней строки и предназначено для хранения блоков (подсхем), являющихся частью общей схемы. В первую очередь это двухполюсники и четырехполюсники, параметры которых подлежат определению в данной лабораторной работе.

Для извлечения блока нужно открыть раздел (один щелчок левой кнопкой мыши, когда курсор находится на пиктограмме раздела). При этом выпадает меню подсхем **Subcircuit**. Затем следует установить курсор на изображение нужного блока, нажать левую кнопку мыши и, удерживая ее, вывести блок на рабочее поле. Точно также извлекаются и другие компоненты из соответствующих полей.

В нескольких работах используется блок wattmeter, который предназначен для измерения активной мощности в цепях синусоидаль-

ного тока. К выходным зажимам блока подключается вольтметр, показания которого в вольтах равны активной мощности цепи в ваттах. Для правильного измерения активной мощности этот вольтметр должен работать в режиме **DC**.

2. Поле источников сигналов **Sources** включает как идеальные источники постоянных и синусоидальных напряжений и токов, так и некоторые специальные источники. Сюда же помещен и компонент «заземление» (левая верхняя пиктограмма в выпадающем меню). За ней (по порядку слева направо) следуют пиктограммы независимых источников постоянных напряжения и тока, а затем источников синусоидальных напряжения и тока. В лабораторных работах по первой части курса ТОЭ используются источники напряжения (ЭДС).

3. Поле основных пассивных компонентов **Basic** содержит резисторы, конденсаторы, катушки индуктивности, трансформаторы и коммутационные устройства (например, ключ, управляемый одной из клавиш), а также соединяющий узел. Для определения их параметров нужно после установки элемента в рабочем поле двойным щелчком левой кнопки мыши открыть диалоговое окно **Component Properties**, в разделе **value** задать нужные параметры и нажатием клавиши **Enter** подтвердить их установку.

В схемах могут быть использованы элементы, параметры которых изменяются ступенчатым образом (например, реостат). Среди его характеристик указывается не только наибольшее значение сопротивления, но и величина однократного изменения в процентах от этого максимума, а также управляющая клавиша \mathbf{R} , нажатие на которую вызывает увеличение сопротивления. Для уменьшения сопротивления требуется одновременное нажатие клавиш Shift+R.

Операция поворота выбранного элемента на угол 90° выполняется по команде **Rotate** из меню **Circuit** или после нажатия клавиш **Ctrl+R**. Удалить элемент с рабочего поля можно по команде **Delete** из меню **Ed**-**it** или нажатием одноименной клавиши.

4. Поле Indicators (четвертое от правого края строки компонентов схем) наряду с другими индикаторами содержит цифровые амперметр и вольтметр. Для измерения постоянных токов и напряжений необходимо при настройке приборов в разделе value в строке mode задать режим DC, а для измерения действующих значений периодически изменяющихся величин – режим AC.

5. Поле контрольно-измерительных приборов (КИП) Instruments в числе других приборов содержит осциллограф (Oscilloscop) и анализатор частотных характеристик **Bode**, используемый в качестве фазометра. Последний уже настроен на измерение разности фаз сигналов, подаваемых на входы **In** (напряжение на зажимах двухполюсника) и **Out** (напряжение, пропорциональное его току) в пределах от -90° до $+90^{\circ}$. Правые зажимы обоих входов при этом соединяются с общей точкой **Ground**. Перед каждым измерением угла сдвига фаз необходимо, используя левую кнопку мыши, выключить (**O**) и включить (**I**) схему с помощью переключателя, находящегося в правом верхнем углу экрана (перезапуск моделирования режима). Чтобы можно было прочитать результат измерения, следует двойным щелчком левой кнопкой мыши вывести увеличенное изображение лицевой панели прибора в нижнюю часть экрана.

После размещения компонентов схемы на рабочем поле их нужно соединить между собой проводниками. Для этого необходимо подвести курсор к одному из выводов элемента. После появления на нем большой черной (или красной) точки нажать левую кнопку мыши и, удерживая ее, протянуть провод к клемме другого элемента. При отпускании кнопки провод устанавливается между элементами. Если количество проводников, подключенных к одному из выводов данного элемента больше двух, то следует извлечь из меню **Basic** соединяющий узел и установить его на уже существующий проводник. К такому узлу можно подключить еще два провода.

Запуск и отключение собранной схемы осуществляется кнопкой «Пуск» в режимах [I] и [O] соответственно.

Многие вопросы по использованию **EWB** можно решить при обращении к **Help**.

Технология подготовки схем и проведения анализа

Процесс создания схемы начинается с выбора элементов и приборов из библиотек программы (перетаскиванием мышью необходимых элементов на рабочий стол), расположение компонентов схемы в соответствии подготовленным эскизом. При размещении компонентов на рабочем поле можно воспользоваться динамическим меню, всплывающим после щелчка правой кнопкой мыши по компоненту,

с помощью которого можно копировать (Copy), удалять (Delete), вырезать (Gut), вставлять (Paste) элемент схемы. Можно также поворачивать его (Rotate), отображать по вертикали или по горизонтали (Flip Vertical, Flip Horizontal), а также изменять параметры (Component Properties).

После размещения элементов схемы в рабочем поле их выводы соединяются проводниками. Курсор мыши подводится к выводу компонента, и после появления жирной черной точки (узла) нажимается левая кнопка мыши и появляющийся при этом проводник протягивается к выводу другого компонента до появления на нем такой же жирной точки, после чего левая кнопка мыши отпускается и соединение готово. Подключение измерительных приборов выполняется аналогично подключению компонентов схемы. При этом можно использовать цветные проводники, которые выделяют подключенный прибор и окрашивают в соответствующий цвет выводимые графики. Для изменения цвета проводника нужно два раза щелкнуть левой кнопкой мыши на изображение и в открывшемся окне выбрать нужный цвет. Для начала анализа схемы системой необходимо активизировать схему нажатием кнопки 6 (рис. 1), для остановки анализа – кнопку 7. Чтобы сохранить рабочий лист (документ) под нужным названием, необходимо щелкнуть мышью по третьей кнопке в третьей строке сверху – пиктограмме с изображением дискеты. Появится диалоговое окно Save as (Сохранение). В текстовом поле File name (Имя файла) нужно дать имя файлу (документу). Система автоматически добавит расширение .ewb.

Список команд главного меню

File – загрузка и запись файлов.

New (Ctrl+N) – создать новый документ.

Open (Ctrl+O) – открыть документ.

Save (Ctrl+S) – сохранить документ.

Save As – сохранить документ с другим именем.

Revert to Saved – стирание всех изменений, внесенных в текущем сеансе редактирования, и восстановление схемы в первоначальном виде.

Import – импорт документов.

Export – экспорт документов.

Print (Ctrl+P) – выбор данных для печати Schematic (схемы); Description (описания к схеме); Part list (перечня выводимых на принтер документов); Model list (списка, имеющихся в схеме компонентов), Subcircuits (подсхем); Analysis options (перечня режима моделирования); Instruments (списка приборов).

Print Setup – настройка принтера.

Exit (Alt F4) – выход из программы.

Install – установка дополнительных программ с гибких дисков.

Export to PSB – составление списка соединений схемы в формате **OrCAD** и другие разработки печатных плат.

Import from SPICE – импорт текстовых файлов описания схемы и задания на моделирование схемы в формате **SPICE** (с расширением .cir) и автоматическое построение схемы по ее текстовому описанию.

Export to SPICE – составление текстового описания схемы и задания на моделирование в формате **SPICE**.

Edit – редактирование схем.

Cut (Ctrl+X) – стирание (вырезание) выделенной части схемы с сохранением ее в буфере обмена.

Сору (Ctrl+C) – копирование в буфер обмена.

Paste (Ctrl+V) – вставка содержимого буфера обмена на рабочее поле.

Delete (Delete) – стирание выделенной части.

Select All (Ctrl+A) – выделение всей схемы.

Сору as Bitmap – копирование выделенной части. Копирование всего экрана производится нажатием клавиши Print Screen. Копирование активной в данный момент части экрана, например, диалогового окна производится с помощью комбинации клавиш Alt+ Print Screen.

Show Clipboard – показ содержимого буфера обмена.

Circuit – подготовка схем.

Rotate (Ctrl+R) – вращение выделенной части.

Flip Horizontal – зеркальное изображение по горизонтали.

Flip Vertical – зеркальное изображение по вертикали.

Zoom In (Ctrl++) – увеличение выделенной части.

Zoom Out (Ctrl+-) – уменьшение выделенной части.

Create Subcicuit (Ctrl+B) – преобразование предварительно выделенной части схемы в подсхему, т.о. что выделенная часть схемы:

Copy from Circuit – копируется в библиотеку без внесения изменений в исходную схему.

Move from Circuit – вырезается из общей части схемы и копируется в библиотеку.

Replace in Circuit – заменяется в исходной схеме подсхемой с присвоенным ей именем с одновременным копированием её в библиотеку.

Schematic Options... – элементы оформления схемы.

Grid (Show Grid) показать сетку на схеме,(Use Grid) – убрать сетку.

Show /Hide – наличие обозначений на схеме

Show labels – показать позиционное обозначение компонентов, например, C1, C2 для конденсаторов.

Show models – показать имена моделей компонентов.

Show values – показать номиналы компонентов, например, сопротивления для резисторов – 100Ω , 200Ω .

Show nodes – показать нумерацию узлов.

Analysis – задание параметров моделирования.

Activate (Ctrl+G) – запуск моделирования.

Stop (Ctrl+T) - остановка моделирования.

Pause (F9) – прерывание моделирования.

Options (Ctrl+Y) – набор команд установки параметров.

Operating Point – расчет режима по постоянному току.

AC Frequency – расчет частотных характеристик.

Transient – расчет переходного режима.

Fourier – спектральный анализ Фурье.

Monte Carlo – статистический анализ.

Display Graph – вывод результатов анализа.

Window – окна.

Arrange (Ctrl+W) – упорядочение информации в рабочем окне.

Circuit – вывод схемы на передний экран.

Description (Ctrl+D) – вывод на передний экран описания схемы.

Help – меню настроено стандартным для Windows способом, содержит сведения по всем командам, компонентам и о самой программе.

Краткий обзор библиотечных компонентов программы EWB

Favorites – вспомогательные компоненты. Размещаются подсхемы, если они есть в данной схеме (в исходном состоянии раздел пуст).

Ŧ

Sources – источники сигналов (меню для выбора компонентов показано на рис. 2). Сюда же помещен компонент «заземление».

Рис. 2

Источники.

В общем случае источники могут быть представлены генераторами напряжения или генераторами тока.

Рис. 3. Источники: а – идеальный источник постоянного напряжения; б – идеальный источник постоянного тока; в – источник переменного напряжения; г – источник переменного тока Источники тока делятся на источники постоянного тока, переменного тока и управляемые (функциональные) источники. Кроме того, они подразделяются на измерительные источники и источники для электропитания. Примером измерительного источника является функциональный генератор.

Источники постоянного напряжения и тока. Величина ЭДС идеального источника постоянного напряжения или батареи (рис. 3,а) (Voltage) задается от мкВ(μ V) до кВ(kV) в диалоговом окне, вызываемое двумя щелчками левой кнопки мыши (рис. 4). Короткой чертой в изображении батареи обозначается вывод, имеющий отрицательный потенциал по отношению к другому выводу. Батареи в Electronics Workbench имеют внутреннее сопротивление, равное нулю.

Величина задающего тока идеального источника тока задается от мкА до кА. Стрелка указывает направление тока от + к – во внешней цепи.

Battery Properties Y X Label Value Fault Display Analysis Setup
Label Value Fault Display Analysis Setup
Voltage (V): 12 V + Voltage tolerance: Global & V Use global tolerance Voltage (V): 12 V + Frequency: 60 Hz + Phase: 0 Deg Voltage tolerance: Global & V •
ОК Отмена ОК Отмена

Puc. 4

Рис. 5

Источники переменного напряжения и тока. Для генератора синусоидального напряжения (рис. 3, в) задаются частота (Frequency), действующее значение (Voltage) и начальная фаза (Phase) напряжения с помощью диалогового окна (рис. 5).

Значения тока, частоты и начальной фазы идеального генератора синусоидального тока устанавливаются так же, как для источника синусоидального напряжения.

Идеальный генератор импульсного напряжения является источником однополярных импульсов. Для них задаются амплитуда, частота следования и коэффициент заполнения (**Duty cycle** – отношение длительности импульса к периоду следования – величина, обратная скважности).

Clock Properties		<u>? ×</u>
Label Value	Fault Display	
Frequency (F): Duty cycle (D): Voltage (V):	1000 Hz 50 ▲ % 5 V	
	ок)тмена

Рис. 6

Установка этих параметров осуществляется с помощью диалогового окна, показанного на рис. 6. При указанном на рис. 6 значении коэффициента заполнения 50% длительность импульса равна половине периода. Периодическая импульсная последовательность называется *меандром*.

Управляемые источники программы EWB показаны на рис. 7. Источники напряжения управляемый током (ИНУТ) – рис. 7,а. В диалоговом окне этого источника задается единственный параметр – коэффициент передачи, равный отношению выходного напряжения к току управления; параметр имеет размерность сопротивления. Для источника тока управляемого напряжением (ИТУН рис. 7,б) этот параметр имеет размерность проводимости, поскольку коэффициент передачи равен отношению выходного тока к напряжению управления.

Источники на рис. 7,в,г представляют собой источники напряжения и тока, управляемые соответственно напряжением и током (ИНУН и ИТУТ). Коэффициент передачи этих устройств – величина безразмерная.

Пассивные компоненты

Basic – раздел, в котором собраны все пассивные компоненты, а также коммутационные устройства (рис. 8).

Puc. 8

Резисторы. Резисторы являются самыми массовыми изделиями электронной техники. В программе EWB они представлены тремя типами – постоянными, переменными и набором из восьми резисторов. Сопротивление переменного резистора может изменяться нажатием назначенной пользователем клавиши клавиатуры (по умолчанию – клавишей R), начиная от максимального значения до минимального значения с заданным шагом (от 1 до 100%). Все эти установки производятся с помощью диалогового окна, вызываемого аналогично предыдущим описанным компонентам нажатием правой кнопки мыши.

Конденсаторы. Конденсаторы представлены тремя типами. Первый тип охватывает практически все конденсаторы, второй – электролитические, третий – переменные. Значение емкости каждого конденсатора может быть установлено в пределах от 108 п $\Phi(pF)$ до 108 $\Phi(F)$. Емкость переменного конденсатора устанавливается с помощью клавиш – ключей так же, как и положение движка переменного резистора.

Индуктивные элементы. Параметры катушек с постоянной и переменной индуктивностью задаются с помощью диалоговых окон, аналогичных окнам для резисторов и конденсаторов.

Трансформаторы. В диалоговом окне установки параметров линейных трансформаторов задаются коэффициент трансформации N, индуктивность рассеяния LE, индуктивность первичной обмотки LM, сопротивление первичной RP и вторичной RS обмоток. При N>1 – трансформатор является понижающим, при N<1 – повышающим.

Коммутационные устройства (КУ) программы EWB представлены на рис. 8. Устройства на рис. 8,а – переключатель типа однополюсного тумблера, управляемого нажатием назначенной клавиши (по умолчанию клавиши Space – пробел). Имя клавиши устанавливается в диалоговом окне.

КУ на рис. 9,6 – реле времени (переключатель с программируемым временем переключения).

Puc. 9

Его параметры задаются с помощью диалогового окна на рис. 10. Параметр Тор – время включения разомкнутого в исходном состоянии контакта после начала моделирования; параметр Toff – время выключения (перевод контактов в исходное состояние), это время также отсчитывается от момента начала моделирования.

Time-Delay Switch Properties	? XI Voltage-Controlled Switch Properties	? ×
Label Value Fault Display Time on (TON): 0.5 S S Time off (TOFF): 0 S S OK OT	Label Value Fault Display Turn-on voltage (VON): Turn-off voltage (VOFF): On-state resistance (RON): Off-state resistance (ROFF): 1.0/GMIN	Default
Puc 10	Puc. 11	

Представленные на рис. 8,в,г КУ – однополюсные выключатели, управляемые напряжением или током. Параметры цепи управления задаются с помощью диалогового окна на рис. 10 (для компонента на рис 9,в). Первый параметр диалогового окна – напряжение включения, второй – напряжения выключения (для компонента на рис. 9,г – ток включения и выключения соответственно).

Diodes – раздел, объединяющий семейство диодов (рис. 12).

Indicators-индикаторные устройства (рис. 13).

₩

Меню раздела содержит (слева направо) амперметр и вольтметр с цифровым отсчетом, одиночные и многосегментные светоиндикаторы, восьмиразрядное устройство записи данных и звуковой сигнализатор. Вольтметры и амперметры обеспечивают отсчет измеряемой величины с точностью до третьего знака.

Вольтметр (в диалоговом окне задаются внутреннее сопротивление, режимы постоянного **DC** или переменного **AC** тока).

Амперметр (задается внутреннее сопротивление, режим постоянного DC или переменного тока AC).

Лампа накаливания (задаются напряжение, мощность).

Miscellaneous – компоненты смешанного типа (рис.14).

В разделе имеются: плавкий предохранитель, набор подсхем в формате Spice, линии связи с распределенными параметрами с потерями и без потерь, кварцевый генератор, коллекторный электродвигатель постоянного тока, электровакуумный триод, фильтры-накопители на переключаемых индуктивностях.

M

Контрольно-измерительные приборы (рис.15).

🚰 Instruments	×
D 15	

Мультиметр. На лицевой панели мультиметра расположен дисплей для отображения результатов измерения, клеммы для подключения к схеме и кнопки управления:

A 💟 Ω dB

- выбор режима измерения тока, напряжения, сопротивления и ослабления (затухания);
- выбор режима измерения переменного или постоянного тока;

– режим установки параметров мультиметра. После нажатия на эту кнопку открывается диалоговое окно, на котором

обозначено:

Ì	lultimeter				? ×
	Sheet 1				
	Ammeter resistance (R): Voltmeter resistance (R): Ohmmeter current (I): Decibel standard (V):	1 0.01 1	nΩ GΩ μΑ V		
		(эк	Отме	на

Ammeter resistance – внутреннее сопротивление амперметра.

Voltmeter resistance – входное сопротивление вольтметра.

Ohmmeter current – ток через контролируемый объект. **Decobel standart** – установка эталонного напряжения при измерении ослабления или усиления в децибелах (по умолчанию V1=1B).

Функциональный генератор (Function Generator)

На лицевой панели генератора расположены клеммы для подключения к схеме и кнопки управления:

Function	Generator	×
\sim	$\sim\sim$	
Frequency	1	Hz 🖨
Duty cycle	50	%
Amplitude	10	
Offset		
ē	Common ()	

——————————————————————————————————————	-
ного сигнала: синусоидальной (выбран по)
умолчанию), треугольной или прямоуголь	-
ной;	
Frequency 1 + Hz - установка частоть	I

выходного сигнала; Duty cycle 50 — установка коэффициента

заполнения в %: для импульсных сигналов это отношение длительности импульса к периоду повторения – величина, обратная скважности;

Amplitude 10 🖨 🗸 – установка амплитуды выходного сигнала;

Сотто + – выходные зажимы; при заземлении клеммы
 СОММОN (общий) на клеммах "+" и "–" получаем парафазный сигнал.

Осциллограф (Oscilloscope, рис. 16) имеет два канала (CANNEL) A и В с раздельной регулировкой по чувствительности в диапазоне от 10 мкВ/дел (μ V /Div) до 5 кВ/дел (kV/Div) и регулировкой смещения по вертикали (Y POS). Выбор режима по входу осуществляется нажатием кнопок AC, O, DC.

Рис. 16. Лицевая панель осциллографа

Режим AC предназначен для наблюдения только сигналов переменного тока. В режиме O входной зажим замыкается на землю. В режиме DC можно проводить осциллографические измерения как постоянного, так и переменного тока.

Режим развертки выбирается кнопками **ВА АВ**. В режиме **Y/T** (обычный режим, включен по умолчанию) реализуется следующий режим развертки: по вертикали – напряжение сигнала, по горизонтали – время; в режиме **B/A**: по вертикали – сигнал канала **B**, по горизонтали – сигнал канала **A**; в режиме **A/B**: по вертикали – сигнал канала **A**, по горизонтали – сигнал канала **A**.

В режиме развертки **Y/T** длительность развертки (**TIME BASE**) может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1нс/дел (s/div) с возможностью установки смещения в тех же единицах по горизонтали, т.е по оси X (**X POS**).

В режиме Y/T предусмотрен также ждущий режим (TRIGGER) с запуском развертки (EDGE) по переднему или заднему фронту запускающего сигнала (выбирается нажатием кнопок IDE) при регулируемом уровне (LEVEL) запуска, а также в режиме AUTO (от канала A или B,) от канала A, от канала B или от внешнего источника (EXT), подключаемого к зажиму в блоке управления TRIGGER. Названные режимы работы выбираются кнопками

Заземление осциллографа осуществляется с помощью клеммы **GROUND** в правом верхнем углу прибора.

При нажатии на кнопку **ZOOM** лицевая панель осциллографа существенно меняется – увеличивается размер экрана, появляется возможность сканирования с помощью визирных линий (синего и красного цвета), которые могут быть установлены курсором за треугольные ушки (они обозначены также цифрами 1 и 2) в любое место экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений (между визирными линиями). Изображение можно инвертировать нажатием кнопки REVERSE и записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию осциллографа – нажатием кнопки REDUCE.

Puc. 17

Измеритель АЧХ И ФЧХ предназначен для анализа амплитудночастотных (при нажатой кнопке **MAGNI TUDE**, включена по умолчанию) и фазо-частотных (при нажатой кнопке **PHASE**) характеристик при логарифмической (кнопка **LOG**) или линейной (кнопка **LIN**) шкале по осям Y (**VERTICAL**) и X (**HORIZONTAL**).

Настройка измерителя заключается в выборе пределов измерения коэффициента передачи и вариации частоты с помощью кнопок в окош-ках F – максимальное и I – минимальное значение.

Значение частоты и соответствующее ей значение коэффициента передачи или фазы индицируется в окошках в правом нижнем углу измерителя. Значение указанных величин в отдельных точках АЧХ и ФЧХ можно получить с помощью вертикальной визирной линии, находящейся в исходном состоянии в начале координат и перемещаемой по графику мышью или кнопками $\leftarrow \rightarrow$. Результаты измерения можно записать также в текстовый файл. Для этого необходимо нажать кнопку **SAVE** и в диалоговом окне указать имя файла (по умолчанию предлагается имя схемы). В полученном таким образом текстовом файле с расширением **.bod** АЧХ и ФЧХ представляются в табличном виде.

Подключение прибора к исследуемой схеме осуществляется с помощью зажимов IN (вход) и OUT (выход). Левые клеммы зажимов подключаются соответственно ко входу и выходу исследуемого устройства, а правые к общей шине. Ко входу устройства необходимо подключить функциональный генератор или другой источник переменного напряжения, при этом каких-либо настроек в этих устройствах не требуется.

РАБОТА 1

ИССЛЕДОВАНИЕ ЛИНЕЙНОЙ РАЗВЕТВЛЕННОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

Цель работы. Проверить выполнение законов Кирхгофа, принципов наложения и взаимности, теоремы о линейных соотношениях.

Пояснения к работе

Первый закон Кирхгофа. Алгебраическая сумма токов в узле равна нулю. С одним знаком учитываются токи, подтекающие к узлу, а с другим – отходящие от него:

$$\sum I = 0$$

Второй закон Кирхгофа. Алгебраическая сумма падений напряжения в контуре равна алгебраической сумме ЭДС контура (в левой части со знаком «плюс» учитываются падения напряжения на тех элементах, токи в которых совпадают с выбранным направлением обхода контура, в правой – ЭДС тех источников, стрелки которых совпадают с направлением обхода):

$\sum IR = \sum E.$

Взаимно независимыми уравнениями являются уравнения для токов всех узлов цепи за исключением одного. Для любой цепи взаимно независимые уравнения для напряжений получаются, если, записав уравнение для любого контура, мысленно разорвать в нем одну ветвь, а следующие уравнения также с разрывом ветви записывать для оставшихся целых контуров до их исчерпания. Уравнения для напряжений всех контуров – ячеек плоской (планарной) цепи кроме внешнего контура взаимно независимы.

Принцип наложения. Ток любой ветви линейной электрической цепи с несколькими источниками может быть представлен в виде алгебраической суммы составляющих от действия каждого источника в отдельности.

Принцип взаимности. Если в пассивной линейной цепи выделить две ветви *ab* и *cd*, в одну из них включить ЭДС $E_{ab} = E$, а в другой измерить ток $I_{cd} = I$, затем переставить ту же ЭДС во вторую ветвь ($E_{cd} = E$), а ток измерить в первой, то эти два тока окажутся равными ($I_{ab} = I$).

Теорема о линейных соотношениях. Если в линейной электрической цепи изменять какой-либо один параметр (сопротивление, ЭДС или задающий ток источника), то любые две величины (токи или напряжения) окажутся связанными линейным соотношением вида y = ax + b.

Теорема компенсации. Любой двухполюсник можно заменить источником ЭДС, равной напряжению на зажимах двухполюсника и имеющей ту же полярность, и при этом токи и напряжения остальной части цепи не изменятся.

Схема электрической цепи

В работе используется двухконтурная схема, показанная на рис. 1.1. Значения ЭДС источников постоянного напряжения и сопротивлений в исходной схеме задаются согласно табл. 1.1 (номер варианта указывает преподаватель). В процессе работы значение E_1 придется изменить в соответствии с программой.

]	Габлиі	1a 1.1
N	<u>b</u>	1	2	3	4	5	6	7	8	9	10
E_1	В	4	6	6	10	12	5	7	9	11	3
E_2	В	9	11	6	4	8	10	12	14	5	7
R_1	Ом	120	100	140	80	160	180	200	220	240	80
R_2	Ом	50	60	80	30	40	50	60	80	100	20
R_3	Ом	80	40	60	100	120	80	120	150	30	50

Положением ключей K_1 , K_2 (на схеме в квадратных скобках указаны их индексы) можно управлять с помощью клавиш **1** и **2** соответственно.

Подготовка к работе

Проработав теоретический материал, ответить на вопросы.

1. Как выбирать контуры, чтобы уравнения Кирхгофа для них оказались взаимно независимыми?

2. На рис. 1.2 дана структурная схема некоторой цепи (ветви изображены линиями, узлы – точками). Определите для нее число взаимно независимых уравнений, которые можно составить по первому и второму законам Кирхгофа.

3. На рис. 1.3 изображена исследуемая цепь без измерительных приборов и ключей. Запишите для нее необходимое число взаимно независимых уравнений по законам Кирхгофа.

4. Каковы правила знаков при записи уравнений Кирхгофа?

5. В чем сущность принципа наложения и как его проверить на примере цепи рис.1.1?

6. Поясните принцип взаимности применительно к цепи рис. 1.3 и выведите формулы для аналитической его проверки (докажите тождество выражений для двух токов).

Программа работы

1. Собрать схему и установить значения ЭДС E_1 , E_2 и сопротивлений R_1 , R_2 , R_3 , выбрав из табл. 1.1 вариант, указанный преподавателем.

2. Экспериментальная проверка законов Кирхгофа и принципа наложения.

Опыт 1. Ключ K_1 установить в верхнее положение, ключ $K_2 - в$ нижнее, как это показано на рисунке. В схеме действует только ЭДС E_1 , вместо E_2 включен проводник с сопротивлением равным нулю («закоротка»).

Опыт 2. Ключ K_2 установить в верхнее положение, ключ K_1 – в нижнее. В схеме действует только ЭДС E_2 , вместо E_1 включена закорот-ка.

Опыт 3. Перевести ключ К₁ в верхнее положение. При этом включены обе ЭДС.

Показания приборов внести в верхние три строки табл. 1.2. В четвертую строку этой таблицы записать сумму показаний приборов в опытах 1 и 2. Сравнить результат с показаниями приборов в опыте 3.

							Ta	аблица 1.2		
	Э	ДC	Показ	ания п	рибо-	Результаты вычислений				
Опыт				ров		ров				
	E_1	E_2	I_1	I_2	I_3	$\sum IR(1)$	$\sum IR(2)$	$\sum I$		
	В	В	мА	мА	мА	В	В	мА		
1		0								
2	0									
3										
Расчет						Проверка пр	оинципа нал	ожения		

Просуммировать значения токов в опытах 1÷3 в соответствии с первым законом Кирхгофа. Результаты записать в правый столбец табл. 1.1. Убедиться, что закон выполняется. Подсчитать сумму падений напряжений в левом (1) и правом (2) контурах схемы для всех трех опытов. Результаты внести в табл. 1.2 и сравнить их с соответствующими ЭДС в каждом из опытов.

3. Проверка теоремы о линейных соотношениях при E_1 =var, E_2 =const для токов I_2 , I_3 и принципа взаимности для токов I_1 , I_2 .

Опыт 4. Изменить значение ЭДС E_1 . Для этого установить курсор на символ этого источника и после двойного щелчка левой клавишей мыши задать величину $E_1=E_2$. Показания приборов внести в табл. 1.3. Сюда же переписать и результаты опытов 2 и 3 из табл. 1.2.

Таблина 1.3

					1
Hower or mo	U_1	U_2	I_2	I_3	
помер опыта	В	В	мА	мА	Примечание
4					Коэффициенты зависимости
3					$I_3 = aI_2 + b$
2					a = b =

Опыт 5. Ключ K_2 перевести в нижнее положение. При этом в схеме действует лишь источник ЭДС E_1 с ее новым значением. Показания приборов внести в табл. 1.4. Переписать сюда же показания приборов из опыта 2. Сравнить показания амперметров. Вычислить те же токи по

формулам, выведенным при подготовке к работе (п. 6), и результаты также внести в табл. 1.4.

T . 6 1 4

					1 a (улица 1.4
Опыт		Показания	Pac	чет		
	U_1	U_2	I_1	I_2	I_1	I_2
	В	В	мА	мА	мА	мА
5	0			—		_
2		0	_		_	

4. Сделать выводы по работе.

РАБОТА 2

ИССЛЕДОВАНИЕ АКТИВНОГО ДВУХПОЛЮСНИКА

Цель работы. Проверить возможность замены активного двухполюсника эквивалентным генератором и научиться определять параметры эквивалентных схем замещения генератора.

Пояснения к работе

При расчете линейных электрических цепей часто бывает нужно определить ток в какой-нибудь одной ветви. В этом случае по отношению к зажимам этой ветви всю остальную часть цепи можно рассматривать как активный двухполюсник (рис. 2.1, *a*) и при расчете заменить его эквивалентным генератором (рис. 2.1, *б*) с ЭДС E_{Γ} и внутренним сопротивлением R_{Γ} .

ЭДС эквивалентного генератора равна напряжению между точками присоединения нагрузки ab при ее отключении. Сопротивление эквивалентного генератора равно сопротивлению между теми же точками при

равенстве нулю внутренних ЭДС и задающих токов источников двухполюсника. Возможна и схема эквивалентного генератора с источником тока (рис. 2.1, *в*), задающий ток которого равен току короткого замыка-

ния активного двухполюсника $I_{\rm K3}$, при этом $J_{\Gamma} = \frac{E_{\Gamma}}{R_{\Gamma}}$.

Параметры эквивалентного генератора можно определить экспериментально по величине тока и напряжения нагрузки при двух значениях сопротивления приемника (метод двух нагрузок), а также из опытов холостого хода и короткого замыкания.

Параметры генератора по методу двух нагрузок определяются как

$$E_{\Gamma} = \frac{U_2 I_1 - U_1 I_2}{I_1 - I_2}, \ R_{\Gamma} = \frac{U_2 - U_1}{I_1 - I_2}$$

где U_1 и U_2 – показания вольтметра при первой и второй нагрузках, I_1 и I_2 – показания амперметра при тех же нагрузках.

Параметры генератора из предельных режимов короткого замыкания ($R_{\rm H} = 0$) и холостого хода ($R_{\rm H} = \infty$) определяются по формулам:

$$E_{\Gamma} = U_{\rm XX}, \qquad R_{\Gamma} = \frac{U_{\rm XX}}{I_{\rm K3}},$$

где U_{XX} – показания вольтметра в режиме холостого хода ($I_{H} = 0$), I_{K3} – показание амперметра в режиме короткого замыкания ($U_{H} = 0$).

Для определения тока нагрузки применяются либо формула Тевенена–Гельмгольца (рис. 2.1, б)

$$I = \frac{E_{\Gamma}}{R_{\Gamma} + R_{\Gamma}}$$

либо формула Нортона–Поливанова (рис. 2.1, в)

$$I = \frac{J_{\Gamma}}{1 + R_{\rm H} / R_{\Gamma}},$$

где $R_{\rm H} = \frac{U_{ab}}{I}$ – сопротивление нагрузки (рис. 2.2), R_{Γ} – сопротивление генератора, $J_{\Gamma} = I_{\rm K3}$.

Мощность нагрузки и КПД двухполюсника определяются по формулам: $P_{\rm H} = I^2 R_{\rm H}$ и $\eta = \frac{P_{\rm H}}{E_{\Gamma} I}$, причем значения их величин зависят от соотношения R_{Γ} и $R_{\rm H}$.

Внешняя характеристика $U_{ab} = f(I)$ эквивалентного генератора позволяет графически определить ток нагрузки по известному ее сопротивлению $R_{\rm H}$, находя точку пересечения внешней характеристики генератора и вольтамперной характеристики нагрузки. Последнюю строят

по уравнению: $U_{\rm H} = R_{\rm H}I$, где $R_{\rm H} = {\rm const}$, задаваясь двумя значениями тока.

Схема электрической цепи

В работе используется схема, показанная на рис. 2.2. Для ее сборки следует открыть файл LW2 и в качестве активного двухполюсника извлечь из поля вспомогательных компонентов Favorites (в верхнем левом углу экрана в начале второй строки меню) подсхему (Subcircuit) из набора AD1 ÷ AD10 (номер варианта указывает преподаватель).

Верхний предел изменения сопротивления нагрузки $R_{\rm H}$ (1000 Ом), равно как и процентное изменение $R_{\rm H}$, следует установить при сборке схемы. В процессе работы для изменения этого сопротивления на заданную (в процентах от наибольшего значения) величину необходимо либо нажать управляющую клавишу **R** (в этом случае сопротивление уменьшается на такую величину), либо одновременно **Shift+R** (тогда сопротивление настолько же увеличивается). Положением ключа К управляет клавиша **1**.

Подготовка к работе

1. Сформулируйте теорему об эквивалентном генераторе. Запишите формулы для определения параметров генератора по опыту холостого хода и короткого замыкания.

2. Изобразите одноконтурную схему эквивалентного генератора (рис. 2.1, б) и с ее помощью докажите справедливость формул определения параметров генератора по методу двух нагрузок, используя второй закон Кирхгофа.

3. Определите аналитически, при каком соотношении между сопротивлением нагрузки $R_{\rm H}$ = var и внутренним сопротивлением генератора R_{Γ} = const мощность нагрузки окажется максимальной.

Указание. В максимуме $\frac{\partial P_{\rm H}}{\partial R_{\rm H}} = 0.$

Программа работы

1. Открыть файл LW2 и вызвать подсхему AD, номер которой указывает преподаватель. Собрать оставшуюся часть схемы.

1. С помощью управляющей клавиши **1** установить ключ в нижнее положение (ключ разомкнут). Внести показания приборов в табл. 2.1 (режим холостого хода).

2. Перевести ключ в верхнее положение (ключ замкнут) и с помощью управляющей клавиши **R** установить реостат в положение $R_{\rm H}=0$ (режим короткого замыкания). Показания приборов записать в ту же таблицу.

3. Исследовать работу активного двухполюсника под нагрузкой (6 опытов). При этом $R_{\rm H}$ следует устанавливать такой величины, чтобы приращения тока при изменении от 0 до $I_{\rm K3}$ были примерно одинаковыми. Показания приборов также внести в табл. 2.1.

4. Определить параметры эквивалентного генератора E_{Γ} и R_{Γ} по данным опытов холостого хода и короткого замыкания.

5. Определить E_{Γ} и R_{Γ} по методу двух нагрузок. Для расчета следует выбрать такие два опыта, токи в которых отличались бы друг от друга не менее, чем в 2 раза.

6. Вычислить мощность нагрузки $P_{\rm H}$, КПД η и величину $\ln \frac{R_{\rm H}}{R_{\Gamma}}$ для всех значений сопротивления $R_{\rm H}$. Результаты расчетов по

пп.	5,	6	,7	внести	В	табл.	2.1.
-----	----	---	----	--------	---	-------	------

Таблица 2.1

								1
Опыт	Ι	$U_{ m ab}$	$R_{ m H}$	E_{Γ}	R_{Γ}	$\ln \frac{R_{\rm H}}{R_{\Gamma}}$	P_{H}	η
	мА	В	Ом	В	Ом	_	Вт	%
Холостой ход	0		∞			∞	0	100
$ \begin{array}{c} 1\\ 2\\ \dots\\ 6\end{array} $								
Короткое замыкание		0	0			-∞	0	0

7. Определить E_{Γ} и R_{Γ} по методу двух нагрузок. Для расчета следует выбрать такие два опыта, токи в которых отличались бы друг от друга не менее, чем в 2 раза.

8. Вычислить мощность нагрузки $P_{\rm H}$, КПД η и величину $\ln \frac{R_{\rm H}}{R_{\Gamma}}$ для всех значений сопротивления $R_{\rm H}$. Результаты расчетов по

пп. 5, 6, 7 внести в табл. 2.1.

9. Построить по данным табл. 2.1 внешнюю характеристику генератора $U_{ab} = f(I)$ и (в тех же осях) вольтамперную характеристику нагрузки с сопротивлением $R_{\rm H} = {\rm const}$, заданным преподавателем. Определить ток нагрузки.

10. Для того же сопротивления нагрузки вычислить ток по формулам Тевенена - Гельмгольца и Нортона - Поливанова.

11. Построить зависимость мощности нагрузки от соотношения сопротивлений нагрузки и генератора в логарифмическом масштабе $P_{\rm H} = f(\ln \frac{R_{\rm H}}{R_{\Gamma}})$. Из последнего графика найти сопротивление $R_{\rm H}$, при ко-

тором мощность нагрузки максимальна. Сравнить полученное сопротивление с найденным теоретически при подготовке к работе. Построить также зависимость $\eta = f(P_{\Gamma})$.

12. Сравнить параметры эквивалентного генератора, вычисленные двумя способами, и значения тока нагрузки, которые определены по двум формулам и по внешней характеристике генератора. Проанали-

зировать зависимости
$$P_{\rm H} = f(\frac{R_{\rm H}}{R_{\Gamma}})$$
 и $\eta = f(P_{\rm H})$.

13. Сделать общие выводы по работе.

РАБОТА 3

КОНДЕНСАТОР И КАТУШКА ИНДУКТИВНОСТИ В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цель работы. Научиться определять параметры конденсатора и катушки индуктивности с помощью амперметра, вольтметра и фазометра, строить векторные диаграммы, а также проверить выполнение законов Кирхгофа в цепи синусоидального тока.

Пояснения к работе

Реальный конденсатор в отличие от идеального обладает некоторыми тепловыми потерями энергии из-за несовершенства изоляции. В расчетах электрических цепей такой конденсатор представляют обычно параллельной схемой замещения. Параметры этой схемы – g и C – можно экспериментально определить по показаниям амперметра I, вольтметра U и фазометра φ следующим образом. Сначала найти по закону Ома полную проводимость конденсатора $y = \frac{I}{U}$, потом активную $g = y \cos \varphi$ и емкостную $b_C = -y \sin \varphi$ проводимости, а затем по известной угловой частоте синусоидального напряжения сети ($\omega = 314$ рад/с) подсчитать емкость $C = \frac{b_C}{\omega}$.

При параллельном соединении элементов *R*, *L*, *C* по законам Ома и Кирхгофа в комплексной форме для входного тока имеем:

$$\dot{I} = \dot{I}_R + \dot{I}_L + \dot{I}_C = \dot{U}\dot{Y},$$

где $\dot{Y} = g - jb = ye^{-j\phi}$ – комплексная проводимость; g – активная, $b = b_L - b_C$ – реактивная, y – полная проводимости; $\phi = \operatorname{arctg} \frac{b}{g}$ – угол сдвига фаз напряжения и тока; $b_L = \frac{1}{\omega L}$ – индуктивная, $b_C = \omega C$ – ем-

костная проводимости.

Напряжение на конденсаторе отстает по фазе от тока (угол сдвига фаз $\phi < 0, b = -b_C$, так как $b_L = 0$).

Угол потерь, характеризующий несовершенную изоляцию конденсатора, равен $\delta = \arctan \frac{g}{\omega C}$; очевидно, $tg\delta = tg(90^0 + \phi)$. Реальная катушка индуктивности также обладает тепловыми потерями в отличие от идеальной катушки. Эквивалентную схему замещения такой катушки обычно представляют в виде последовательного соединения элементов R и L. Эти параметры можно экспериментально определить по показаниям вышеупомянутых приборов, воспользовавшись формулами:

$$Z = \frac{U}{I}, \ R = Z\cos\varphi, X = Z\sin\varphi, \ L = \frac{X}{\omega}$$

При последовательном соединении элементов *R*, *L*, *C* по законам Ома и Кирхгофа в комплексной форме входное напряжение равно:

$$\dot{U} = \dot{U}_R + \dot{U}_L + \dot{U}_C = \dot{I}\underline{Z},$$

где $\underline{Z} = R + jX = Ze^{j\phi}$ – комплексное сопротивление; R – активное, $X = X_L - X_C$ – реактивное, Z – полное сопротивление; $\phi = \arctan \frac{X}{R}$ – угол сдвига фаз напряжения и тока; $X_L = \omega L$ – индуктивное, $X_C = \frac{1}{\omega C}$ – ем-костное сопротивления.

Ток в катушке отстает по фазе от напряжения (угол сдвига фаз $\phi > 0, X = X_L$, так как $X_C = 0$). Тангенсом этого угла оценивается доброт-

ность катушки: $Q_L = tg\phi = \frac{X_L}{R}$.

Подготовка к работе

1. Какие физические явления отражают в схеме замещения конденсатора элементы *g*, *C*, а в схеме замещения катушки индуктивности – элементы *R*, *L*?

2. Что такое активная, емкостная, индуктивная, реактивная, полная проводимости? Как они связаны между собой?

3. Что такое активное, емкостное, индуктивное, реактивное, полное сопротивления? Как они связаны между собой?

4. В каких пределах может изменяться угол сдвига фаз напряжения и тока на входе пассивного двухполюсника?

5. Записать уравнение первого закона Кирхгофа для схемы рис. 3.1 (ключ К замкнут, $0 < R_1 < \infty$) и уравнение второго закона для схемы рис. 3.2 ($0 < R_1 < \infty$) как для мгновенных, так и для комплексных значений токов и напряжений.

ИССЛЕДОВАНИЕ АКТИВНО-ЕМКОСТНОЙ ЦЕПИ Схема электрической цепи

Схема, показанная на рис. 3.1, питается от источника синусоидального напряжения с частотой 50 Гц и действующим значением напряжения 100 В.

Конденсатор в схеме представлен блоком, который нужно выбрать в поле компонентов из набора **cond1** ÷ **cond10** по указанию преподавателя.

Для управления положением ключа служит клавиша 1. При разомкнутом ключе можно по показаниям приборов определить параметры схемы замещения конденсатора, состоящей из параллельно включенных C и R.

Puc 3.1

Роль фазометра в схеме исполняет прибор **Bode-Plotter**, пределы измерения которого от -90° до $+90^{\circ}$ уже установлены. Его нужно извлечь из поля контрольно-измерительных приборов **Instruments** (у правого края второй строки меню). Увеличенное изображение прибора появляется в нижней части рабочего поля после двойного щелчка левой клавишей мыши, когда курсор находится на символе прибора в схеме. При замкнутом ключе угол сдвига фаз можно изменять за счет изменения сопротивления реостата (управляющая клавиша **R**) в пределах от 500 до 50 Ом (следует избегать слишком малых значений этого сопротивления во избежание нарушения работы программы).

Программа работы

1. Открыть файл LW3a и извлечь из поля компонентов Favorites блок cond, соответствующий номеру своего варианта. Собрать остальную часть схемы, показанной на рис. 3.1. 2. Ключ с помощью управляющей клавиши **1** установить в правое положение (разомкнуть). Включить кнопку «Пуск» и записать показания приборов в верхнюю строку табл. 3.1.

	~				-	1
9	n	ТИ	II	9	- 1	
u	U,		щ	u	$\boldsymbol{\cdot}$	• 표

Данные опыта						Результаты расчета					
U	Ι	φ	I_1	I_2	С	g	δ	İ	\dot{I}_1	\dot{I}_2	$\sum \dot{I}$
В	Α	град	А	А	мкФ	См	град	А	A	Α	А
			0						0	_	_
					_	_	_				

3. Вычислить параметры конденсатора y, g, b_C , C, а также угол потерь δ . Записать результаты в ту же строку.

4. Замкнуть ключ и с помощью управляющей клавиши \mathbf{R} подобрать такое значение сопротивления реостата, чтобы обеспечить заданную преподавателем величину угла сдвига фаз напряжения и тока на входе схемы (в пределах от -15° до -75°). Напомним, что при каждом измерении угла сдвига фаз нужно предварительно выключить и включить кнопку «Пуск». Показания приборов внести в нижнюю строку табл. 3.1.

5. Принять начальную фазу входного напряжения равной нулю и записать комплексные действующие значения токов \dot{I} , \dot{I}_1 , и \dot{I}_2 в этом режиме в ту же строку. Подсчитать $\sum \dot{I} = \dot{I}_1 + \dot{I}_2$ и сравнить результат со значением \dot{I} , полученном в эксперименте, проверив тем самым выполнение первого закона Кирхгофа.

6. По данным табл. 3.1 построить лучевую диаграмму токов.

ИССЛЕДОВАНИЕ АКТИВНО-ИНДУКТИВНОЙ ЦЕПИ

Схема электрической цепи

Схема, показанная на рис. 3.2, питается от источника синусоидального напряжения с частотой 50 Гц и действующим значением напряжения 100 В. Катушка индуктивности в схеме представлена блоком, который нужно выбрать в поле компонентов **Favorites** из набора **ind1** ÷ **ind10** по указанию преподавателя. Когда сопротивление реостата R_1 равно нулю, по показаниям приборов можно вычислить параметры схемы замещения катушки R и L.

Puc. 3.2

Прибор **Bode-Plotter** исполняет и в этой схеме роль фазометра с теми же особенностями измерения угла сдвига фаз напряжения и тока на входе цепи. За счет изменения сопротивления реостата можно добиться изменения угла до значения, указанного преподавателем.

Программа работы

7. Открыть файл LW3b и извлечь из поля компонентов Favorites подсхему ind, соответствующую номеру своего варианта. Собрать остальную часть схемы, показанной на рис. 3.2.

8. Вывести реостат с помощью управляющей клавиши **R** (установить R = 0). Включить кнопку «Пуск» и записать показания приборов в верхнюю строку табл. 3.2.

Таблица 3.2

Данные эксперимента							Pea	ульта	ты рас	счета	
U	Ι	φ	U_1	U_2	L	R	Q_L	\dot{U}	\dot{U}_1	\dot{U}_2	$\sum \dot{U}$
В	Α	град	В	В	Гн	Ом	_	В	В	В	В
			0					l	0	_	—
					_	_	_				

9. Вычислить параметры катушки индуктивности R, Z, X, L, а также ее добротность Q_L . Записать результаты в ту же строку.

10. С помощью управляющей клавиши **R** подобрать такое значение сопротивления реостата, чтобы обеспечить заданную преподавателем величину угла сдвига фаз напряжения и тока на входе схемы (в пределах от 15° до 75°). Напомним, что при каждом измерении угла сдвига фаз нужно предварительно выключить и включить кнопку «Пуск». Показания приборов внести в нижнюю строку табл. 3.2.

11. Принять в этом режиме начальную фазу входного тока равной нулю и записать комплексные действующие значения напряжений \dot{U} , \dot{U}_1 , и \dot{U}_2 в ту же строку. Подсчитать $\sum \dot{U} = \dot{U}_1 + \dot{U}_2$ и сравнить результат со значением \dot{U} , полученном в эксперименте, проверив тем самым выполнение второго закона Кирхгофа.

12. По данным второй строки табл. 3.2 построить топографическую диаграмму напряжений.

13. Сделать общие выводы по работе.

РАБОТА 4

ИССЛЕДОВАНИЕ ЦЕПЕЙ С ИНДУКТИВНО СВЯЗАННЫМИ Элементами

Цель работы. Научиться определять параметры катушек индуктивности с помощью амперметра, вольтметра и ваттметра. Провести экспериментальное исследование цепей с последовательным и параллельным соединением индуктивно связанных катушек. Научиться определять взаимную индуктивность катушек и строить векторные диаграммы для цепей с индуктивной связью.

Пояснения к работе

Реальная катушка индуктивности без ферромагнитного сердечника обычно бывает представлена схемой замещения из последовательно соединенных идеальной индуктивности и активного сопротивления. Параметры этой схемы могут быть определены по показаниям амперметра, вольтметра и ваттметра с помощью формул:

$$R = \frac{P}{I^2}, Z = \frac{U}{I}, X = \sqrt{Z^2 - R^2}, L = \frac{X}{\omega}.$$

При последовательном соединении катушек полное сопротивление цепи находится как

$$Z = \sqrt{R_{\Im}^2 + X_{\Im}^2}, \ R_{\Im} = R_1 + R_2, \ X_{\Im} = X_1 + X_2.$$

Если часть Φ_{21} магнитного потока Φ_{11} , созданного током i_1 в одной из катушек с числом витков w_1 , пронизывает другую катушку с числом витков w_2 , или, наоборот, часть Φ_{12} потока второй катушки Φ_{22} , созданного током в ней i_2 , пронизывает первую, то эти частичные потоки называются *потоками взаимоиндукции*, а полные потоки (Φ_{11} , Φ_{22}) – *потоками самоиндукции*. Потокосцепления этих потоков с соответствующими катушками равны:

$$\psi_{11} = w_1 \Phi_{11}, \psi_{22} = w_2 \Phi_{22}, \psi_{12} = w_1 \Phi_{12}, \psi_{21} = w_2 \Phi_{21},$$

а собственные и взаимные индуктивности определяются так:

$$L_1 = \frac{\Psi_{11}}{i_1}\Big|_{i_2=0}, \quad M_{21} = \frac{\Psi_{21}}{i_1}\Big|_{i_2=0}, \quad L_2 = \frac{\Psi_{22}}{i_2}\Big|_{i_1=0}, \quad M_{12} = \frac{\Psi_{12}}{i_2}\Big|_{i_1=0}.$$

В линейной цепи справедлив принцип взаимности: $M_{12} = M_{21} = M$.

Направление магнитного потока связано с направлением создающего его тока правилом «буравчика» (правоходового винта). Чтобы учесть ориентацию потоков само- и взаимоиндукции в одной катушке, вводится понятие одноименных зажимов. Зажимы, принадлежащие разным катушкам, называются одноименными и обозначаются на схеме одинаковыми символами (точками, звездочками), если при одинаковой ориентации токов по отношению к этим зажимам потоки само- и взаимоиндукции складываются.

Напряжения на индуктивно связанных элементах определяются по закону электромагнитной индукции и их также можно представить в виде суммы составляющих само- и взаимоиндукции:

$$u_{1} = u_{1L} + u_{1M} = \frac{d\psi_{11}}{dt} \pm \frac{d\psi_{12}}{dt} = L_{1}\frac{di_{1}}{dt} \pm M\frac{di_{2}}{dt},$$
$$u_{2} = u_{2L} + u_{2M} = \frac{d\psi_{22}}{dt} \pm \frac{d\psi_{21}}{dt} = L_{2}\frac{di_{2}}{dt} \pm M\frac{di_{1}}{dt}$$

Знак «плюс» в этих выражениях соответствует одинаковой ориентации токов по отношению к одноименным зажимам (*согласное включение*), «минус» – различной (*встречное включение*).

В установившемся синусоидальном режиме действующие значения напряжений само- и взаимоиндукции равны:

 $U_{1L} = X_{L1} I_1, U_{1M} = X_M I_2, U_{2L} = X_{L2} I_2, U_{1M} = X_M I_1,$ где $X_M = \omega M$ -сопротивление взаимной индукции.

Наличие индуктивной связи изменяет величину эквивалентного реактивного сопротивления. Для последовательного соединения индуктивно связанных катушек

$$\begin{split} X^{\text{coff}}_{\ni} &= X_1 + X_2 + 2X_M = \omega(L_1 + L_2 + 2M) = \omega L^{\text{coff}}_{\ni} \\ X^{\text{bctp}}_{\ni} &= X_1 + X_2 - 2X_M = \omega(L_1 + L_2 - 2M) = \omega L^{\text{bctp}}_{\ni} \end{split}$$

Отсюда по данным опытов могут быть найдены сопротивление взаимной индукции X_M и взаимная индуктивность M:

$$X_M = \frac{X_{\Im}^{\text{COFЛ}} - X_{\Im}^{\text{BCTP}}}{4}, \ M = \frac{X_M}{\omega}.$$

Сравнение величин эквивалентных сопротивлений схем приводит к способу экспериментального определения одноименных зажимов: если
при одинаковом напряжении измерить токи при согласном и встречном включении катушек, то ток при встречном включении окажется больше. Схемы электрических цепей

Puc. 4.1

В работе используется электрическая цепь, схема которой показана на рис. 4.1. По ходу работы в схеме изменяется ее правая часть (между точками a и b). Левая же часть, содержащая источник и приборы, остается неизменной. В их число входит и блок **wattmeter**, который играет роль ваттметра (показания вольтметра, подключенного к его выходным зажимам, в вольтах численно равны активной мощности цепи в ваттах). Напомним, что этот прибор должен работать в режиме **DC**.

В качестве катушек индуктивности используются обмотки линейного трансформатора, параметры которого устанавливаются по указанию преподавателя. Используя показания приборов, с помощью схем рис. 4.1, *a* и 4.1, *б* можно определить параметры катушек. А с помощью схем рис. 4.1, *в*, *г* и рис. 4.1, *д*, *е* – соответственно параметры их последовательного и параллельного соединения при согласном и встречном включении.

Подготовка к работе

1. Сформулировать закон электромагнитной индукции.

2. Как с помощью амперметра, вольтметра, ваттметра определить параметры катушки *Z*, *R*, *X*, *L*?

3. Какое включение катушек индуктивности называется согласным? Встречным?

4. Как по результатам опытов для последовательного соединения индуктивно связанных катушек при неизменном напряжении определить характер их включения (согласное или встречное)? А при неизменном во всех опытах токе?

5. Какие зажимы катушек называются одноименными? Как их определить экспериментально?

6. Как опытным путем определить взаимную индуктивность?

									гаоли	ua 4.1
N⁰	1	2	3	4	5	6	7	8	9	10
$LE(\Gamma H)$	0.2	0.25	0.2	0.1	0.15	0.15	0.25	0.05	0.05	0.1
$LM(\Gamma H)$	0.1	0.05	0.05	0.2	0.15	0.05	0.1	0.15	0.2	0.15
RP (Ом)	20	20	20	20	20	30	30	30	30	30
RS (Ом)	30	20	30	40	20	40	30	20	40	30

Программа работы

1. Открыть файл LW4 и извлечь из поля вспомогательных компонентов Favorites (у левого края нижней строки меню) подсхему (Subcircuit) wattmeter. Собрать остальную часть схемы, показанной на рис. 4.1,а. После сборки схемы необходимо сделать два щелчка левой кнопкой мыши, когда курсор находится на изображении катушек индуктивности, после чего щелкнуть левой кнопкой на Edit и задать их параметры в соответствии с номером своего варианта согласно табл. 4.1.

2. Определение параметров каждой из катушек по методу амперметра, вольтметра и ваттметра. С помощью схемы рис. 4.1, a можно определить параметры первой катушки. А для определения параметров второй катушки нужно подключить ее выводы к зажимам ab левой части схемы вместо выводов первой (рис. 4.1, δ). Показания приборов и результаты вычисления параметров внести в табл. 4.2.

Таблица 4.2

							1
№ катушки	Пока	зания при	боров	Pes	вультат	ы расче	та
	U	Ι	Р	Z	R	X	L
	В	А	Вт	Ом	Ом	Ом	Гн
1							
2							

3. Исследование цепи, состоящей из последовательно соединенных катушек при встречном (рис.4, *в*) и согласном (рис.4, *г*) включении. Результаты внести в таблицу 4.3.

Указание. Опыт при отсутствии индуктивной связи не проводится.

4. По данным таблицы 4.2 определить сопротивление взаимной индукции.

5. Построение векторных диаграмм для последовательного соединения катушек при согласном и встречном включении. Расчетные данные для построения диаграмм внести в табл. 4.3.

Таблица 4.3

Включение катушек	Γ	Показания приборов					ультат	ы расч	іета
	U	Ι	P	U_1	U_2	Zэ	RЭ	Хэ	Lэ
	В	А	Вт	В	В	Ом	Ом	Ом	Гн
согласное									
встречное									

Указания.

а) Величины *R*, *X* для каждой из катушек брать из табл.4.2.

б) Показать на диаграмме напряжения на зажимах каждой из катушек и входное напряжение, определить их величины, внести данные в табл. 4.4 и сравнить с результатами измерений (табл. 4.3).

								1	aojini	ца тот
Включение катушек		Pea	вульта	ты вы	числе	ний		Из,	диагра	амм
	Ι	IR_1	IX_1	IX_M	IR_2	IX_2	IX_M	U	U_1	U_2
	Α	В	В	В	В	В	В	В	В	В
согласное										
встречное										

6. Исследование цепи с параллельным соединением катушек при встречном (рис. 4.1, *d*) и согласном (рис. 4.1, *e*) включении. Показания приборов внести в табл. 4.5.

Таблица 4.5

Таблина 4 4

Включение	Показания приборов							
	U	Ι	I_1	I_2	Р			
катушек	В	А	А	А	Вт			
согласное								
встречное								

Указание. Опыт при отсутствии индуктивной связи не проводится.

7. Построение топографических диаграмм напряжений и лучевых диаграмм токов для параллельного соединения катушек при согласном и встречном включении. Расчетные данные для построения диаграмм внести в табл. 4.6.

таолица то	Т	аб	лиц	a	4.0	5
------------	---	----	-----	---	-----	---

Включение катушек	Из	опыта Результаты расчета							
	I_1	I_2	α	$U_{R1} = I_1 R_1$	$U_{X1} = I_1 X_1$	$U_{M1} = I_2 X_M$	$U_{R2} = = I_2 R_2$	$U_{X2} = = I_2 X_2$	$U_{M2} = I_1 X_M$
	Α	Α	град	B	B	B	B	B	B
согласное									
встречное									

Указание. Построения следует начинать с лучевой диаграммы токов. При этом, если первым отложить вектор тока в ветви с большим активным сопротивлением, то вектор тока другой ветви должен отставать от него на угол α , который вычисляется по формуле:

$$\alpha = \operatorname{arctg} \frac{X_1 \pm X_M}{R_1} - \operatorname{arctg} \frac{X_2 \pm X_M}{R_2}$$

где знак «минус» для согласного включения; «плюс» – для встречного.

8. Сделать выводы по работе.

РАБОТА 5

ИССЛЕДОВАНИЕ ВОЗДУШНОГО ТРАНСФОРМАТОРА

Цель работы. Научиться экспериментально определять параметры воздушного трансформатора и строить векторные диаграммы для различных режимов его работы.

Пояснения к работе

Трансформатор предназначен для преобразования величин переменных токов и напряжений при неизменной частоте. В простейшем случае он представляет собою две неподвижные индуктивно связанные катушки. Одна из катушек трансформатора, к которой подводится питание, называется первичной, другая, к которой присоединяется нагрузка – вторичной. Передача энергии из одной цепи в другую происходит благодаря явлению взаимной индукции. Обычно катушки помещаются на сердечник из ферромагнитного материала; если же такого сердечника нет, то трансформатор называют воздушным. Схема воздушного трансформатора представлена на рис. 5.1.

Puc. 5.1

При выбранных положительных направлениях токов уравнения воздушного трансформатора имеют вид:

$$\begin{cases} \dot{I}_{1}(R_{1} + j\omega L_{1}) - \dot{I}_{2}j\omega M = \dot{U}_{1}, \\ \dot{U}_{2} + \dot{I}_{2}(R_{2} + j\omega L_{2}) - j\omega M \dot{I}_{1} = 0 \end{cases}$$

Здесь L_1 и L_2 – индуктивности катушек; R_1 и R_2 – их активные сопротивления; M – взаимная индуктивность.

Этим уравнениям соответствует качественная векторная диаграмма трансформатора при произвольной нагрузке ($\phi_{\rm H} > 0$), представленная на рис. 5.2.

Если начать построения с контура **cfdc** и принять в нем $\dot{I}_2 = I_2$, то $\dot{U}_2 = U_2 e^{j\varphi_H} = \dot{U}_{fc}, \quad \dot{U}_{hd} = j\omega L\dot{I}_2, \quad \dot{U}_{df} = R_2\dot{I}_2$, затем $\dot{U}_{ch} = -\dot{U}_{fc} - \dot{U}_{df} - \dot{U}_{hd}$, тогда $\dot{I}_1 = \dot{U}_{ch} / (-j\omega M)$, далее $\dot{U}_{ec} = -j\omega M\dot{I}_2, \quad \dot{U}_{be} = j\omega L_1\dot{I}_1, \quad \dot{U}_{ab} = R_1\dot{I}_1$ и, наконец, $\dot{U}_1 = \dot{U}_{ac} = \dot{U}_{ec} + \dot{U}_{be} + \dot{U}_{ab}.$

В режиме холостого хода трансформатора ($Z_{\rm H}=\infty$, $I_2=0$) его уравнения упрощаются и приводятся к следующим формулам для определения параметров первичной обмотки трансформатора:

$$Z_{1X} = \frac{U_{1X}}{I_{1X}} = \sqrt{R_1^2 + X_{L1}^2}, \quad R_1 = \frac{P_{1X}}{I_{1X}^2}, \quad X_L = \omega L = \sqrt{Z_{1X}^2 - R^2}, \quad L = \frac{X_L}{\omega}$$

Взаимная индуктивность: $M = \frac{U_{2X}}{\omega I_{1X}}.$

Если катушки, образующие воздушный трансформатор, одинаковы, то $R_2=R_1, L_2=L_1$.

Puc. 5.2

Схема электрической цепи

Питание цепи, схема которой показана на рис. 5.3, осуществляется от источника синусоидального напряжения с ЭДС 200 В и частотой 50 Гц.

Исследуемый двухобмоточный трансформатор представлен в схеме блоком **«trans»**, который следует извлечь из поля вспомогательных компонентов **«Favorites»** в соответствии с номером своего варианта. Там же находится блок для измерения активной мощности **wattmeter**.

С помощью ключей К₁, К₂, К₃, управляющие клавиши которых указаны на схеме в квадратных скобках, можно осуществить режимы холостого хода и короткого замыкания трансформатора, а также подключить к нему активную или емкостную нагрузку.

Г *ис. J*. *J*

Подготовка к работе

Ответить на следующие вопросы:

1. Почему трансформатор не может работать на постоянном токе?

2.Запишите основные уравнения воздушного трансформатора.

3.Как опытным путем определить взаимную индуктивность воздушного трансформатора, активное сопротивление, индуктивность?

4.Как найти коэффициент трансформации воздушного трансформатора?

5.Построить качественную векторную диаграмму для воздушного трансформатора при емкостной нагрузке.

Программа работы

1. Открыть файл LW5 и из поля вспомогательных компонентов Favorites извлечь блок trans с номером своего варианта. Двойным щелчком левой кнопки мыши открыть окно и повторить двойной щелчок на изображении трансформатора. Выбрать модель ideal, щелкнуть по edit и задать параметры трансформатора: N=0.915, LE=0.02, LM=0.1, RP=1e-06, RS=1e-06. Затем закрыть блок trans, щелкнув OK. Извлечь также блок wattmeter и собрать остальную часть схемы, показанной на рис. 5.3.

2. При помощи ключей К₁, К₂, К₃ осуществить четыре режима работы трансформатора: холостой ход, короткое замыкание, емкостную и активную нагрузки при неизменном действующем значении входного напряжения. Показания приборов внести в табл. 5.1

3. По результатам измерений в режиме холостого хода определить параметры схемы замещения трансформатора $L_1=L_2=L$,

							Таблица 5.1
U_1	I_1	P_1	ϕ_1	U_2	I_2	P_2	Характер
В	Α	Вт		В	Α	Вт	нагрузки
					0	0	холостой ход
				0		0	короткое замыкание
						0	емкость
							активная нагрузка

 $R_1 = R_2 = R, M$ и его коэффициент трансформации $n_{\rm T}$.

4. Вычислить падения напряжения на элементах схемы замещения трансформатора во всех исследуемых режимах работы. Результаты вычислений внести в табл. 5.2.

								Ta	блица 5.2
I_2	U_2	ϕ_{H}	I_1	$U_{R2} = I_2 R_2$	$U_{X2} = I_2 X_{L2}$	$U_{R1} = I_1 R_1$	$U_{X1} = I_1 X_{L1}$	$U_{M1} = I_2 X_M$	Нагрузка
Α	В	град	Α	В	В	В	В	В	
0			_		0	0			XX
		0	_						КЗ
			-90						С
			0						R

5. Построить топографические диаграммы напряжений и лучевые диаграммы токов для всех проведенных опытов, используя данные табл. 5.2.

Указания:

Во всех режимах, кроме холостого хода, построение векторной диаграммы следует начинать с тока *I*₂.

6. Сравнить значения входного напряжения *U*₁ и угла сдвига фаз напряжения и тока φ₁, полученные из опыта и из векторных диаграмм для каждого случая.

7. Сделать выводы по работе.

РАБОТА 6

ИССЛЕДОВАНИЕ РЕЗОНАНСА НАПРЯЖЕНИЙ

Цель работы. Изучение и экспериментальное исследование резонанса в цепи с последовательным соединением катушки индуктивности и конденсатора.

Пояснения к работе

Резонансом называют такой режим работы пассивной цепи, при котором входной ток совпадает по фазе с входным напряжением, несмотря на наличие в цепи реактивных элементов.

Если цепь представляет собой последовательное соединение двухполюсников, содержащих реактивные элементы разного характера, то возникновение резонанса объясняется взаимной компенсацией реактивных составляющих напряжений на этих двухполюсниках. В этом случае говорят о резонансе напряжений.

Простейший вариант такого резонанса получается при последовательном соединении катушки индуктивности с параметрами R, L и конденсатора с емкостью C (рис.6.1).

При питании этой цепи от источника синусоидального напряжения $u = U\sqrt{2}\sin(\omega t)$, в ней протекает ток $i = I\sqrt{2}\sin(\omega t - \varphi)$, где

$$I = \frac{U}{Z}, \quad Z = \sqrt{R^2 + X^2}, \quad X = X_L - X_C,$$
$$X_L = \omega L, \quad X_C = \frac{1}{\omega C}, \quad \varphi = \operatorname{arctg} \frac{X}{R}.$$

Отсюда ясно, что ток совпадает по фазе с напряжением ($\varphi = 0$) при условии X = 0, т.е. в данном случае при $X_L = X_C$ или $\omega^2 LC = 1$. Таким образом, резонанса можно добиться, изменяя либо частоту, либо индуктивность, либо емкость. В частности, если заданы ω и L, то резонанс получится при емкости $C_{\text{PE3}} = \frac{1}{\omega^2 L}$. В этом случае будут равны напряжения на индуктивности $U_L = X_L I$ и емкости $U_C = X_C I$. Они могут превысить напряжение на входе цепи U (равное падению напряжения на активном сопротивлении $U_R = RI$), если характеристическое сопротивление контура $\rho = \sqrt{\frac{L}{C}}$ окажется больше его активного сопротивления *R*

(иными словами, добротность контура $Q = \frac{\rho}{R} > 1$).

Схема электрической цепи

Puc. 6.1

Puc. 6.2

Схема, показанная на рис. 6.2, питается от источника синусоидального напряжения с действующим значением 100 В и частотой 50 Гц.

Катушка индуктивности представлена блоком ind1 \div ind10, который нужно выбрать из поля подсхем Favorites по указанию преподавателя. Роль фазометра в схеме исполняет прибор Bode-Plotter, пределы измерения которого от -90° до $+90^{\circ}$ уже установлены. Каждому измерению угла сдвига фаз напряжения и тока на входе схемы должно предшествовать отключение **O** и включение **I** кнопки «Пуск» в верхнем правом углу экрана (перезапуск моделирования данного режима).

При замкнутом ключе, который управляется клавишей 1, по показаниям приборов можно вычислить параметры катушки. А при разомкнутом – оценить влияние емкости конденсатора на значения тока и угла сдвига фаз тока и напряжения на входе схемы.

Подготовка к работе

Проработав теоретический материал, ответить на вопросы.

1. Какой режим работы электрической цепи называют резонансом напряжений?

2. Изменением каких параметров цепи или источника питания в схеме, изображенной на рис. 6.1, можно добиться резонанса? Записать его условие для этой схемы.

3. Как по величине входного тока установить, что достигнут резонанс?

4. При каком соотношении параметров цепи напряжения на реактивных элементах могут быть значительно больше входного? Как определить добротность контура?

5. Как экспериментально определить параметры катушки *R*, *L* и как вычислить резонансную емкость? Запишите формулы.

6. Построить качественные векторные диаграммы для схемы рис. 6.1 при трех значениях емкости: $C = C_{\text{PE3}}$, $C < C_{\text{PE3}}$, $C > C_{\text{PE3}}$.

7. Как меняется знак угла сдвига фаз напряжения и тока ϕ при изменении емкости от нуля и до бесконечности?

Программа работы

1. Открыть файл LW6. Из поля подсхем Favorites извлечь блок катушки индуктивности ind с номером своего варианта, а из поля КИП Instruments – прибор Bode-Plotter. Собрать остальную часть схемы.

2. Снять показания приборов при замкнутом ключе и записать их в табл. 6.1.

							Ta	блица	6.1
Показ	ания			Dop		11 2001			
приб	оров			res	ультат	ы расч	lera		
U	Ι	φ	Ζ	R	X_L	L	$C_{\rm PE3}$	ρ	Q
В	А	град	Ом	Ом	Ом	Гн	мкФ	Ом	_

3. По результатам измерений определить параметры катушки индуктивности. Вычислить резонансную емкость, характеристическое сопротивление и добротность резонансной цепи. Результаты вычислений внести в ту же таблицу.

4. Разомкнуть ключ и снять показания приборов при пяти различных значениях емкости: $C = C_{\text{PE3}}$, два значения $C < C_{\text{PE3}}$, и два значения $C > C_{\text{PE3}}$. Результаты измерений внести в табл.6.2.

Указание. Для измерения фазы необходимо перезапускать схему при каждом изменении её параметров.

U	С	Ι	U_C	$U_{ m K}$	φ
В	мкФ	А	В	В	град

Таблина 6.2

5. Рассчитать ток в цепи и напряжения на элементах схемы для трех режимов из п. 4 ($C < C_{PE3}$, $C = C_{PE3}$, $C > C_{PE3}$). Угол сдвига фаз вычислить по формуле $\varphi = \operatorname{arctg} \frac{X}{R}$ Результаты внести в табл.6.3 и сравнить с данными опыта по п. 4.

6. Построить векторные диаграммы по результатам расчета.

Таблица	6.3
---------	-----

									1	
U	С	X_C	X	Ζ	Ι	U_C	U_L	U_R	$U_{\rm K}$	φ
В	мκΦ	Ом	Ом	Ом	Α	В	В	В	В	В

7. Построить графики зависимостей φ (*C*) и *I*(*C*) по данным табл. 6.2.

8. Сравнить результаты эксперимента и расчета, проанализировать зависимости п. 7, сделать общие выводы по работе.

РАБОТА 7

ИССЛЕДОВАНИЕ РЕЗОНАНСА ТОКОВ

Цель работы. Изучение и экспериментальное исследование резонанса при параллельном соединении катушки индуктивности и конденсатора переменной емкости.

Пояснения к работе

Явление совпадения по фазе тока и напряжения на входе пассивной цепи, содержащей индуктивности и емкости, называют резонансом. Если он происходит за счет взаимной компенсации реактивных составляющих токов в параллельно включенных двухполюсниках с реактивными элементами разного характера, то говорят о резонансе токов. Простейший случай такого резонанса имеет место в цепи с параллельным соединением катушки индуктивности с параметрами R, L и конденсатора C (рис. 7.1).

Если к этой цепи приложено синусоидальное напряжение $u = U\sqrt{2}\sin(\omega t)$, то ток равен $i = I\sqrt{2}\sin(\omega t - \varphi)$, где

$$I = yU, \quad y = \sqrt{g^2 + b^2}, \quad g = \frac{R}{Z_K^2}, \quad b = b_K - b_C,$$
$$b_C = \omega C, \quad b_K = \frac{\omega L}{Z_K^2}, \quad Z_K = \sqrt{R^2 + (\omega L)^2}, \quad \varphi = \operatorname{arctg} \frac{b}{g}.$$

Отсюда ясно, что входной ток совпадает по фазе с напряжением $(\phi = 0)$ при условии равенства нулю входной реактивной проводимости (b = 0). Резонанса можно добиться либо изменением частоты приложенного напряжения, либо изменением параметров цепи. Например, при заданных *R*, *L*, ω резонанс получится при $C_{\text{PE3}} = \frac{L}{Z_{\text{K}}^2}$.

При резонансе токи в параллельных ветвях схемы рис. 7.1 $I_C = \omega CU$ и $I_K = \frac{U}{Z_K}$ могут во много раз превышать входной ток I = Uy, если $\omega C_{PE3} > g$.

Схема электрической цепи

Схема, показанная на рис. 7.2 питается от источника синусоидального напряжения с действующим значением 100 В и частотой 50 Гц. Катушка индуктивности в схеме представлена блоком ind1 ÷ ind10, который нужно выбрать из поля подсхем Favorites по указанию преподавателя. Роль фазометра в схеме исполняет прибор **Bode-Plotter**, пределы измерения которого от -90° до $+90^{\circ}$ уже установлены. Каждому измерению угла сдвига фаз напряжения и тока на входе схемы должно предшествовать отключение **O** и включение **I** кнопки **«Пуск»** в верхнем правом углу экрана (перезапуск моделирования данного режима).

При разомкнутом ключе, который управляется клавишей **1**, по показаниям приборов можно вычислить параметры катушки, при замкнутом – оценить влияние емкости конденсатора на значения тока и угла сдвига фаз напряжения и тока на входе схемы.

Подготовка к работе

Проработав теоретический материал, ответить на следующие вопросы.

1. Какой режим работы электрической цепи называется резонансом токов?

Puc. 7.3

2. Записать условие резонанса для схемы рис. 7.3 и вывести из него, как частный случай, условие резонанса для схемы рис. 7.1. Изменением каких величин можно добиться резонанса токов в исследуемой цепи?

3. Как по величине входного тока установить, что достигнут резонанс?

4. Построить качественные векторные диаграммы токов для различных емкостей: при $C = C_{pe3}$, $C < C_{pe3}$, $C > C_{pe3}$.

5. Как будет изменяться ток в индуктивности в этих случаях при U = const?

6. Как меняется знак угла сдвига фаз φ в тех же случаях? К каким значениям стремится этот угол при $C \to 0$ и $C \to \infty$?

7. При каком соотношении параметров цепи в режиме резонанса токи в параллельных ветвях превысят ток на входе цепи?

Программа работы

1. Открыть файл LW7. Из поля подсхем Favorites извлечь блок катушки индуктивности ind с номером своего варианта, а из поля КИП Instruments – прибор Bode-Plotter. Собрать остальную часть схемы.

2. Снять показания приборов при разомкнутом ключе и записать их в табл. 7.1.

						140	лица / 11
Γ	Іоказания	н приборо	B	Pes	зультаты	вычислен	ний
U	Ι	φ	Z	R	X_L	L	$C_{\rm PE3}$
В	A	град	Ом	Ом	Ом	Гн	мкФ

3. По результатам измерений определить параметры катушки индуктивности. Вычислить резонансную емкость. Результаты вычислений внести в ту же таблицу.

4. Замкнуть ключ и снять показания приборов при пяти различных значениях емкости: двух значениях $C < C_{PE3}$, $C = C_{PE3}$, и двух значениях $C > C_{PE3}$ Результаты измерений внести в табл.7.2.

Таблица 7.2

Таблица 71

U	С	Ι	I_C	IK	φ
В	мкФ	А	А	А	град

5. Рассчитать ток в цепи и напряжение на элементах схемы для трех режимов из п. 4 ($C < C_{PE3}$, $C = C_{PE3}$, $C > C_{PE3}$). Угол сдвига фаз напряжения и тока на входе цепи вычислить по формуле $\varphi = \operatorname{arctg} \frac{b}{g}$. Результаты внести в табл. 7.3 и сравнить с данными опыта по п. 4.

6. Построить векторные диаграммы по результатам расчета п. 5.

7. Построить графики зависимостей $\phi(C)$ и I(C) по данным табл. 7.2.

Таблица 7.3

U	С	ωC	b	У	Ι	I_C	IK	φ
В	мкФ	См	См	См	Α	Α	Α	град

8. Сравнить результаты эксперимента и расчета, проанализировать зависимости п.7, сделать общие выводы по работе.

РАБОТА 8

ИССЛЕДОВАНИЕ ПАССИВНОГО ЧЕТЫРЕХПОЛЮСНИКА

Цель работы. Научиться определять коэффициенты четырехполюсника по результатам эксперимента, строить круговую диаграмму и использовать ее для анализа режимов работы.

Пояснения к работе

Для любого пассивного четырехполюсника (см. рис. 8.1) уравнения связи входных и выходных напряжений и токов могут быть записаны в различных формах.

Наиболее часто используется так называемая форма А:

Здесь <u>А, В, С, D</u> – комплексные коэффициенты (постоянные четырехполюсника), удовлетворяющие равенству AD - BC = 1.

Их можно определить из опытов холостого хода и короткого замыкания по формулам:

$$\underline{A} = \sqrt{\frac{\underline{Z}_{1X}}{\underline{Z}_{2X} - \underline{Z}_{2K}}}, \quad \underline{B} = \dot{A}\underline{Z}_{2K}, \quad \underline{C} = \frac{\dot{A}}{\underline{Z}_{1X}}, \quad \underline{D} = \underline{C}\underline{Z}_{2X}.$$

Здесь Z_{1K} и Z_{1X} – сопротивления в режимах прямого короткого замыкания и холостого хода относительно входных зажимов, <u>Z_{2K} и Z_{2X} -</u> аналогичные величины при обратном включении. Для симметричного четырехполюсника $\underline{Z}_{1K} = \underline{Z}_{2K}$ и $\underline{Z}_{1X} = \underline{Z}_{2X}$, что приводит к равенству $\underline{A} = \underline{D}$.

Если напряжение на входе четырехполюсника постоянно ($\dot{U}_1 = {\rm const}$), то его входной ток можно определить из соотношения

$$\dot{I}_{1} = \dot{I}_{1X} + \frac{\dot{I}_{1K} - \dot{I}_{1X}}{1 + \frac{Z_{\rm H}}{Z_{2K}}} e^{j(\phi_{\rm H} - \phi_{2K})}$$

При изменении величины сопротивления нагрузки $|\underline{Z}_{\rm H}|$ без изменения его характера ($\varphi_{\rm H}$ = const) данное соотношение – уравнение дуги окружности с хордой $\dot{I}_{1K} - \dot{I}_{1X}$.

Построенный по этому уравнению на комплексной плоскости годограф вектора тока \dot{I}_1 , названный круговой диаграммой, используется в данной работе для определения величин I_1, I_2, U_2, P_1, P_2 в режиме активной нагрузки. Пример круговой диаграммы приведен на рис. 8.2.

Рис.8.2

Порядок построения круговой диаграммы

- 1. Выбрать масштаб входного напряжения m_{U1} и на комплексной плоскости из начала координат отложить вектор <u>U</u>₁. На рис. 8.2 принято <u>U</u>₁ = U₁.
- 2. Выбрать масштаб входного тока m_{I1} и в этом масштабе из начала координат провести векторы токов \underline{I}_{1X} и \underline{I}_{1K} . На рис. 8.2 предполагается, что в режиме холостого хода четырехполюсник представляет собой активно-емкостную нагрузку для источника, а в режиме короткого замыкания активно-индуктивную, поэтому \underline{I}_{1K} отстает от напряжения \underline{U}_1 , а \underline{I}_{1X} опережает это напряжение.
- 3. Соединить прямой точки X и K, ограничивающие отрезок XK хорду окружности.
- 4. Выбрать масштаб сопротивлений m_z и вдоль хорды *XK* отложить

отрезок $XA = \frac{z_{2K}}{m_z}$.

- 5. Провести из точки *А* линию переменного параметра AN' под углом $\delta = \phi_{2K} \phi_H$ к хорде *XK* (на рис. 8.2 принято $\delta > 0$, поэтому угол откладывается против часовой стрелки).
- 6. Найти центр окружности *C*, лежащий на пересечении перпендикуляров, проведенных к середине хорды *XK* (*BD* \perp *XK*) и из точки *X* к линии переменного параметра или ее продолжению (*XE* \perp *AN*'). На рис. 8.2 они показаны пунктиром.
- 7. Между точками *XK* со стороны линии переменного параметра радиусом *CX* построить дугу окружности – это и есть круговая диаграмма.

Определение положения рабочей точки на круговой диаграмме

Если отложить вдоль линии переменного параметра отрезок NA, соответствующий конкретной величине сопротивления $z_{\rm H}$ в масштабе m_z , и соединить точки X и N, то на пересечении отрезка XN с дугой окружности окажется точка M, характеризующая рабочий режим.

> Определение токов, напряжений и мощностей на входе и выходе четырехполюсника с помощью круговой диаграммы

Вектор \overline{MO} , проведенный в рабочую точку M из начала координат, определяет входной ток четырехполюсника \underline{I}_1 в масштабе m_{I1} .

Непосредственно по круговой диаграмме можно определить и другие величины, характеризующие работу четырехполюсника в данном режиме. Покажем, как это сделать (без вывода формул).

Отрезки XA и AK пропорциональны соответственно току I_2 и напряжению U_2 . Масштабы m_{I2} и m_{U2} удобно определять из опытов короткого замыкания и холостого хода:

$$m_{I2} = \frac{I_{2K}}{XK}, \quad m_{U2} = \frac{U_{2X}}{AK}$$

Отрезки *OP* и *PM* пропорциональны P_1 и Q_1 соответственно $(MP \perp \underline{U}_1, \text{ масштаб мощности } m_S = U_1 m_{I_1})$. Если же провести $MH \parallel AN$ до пересечения с хордой *XK*, то отрезок *MH* будет изображать полную мощность S_2 на выходе четырехполюсника в том же масштабе m_S .

Схема электрической цепи

Puc 8.3

Электрическая цепь, схема которой показана на рис. 8.3, питается от источника синусоидального напряжения с ЭДС 100 В и частотой 50 Гц. Исследуемый четырехполюсник представлен в схеме блоком **4pol1÷4pol10** из набора подсхем в поле вспомогательных компонентов **Favorites**. Роль фазометра в схеме исполняет прибор **Bode-Plotter**, пределы измерения которого от -90° до $+90^{\circ}$ уже установлены. Каждому измерению угла сдвига фаз напряжения и тока на входе схемы должно предшествовать отключение **O** и включение **I** кнопки «**Пуск**» в верхнем правом углу экрана (перезапуск моделирования данного режима).

С помощью ключей K_1 и K_2 , индексы которых соответствуют управляющим клавишам, указанным на схеме в квадратных скобках, можно осуществить режимы холостого хода и короткого замыкания четырехполюсника или подключить к нему активную нагрузку.

Подготовка к работе

Изучив соответствующие разделы теории, ответить на следующие вопросы.

1. Записать уравнения четырехполюсника (форма A) при прямом включении для режимов короткого замыкания, холостого хода и произвольной нагрузки.

2. Какие опыты необходимы для экспериментального определения коэффициентов <u>*A*, *B*, *C*, *D*?</u>

3. Какие величины нужно знать заранее для построения круговой диаграммы? Как строится круговая диаграмма?

4. Какие величины можно определить по круговой диаграмме?

Программа работы

1. Открыть файл LW7. Из поля подсхем Favorites извлечь блок четырехполюсника 4pol с номером своего варианта, а из поля КИП Instruments – прибор Bode-Plotter. Собрать остальную часть схемы.

2. Произвести измерения величин I_1 , ϕ_1 , I_2 , U_2 при неизменном входном напряжении U_1 в трех режимах: холостой ход (оба ключа разомкнуты), короткое замыкание (ключ K_1 замкнут) и активная нагрузка (K_2 замкнут, K_1 разомкнут). Внести показания приборов в табл. 8.1 (для измерения угла сдвига фаз напряжения и тока на входе четырехполюсника необходимо перезапускать схему при каждом изменении режима работы).

3. Подсчитать во всех трех режимах величины

$$P_1 = U_1 I_1 \varphi_1, \quad P_2 = U_2 I_2, \quad R_H = \frac{U_2}{I_2}, \quad \underline{Z}_1 = \frac{U_1}{I_1} e^{j\varphi_1}.$$

Результаты вычислений внести в ту же таблицу.

Таблица	8.	1
---------	----	---

								1
		Примечание						
Данные опыта Результаты							чета	
I_1	φ1	U_2	I_2	P_1	P_2	$R_{\rm H}$	\underline{Z}_1	
Α	град	В	Α	Вт	Вт	Ом	Ом	
			0		0	∞		холостой ход
							—	активная нагрузка
		0			0	0		короткое замыкание

4. Поменять местами в схеме входные и выходные зажимы четырехполюсника (обратное включение). Повторить опыты холостого хода и короткого замыкания. Показания приборов внести в табл. 8.2. Туда же записать результаты вычислений Z_{2x} и Z_{2K} .

5. Определить коэффициенты $\dot{A}, \dot{B}, \dot{C}, \dot{D}$ четырехполюсника по входным сопротивлениям режимов прямого и обратного холостого хода и короткого замыкания. Проверить правильность их определения по условию <u>AD - BC = 1</u>.

6. Построить по данным опытов прямого холостого хода и короткого замыкания, а также обратного короткого замыкания круговую диаграмму четырехполюсника.

Наименование опыта	Опыт		Pac	чет	Примечание
	U	Ι	φ	<u>Z</u>	
	В	A	град	Ом	
Обратный х.х.					$\underline{Z} = \underline{Z}_{2X}$
Обратное к.з.					$\underline{Z} = \underline{Z}_{2K}$

$\underline{\underline{\mathbf{Z}}}$ $\underline{\underline{\mathbf{Z}}}_{2\mathbf{K}}$

Таблица 8.2

						1 aoji	ица б.з
Масштабы	m _Z		m_{I1}	m_{I2}	m_{U2}	m_P	
	Ом/см		А/см	А/см	В/см	Вт	/см
Длины отрезков	XN	NM'	OA	XA	AK	AE	AD
Величины	Z_{2K}	Z _H	I_1	I_2	U_2	P_2	P_1
	Ом	Ом	A	A	В	Вт	Вт

7. Определить из круговой диаграммы величины I_1 , P_1 , P_2 , U_2 , I_2 для того же значения $R_{\rm H}$, что и в п. 2. Результаты внести в табл.8.3.

8. Сравнить результаты опыта и расчета. Сделать выводы по работе.

57

РАБОТА 9

ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ, СОЕДИНЕННОЙ ЗВЕЗДОЙ

Цель работы. Ознакомиться со свойствами трехфазной цепи, соединенной звездой с нулевым проводом и без него, при симметричной системе напряжений источника и симметричной и несимметричной нагрузках; научиться строить векторные диаграммы для трехфазной цепи по результатам эксперимента.

Пояснения к работе

При соединении трехфазной цепи звездой линейный ток равен фазному, а линейное напряжение равно разности фазных напряжений, например: $\dot{U}_{AB} = \dot{U}_A - \dot{U}_B$.

В симметричном режиме $U_{\Pi} = \sqrt{3}U_{\Phi}$.

Несимметричная нагрузка в цепи без нулевого провода вызывает появление напряжения между нейтральными точками приемника и генератора, что приводит к несимметрии фазных напряжений приемника. Если к сети трехфазного тока подключить приемник, состоящий из катушки индуктивности или конденсатора и двух одинаковых активных сопротивлений, то по смещению нейтральной точки можно определить порядок чередования фаз.

В трехфазных цепях с нулевым проводом несимметрия нагрузки вызывает ток в нулевом проводе, напряжения же фаз приемника остаются практически симметричными.

Схема электрической цепи

В работе проводится исследование цепи, схема которой показана на рис.9.1. Питание цепи осуществляется от трех источников синусоидального напряжения частотой 50 Гц. ЭДС источников имеют одинаковую амплитуду, а их фазы сдвинуты на 120° так, что образуют симметричную систему прямой последовательности. Значения ЭДС и параметров нагрузки, соответствующие варианту цепи, номер которого указывает преподаватель, приведены в табл. 9.1.

С помощью ключей $K_1 \div K_{4}$, номера управляющих клавиш которых соответствуют их индексам (на схеме указаны в квадратных скобках),

можно изменять характер нагрузки в фазе *A*, а с помощью ключа K₅ – подключать и отключать нулевой провод.

Для изменения активного сопротивления фазы *А* следует после двойного щелчка левой кнопкой мыши, когда курсор находится на символе этого сопротивления в схеме, вдвое уменьшить или увеличить значение сопротивления по сравнению с табличным.

Вольтметр V измеряет линейное напряжение, вольтметр V_N – напряжение смещения нейтрали нагрузки, остальные – фазные напряжения нагрузки. Амперметр A_N показывает ток в нулевом проводе, остальные – линейные токи.

Puc. 9.1

Подготовка к работе

Проработав материал, ответить на вопросы:

1. Какая нагрузка считается симметричной? Какой трехфазный источник называют симметричным?

2. Что такое фазные и линейные напряжения? Записать уравнения связи между линейными и фазными напряжениями при соединении нагрузки симметричной и несимметричной звездой.

3. В схеме без нулевого провода (рис. 9.2, а) уменьшение (увеличение) активной нагрузки фазы *А* приводит к смещению нулевой точки нагрузки на диаграмме напряжений. В какую по сравнению с симметричной звездой сторону?

5. Куда сместиться нулевая точка на диаграмме в случае короткого замыкания фазы *A* и куда – при отключении нагрузки фазы *A*?

6. Возможно ли смещение нейтральной точки нагрузки на диаграмме напряжений при включенном нулевом проводе, если его сопротивление равно нулю?

7. Почему нельзя делать опыт короткого замыкания фазы при включенном нулевом проводе?

8. Для случая включения в фазу A катушки с параметрами R, L (цепь без нулевого провода) на диаграмме построены все напряжения и токи двух других фаз (рис. 9.3). Как, зная токи в фазах B и C, по диаграмме определить направление вектора тока фазы A и угол сдвига фаз ϕ катушки? И как затем рассчитать ее параметры, используя измеренные ток и напряжение на катушке?

a

б

Puc. 9.2

Puc. 9.3

9. Куда сместится нейтральная точка O_1 на диаграмме рис. 9.3,6, если в фазу A схемы рис. 9.3,а вместо катушки включить конденсатор?

Программа работы

1. Собрать схему, показанную на рис. 9.1, и установить ее параметры согласно табл. 9.1 в соответствии со своим вариантом схемы.

N⁰	1	2	3	4	5	6	7	8	9	10
<i>E</i> (B)	380	220	127	380	220	127	380	220	127	380
<i>R</i> (Ом)	200	150	100	250	200	150	300	250	200	150
L (м Γ н)	0,64	0,48	0,32	0,8	0,64	0,48	0,95	0,8	0,64	0,48
C (мк Φ)	16	21,2	31,8	12,7	16	21,2	10,6	12,7	16	21,2

Таблица 9.1

2. Снять показания приборов в симметричном режиме (замкнуты ключи $K_1 \div K_3$, разомкнут K_4) и подсчитать отношение U_{π}/U_{Φ} .

Указание: убедиться, что включение и отключение нулевого провода с помощью ключа К₅ не влияет на показания приборов.

Результаты измерений внести в верхнюю строку табл. 9.2.

											100000000
]	Пока приб	зания боров	म			Из ; грам	циа- ммы	Характер нагрузки	Примечание
U_A	U_B	U_C	I_A	I_B	I_C	I_N	U_N	I_N	U_N	форги	-
В	В	В	Α	Α	Α	Α	В	Α	В	фазы	
						0	0		0		Симм. режим
						0				a)	
						0				б)	Схема без
						0				в)	нулевого
						0				г)	провода
						0				д)	
							0		0	a)	
							0		0	б)	Схема
							0		0	в)	с нулевым
							0		0	г)	проводом
							0		0	д)	
						0					К.З. без нул.
						U					пр.

таолина 9.2	Т	`аблица	a 9.2
-------------	---	---------	-------

3. Исследовать трехпроводную (без нулевого провода – К₅ разомкнут) и четырехпроводную (с нулевым проводом – К₅ замкнут) цепь в следующих режимах: а) уменьшение активной нагрузки в фазе A, для чего сопротивление в фазе A следует увеличить вдвое по сравнению с табличным значением;

б) увеличение активной нагрузки в фазе A, для чего сопротивление в фазе A следует уменьшить вдвое по сравнению с его табличным значением;

в) отключение нагрузки в фазе *A* (разомкнуть ключ К₁);

г) включение индуктивности в фазу A (при замкнутых ключах K_1 , K_2 , K_4 , разомкнуть ключ K_3);

д) включение емкости в фазу A (при замкнутых ключах K_1 , K_3 , K_4 , разомкнуть ключ K_2).

4. Снять показания приборов в режиме короткого замыкания фазы *А при разомкнутом нулевом проводе*, для чего необходимо замкнуть ключи $K_1 - K_4$ и разомкнуть ключ K_5 .

Результаты всех измерений (пп. 3, 4) внести в табл. 9.2.

5. Построить топографические диаграммы напряжений, совмещенные с лучевыми диаграммами токов для всех режимов.

Указание. Всего 12 диаграмм, построение каждой из которых следует начинать с неизменного для всех диаграмм равностороннего треугольника линейных напряжений. Положение нейтральной точки нагрузки на диаграммах несимметричных режимов п. 3 при отсутствии нулевого провода определяется с помощью засечек циркулем. При наличии нулевого провода эта точка лежит в центре тяжести треугольника.

6. Определить ток в нулевом проводе I_N из векторных диаграмм для четырехпроводной цепи и напряжение смещения нейтралей U_N из диаграмм для трехпроводной цепи. Результаты также внести в табл. 9.2 и построить графики зависимостей U_A и U_N от тока фазы A при изменении её активной нагрузки от холостого хода до короткого замыкания.

7. Проанализировать диаграммы и сформулировать выводы по работе.

РАБОТА 10

ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ, СОЕДИНЕННОЙ ТРЕУГОЛЬНИКОМ

Цель работы. Расширение практических навыков исследования трехфазных цепей; измерение напряжений, токов, мощности при симметричной и несимметричной нагрузке, соединенной треугольником.

Пояснения к работе

При соединении трехфазной цепи треугольником линейное напряжение равно фазному, а линейный ток равен разности фазных токов, например: $\dot{I}_A = \dot{I}_{AB} - \dot{I}_{CA}$. В частном случае, когда цепь симметрична, $I_{\Pi} = \sqrt{3} I_{\Phi}$. Измерение активной мощности трехфазной симметричной цепи можно произвести, измерив мощность одной фазы Р_Ф. Мощность всей цепи определится из равенства $P = 3P_{\Phi}$. В несимметричных трехфазных цепях без нулевого провода мощность может быть измерена с ваттметров (рис. 10.1). Мощность помошью ДВУХ всей цепи $P_{\text{ОП}} = P_1 + P_2$, где P_1 и P_2 – показания первого и второго ваттметров. При расчете:

 $P_{\text{PACY}} = U_{AB}I_{AB}\cos\varphi_{AB} + U_{BC}I_{BC}\cos\varphi_{BC} + U_{CA}I_{CA}\cos\varphi_{CA}.$

Схема электрической цепи

В работе проводится исследование цепи, схема которой показана на рис. 10.1. Питание цепи осуществляется от трех источников синусоидального напряжения частотой 50 Гц. Действующие значения ЭДС этих источников одинаковы, а их фазы отличаются на 120°, так что напряжения образуют симметричную систему прямой последовательности. Значения ЭДС и параметров нагрузки, соответствующие варианту цепи, номер которого указывает преподаватель, приведены в табл. 10.1.

С помощью ключей $K_1 \div K_{4}$, номера управляющих клавиш которых соответствуют их индексам (на схеме указаны в квадратных скобках), можно изменять характер нагрузки в фазе *AB*. Для изменения активного сопротивления фазы *AB* следует после двойного щелчка левой кнопкой мыши, когда курсор находится на символе этого сопротивления в схеме, вдвое уменьшить или увеличить значение сопротивления по сравнению с табличным.

Puc. 10.1

Вольтметр V измеряет линейное напряжение, амперметры A_A , A_B , A_C – линейные токи, остальные – фазные токи. В качестве ваттметров используются приборы W_1 и W_2 , к выходным зажимам которых подключены вольтметры, чьи показания в вольтах численно равны показаниям ваттметров в ваттах. Сумма показаний этих приборов равна активной мощности цепи.

Подготовка к работе

Проработав материал, ответить на вопросы.

1. Что такое линейные и фазные токи? Какие уравнения связывают линейные и фазные токи а) несимметричной и б) симметричной цепи, соединенной треугольником.

2. На каком принципе основано действие индукционного фазоуказателя? Как с его помощью определить порядок чередования фаз.

3. Исходная диаграмма напряжений и токов для симметричного треугольника дана на рис. 10.2:

а) как деформируется диаграмма токов в случае обрыва фазы АВ?

б) во что «выродится» диаграмма токов при обрыве линейного провода *А*?

Изобразить качественные диаграммы токов для случаев а) и б).

Программа работы

1. Открыть файл LW10 и извлечь из поля вспомогательных компонентов Favorites две подсхемы (Subcircuit) Wattmeter (на рис. $10.1 - W_1$ и W_2). Собрать остальную часть схемы, показанной на рис. 10.1, и установить ее параметры согласно табл. 10.1 в соответствии со своим вариантом схемы.

Таблица 10.1

N⁰	1	2	3	4	5	6	7	8	9	10
<i>E</i> (B)	380	220	127	380	220	127	380	220	127	380
<i>R</i> (Ом)	200	150	100	250	200	150	300	250	200	150
<i>L</i> (мГн)	0,64	0,48	0,32	0,8	0,64	0,48	0,95	0,8	0,64	0,48
<i>С</i> (мкФ)	16	21,2	31,8	12,7	16	21,2	10,6	12,7	16	21,2

2. Снять показания приборов в симметричном режиме (замкнуты ключи K_1 , K_2 , разомкнуты K_3 , K_4) и подсчитать отношение I_{Π}/I_{Φ} . Вычислить также активную мощность $P = 3U_{\Phi}I_{\Phi}$ (соѕ ϕ =1 для активной нагрузки).

3. Исследовать несимметричную цепь в следующих режимах:

а) уменьшение активной нагрузки в фазе AB, для чего сопротивление в этой фазе следует увеличить вдвое по сравнению с его табличным значением

б) увеличение активной нагрузки в фазе AB, для чего сопротивление в этой фазе следует уменьшить вдвое по сравнению с его табличным значением; в) отключение нагрузки в фазе *AB*, для чего нужно разомкнуть ключи К₂, К₃, К₄;

г) включение индуктивности в фазу *АВ*, для чего необходимо при замкнутых ключах К₁, К₃, разомкнуть ключи К₂, К₄;

д) включение емкости в фазу AB (при замкнутых ключах K_1 , K_4 , разомкнуть ключи K_2 , K_3 ,);

е) обрыв линейного провода *A*, для чего следует разомкнуть ключ К₁ при одинаковых активных сопротивлениях нагрузки всех трех фаз;

Результаты всех измерений (пп. 2, 3) внести в табл. 10.2. Туда же внести значения активной мощности цепи, подсчитанной как по закону Джоуля-Ленца ($P = \sum I^2 R$), так и суммированием показаний ваттметров ($P = P_1 + P_2$).

4. Построить топографические диаграммы напряжений, совмещенных с лучевыми диаграммами токов для всех режимов.

Указание. Всего 5 диаграмм, построение каждой из которых следует начинать с неизменного для всех диаграмм равностороннего треугольника линейных напряжений. Лучевые диаграммы фазных токов удобно строить из центра тяжести этого треугольника. Если соединить концы векторов фазных токов, то должен получиться треугольник линейных токов (например, $I_A = I_{AB} - I_{CA}$).

5. Проанализировать диаграммы и сформулировать выводы по работе.

I_A	I_B	I_C	I_{AB}	I_{BC}	I_{CA}	P_1	P_2	$P_{O\Pi}$	P _{PAC4}	Характер
										нагрузки в фа-
										зе <i>АВ</i>
Α	Α	А	Α	А	Α	Вт	Вт	Вт	Вт	
										Симметричная
										a)
										e)

Таблица 10.2

РАБОТА 11 Электрические цепи с источником несинусоидального напряжения

Цель работы. Изучение влияния катушки индуктивности и конденсатора на форму кривой тока при питании цепи от источника периодического несинусоидального напряжения.

Пояснения к работе

Если к цепи приложено несинусоидальное напряжение, то форма кривой тока будет подобна форме кривой напряжения лишь в том случае, когда сопротивление цепи чисто активное. Если же в цепь включена катушка индуктивности или конденсатор, то форма кривой тока отличается от формы кривой напряжения.

При последовательном соединении индуктивности *L* и сопротивления *R* полное сопротивление цепи току *k*-й гармоники равно $Z_k = \sqrt{R^2 + (k\omega L)^2}$. Следовательно, по мере увеличения порядка *k* гармоники это сопротивление увеличивается, амплитуда тока *k*-й гармоники уменьшается (по сравнению с чисто активной цепью, имеющей то же самое сопротивление *R*), и кривая тока будет меньше искажена, чем кривая напряжения.

Если же последовательно включены сопротивление *R* и емкость *C*, то полное сопротивление такой цепи току *k*-й гармоники равно $Z_k = \sqrt{R^2 + \left(\frac{1}{k\omega C}\right)^2}$. Значит, с увеличением порядка *k* гармоники это

сопротивление уменьшается, амплитуда тока соответствующей гармоники увеличивается, и кривая тока искажается сильнее (по сравнению с синусоидой), чем кривая приложенного к цепи напряжения.

Схема электрической цепи

Электрическая цепь, схема которой показана на рис. 11.1, питается от источника несинусоидального периодического напряжения, представленного подсхемой **sig.** На зажимы осциллографа подается напряжение с сопротивления 100 Ом. Поэтому при замкнутом ключе K_1 на экране осциллографа можно наблюдать кривую этого напряжения. При разомкнутом же ключе K_1 на экране осциллографа можно увидеть кривую тока в цепи с конденсатором или катушкой индуктивности в зависимости от положения ключа K_2 .

Подготовка к работе

Ответить на следующие вопросы.

1. Как зависят индуктивное и емкостное сопротивление от частоты?

2. Чему равно сопротивление катушки индуктивности с параметрами *R* и *L* в цепи постоянного тока?

3. Резистор подключен к источнику несинусоидального напряжения. Отличаются ли по форме кривые тока и напряжения? Как изменяется форма кривых тока при включении последовательно с резистором:

а) индуктивности?

б) емкости?

4. Как вычисляются действующие значения несинусоидальных тока и напряжения?

5. Какие значения тока и напряжения измеряют приборы следующих систем:

а) электромагнитной (≰)?

б) электродинамической (⊜)?

в) магнитоэлектрической (^)?

г) магнитоэлектрической с выпрямителем (♣)?

6. Каким прибором можно зафиксировать мгновенное значение тока и напряжения?

7. Почему при увеличении активного сопротивления (рис. 11.1) в це пи с емкостью форма кривой тока становится менее искаженной?

8. Какие гармоники содержит разложение в ряд Фурье кривой, симметричной относительно оси абсцисс?

1. Открыть файл LW 11, извлечь из поля компонентов **Favorites** подсхему sig с номером своего варианта, а из поля КИП (Instruments) – осциллограф (Oscilloscop). Собрать остальную часть схемы, показанной на рис. 11.1.

2. Проградуировать осциллограф в единицах напряжения, тока и времени. Для этого на шкале управления осциллографом выставить масштаб: по напряжению - 100 В/дел., по времени – 200 mc/дел. Масштаб тока при этом будет равен 500 мА/дел.

3. При замкнутом ключе К₁ снять осциллограмму несинусоидального напряжения источника. При помощи кнопки **Pause**, которая находится под кнопкой **Пуск** в правом верхнем углу экрана, получить изображение полного периода несинусоидального напряжения. Затем с помощью кнопки **Expand** на панели управления осциллографом получить увеличенное изображение экрана осциллографа. Обратный переход осуществляется кнопкой **Reduce**. Перечертить осциллограмму на миллиметровку. Записать показание вольтметра.

4. Снять осциллограмму тока в цепи с индуктивностью, для чего необходимо разомкнуть ключ К₁, и ключ К₂ переключить на индуктивность. Записать показание амперметра.

5. Снять осциллограмму тока в цепи с емкостью, для чего переключить К₂ в положение емкости. Записать показание амперметра.

6. Разложить кривую напряжения в п. 3 и кривые тока в п. 4 и п. 5 в ряд Фурье на гармоники не выше пятой и определить действующие значения напряжения и тока, сравнив их с показаниями вольтметра и амперметра.

Действующие значения тока и напряжения определяются по формулам:

$$U = \sqrt{\frac{U_{1m}^2 + U_{3m}^2 + U_{5m}^2}{2}} ; I = \sqrt{\frac{I_{1m}^2 + I_{3m}^2 + I_{5m}^2}{2}}$$

7. Записать мгновенные значения одной из величин напряжения или тока по указанию преподавателя, построить её гармонические составляющие и, сложив их графически, сравнить результат с исходной кривой, полученной экспериментально.

8. Сделать выводы по работе.

РАБОТА 12

ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПЯХ ПЕРВОГО ПОРЯДКА

Цель работы. Исследование переходных процессов в цепях с конденсатором, характеризующихся дифференциальными уравнениями первого порядка.

Пояснения к работе

При всяком изменении режима работы цепи, содержащей хотя бы один накопитель электрической энергии (индуктивность L или емкость C) возникают переходные процессы – процессы перехода от одного установившегося режима к другому. Мощность реальных источников в цепи конечна, поэтому связанные с энергией величины – ток в индуктивности и напряжение на емкости – могут изменяться только плавно, без скачков. В этом суть законов коммутации.

Решение системы дифференциальных уравнений, характеризующих состояние цепи, может быть найдено в виде суммы принужденной и свободной составляющих. Например, для тока: $i = i_{пр} + i_{cв}$.

Принужденная составляющая при постоянных и периодических источниках определяется из расчета установившегося режима ($t \rightarrow \infty$) послекоммутационной цепи и вид ее соответствует характеру источников.

Свободная составляющая записывается в виде суммы экспонент $i_{cB} = \sum A_k e^{p_k t}$ при различных вещественных корнях характеристического уравнения p_k .

Постоянные интегрирования A_k определяются из начальных условий – зависимых и независимых.

Независимые условия (начальные значения тока в индуктивности и напряжения на емкости) определяются по законам коммутации и требуют предварительного расчета установившегося режима докоммутационной цепи. Начальные же значения остальных величин (зависимые условия) определяются из уравнений, описывающих состояние послекоммутационной цепи в первый момент после коммутации (t = +0).

В цепи с одним накопителем свободная составляющая содержит только один корень и одну экспоненту. Например, для схемы рис. 12.1,а $i_{cB} = A_k e^{p_k t}$, причем $i = i_{cB}$, поскольку в установившемся режиме постоянный ток через конденсатор не течет и $i_{np} = 0$. До коммутации конденсатор не был заряжен, так что по второму закону коммутации

 $u_C(+0) = u_C(-0) = 0$. Поэтому $A = i_{cB}(0) = [U - u_C(+0)]/R$.. Тогда ток и напряжение при заряде конденсатора

$$i(t) = \frac{U}{R}e^{-\frac{t}{RC}},$$

$$u_{C}(t) = U - i(t)R = U(1 - e^{-\frac{t}{RC}})$$
(12.1)

Здесь корень характеристического уравнения $p = -(RC)^{-1}$, а постоянная времени $\tau = \frac{1}{|p|} = RC$. Она может быть найдена по экспериментально полученной зависимости *i(t)* как длина подкасательной (рис.12.1, б).

Puc. 12.1

Аналогичным образом могут быть получены выражения для тока и напряжения при разряде конденсатора на сопротивление *R*:

$$i(t) = -\frac{U}{R}e^{-\frac{t}{RC}}; \qquad u_C(t) = Ue^{-\frac{t}{RC}}.$$
 (12.2)

Схема электрической цепи

Puc. 12.2.

Для исследования процессов заряда и разряда конденсатора используется электрическая цепь, схема которой показана на рис. 12.2. Питание цепи осуществляется от источника постоянного напряжения, величина которого U, а также значения R и C выбираются в соответствии с вариантом, указанным преподавателем из табл. 12.1. Время срабатывания ключей должно быть больше длительности переходного процесса ($5\tau = 5 \cdot RC$).

Таблина 12.1

Вариант		1	2	3	4	5	6	7	8	9	10
U	В	10	11	12	13	14	3	4	4	5	6
R	кОм	100	122	133	147	200	22	22	33	33	47
С	мкФ	100	100	100	100	100	470	470	470	470	470
Вариант		11	12	13	14	15	16	17	18	19	20
U	В	10	11	12	13	14	3	4	4	5	6
R	кОм	200	222	233	247	300	32	32	43	43	57
С	мкФ	100	100	100	100	100	470	470	470	470	470
Вариант		21	22	23	24	25	26	27	28	29	30
U	В	10	11	12	13	14	3	4	4	5	6
R	кОм	110	130	143	160	190	42	52	53	63	67
С	мкФ	100	100	100	100	100	470	470	470	470	470

Исследование переходных процессов в среде **Electronics Workbench**

Процесс создания схемы начинается с выбора элементов и прибо-Component Properties... ров из библиотек программы (перетаскиванием мышью необходимых элементов на рабочий стол), расположение компонентов схемы в соответствии <u>D</u>elete подготовленным эскизом. При размещении компонентов на рабочем поле можно воспользоваться ди-Rotate Flip Vertical намическим меню, всплывающим после щелчка Flip Horizontal правой кнопки мыши по компоненту, с помощью копировать (Copy), которого можно удалять

Cut

Сору

Help

(Delete), вырезать (Gut), вставлять (Paste) и поворачивать элемент (Rotate) и менять его параметры (Component Properties), отобразить по вертикали или по горизонтали (Flip Vertical, Flip Horizontal).

После размещения компонентов производится соединение их выводов проводниками. Курсор мыши подводится к выводу компонента, и после появления жирной черной точки (узла) нажимается левая кнопка мыши и появляющийся при этом проводник протягивается к выводу
другого компонента до появления на нем такой же жирной точки, после чего левая кнопка мыши опускается и соединение готово. Подключение измерительных приборов выполняется аналогично подключению компонентов схемы. При этом можно использовать цветные проводники, которые выделяют подключенный прибор и окрашивают в соответствующий цвет выводимые графики. Для изменения цвета проводника нужно два раза щелкнуть левой кнопкой мыши на изображение и в открывшемся окне выбрать нудный цвет. Для начала анализа схемы системой необходимо активизировать схему нажатием кнопки **6**, для остановки анализа – кнопку **7**. Чтобы сохранить рабочий лист (документ) под нужным названием, необходимо щелкнуть мышью по третьей кнопке в третьей строке сверху – пиктограмме с изображением дискеты. Появится диалоговое окно **Save as** (Сохранение). В текстовом поле **File пате** (Имя файла) нужно дать имя файлу (документу). Система автоматически добавит расширение .ewb.

Итак, перед нами готовая схема (рис. 12.3).

Если переходный процесс возникает в результате включения схемы, как в данном случае, то никаких коммутаторов не требуется.

Сначала необходимо установить нумерацию контрольных точек в схеме. Для этого необходимо раскрыть диалоговое окно Show Hide (по пути Circuit > Schematic Options > Show/Hide). Окно показано на рис. 12,4. В окошке Show nodes курсором мыши необходимо сделать отметку. Щелкнуть кнопку ОК, после чего появится нумерация точек соединения элементов

Puc.12.3.

Наиболее быстрый способ пронумеровать узлы – кликнуть правой клавишей мыши на свободном участке рабочего поля, в выпавшем меню выбрать пункт Schematic Options, что приведёт к открытию окна

показанного на рис. 12.4. Необходимо поставить маркер рядом с пунктом **Show nodes** и нажать ОК.

Schematic Options	? 🗙
Grid Show/Hide Fonts Wiring Printing	[
Show labels	
C Show reference ID	
Show models	
✓ Show values	
Show nodes	
Parts Bins	
✓ Keep parts bin positions	
ОК)тмена

Puc. 12.4.

Следующий необходимый шаг для проведения расчёта переходного режимов – это открытие диалогового окна команды Transient Analysis (рис. 12.5.) по пути **Analysis** < **Transient**.

Transient Analysis		x
Initial conditions C Set to Zero C User-defined C Calculate DC operating point		Simulate Accept Cancel
Analysis Start time (TSTART) End time (TSTOP)	0 s 0.005 s	
Generate time steps automatica Ominimum number of time points Maximum time step (TMAX)	slly 1000 5e-06 \$	
Set plotting increment Plotting increment (TSTEP)	5e-06 s	
Nodes in circuit 1 V1#branch C- Remove	Nodes for analysis	

Puc. 12.5.

Диалоговое окно команды содержит следующие данные:

Initial conditions – установка начальных условий моделирования (*Set to Zero* – установка в нулевое исходное состояние контольноизмерительных приборов перед началом моделирования, *User-defined* – управление процессом моделирования проводится пользователем,

Calculate DC operating point – выполнение расчета режима по постоянному току).

Analysis – параметры анализа (**TSTART** – время начала анализа переходных процессов; **TSTOP** – время окончания анализа; *Generate time steps automatically* – расчет переходных процессов с переменным шагом, выбираемым автоматически в соответствии с допустимой относительной ошибкой **RELTOL**, задаваемой в окне *Analysis Options*);

Nodes in circuit – список всех узлов цепи.

Nodes for analysis – номера узлов, для которых рассчитывается переходные процессы, перечень таких узлов устанавливается нажатием кнопок *Add* >(добавить) и < *Rename* (удалить), предварительно выделив курсором выбранный узел.

Для анализа переходного процесса:

Прежде всего, должен быть отмечен пункт *User-defined* в разделе *Initial conditions*. В полях Start time и End time задаём необходимое нам время начала и конца анализа переходного процесса в *секундах*. (Для данной схемы – начало переходного процесса – 0; Время окончания переходного процесса – $5\tau = 5 \cdot RC$). Далее указываем анализируемые узлы (потенциал узла 2 на схеме рис 12.3 определяет напряжение конденсатора $U_C = \varphi_2 - 0$, т.к. потенциал заземленной точки схемы равен нулю).

Так же есть возможность определить количество рассчитываемых точек – можно задать минимальное значение количества расчётных точек или же определить максимальный шаг времени до следующей расчетной точки, пункты *Minimum number of time points и Maximum time step* (TMAX) соответственно. По умолчанию выбор количества точек происходит автоматически.

Puc 12.6

Анализ переходных процессов инициализируется нажатием кнопки **Simulate**, после чего на экране появляются осциллограммы переходных процессов в уменьшенном масштабе. Увеличенное изображение графиков можно получить, нажав кнопку увеличения размера изображения.

Для удобства обработки результатов переходных процессов в верхней части окна имеется ряд функциональных кнопок. Укажем на важнейшие из них.

Кнопка 1 раскрывает диалоговое окно (рис. 12.7), позволяющее при закладке *General* установить ряд опций:

Font – выбрать шрифт надписей;

Grid – ширину сетки экрана и ее цвет;

Grid on; Cursors on – удаление сетки и визиров с экрана;

Single Trace – выбор для анализа отдельного графика, при этом номер графика выбирается установкой его номера в окошке *Trace*;

All Traces – одновременный анализ всех графиков.

Кнопка 2 устанавливает и удаляет сетку экрана.

Кнопка **3** выводит информационное окно с номерами узлов и цветом соответствующих графиков (верхний правый угол экрана). Курсором мыши это окно можно переместить в любое место экрана.

Graph Properties	X
General Left Axis Bottom Axis Right Axis Top Ax	is Traces
_ Title	
<u>I</u> itle заданиеβ.ewb	
<u> </u>	
Grid	Trace Legend
Pen Size 0 📑 🚺 Silver 💌	🔽 Legend On
🔽 <u>G</u> rid On	
Cursors	
Cursors On ⊆ Single Trace	race 1 📩
OK	Отмена Применить

Puc. 12.7

Кнопка 4 выводит на экран два измерительных визира (рис 3.14). За

верхние треугольники визиры можно перемещать курсором мыши в любое место графиков и измерять значение координат графика.

Кнопка 5 изменяет цвет фона экрана.

На экран (правый верхний угол) выводится также цифровая информация о точках графика, на которые установлены визиры. Информация помещается в отдельном окне, содержание которого изменится в зависимости от положения визиров.

Обозначения переменных величин информационного окна следующее:

х1, у1 – координаты точки графика для первого визира;

x2, y2 – координаты точки графика для второго визира;

min x, max x; min y, max y – минимальные и максимальные значения координат графика на интервале времени переходного процесса.

Для получения осциллограмм тока (в данном случае *i(t)*) введём последовательно в цепь источник напряжения, управляемый током,

напряжение на котором пропорционально проходящему по нему току (Current-Controlled Voltage Source). Выставим переходное сопротивление (Transresistanse) источника, которое является коэффициентом между входным током и выходным напряжением данного источника. Получим схему, представленную на рис. 12.8. и соответствующую осциллограмму тока.

Подготовка к работе

Проработав теоретический материал, письменно ответить на вопросы.

1. В чем причина возникновения переходных процессов?

2. Сформулировать законы коммутации.

3. Как определить независимые и зависимые начальные условия, принужденные величины?

4. Как определить постоянные интегрирования в классическом методе расчета переходных процессов?

5. Что такое постоянная времени в цепи первого порядка и как ее определить графически по экспериментальным кривым тока (напряжения)?

6. Чему равна постоянная времени в исследуемой цепи *R*, *C*? А в цепи *R*, *L* ?

7. Вывести формулы (12.2) для расчета тока и напряжения при разряде конденсатора.

8. Как рассчитать сопротивление *R* в цепи рис. 12.2 по результатам измерений в начальный момент времени напряжения при разряде и тока при заряде конденсатора?

Программа работы

1. Собрать цепь по схеме рис. 12.2.

2. Определить временные зависимости напряжения на конденсаторе (узел 2) и тока (точка 5) в цепи в переходных режимах зарядки и разрядки конденсатора, используя диалоговое окно команды **Transient Analysis** (рис. 12.5.) по пути **Analysis** < **Transient**. Результаты измере-

ний внести в табл. 12.2., используя визиры (рис. 12.9, пиктограмма).

3. Перенести кривые i(t) и $u_C(t)$ в отчёт. Графически определить постоянную времени т для каждой кривой.

4. Вычислить постоянную времени $\tau = RC$ и сравнить полученное значение со средним значением τ в п.3.

5. Аналитически рассчитать зависимости i(t) и $u_C(t)$ по формулам (12.1) и (12.1).

Указание. Целесообразно числовые значения тока и напряжения найти в моменты времени t = 0, τ , 2τ , 3τ . Результаты расчета внести в табл.12.2.

6. Построить расчетные кривые i(t) и $u_C(t)$ в тех же осях, что и кривые п.3.

7. Проанализировать полученные результаты, сделать выводы по работе.

Таблица 12.2.

Экспериментальные данные					Результаты расчета						
	Заряд		-	Разряд	(Заряд			Разряд		
t	i	u_c	t	i	u_c	t	i	u_c	t	i	u_c
c	мкА	В	c	мкА	В	c	мкА	В	c	мкА	В
•••			•••								

Puc. 12.9

РАБОТА 13

ИЗУЧЕНИЕ ОБОБЩЕННЫХ ЗАКОНОВ КОММУТАЦИИ

Цель работы. Экспериментальная проверка закона сохранения суммарного заряда конденсаторов, подключенных к общему узлу, при импульсных переходных процессах. Экспериментальное исследование перераспределения энергии во время этих процессов.

Пояснения к работе

При переходных процессах в цепях с индуктивными сечениями и емкостными контурами может наблюдаться очень быстрая импульсная начальная часть процесса, сменяемая более медленной частью или установившимся режимом. Для упрощения анализа переходного процесса импульсную часть обычно считают происходящей мгновенно. При этом приходится признать возможным нарушение законов коммутации, связанных с непрерывностью напряжений на конденсаторах и токов в индуктивностях.

В то же время законы Кирхгофа требуют соблюдения в момент коммутации (t = 0) более общих закономерностей:

суммарный заряд конденсаторов в ветвях, подключенных к общему узлу, и суммарное потокосцепление индуктивностей в ветвях, образующих контур, в первый момент после коммутации (t = +0) сохраняют те же значения, которые они имели непосредственно перед коммутацией (t = -0).

Так что для каждого из узлов контура, составленного только из емкостей,

 $\Sigma q(+0) = \Sigma q(-0)$ или $\Sigma C u_C(+0) = \Sigma C u_C(-0),$

а для каждого контура, в который входят индуктивности, связанные в узел,

$$\Sigma \psi(+0) = \Sigma \psi(-0)$$
 или $\Sigma Li_{L}(+0) = \Sigma Li_{L}(-0).$

Во время импульсной части переходного процесса в конденсаторах возникают значительные (в идеализированных схемах – бесконечно большие) импульсы тока перезарядки малой длительности (в идеале – происходящие мгновенно). А на индуктивностях возникают импульсы перенапряжений из-за перераспределения суммарного потокосцепления между ними.

В то же время энергия электромагнитного поля, связанного с цепью (в конденсаторе запасается $W_{\Im} = C u_C^2 / 2$, в индуктивности –

 $W_{\rm M} = L i_L^2 / 2$), изменяется на конечную величину. Из-за предположения о мгновенной коммутации такое изменение происходит скачком (так называемая «некорректная» коммутация). «Пропавшая» при этом энергия $\Delta W = \sum W(-0) - \sum W(+0)$ выделяется в виде тепла в электрической дуге между контактами переключателя и в соединительных проводах, а также частично излучается в окружающее пространство.

Схема электрической цепи

В работе используется электрическая цепь, схема которой показана на рис. 13.1. Конденсатор C_1 =100 мкФ подключается к источнику постоянного напряжения U_1 = 12 В с помощью ключа K_1 . Ключ K_3 при этом разомкнут.

Puc. 13.1

В свою очередь с помощью ключа K_2 конденсатор C_2 (10 или 470 мк Φ), соединяется с источником постоянного регулируемого напряжения и заряжается до установленной величины $U_2 = 2 \div 15$ В. Рекомендуемые значения этого напряжения выбираются из табл. 13.1 согласно варианту, указанному преподавателем.

При размыкании К₁ и К₂ конденсаторы отсоединяются от источников, сохраняя заряд, приобретенный до коммутации.

В исходном положении (ключи К1 и К2 замкнуты, К3 – разомкнут) конденсатор C_1 заряжается до напряжения U_1 (конденсатор C_2 - до напряжения U_2). После срабатывания ключей происходит соединение двух конденсаторов с разными напряжениями одинаковой полярности. Это позволяет проверить обобщенный закон коммутации о сохранении суммарного заряда конденсаторов, подключенных к общему узлу, даже если они образуют емкостный контур. Напряжения на конденсаторах

контролируются вольтметром постоянного напряжения V. У вольтметра необходимо установить **максимальное** сопротивление.

	1 1 1
аблица	141
гаолица	13.1

Вариант	1	2	3	4	5	6	7	8	9	10
	2	3	4	3	2	3	4	5	2	4
U_2 , B	6	5	6	7	5	6	7	8	4	8
	10	7	8	11	8	9	10	11	6	12
	14	10	10	14	11	12	13	14	10	14

Подготовка к работе

1. Сформулировать обобщенные законы коммутации. Записать их в явном виде применительно к схемам рис. 13.2, а, б.

2. Записать в явном виде формулы для вычисления суммарного заряда конденсаторов C_1 и C_2 , заряженных перед коммутацией до напряжений U_1 и U_2 соответственно, а после коммутации – до общего напряжения U_C (+0). Сделать то же самое для суммарной энергии, запасенной в этих конденсаторах до коммутации W(-0) и непосредственно после нее W(+0).

3. Вывести соотношение между энергией, переходящей во время коммутации из конденсатора C_1 , заряженного до напряжения E, в незаряженный до этого конденсатор C_2 , и энергией, теряемой безвозвратно (для случая $C_1 = C_2$ в схеме рис. 13.2,6).

Программа работы

1. Собрать цепь по схеме рис. 13.1, включив в нее конденсатор $C_2 = 10$ мкФ. Ключи K_1 и K_2 замкнуты, K_3 – разомкнут. Установить напряжение U_2 , соответствующее варианту. Включить схему.

2. Одновременно замкнуть ключ K_3 , ключи K_1 и K_2 разомкнуть. Записать показание вольтметра V – значение напряжения U_C (+0) в табл. 13.2.

3. Повторить пункты 1 и 2 при различных, соответствующих варианту значениях напряжения U_2 . Результаты измерений напряжений на конденсаторах до и после коммутации внести в табл. 13.2.

4. Повторить опыты при $C_2 = 470$ мкФ. Результаты измерений напряжений на конденсаторах до и после коммутации внести в ту же таблицу.

Ί	аблица	13.2

. . .

_

$U_1 = \mathbf{B}$	До кол	імутаці	и	После коммутации				
$C_1 =$	U_2	$\Sigma q(-0)$	$\Sigma W(-0)$	$U_{C}(+0)$	$\Sigma q(+0)$	$\Sigma W(+0)$	ΔW	
=100 мкФ	В	мкКл	мДж	В	мкКл	мДж	мДж	
$C_2 =$								
=10 мкФ								
$C_2 =$								
= 470 мкФ								

5. Вычислить суммарный заряд конденсаторов и энергию электрического поля, запасенную в них до и после коммутации, а также изменение суммарной энергии ΔW за время коммутации для всех опытов по пунктам 1 ÷ 4. Результаты внести в табл. 13.2.

6. Проанализировать полученные результаты и сделать выводы по работе.

РАБОТА 14

АПЕРИОДИЧЕСКИЙ ПЕРЕХОДНЫЙ ПРОЦЕСС В ЦЕПИ ВТОРОГО ПОРЯДКА

Цель работы. Исследовать переходный процесс в активноемкостной цепи с двумя конденсаторами.

Пояснения к работе

Линейная электрическая цепь после коммутации характеризуются линейными дифференциальными уравнениями второго порядка, если содержит два необъединяемых накопителя энергии: две индуктивности, две емкости или индуктивность и емкость. В зависимости от вида корней характеристического уравнения $(p_{1,2})$ различают три режима переходных процессов:

- апериодический (корни p_1 и p_2 вещественные и различные),
- критический (корни $p_1 = p_2 = p$ вещественные и равные),
- колебательный (корни $p_{1,2} = -\delta \pm j\omega$ комплексные, сопряженные).

Корни характеристического уравнения определяются структурой цепи и параметрами ее элементов после коммутации. При этом ЭДС и задающие токи источников не влияют на корни характеристического уравнения. Для составления характеристического уравнения и определения его корней можно, например, использовать комплексное сопротивление цепи после коммутации: это сопротивление приравнивается к нулю и $j\omega$ заменяется на p.

Если электрическая цепь содержит после коммутации два необъединяемых индуктивных или два емкостных элемента, то возможен только апериодический режим. В этом случае свободная составляющая любого тока или напряжения может быть записана в виде:

$$x_{\rm CB} = A_1 e^{p_1 \cdot t} + A_2 e^{p_2 \cdot t}.$$

Здесь A_1 и A_2 – постоянные интегрирования, которые определяются из начальных условий.

Схема электрической цепи

Для исследования апериодического процесса используется цепь, схема которой показана на рис. 14.1. Цепь питается от источника постоянного напряжения. Ее параметры выбираются по табл. 14.1 в соответствии с вариантом, указанным преподавателем.

Puc. 14.1.

									Ta	аблица	a 14.1
Bap	иант	1	2	3	4	5	6	7	8	9	10
U	В	14	14	13	13	12	12	11	11	10	10
C_1	мкФ	100	470	100	470	100	470	100	470	100	470
C_2	мкФ	470	100	470	100	470	100	470	100	470	100
R_1	кОм	100	100	100	100	200	200	80	80	100	100
R_2	кОм	100	100	47	47	47	47	100	100	80	80

При замкнутом положении ключа К₁ конденсатор C_1 заряжается до напряжения U (конденсатор C_2 не заряжен – К₂ разомкнут). После срабатывания ключей начинается переходный процесс в цепи с двумя конденсаторами при начальных условиях $u_{C1}(+0) = u_{C1}(-0) = U$ и $u_{C2}(+0) = u_{C2}(+0) = 0$, а также $i_{C2}(+0) = i_{R1}(+0) = -i_{C1}(+0) = U/R_1$.

Для получения осциллограмм напряжений воспользуйтесь анализом переходных процессов в среде EWB, описанным в методических указаниях к лабораторной работе №12.

Подготовка к работе

Проработав теоретический материал, письменно ответить на следующие вопросы. 1. Какая цепь называется цепью второго порядка? В каких цепях возможен только апериодический переходный процесс?

2. Как составляется характеристическое уравнение? При каких корнях получается апериодический переходный процесс?

3. Чему равны принужденные составляющие напряжений и токов в цепи рис. 14.1?

4. Для цепи, показанной на рис. 14.1, вывести в общем виде формулы для расчета напряжений на конденсаторах $u_{C1}(t)$ и $u_{C2}(t)$, а также токов $i_{C1}(t)$, $i_{C2}(t)$ во время переходного процесса при срабатывании ключей.

Программа работы

1. Собрать цепь по схеме рис. 14.1, параметры которой соответствуют варианту, указанному преподавателем и зарядить конденсатор C_1 до напряжения U. Записать значение U, а также C_1 , C_2 , R_1 , R_2 в верхнюю строку табл. 14.2.

2. После срабатывания ключей снять временные зависимости напряжений $u_{C1}(t)$ и $u_{C2}(t)$. Результаты измерений внести в табл. 14.2.

	$U = \dots B$		C_1	$= C_2 =$	мкФ	$R_1 =$	R_2	=
t			мкФ			кОм	кОм	
	Экспери	імент				Расчет		
	u_{C1}	u_{C2}	i_{C1}	i_{C2}	i_{R2}	u_{C1}	u_{C2}	
c	В	B	мкА	мкА	мкА	В	В	
0		0			0		0	
5								
10								
•••								

Таблица 14.2

3. По экспериментальным значениям u_{C1} и u_{C2} , используя законы Ома и Кирхгофа, вычислить значения токов i_{C1} , i_{C2} и i_{R2} в те же моменты времени. Результаты также внести в табл. 14.2 (раздел «Эксперимент»).

4. По данным пп. 2 и 3 построить графики зависимостей $u_{C1}(t)$ и $u_{C2}(t)$ в одних осях, а графики $i_{C1}(t)$, $i_{C2}(t)$ и $i_{R2}(t)$ – в других осях.

5. Для трех-четырех моментов времени по формулам п. 4 «Подготовки к работе» рассчитать значения u_{C1} , u_{C2} , внести их в ту же таблицу (раздел «Расчет»), а затем отметить эти значения на графиках п. 4 «Программы работы».

6. Проанализировать полученные результаты и сделать выводы по работе.

РАБОТА 15

ПЕРЕХОДНЫЙ ПРОЦЕСС В ЦЕПИ ВТОРОГО ПОРЯДКА

Цель работы. Экспериментальное исследование колебательного переходного процесса в цепи с последовательным соединением *R*, *L*, *C* при включении ее на постоянное напряжение.

Пояснения к работе

Принципиальная схема исследуемой цепи показана на рис. 15.1. По второму закону Кирхгофа

Выражение (15.1) дифференцированием приводится к однородному дифференциальному уравнению второго порядка

$$L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{i}{C} = 0.$$
 (15.2)

В решении его классическим методом принужденная составляющая отсутствует, а форма записи свободной составляющей зависит от вида корней характеристического уравнения, которое получается из (15.2) заменой $\frac{d^2i}{2} \Rightarrow p^2$, $\frac{di}{2} \Rightarrow p$, $p^0 = 1$. Отсюда корни

15.2) заменой
$$\frac{d}{dt^2} \Rightarrow p^2$$
, $\frac{d}{dt} \Rightarrow p$, $p^0 = 1$. Отсюда корни
 $p_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$. (15.3)

Возможны три случая:

1) корни вещественные различные $p_2 < p_1 < 0$ (подкоренное выражение в (15.3) положительно), процесс *апериодический*;

2) корни комплексно сопряженные

$$p_{1,2} = -\delta \pm j\omega_{\rm CB}, \text{ где } \delta = \frac{R}{2L}, \ \omega_{\rm CB} = \sqrt{(LC)^{-1} - \delta^2}, \quad (15.4)$$

(подкоренное выражение в (15.4) отрицательно), процесс колебательный; в этом случае

$$i(t) = Ae^{-\delta t}\cos(\omega_{\rm CB}t + \alpha) = \frac{E}{\omega_{\rm CB}L}e^{-\delta t}\sin\omega_{\rm CB}t; \qquad (15.5)$$

3) корни вещественные равные

$$p_1 = p_2 = -\delta = -\frac{R}{2L},$$
(15.6)

подкоренное выражение в (15.4) равно нулю, что получается при

$$R = R_{\rm KP} = 2\sqrt{L/C} - \tag{15.7}$$

критический или граничный (предельный) процесс.

Если $R < R_{\rm KP}$, то процесс колебательный, если $R > R_{\rm KP}$ – процесс апериодический.

Puc. 15.2

Построение графика i(t) в случае колебательного процесса выполняется следующим образом. Вычисляются постоянная интегрирования $A = E/(\omega_{\rm CB}L)$, постоянная времени огибающей $\tau_{\rm CB} = \delta^{-1}$ и период свободных колебаний $T_{\rm CB} = 2\pi/\omega_{\rm CB}$ по формулам (15.4, 15.5), после чего строятся огибающие по четырем точкам t = 0, $\tau_{\rm cB}$, $2\tau_{\rm cB}$, $3\tau_{\rm cB}$ и в них вписывается затухающая синусоида, которая пересекает ось абсцисс (i = 0) в моменты времени t = 0, $T_{\rm CB}/2$, $T_{\rm CB}$ и т.д. и касается огибающих примерно в моменты $t = T_{\rm CB}/4$, $3T_{\rm CB}/4$ и т.д. (рис. 15.2).

Для оценки быстроты протекания колебательного процесса используются *декремент колебания*, равный отношению значений свободной составляющей тока в моменты времени, отличающиеся на период,

$$\Delta = \frac{i(t)}{i(t+T_{\rm CB})} = e^{\delta T_{\rm CB}}$$
(15.8)

и логарифмический декремент колебания

$$\theta = \ln \Delta = \delta T_{\rm cB} = T_{\rm cB} / \tau_{\rm cB} \,. \tag{15.9}$$

При определении декремента колебания по экспериментально полученной кривой тока (осциллограмме) удобно найти его как отношение амплитуд первого I_{1m} и второго I_{2m} периодов затухающих колебаний:

$$\Delta = I_{1m} / I_{2m}. \tag{15.10}$$

Чтобы по той же осциллограмме найти логарифмический декремент, нужно измерить на оси времени расстояние, соответствующее периоду $T_{\rm cB}$, и длину подкасательной (с учетом масштаба времени $\tau_{\rm CB}$) и взять их отношение $T_{\rm cB}/\tau_{\rm cB}$ (рис. 15.2).

Подготовка к работе

Изучив теоретический материал, ответить на следующие вопросы.

1. Как составляется характеристическое уравнение?

2. Какие переходные режимы возможны в цепи *R*, *L*, *C* в зависимости от вида корней характеристического уравнения?

3. Как определяются независимые и зависимые начальные условия? Определить i(0), $u_C(0)$, $u_L(0)$, i'(0) для схемы рис. 15.1.

4. Как определяются постоянные интегрирования в выражении для свободных составляющих? Определить их в формуле (15.5) с учетом начальных условий.

Указание. Предварительно следует записать выражение производной *i*(*t*) в общем виде.

5. Как по значению комплексного корня определить постоянную времени огибающей и период свободных колебаний? Как те же величины найти по осциллограмме?

6. Что такое декремент колебания, как он вычисляется и что характеризует?

Схема электрической цепи

Схема электрической цепи показана на рис. 15.3. Напряжение, пропорциональное току переходного процесса, подается на осциллограф и на его экране можно получить кривую *i(t)*. Анализ переходного процесса происходит через открытие диалогового окна команды **Transient Analysis** по пути **Analysis** < **Transient** и рассчитать переходный процесс **узла 5.** Анализ переходных процессов инициализируется нажатием кнопки **Simulate**, после чего на экране появляются осциллограммы переходных процессов в уменьшенном масштабе. Увеличенное изображение графиков можно получить, нажав кнопку увеличения размера изображения. Длительность временного интервала развертки необходимо корректировать параметром **TSTOP**.

Программа работы

1. Собрать цепь по схеме рис. 15.3, параметры которой соответствуют варианту, указанному преподавателем (табл. 15.1). Значения *L*, *C*, *R* внести в табл. 15.2.

Таблица 15.1

Bap	иант	1	2	3	4	5	6	7	8	9	10
Ε	В	300	350	400	550	600	70	80	90	100	120
L	мГн	10	10	40	40	40	40	100	100	140	200
С	мкФ	0,47	1	0,1	0,22	0,47	1	0,1	0,22	0,1	0,1
R	Ом	22	22	100	100	100	100	220	220	150	220

2. Срисовать осциллограмму тока в цепи.

3. По осциллограмме определить период свободных колебаний T_{CB} и постоянную времени огибающей τ_{cB} а также амплитуды тока в первом и втором периодах I_{1m} , I_{2m} . Оценить декремент колебания Δ по формуле (15.10) и логарифмический декремент θ по формуле (15.9). Значения всех перечисленных величин внести в табл. 15.2.

4. Вычислить коэффициент затухания $\delta = \tau_{cB}^{-1}$, угловую частоту свободных колебаний $\omega_{cB} = 2\pi/T_{cB}$ (c⁻¹), а также постоянную интегрирования $A = E / (\omega_{cB}L)$. Результаты вычислений внести в табл. 15.2 и записать в числах формулу (15.5) для расчета тока при колебательном процессе.

5. Рассчитать по этой формуле значения тока в моменты времени t = 0, $T_{\rm CB} / 4$, $T_{\rm CB} / 2$, $3T_{\rm CB} / 4$, $T_{\rm CB}$ и построить расчетную кривую в одних осях с осциллограммой.

Параметры цепи	$E = \mathbf{B}$	$L = M\Gamma H$	$C = M \kappa \Phi$	$R_{\rm III} = O_{\rm M}$
Из осциллограмм	$T_{\rm cB} = {\rm Mc}$	$\tau_{cB} = \dots Mc$	$I_{1m} = \dots MA$	
-	$\omega_{cB} = \dots Mc^{-1}$	$\delta = \dots \mathrm{Mc}^{-1}$	$I_{2m}^{m} = MA$	
			$\theta = \dots$	
Расчет	$T_{cb} = \text{ MC}$	$\tau_{cB} = \dots Mc$	$\theta = \dots$	$\Delta = \dots$
	$\omega_{cB} = \dots Mc^{-1}$	$\delta = \dots Mc^{-1}$		

Таблица 15.2

6. Рассчитать значение $R = R_{\rm KP} = 2\sqrt{L/C}$, снять осциллограммы тока при значениях сопротивлений $R = R_{\rm KP}$ и $R < R_{\rm KP}$.

7. Сделать выводы по работе

РАБОТА 16

ИССЛЕДОВАНИЕ НЕЛИНЕЙНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Цель работы. Экспериментальное исследование свойств некоторых нелинейных элементов, использование этих свойств для стабилизации напряжения, освоение и проверка графического метода построения эквивалентной вольтамперной характеристики последовательнопараллельного соединения элементов.

Пояснения к работе

Для расчета цепей постоянного тока, содержащих нелинейные элементы, необходимо знать вольтамперные характеристики (BAX) этих элементов, т.е. зависимость напряжения на зажимах каждого из них от тока в нем. BAX, отдельные точки которой получены при постоянных во времени токах и напряжениях, называется статической. В основе расчета сложных нелинейных цепей лежит их систематическое упрощение, выполняемое иногда в несколько этапов.

Так, участок цепи с последовательным соединением нелинейных элементов может быть заменен одним эквивалентным элементом, ВАХ которого определяется на основании второго закона Кирхгофа

$$U(I) = \sum_{k=1}^{n} U_k(I)$$

по характеристикам исходных элементов путем сложения напряжений на них при одинаковых значениях тока.

Участок цепи, состоящий из параллельного соединения нелинейных элементов, также может быть заменен одним эквивалентным элементом, ВАХ которого строится на основании первого закона Кирхгофа

$$I(U) = \sum_{k=1}^{n} I_k(U)$$

по характеристикам исходных элементов путем сложения токов в них при одинаковых значениях напряжения.

Можно подобрать такие нелинейные элементы и таким образом включить их в цепь, что напряжение на одном из участков этой цепи будет меняться в значительно меньшей степени, чем напряжение в сети (стабилизатор напряжения). Можно сделать и так, что ток в одной из ветвей будет весьма мало зависеть от величины сопротивления в той же ветви при изменении его в довольно широких пределах (стабилизатор тока).

Подготовка к работе

Проработав необходимый материал, ответить на вопросы.

1.Какой элемент называется нелинейным? Что такое его статическое и дифференциальное сопротивления и как их определить по ВАХ элемента?

2. Какие законы и теоремы линейных цепей справедливы для расчета нелинейных цепей без накопителей электрической энергии?

3.Как получить эквивалентную ВАХ последовательно соединенных нелинейных элементов и на каком законе основано это построение?

4. Как получить эквивалентную ВАХ параллельно соединенных нелинейных элементов и на каком законе основано это построение?

5.Какой должна быть характеристика нелинейного элемента, чтобы его можно было использовать для стабилизации тока, включив последовательно с приемником?

6.Какой должна быть характеристика нелинейного элемента, чтобы его можно было, включив параллельно приемнику, использовать для стабилизации напряжения?

Схемы электрических цепей

В работе используются электрические цепи, которые показаны на рис. 16.1, а, б, в.

Puc. 16.1

Puc. 16.1

Цепь питается от источника постоянного регулируемого напряжения $U_l = 0 \div 20$ В и содержит не меняющуюся в процессе работы часть (источник, потенциометр R и вольтметр). Для ее сборки следует открыть файл LW16 и в качестве нелинейного элемента (nelin) извлечь из поля вспомогательных компонентов Favorites (в верхнем левом углу экрана в начале второй строки меню) подсхему (Subcircuit) из набора AD1 ÷ AD10 (номер варианта указывает преподаватель).

В качестве нелинейного резистивного элемента собран блок, показанный рис. 16.2, в котором варьируется функция v(v(1)).

Верхний предел изменения сопротивления нагрузки $\mathbf{R}_{\mathbf{H}}$ (1000 Ом), равно как и процентное изменение $\mathbf{R}_{\mathbf{H}}$, следует установить при сборке схемы. В процессе работы для изменения этого сопротивления на заданную (в процентах от наибольшего значения) величину необходимо либо нажать управляющую клавишу \mathbf{R} (в этом случае сопротивление уменьшается на такую величину), либо одновременно **Shift+R** (тогда сопротивление настолько же увеличивается). К этой подсхеме подключаются либо нелинейный резистивный элемент (**nelin**) (рис.16.1, а), либо транзистор (рис.16.1, б), либо смешанное соединение трёх нелинейных элементов нелинейный резистивный элемент (**nelin**), транзистор, стабилитрон (рис.16.1, в). При этом снимаются соответствующие вольтамперные характеристики: $U_{\mathrm{H}\ni}(I_{\mathrm{H}\ni}), U_{\mathrm{T}}(I_{\mathrm{T}}), U_{\mathrm{CT}}(I_{\mathrm{CT}}), U_{\ni}(I_{\boxdot})$.

Bap	иант	1	2	3	4	5	6	7	8	9	10
U_{1P}	В	5	6	7	8	9	10	11	12	13	14

Программа работы

1. Открыть файл LW16 и в качестве нелинейного резистивного элемента (nelin) извлечь из поля вспомогательных компонентов Favorites (в верхнем левом углу экрана в начале второй строки меню) подсхему (Subcircuit) из набора AD1 ÷ AD10 (номер варианта указывает преподаватель).

2. Экспериментальное определение ВАХ нелинейного резистивного элемента по схеме рис. 16.1, а и транзистора по схеме рис. 16.1, б (8÷10 точек во всем диапазоне изменения входного напряжения U_1). Показания приборов внести в табл. 16.2.

3. Экспериментальное определение ВАХ цепи со смешанным соединением элементов по схеме рис. 16.1, в. Показания приборов также внести в табл. 16.2.

4. Построить ВАХ каждого из нелинейных элементов по данным п.2,3 в общих осях.

5. Построить в тех же осях эквивалентную ВАХ смешанного соединения нелинейных элементов путем графического сложения характеристик отдельных элементов в соответствии со схемой их соединения (рис. 16.1, в).

6. Построить на том же графике ВАХ смешанного соединения элементов по данным п. 3. Сравнить с характеристикой п. 5.

7. Определить по ВАХ нелинейного резистивного элемента п. 2,3 значения статического $R_{\rm CT}$ и дифференциального $R_{\rm d}$ сопротивлений при напряжении $U_{\rm 1P}$.

8. Сделать выводы по работе.

Таблица 16.2

	НЭ	Транз	истор	Смешанное соединение				
$U_1 =$	$I = I_{\rm H\Im}$	U_1	I=I	$U_1 = U_3$	$I = I_{\mathfrak{Z}}$	U_2		
$U_{ m H\Im}$								
В	мА	В	мА	В	мА	В		

РАБОТА 17

НЕЛИНЕЙНЫЙ РЕЗИСТИВНЫЙ ЭЛЕМЕНТ В ЦЕПИ С ИСТОЧНИКОМ ГАРМОНИЧЕСКОГО НАПРЯЖЕНИЯ [1: 25.1-25.3; **2**: 15.1, 15.2, 15.8, 15.53]

Цель работы. Научиться осциллографировать характеристики нелинейных элементов для мгновенных значений и определять по ним форму тока при воздействии гармонического напряжения.

Пояснения к работе

Анализ нелинейных цепей при периодических воздействиях производится с учетом динамических характеристик нелинейных элементов. Если при этом ставится цель определить форму или гармонический состав реакции цепи, то используются характеристики нелинейных элементов для мгновенных значений.

При сравнительно невысоких частотах переменных токов и напряжений динамические характеристики безынерционных нелинейных элементов практически совпадают с их статическими характеристиками.

В данной работе в качестве нелинейного резистивного элемента рассматривается полупроводниковой диод (вентиль) при воздействии гармонического напряжения промышленной частоты. Вольтамперная характеристика диода i(u) для низких частот имеет вид, показанный на рис. 17.1, а.

Здесь же построена волновая диаграмма воздействующего на диод синусоидального напряжения $u(\omega t)$. Если перенести последовательно ряд точек с этой диаграммы при определенных значениях ωt на характеристику i(u) и найти по ней соответствующие значения реакции диода – тока *i*, то легко можно построить и зависимость $i(\omega t)$, которая показана на рис. 17.1, б. Реакция оказывается несинусоидальной, причем спектр ее содержит и постоянную составляющую, и все гармоники.

Схема электрической цепи

Для определения с помощью осциллографа вольтамперной (для мгновенных значений) характеристики последовательного соединения полупроводникового диода *D* и реостата *R*, используется электрическая цепь, схема которой показана на рис. 17.2.

Цепь питается от сети переменного тока, напряжение на выходе которой контролируется вольтметром *V*. Амперметры измеряют среднее и действующее значения тока через резистор.

U и *I* – показания электромагнитного вольтметра и электродинамического амперметра..

Для регистрации кривых $u(\omega t)$ и $i(\omega t)$ достаточно открыть диалоговое окно **Transient Analysis** (рис.2.1.3) по пути **Analysis < Transient**. И

рассчитать потенциалы узлов 3 и 4. Те же характеристики можно полу-

чить, кликнув на пиктограмму «характеристики» 🖾 панели инструментов.

Puc. 17.2

ВАХ нелинейного элемента можно получить, изменив режим развёртки осциллографа, выбрав кнопку . , тогда осью абсцисс вольтамперной характеристики окажется ось токов, а осью ординат – ось напряжений.

Подготовка к работе

Изучив теоретический материал, ответить на следующие вопросы:

1. В чем принципиальное отличие динамических характеристик от статических?

2. Как по вольтамперной характеристике последовательно соединенных диода и резистора с сопротивлением *R* определить характеристику диода?

3. Нарисуйте форму кривой тока для цепи в идеальном диоде при синусоидальном напряжении.

4. Что показывают амперметры магнитоэлектрической и электродинамической систем в цепи по рис. 17.2?

Программа работы

1. При заданном напряжении источника U, перерисовать снятые осциллограммы в отчет, расположив их как на рис. 17.1. Построить ВАХ i(u). Убедиться, что с помощью кривой i(u) можно по воздействию $u(\omega t)$ найти реакцию $i(\omega t)$. Сравнить с вольтамперной характеристикой, полученной при помощи осциллографа. При этом амплитуду входного напряжения выбрать из табл. 17.1 по варианту, указанному преподавателем.

Таблица 17.1

Bap	иант	1	2	3	4	5	6	7	8	9	10	11
R	Ом	1	1	1	1	1	1	1	1	1	1	1
U	В	100	90	80	70	95	85	75	125	150	140	30

2. Показания приборов внести в табл. 17.2.

3. Разложить кривую $i(\omega t)$ в гармонический ряд и построить ее амплитудно-частотный спектр. Для этого воспользоваться командой главного меню Fourier – спектральный анализ Фурье (по пути Analysis<Fourier). В открытом диалоговом окне выполнить установки согласно рис. 17.3 и нажать кнопку Simulate. По амплитудно-частотному спектру измерить амплитуды пяти результативных гармоник.

4. Вычислить среднее и действующее значения выпрямленного тока и сравнить с показаниями амперметров.

 $i(\omega t) = I_0 + I_{1m} \sin \omega t + I_{2m} \sin 2\omega t + I_{3m} \sin 3\omega t + ...,$

 I_0 - постоянная составляющая (среднее значение),

 $I = \sqrt{I_0^2 + I_1^2 + I_2^2 + I_3^2 + \dots}$ – действующее значение тока,

где $I_1 = \frac{I_{1m}}{\sqrt{2}}; I_2 = \frac{I_{2m}}{\sqrt{2}}; I_3 = \frac{I_{3m}}{\sqrt{2}} - действующие значения гармоник тока.$

5. Проанализировать полученные результаты и сделать выводы по работе.

Analysis Output node Fundamental frequency Number of harmonics	4 • 50 6	Hz	A V	Simulate Accept Cancel
Advanced Set advanced parameters Number of points per harmonic Sampling frequency Set transient options	1	Hz	Å	
Results Vertical scale Display phase Output as line graph	Linear 💌			

Puc. 17.3

<u> </u>										
U	$I_{_{\rm ЭД}}$	$I_{\rm M3}$	R	Ι	I_0					
В	А	А	Ом	А	А					

РАБОТА 18

ИССЛЕДОВАНИЕ НЕЛИНЕЙНЫХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА

Цель работы. Экспериментальное исследование цепей переменного тока с последовательным и параллельным соединением элементов и их расчет методом эквивалентных синусоид.

Пояснения к работе

При анализе нелинейных цепей переменного тока используются динамические характеристики нелинейных элементов:

а) для мгновенных значений,

б) для первых гармоник,

в) для действующих значений.

Нелинейный элемент, характеристика которого для мгновенных значений линейная, а характеристика для действующих – нелинейная, называется инерционным или условно-нелинейным. При периодических воздействиях кривые тока и напряжения для такого элемента подобны. Примером инерционного элемента может служить лампа накаливания.

Элементы с нелинейной характеристикой для мгновенных значений называются безынерционными. Формы кривых тока и напряжения для таких элементов различны. В качестве примера безынерционного элемента может служить катушка индуктивности с ферромагнитным сердечником.

Расчет нелинейных цепей с инерционными элементами, в которых действуют источники синусоидальных ЭДС и токов можно вести либо комплексным (символическим) методом, либо на основе векторных диаграмм. При этом используются характеристики для действующих значений: вольтамперная (ВАХ) U(I) и фазоамперная (ФАХ) $\phi(I)$, снятые на соответствующей частоте.

Аналогичный подход распространяют иногда и на цепи переменного тока с безынерционными элементами, если целью анализа не является изучение гармонического состава кривых тока и напряжения. В этом случае реальные несинусоидальные кривые u(t) и i(t) заменяются эквивалентными синусоидами с тем же периодом, теми же действующими значениями U, I и с таким углом сдвига фаз φ , который обеспечивает получение той же активной мощности, что и при несинусоидальном воздействии. В расчете методом эквивалентных синусоид нередко используется упрощение схем путем замены участков с последовательным или параллельным соединением нелинейных элементов одним эквивалентным элементом.

Так, в случае последовательного соединения *n* элементов характеристики эквивалентного элемента определяются на основании второго закона Кирхгофа в комплексной форме:

$$U_{\mathcal{Y}}(I)e^{j\phi_{\mathcal{Y}}(I)} = \sum_{k=1}^{n} U_{k}(I)e^{j\phi_{k}(I)}.$$
 (18.1)

Здесь U_k и ϕ_k – значения напряжения и угла сдвига фаз на *k*-м элементе при определенном действующем значении тока *I* (одинаковом для всех элементов), найденные по характеристикам этого элемента. В расчетах начальная фаза тока принимается равной нулю.

Характеристики эквивалентного элемента при параллельном соединении *n* исходных нелинейных двухполюсников определяются на основании первого закона Кирхгофа в комплексной форме:

$$I_{\mathcal{Y}}(U)e^{-j\varphi_{\mathcal{Y}}(I_{\mathcal{Y}})} = \sum_{k=1}^{n} I_{k}(U)e^{-j\varphi_{k}(I_{k})}.$$
(18.2)

Входящие в это выражение значения токов I_k всех *n* элементов определяются при одном и том же действующем значении напряжения U по ВАХ для действующих значений. В этом случае начальная фаза напряжения полагается равной нулю.

Подготовка к работе

Изучив соответствующий теоретический материал, ответить на вопросы.

1. Дать определение инерционного и безынерционного элементов. К какому виду относится лампа накаливания и катушка индуктивности с ферромагнитным сердечником?

2. Объяснить различие ожидаемых осциллограмм тока в схемах с лампой накаливания и с катушкой при питании от источника синусоидальной ЭДС.

3. Что понимают под эквивалентными синусоидами тока и напряжения?

4. Какие характеристики используют при расчете цепи методом эквивалентных синусоид?

5. Какой вид имеют вольтамперная и фазоамперная характеристики линейного элемента?

6. Как найти эквивалентные характеристики последовательно соединенных лампы и катушки, характеристики которых известны?

7. Как найти эквивалентные характеристики параллельного соединения лампы и катушки, характеристики которых известны?

Схема электрической цепи

Схема, изображенная на рис. 18.1, в которой по ходу работы меняется правая часть, которая позволяет снять вольтамперные характеристики каждого из нелинейных элементов (схема а), а также их последовательного и параллельного соединений (б). В качестве нелинейных элементов используются лампа накаливания и катушка индуктивности с ферромагнитным сердечником без воздушного зазора. При этом величину индуктивности выбрать из табл. 18 по варианту, указанному преподавателем

Таблица 18.1												
Bapi	лант	1	2	3	4	5	6	7	8	9	10	11
L	Гн	0,2	1,4	0,8	0,6	1,2	1,2	1,5	1,8	2,1	0,5	0,01

В нижнем положении ключа (схема 18.3, а) в цепи исследуется нелинейный элемент (nelin), а в верхнем – катушка индуктивности.

При последовательное соединении (схема 18.3, б) нелинейных элементов – ключ К2 разомкнут, при параллельном соединении – ключ К2 замкнут. Для снятия фазоамперных характеристик используется **Bode Plotter.** Питание осуществляется от синусоидального напряжения 100 В источника через делитель напряжения (потенциометр 1 кОм).

Верхний предел изменения сопротивления нагрузки $\mathbf{R}_{\mathbf{H}}$ (1000 Ом), а также процентное изменение $\mathbf{R}_{\mathbf{H}}$, следует установить при сборке схемы. В процессе работы для изменения этого сопротивления на заданную (в процентах от наибольшего значения) величину необходимо либо нажать управляющую клавишу \mathbf{R} (в этом случае сопротивление уменьшается на такую величину), либо одновременно **Shift+R** (тогда сопротивление настолько же увеличивается). Переменные напряжение и ток измеряются вольтметром и амперметром.

б) Рис. 18.1

[R]/1 k Ohm /55%

0.1 Ohm

nelin

ξо.5 н

א סטז

7

)100 V/50 Hz/0 Deg

Измеритель АЧХ И ФЧХ предназначен для анализа амплитудночастотных (при нажатой кнопке MAGNI TUDE, включена по умолчанию) и фазо-частотных (при нажатой кнопке PHASE) характеристик при логарифмической (кнопка LOG) или линейной (кнопка LIN) шкале по осям Y (VERTICAL) и X (HORIZONTAL).

Настройка измерителя заключается в выборе пределов измерения коэффициента передачи и вариации частоты с помощью кнопок в окошках F – максимальное и I – минимальное значение.

Значение частоты и соответствующее ей значение коэффициента передачи или фазы индицируется в окошках в правом нижнем углу измерителя. Значение указанных величин в отдельных точках АЧХ и ФЧХ можно получить с помощью вертикальной визирной линии, находящейся в исходном состоянии в начале координат и перемещаемой по графику мышью или кнопками $\leftarrow \rightarrow$. Результаты измерения можно записать также в текстовый файл. Для этого необходимо нажать кнопку SAVE и в диалоговом окне указать имя файла (по умолчанию предлагается имя схемы). В полученном таким образом текстовом файле с расширением .bod АЧХ и ФЧХ представляются в табличном виде.

Подключение прибора к исследуемой схеме осуществляется с помощью зажимов IN (вход) и ОUT (выход). Левые клеммы зажимов подключаются соответственно ко входу и выходу исследуемого устройства, а правые к общей шине. Ко входу устройства необходимо подключить функциональный генератор или другой источник переменного напряжения, при этом каких-либо настроек в этих устройствах не требуется.

Программа работы

1. Собрать схемы по рис. 18.3,а,б, и, изменяя потенциометром напряжение, экспериментально определить вольтамперные характеристики лампы накаливания, катушки с сердечником, их последовательного и параллельного соединений. Соответствующие друг другу показания амперметра и вольтметра (6÷8 значений) внести в табл. 18.2.

Таблица 18.2

Лам	ипа	а Катушка			По	след. со	ред.	Парал. соед.			
I_{Π}	$U_{ m II}$	I _K	$U_{ m K}$	ϕ_{K}	Iэ́	U_{\Im}	, ФЭ	U_{\Im} "	<i>I</i> "	Фэ	
мА	В	мА	В	град	мА	В	град	В	мА	град	

Построить ВАХ и ФАХ лампы и катушки $U_{\Lambda}(I_{\Lambda})$, $U_{K}(I_{K})$, 2. $\phi_{\rm K}(I_{\rm K})$ в общих осях *U* и *I*, ϕ и *I*.

Расчет последовательного соединения нелинейных элемен-3. тов. Следует задаться тремя значениями тока I_{\Im} согласно табл. 18.4 и по графикам п.2 $U_{\Pi}(I_{\Pi})$, $U_{K}(I_{K})$ определить U_{Π} , U_{K} , по графикам $\phi_{K}(I_{K})$ определить ϕ_{K} . Затем по формуле 18.1 подсчитать $U_{\ni}(I_{\ni})$, $\phi_{\ni}'(I_{\ni})$. Результаты внести в табл. 18.3. Построить расчётные и экспериментальные ВАХ $U_{2}(I_{2})$ и ФАХ $\phi_{2}(I_{2})$ последовательного соединения элементов в общих осях.

Таблица 18.3

Пос	ледоват	ельное	соедине	ение	Параллельное соединение					
· I _Э ́	$U_{{ m JI}}$	U _K '	Ū _Э ́	, φ _Э	U_{\Im}	I_{Π} "	I_{K}	I _Э "	φ _Э	
мА	В	В	В	град	В	мА	мА	мА	град	

Расчет параллельного соединения нелинейных элементов. 4. Следует задаться тремя значениями напряжения $U_{\mathfrak{I}}$ согласно табл. 18.4 и по графикам п.2 $U_{\Pi}(I_{\Pi}), U_{K}(I_{K})$ определить I_{Π}, I_{K} . Затем по по графику $\phi_{\rm K}(I_{\rm K})$ определить $\phi_{\rm K}$. По формуле 18.2 определить $\phi_{\Im}(I_{\Im})$ и $U_{\Im}(I_{\Im})$ Результаты также внести в табл. 18.2. Построить ВАХ U_Э"(I_Э") и ФАХ $\phi_{2}(I_{2})$ расчётные и экспериментальные в общих осях.

Построение по данным табл. 18.2 в общих осях ф и І фазо-5. амперных характеристик последовательного соединения $\phi_{\ni}(I_{\ni})$ и параллельного соединения $\phi_{2}(I_{2})$.

6. Построение векторных диаграмм. В отчете достаточно привести по одной диаграмме для последовательного и параллельного соединений согласно данным табл. 18.3.

Гаолица 18.

Вариант		1	2	3	4	5	6	7	8	9	10	
$I_{\mathfrak{Z}}$	мА	10	11	12	13	14	15	10	11	12	13	
		20	21	22	23	24	25	21	22	23	24	
		30	31	32	33	34	35	32	33	34	35	
$U_{\mathfrak{Z}}$	В	10	5	6	7	8	9	5	6	7	8	
		20	15	16	17	18	19	16	17	18	19	
		30	25	26	27	28	29	27	28	29	30	
,	7.	Сдела	ть вын	воды п	о рабо	те.						

Сделать выводы по работе.

РАБОТА 19

КАТУШКА С ФЕРРОМАГНИТНЫМ СЕРДЕЧНИКОМ В ЦЕПИ ИСТОЧНИКА ГАРМОНИЧЕСКОГО НАПРЯЖЕНИЯ

Цель работы. Экспериментальное подтверждение свойства безынерционного нелинейного элемента преобразовывать спектр частот воздействующего на него сигнала.

Пояснения к работе

В современных электромагнитных приборах и аппаратах для усиления магнитных потоков обмоток используются магнитопроводы из ферромагнитных материалов. Магнитная проницаемость таких материалов существенно зависит от напряженности магнитного поля H. Поэтому катушка с ферромагнитным сердечником представляет собой нелинейный элемент с веберамперной характеристикой (BбAX) ψ (i).

Если принять $\psi = BSw$ и wi = Hl, где B – магнитная индукция, S – сечение магнитопровода, w – число витков катушки, l – средняя длина магнитной линии, то окажется, что кривая $\psi(i)$ подобна зависимости B(H), называемой кривой намагничивания материала.

Эти кривые снимают экспериментально для конкретного материала и определенного вида магнитного поля. В частности для периодически изменяющегося магнитного поля снимают динамические кривые намагничивания – зависимости между мгновенными значениями *B* и *H* (или в другом масштабе ψ и *i*), которые образуют гистерезисные петли. Площадь гистерезисной петли пропорциональна сумме потерь энергии на перемагничивание ферромагнитного материала сердечника и потерь на вихревые токи. Для уменьшения этих потерь, выделяемых в виде тепла, сердечник набирается из отдельных, изолированных друг от друга листов электротехнической стали. Это магнитомягкий материал, у которого петля гистерезиса весьма узкая, поэтому зависимость $\psi(i)$ для катушки с таким сердечником приближенно можно считать однозначной и представить в виде симметричной относительно начала координат кривой, которая показана на рис. 19.1.

Катушка с ферромагнитным сердечником – безынерционный нелинейный элемент, поэтому ее реакция на синусоидальное воздействие оказывается несинусоидальной. Так, если катушку подключить к источнику гармонического напряжения $u(t) = U_m \cos(\omega t)$, то и потокосцепление будет гармоническим (рис. 19.1):

$$\Psi(\omega t) = \int u dt = \Psi_m \sin(\omega t),$$
где $\Psi_m = \frac{Um}{\omega} = \frac{\sqrt{2U}}{\omega}.$ (19.1)

Поскольку ВбАХ катушки симметрична относительно начала координат, то кривая $i(\omega t)$ – реакция катушки на синусоидальное воздействие $\psi(\omega t)$ – окажется симметричной относительно оси времени (рис. 19.1), а ее разложение в ряд Фурье будет содержать лишь нечетные гармоники. Если ограничиться учетом трех наибольших из них, то можно записать:

$$i(\omega t) = I_{1m}\sin(\omega t) - I_{3m}\sin(3\omega t) + I_{5m}\sin(5\omega t)$$

Амплитуды первой, третьей и пятой гармоник определяются по методу трех ординат, которые представляют собой значения тока в моменты времени $t_1 = \frac{T}{12}$, $t_2 = \frac{T}{6}$, $t_4 = \frac{T}{4}$. Если на осциллограмме $i(\omega t)$ измерить ординаты $i_1 = i\left(\frac{\pi}{6}\right)$, $i_2 = i\left(\frac{\pi}{3}\right)$, $i_3 = i\left(\frac{\pi}{2}\right)$, то нетрудно найти амплитуды трех учитываемых в разложении гармоник:

$$I_{1m} = \left(i_1 + i_3 + \sqrt{3}i_2\right)/3, \quad I_{3m} = \left(i_3 - 2i_1\right)/3, \quad I_{5m} = \left(i_1 + i_3 - \sqrt{3}i_2\right)/3.$$
TENCEPVICIES 3HAUGHURE TOKA
$$I = \sqrt{\left(I_1^2 + I_2^2 + I_2^2\right)/2}$$

Действующее значение тока $I = \sqrt{(I_{1m}^2 + I_{3m}^2 + I_{5m}^2)/2}$. Коэффициент гармоник $k_{\Gamma} = \sqrt{I_{3m}^2 + I_{5m}^2}/I_{1m}$ характеризует степень отличия кривой тока от синусоиды (уже при $k_{\Gamma} \leq 0,05$ ток можно считать гармоническим).

Puc. 19.1.
Схема электрической цепи

Для осциллографирования кривой тока $i(\omega t)$ достаточно открытие диалогового окна команды **Transient Analysis** по пути **Analysis < Transient** и рассчитать потенциал узла 8 на схеме рис. 19.2.

Puc. 19.2.

Питание осуществляется от синусоидального напряжения, величину которого устанавливается в соответствии с вариантом из табл. 19.1.

	1	A	1
Гарина		ч	
таолица		/	• 1

Bapi	иант	1	2	3	4	5	6	7	8	9	10
U	В	10	9	8	7	9,5	8,5	7,5	12,5	15	14

В качестве нелинейной индуктивности из блока вспомогательных компонентов **Favorites** (у левого края нижней строки меню) извлечь подсхему **L**, содержание которой изображено на рисунке 19.3.

Нелинейность веберамперной характеристики индуктивности объясняется нелинейной зависимостью индуктивности от Ψ – потокосцепления $L(\Psi) = \sqrt{\Psi}$, задаваемой в среде EWB с помощью нелинейного зависимого источника тока, управляемого напряжением.

При выключенной развёртке осциллографа на его экране можно наблюдать вольтамперную характеристику нелинейной индуктивности.

Амперметр переменного тока измеряет действующее значение тока в катушке. Амперметр магнитоэлектрической системы регистрирует постоянную составляющую тока.

Puc. 19.3.

Подготовка к работе

1. Какой зависимостью характеризуют катушку с ферромагнитным сердечником и какой вид имеет эта зависимость? В чем причина ее нелинейности?

2. Из какого материала должен быть изготовлен сердечник катушки, чтобы можно было пренебречь явлением гистерезиса?

3. Каков гармонический состав кривой тока в катушке при подключении ее к источнику синусоидального напряжения?

Программа работы

1. Собрать цепь по схеме рис. 19.2. Установить входное напряжение в соответствии с табл. 19.1 (вариант указывает преподаватель).

2. Нажать кнопку «Пуск». Показания приборов внести в табл. 19.2.

3. Зарисовать осциллограмму тока нелинейной индуктивности. Для этого удобнее использовать меню диалогового окна команды Transient Analysis (рис. 12.5.) по пути Analysis < Transient. Время начала расчёта TSTART установить так, чтобы переходный процесс уже закончился (1 с. и более), а время окончания TSTOP установить равным TSTART+период синусоидального источника. Если частота источника 50 Гц, то период равен 0,02 с.

4. Вычислить амплитуду потокосцепления Ψ_m по формуле (19.1) и построить на миллиметровке синусоиду $\psi(\omega t) = \Psi_m \sin(\omega t)$, выбрав

масштаб (рад/мм) безразмерного времени ωt таким же, как и на осциллограмме. Перенести на тот же лист миллиметровки и осциллограмму тока $i(\omega t)$.

Таблица 19.2

Измерения		Результаты расчета					
U	Ι	Ι	I_{1m}	I_{3m}	I_{5m}	Ι	k_{Γ}
В	А	А/мм	А	А	А	А	_

5. Построить согласно рис. 19.1 веберамперную характеристику $\psi(i)$ катушки, используя временные зависимости $i(\omega t)$ и $\psi(\omega t)$. Проградуировать оси тока, потокосцепления и безразмерного времени в А, мВб и рад соответственно.

6. Разложить кривую $i(\omega t)$ в ряд Фурье. Вычислить действующее значение тока I и сравнить его с показанием амперметра. Подсчитать также коэффициент гармоник. Результаты вычислений внести в табл. 19.2.

7. Сформулировать выводы по работе.

РАБОТА 20

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ВЕНТИЛЯМИ

Цель работы. Экспериментальное подтверждение способности нелинейных элементов выпрямлять переменный ток. Сравнительный анализ эффективности различных схем выпрямителей.

Пояснения к работе

Анализ нелинейных цепей при периодических воздействиях производится с учетом динамических характеристик нелинейных элементов. Если при этом ставится цель определить форму или гармонический состав реакции цепи, то используются характеристики нелинейных элементов для мгновенных значений.

При сравнительно невысоких частотах переменных токов и напряжений динамические характеристики безынерционных нелинейных элементов практически совпадают с их статическими характеристиками.

Для выпрямления переменного тока используют нелинейные безынерционные резисторы с резко выраженной несимметрией вольтамперной характеристики (BAX) относительно начала координат. Такие элементы, фактически проводящие ток в одном направлении, называются электрическими вентилями. К вентилям относятся полупроводниковые и вакуумные диоды, газотроны, тиристоры и др.

На рис. 20.1,а представлена ВАХ диода i(u) при воздействии на него гармонического напряжения $u(\omega t)$ промышленной частоты (эта зависимость показана на том же рисунке). Если перенести последовательно ряд точек с этой диаграммы при определенных значениях ωt на характеристику i(u) и найти по ней соответствующие значения реакции диода – тока i, то легко можно построить и зависимость $i(\omega t)$, которая показана на рис. 20.1,6. Реакция диода оказывается несинусоидальной, причем спектр ее содержит постоянную составляющую, основную (с угловой частотой ω) и высшие гармоники.

Легко заметить, что амплитуда положительной полуволны тока гораздо больше амплитуды отрицательной полуволны. Различие этих амплитуд тем больше, чем больше амплитуда напряжения источника. Зачастую различие настолько велико, что током отрицательной полуволны можно пренебречь. В этом случае характеристику реального диода можно заменить характеристикой идеального вентиля, которая показана пунктиром на рис. 20.1, а. Сопротивление такого вентиля положительной полуволне напряжения равно нулю, а для отрицательной полуволны бесконечно велико. Схематическое изображение идеального вентиля в EWB показано на рис. 20.1, в. В данной работе в качестве вентилей используются полупроводниковые диоды с характеристиками, близкими по свойствам к идеальным.

Puc. 20.1.

Устройства с электрическими вентилями, предназначенные для преобразования переменного напряжения в постоянное, именуются выпрямителями. О качестве выпрямления судят по величине коэффициента пульсации k_{Π} . Коэффициент пульсации определяется как отношение амплитуды одной из гармоник напряжения на выходе выпрямителя u_2 к его постоянной составляющей U_0 :

$$k_{\Pi} = \frac{U_{2m}}{U_0}.$$
 (20.1)

где U_{2m} – наибольшая амплитуда одной из гармоник напряжения $u_2(t)$ на выходе выпрямителя;

Чем меньше величина этого коэффициента, тем лучше качество выпрямления. Для улучшения качества выпрямления используются различные схемы сглаживающих фильтров. Простейший из них – конденсатор, подключаемый параллельно нагрузке. Постоянная составляющая тока через конденсатор не течет, а замыкается по сопротивлению нагрузки *R*. Переменная составляющая распределяется между нагрузкой и конденсатором таким образом, что в нагрузку попадает тем меньшая часть гармонической составляющей тока *k*-ого порядка, чем меньше емкостное сопротивление $X_{Ck} = (k \omega C)^{-1}$ току этой гармоники.

Фактически в цепи происходит повторяющийся переходный процесс. Когда абсолютное значение напряжения на входе выпрямителя достигает напряжения на емкости, одна пара диодов открывается и конденсатор подзаряжается до величины U_m . Затем эта пара диодов запирается и конденсатор начинает разряжаться через нагрузку. Когда в следующем полупериоде абсолютное значение напряжения на входе выпрямителя вновь достигнет напряжения на емкости, откроется вторая пара диодов и конденсатор опять будет заряжаться до величины U_m . Затем и эти диоды запираются, конденсатор снова разряжается через нагрузку и т. д. Чем больше значение постоянной времени RC, тем медленнее спадает напряжение на конденсаторе, тем меньше его пульсации. Однако при этом велики импульсы тока в диодах.

Поэтому емкостный фильтр используется в выпрямителях с малыми токами нагрузки, когда импульсы токов в диодах не достигают опасных значений. Включение сглаживающего емкостного фильтра на выходе выпрямителя снижает коэффициент пульсации $k_{\Pi C}$ и улучшает качество выпрямления:

$$k_{\Pi C} \approx \frac{k_{\Pi}}{\sqrt{1 + (k \omega R C)^2}},$$
(20.2)

где k_{Π} – коэффициент пульсации при отсутствии фильтра (*C*=0);

 ω — угловая частота входного синусоидального напряжения выпрямителя $u_1(t)$;

k – номер наименьшей гармоники напряжения $u_2(t)$ на сопротивлении R нагрузки при отсутствии фильтра (C=0).

Схемы электрических цепей

Схемы электрических цепей, сравнительное исследование которых проводится в работе, показаны на рис. $20.2 \div 20.5$. Питание осуществляется от трехфазного генератора, причем на вход первых двух схем подается его фазное напряжение. Действующее значение этого напряжения контролируется в схемах $20.2 \div 20.4$ вольтметром переменного напряжения V₁. В последней же схеме этот вольтметр измеряет линейное напряжение.

На выходе каждого из выпрямителей включена нагрузка с сопротивлением R = 10 кОм. Вольтметры постоянного напряжения V₀ и переменного напряжения V₂ измеряют соответственно постоянную составляющую U₀ и действующее значение U_2^{\sim} выходного напряжения $u_2(\omega t)$.

1. Однополупериодный выпрямитель (рис. 20.2).

Рис. 20.2, а

В течение положительного полупериода входного напряжения $u_1(\omega t)$ диод открыт и по нему протекает ток прямого направления. В отрицательный полупериод диод закрыт – ток отсутствует. Таким образом, в нагрузке течет пульсирующий ток – переменный по величине, но имеющий постоянное направление.

Осциллограмма напряжения на нагрузке повторяет форму кривой тока и ее разложение в ряд Фурье имеет вид:

$$u_{2}(\omega t) = \frac{U_{m}}{\pi} \left[1 + \frac{\pi}{2} \sin(\omega t) - 2\left(\frac{1}{1 \cdot 3} \cos(2\omega t) + \frac{1}{3 \cdot 5} \cos(4\omega t) + \dots\right) \right].$$

Очевидно, что угловая частота основной (первой) гармоники выходного напряжения $u_2(t)$ равна угловой частоте входного напряжения $u_1(t)$, т.е. $\omega=314$ (рад/с). Одинаковы и амплитуды U_m этих напряжений. Поэтому при отсутствии емкостного фильтра (*C*=0) имеем

$$U_0 = \frac{U_m}{\pi} = 0,45U_1; \quad U_2 = 0,5U_m = \frac{U_1}{\sqrt{2}}; \quad k = 1; \quad k_{\Pi} = 1,57, \quad (20.3)$$

причем наибольшее значение выходного напряжения $U_{\text{max}} = U_m$, а наименьшее $U_{\text{min}} = 0$.

2. Двухполупериодный выпрямитель (рис. 20.3, a).

В положительный полупериод входного напряжения открыты диоды D_1 и D_2 , а диоды D_3 и D_4 заперты. В отрицательный же полупериод, наоборот, открыты диоды D_3 и D_4 , а диоды D_1 и D_2 заперты. В результате ток в нагрузке имеет одно и то же направление в оба полупериода (рис 20.3, б). Разложение в ряд Фурье выходного напряжения имеет вид:

$$u_{2}(\omega t) = \frac{2 \cdot U_{m}}{\pi} \left[1 - 2 \left(\frac{1}{1 \cdot 3} \cos(2\omega t) + \frac{1}{3 \cdot 5} \cos(4\omega t) + \dots \right) \right].$$

Рис. 20.3, а

Очевидно, что угловая частота основной гармоники выходного напряжения $u_2(t)$ равна удвоенной угловой частоте входного напряжения $u_1(t)$, т.е. $2\omega = 628$ (рад/с). Одинаковы амплитуды U_m напряжений $u_1(t)$ и $u_2(t)$. Поэтому при отсутствии емкостного фильтра (C=0) имеем

$$U_0 = \frac{2U_m}{\pi} = 0.9U_1; \quad U_2 = \frac{U_m}{\sqrt{2}} = U_1; \quad k = 2; \quad k_{\Pi} = 0.68, \quad (20.4)$$

причем наибольшее значение выходного напряжения $U_{\max} = U_m$, а наименьшее $U_{\min} = 0$.

4. *Трехфазный выпрямитель с нагрузкой в нулевом проводе* (рис. 20.4, а).

С увеличением числа фаз в схеме выпрямления форма кривой тока заметно сглаживается. Диоды работают поочередно: открывается диод включенный в фазу, напряжение на которой в данный момент времени имеет положительную полярность и оказывается больше напряжения на другой фазе, имеющего ту же полярность. Если, например,

$$\underline{U}_A = U_m / \sqrt{2} = a \underline{U}_B = a^2 \underline{U}_C, \qquad (20.4)$$

то в интервале от t = 0 до t = T/12 открыт диод в фазе *C*, поскольку в это время $u_C > u_A > 0 > u_B$. В течение следующей трети периода открыт диод в фазе *A*, потом столько же в фазе *B*, снова в фазе *C* (рис. 20.4, б) и т. д. Ток через нагрузку в любой момент течет в одном и том же направлении.

При отсутствии емкостного фильтра (*C*=0) разложение в ряд Фурье выходного напряжения имеет вид:

$$u_{2}(t) = \frac{3\sqrt{3} \cdot U_{m}}{\pi} \left[\frac{1}{2} + \frac{1}{2 \cdot 4} \cos(3\omega t) - \frac{1}{5 \cdot 7} \cos(6\omega t) + \dots \right].$$

Puc. 20.4, a

Очевидно, что угловая частота основной гармоники выходного напряжения $u_2(t)$ равна утроенной угловой частоте входного фазного напряжения, например, $u_C(t)$, т.е. $3\omega = 942$ (рад/с). Одинаковы амплитуды U_m напряжений $u_C(t)$ и $u_2(t)$. Поэтому при отсутствии емкостного фильтра (*C*=0) имеем

$$U_0 = \frac{3\sqrt{3}U_m}{2\pi} = 1,17U_1; \quad U_2 = 1,189U_1; \quad k = 3; \quad k_{\Pi} = 0,26, \quad (20.5)$$

причем наибольшее значение выходного напряжения $U_{\text{max}} = U_m$, а наименьшее $U_{\text{min}} = 0, 5 \cdot U_m$.

5. *Трехфазная мостовая выпрямительная схема Ларионова* (рис. 20.5, а).

Эта схема обеспечивает еще большее сглаживание выходного напряжения и не требует наличия нулевого провода. Поочередно открываются пары диодов. Открыта пара, включенная между фаз, разность потенциалов которых имеет в данный момент положительную полярность и превышает напряжение между двумя другими фазами. При том же условии для фазных напряжений, что и в предыдущей схеме, на интервале от t = 0 до t = T/12 этому правилу удовлетворяет линейное напряжение u_{CB} , в следующую шестую часть периода – напряжение u_{AB} , затем u_{AC} , u_{BC} , u_{BA} , u_{CA} , снова u_{CB} и т. д. Ток в нагрузке в любой момент времени течет в одном направлении.

При отсутствии емкостного фильтра (*C*=0) разложение в ряд Фурье выходного напряжения имеет вид:

$$u_2(t) = \frac{6 \cdot U_{m\pi}}{\pi} \left[\frac{1}{2} + \frac{1}{5 \cdot 7} \cos(6\omega t) - \frac{1}{11 \cdot 13} \cos(12\omega t) + \dots \right].$$

Очевидно, что угловая частота основной гармоники выходного напряжения $u_2(t)$ равна $6\omega=1884$ (рад/с). Одинаковы амплитуды $U_{m\Pi} = \sqrt{3}U_m$ напряжений $u_{CA}(t)$ и $u_2(t)$. Поэтому при отсутствии емкостного фильтра (*C*=0) имеем

$$U_0 = \frac{3\sqrt{3}U_m}{\pi} = 1,35U_1; \quad U_2 = 1,3516U_1; \quad k = 6; \quad k_{\Pi} = 0,069 \ (20.6)$$

причем наибольшее значение выходного напряжения $U_{\text{max}} = \sqrt{3} \cdot U_m$, наименьшее $U_{\min} = 1, 5 \cdot U_m$.

Подготовка к работе

Изучив теоретический материал, ответить на следующие вопросы.

1. В чем принципиальное отличие динамических характеристик от статических?

2. Какой вид должна иметь ВАХ нелинейного элемента, чтобы его можно было использовать для выпрямления переменного тока?

3. Нарисуйте форму кривой тока в нагрузке цепи с идеальным диодом при синусоидальном входном напряжении.

4. Что оценивает коэффициент пульсации? Как его подсчитать по показаниям приборов в каждой из выпрямительных схем? Используя приведенные выше разложения в ряд Фурье, рассчитать теоретическое значение k_{Π} для схем одно- и двухполупериодного выпрямления.

Программа работы

1. Выбрать модуль входного напряжения $u_1(t)$ для всех схем выпрямителей в соответствии таблицей 19.1.

2. Собрать электрическую цепь по схеме рис. 20.2., срисовать осциллограмму, а показания приборов записать в таблицу 20.1.

3. Собрать электрическую цепь по схеме рис. 20.3. При разомкнутом положении ключа записать показания приборов и снять осциллограмму выходного напряжения выпрямителя. Для регистрации кривых $u_1(t)$ и $u_2(t)$ достаточно открытие диалогового окна команды Transient Analysis (рис.12.5) по пути Analysis < Transient. И рассчитать потенциалы узлов 1 и 2. Время начала расчёта TSTART установить так, чтобы переходный процесс уже закончился (1 с. и более), а время окончания TSTOP установить равным TSTART+период синусоидального источника, если частота источника 50 Гц, то период равен 0,02 с.

4. При замкнутом ключе исследовать влияние величины емкости *С* фильтра на качество выпрямления. Для этого записать показания приборов и снять осциллограмму выходного напряжения выпрямителя при трех значениях емкости. Показания приборов записывать в табл. 20.1.

5. Изменяя сопротивление нагрузки при отсутствии ёмкостного фильтра (ключ разомкнут) и при С=100 мкФ, снять 8-10 показаний приборов, результаты измерений записать в табл. 20.1.

6. Построить графики внешних характеристик $U_0(I_0)$ поданным таблицы 20.2.

Таблица 20.1

		Э	ксперим	ент	Расчет
Выпря	митель	U_1	U_0	U_2	k_{Π}
		В	В	В	-
Однополуг	периодный				
	без фильтра				
Двух-	$C = 1 \text{ MK}\Phi$				
полупериодный	C = 10 мкФ				
	C = 100 мкФ				
Трехфазный с ну	левым проводом				
Схема Ла	арионова				

Таблица 20.2

	<i>U</i> =В, <i>R</i> =Ом, <i>C</i> =0											
U_0, \mathbf{B}												
<i>I</i> ₀ :, A												
<i>U</i> =В, <i>R</i> =Ом, <i>C</i> =100мкФ												
U_0, \mathbf{B}												
<i>I</i> ₀ , A												

7. Собрать электрическую цепь по схеме рис. 20.4, записать показания приборов в табл. 20.1 и снять осциллограмму выходного напряжения выпрямителя.

8. Собрать электрическую цепь по схеме рис. 20.5, записать показания приборов в табл. 20.1 и снять осциллограмму выходного напряжения выпрямителя.

9. Измерить наибольшее U_{max} значения выходного напряжения $u_2(t)$ на осциллограммах, полученных при исследовании выпрямителей. Вычислить значения коэффициента пульсаций по формуле (20.1) для всех проведенных экспериментов.

10. Проанализировать полученные результаты и сделать выводы по работе, ответив на вопросы: Как объяснить понижение напряжения на выходе выпрямителя при увеличении тока нагрузки? Почему ёмкостной фильтр изменяет форму кривой напряжения на приёмнике при изменении тока нагрузки? Как объяснить несовпадение внешних характеристик выпрямителя при работе без фильтра и при включенном фильтре?

РАБОТА 21

ИНТЕГРИРУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

Цель работы. Исследовать поведение интегрирующего ОУ в динамике. Построить амплитудно-частотной характеристики.

Пояснения к работе

Операционные усилители (ОУ) представляют собой широкополосные усилители напряжения постоянного тока, которые в определенном частотном диапазоне усиливают также и напряжения переменного тока. Это свойство ОУ используются в схемах фильтров, интегрирующих и дифференцирующих цепей и других устройствах.

Интегрирующий ОУ (интегратор) – это ОУ, на выходе которого напряжение пропорционально интегралу от входного напряжения. Интегратор является усилителем низкой частоты. Принципиальная схема интегратора напряжений показана на рис. 21.1.

Напряжения и токи этой схемы связаны уравнениями:

$$i = i_C, \ u_{\rm BX} = i \cdot R_{\rm BX}, \ u_{\rm BHX} = -u_C.$$

Поскольку

$$\begin{split} u_C = \frac{1}{C} \int i_C dt \ , \\ u_{\rm BMX} = -\frac{1}{R_{\rm BX} \cdot C} \int u_{\rm BX} dt \, . \end{split}$$

то

Коэффициент усиления:

$$k_u = \frac{1}{2 \cdot \pi \cdot f \cdot R_{\rm BX} \cdot C}, \qquad (21.1)$$

где f – частота входного напряжения.

Зависимость коэффициента усиления от частоты, т.е. $k_u(f)$, называют амплитудно-частотной характеристикой усилителя.

Схемы электрических цепей

а) Интегрирование прямоугольного входного сигнала

Схема электрической цепи для интегрирующего ОУ показана на рис. 21.3. Выбор ОУ осуществляем согласно рис. 21.2.

Puc. 21.2.

Приборы устанавливаются на измерение переменных величин напряжений. В табл. 21.1 приведены десять вариантов значений сопротивлений и емкостей. Вариант указывает преподаватель.

Таблица	21	.1
таолица		

Вариант	1	2	3	4	5	6	7	8	9	10
<i>R</i> _{BX} , кОм	1,7	1,3	1	0,85	0,8	0,65	0,55	0,5	0,45	0,42
С, мкФ	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6

Puc. 21.3

б) Интегрирование гармонического входного сигнала с шумом

Схема электрической цепи для интегратора, на вход которого подается гармонический сигнал с шумом, изображена на рис. 21.4.

Puc. 21.4

Приборы устанавливаются на измерение переменных величин напряжений. В табл. 21.2 приведены параметры схемы, используемые в разных вариантах.

	Таблица 21.2												
Вариант	1	2	3	4	5	6	7	8	9	10			
U_1, B	5	6	7	5	6	7	5	6	7	5			
U_2, B	1	1	1	0,5	0,5	0,5	1	1	0,5	0,5			
<i>f</i> ₁ , Гц	50	50	50	50	50	50	60	60	60	60			
f ₂ , кГц	1	1,1	1,2	1,3	1	1,1	1,2	1,3	1	1,1			

Подготовка к работе

Изучив теоретический материал, ответить на следующие вопросы.

- 1. Что представляет собой интегрирующий ОУ?
- 2. Фильтром каких частот является интегрирующий ОУ?

3. Что такое амплитудно-частотная характеристика усилителя?

4. Как и почему изменяется коэффициент усиления интегрирующего ОУ при изменении частоты?

Программа работы

1. Собрать электрическую цепь интегрирующего ОУ по схеме рис. 21.3, используя данные для сопротивления $R_{\rm BX}$ и емкости *C* согласно варианту из табл. 21.1.

2. Исследуемую цепь подключить к источнику прямоугольного напряжения. Вольтметры переключить на измерение переменного напряжения. Установить частоту $f = 0,5 \ \kappa \Gamma \mu$ и с помощью первого вольтметра установить значение напряжение $U_1 = 5 \ B$.

3. К первому каналу осциллографа подключить входное напряжение. Второй канал осциллографа подключить на выход ОУ и отрегулировать его так, чтобы на экране было изображение не менее одного периода напряжения. Записать масштабы времени m_t и напряжения m_{u1} и m_{u2} . Скопировать осциллограмму входного и выходного напряжений (рис. 21.4).

Puc. 21.4.

4. Для получения амплитудно-частотной характеристики ОУ необходимо зафиксировать значения выходного напряжения с помощью второго вольтметра при плавном изменении частоты входного напряжения. Результаты внести в табл. 21.2.

5. По результатам измерений п.4 вычислить коэффициент усиления интегрирующего ОУ по формуле (21.1). Построить амплитудночастотную характеристику ОУ $k_{\mu}(f)$.

Таблица	21.2	2
---------	------	---

	<i>U</i> ₁ =5 B	
<i>f</i> ,кГц	Интегрирующий ОУ: <i>R</i> _{В2}	$_{\rm X} = к Oм, C = мк \Phi$
	U_2, B	k _u
0,5		
0,75		
1		
1,25		
1,5		
1,75		
2		

6. Подключить исследуемую цепь к гармоническому сигналу с шумом (рис. 21.4), используя данные из табл. 21.2 согласно принятому варианту. Сопротивление $R_{\rm BX}$ =700 Ом, *C*=4.7 мкФ.

7. Отрегулировать осциллограф так, чтобы на экране было изображение не менее одного периода напряжения. Записать масштабы времени m_t и напряжения m_{u1} и m_{u2} . Скопировать осциллограмму входного и выходного напряжений (рис. 21.4). По осциллограмме выходного

напряжения определить его действующее значение $U_{\text{вых}} = \frac{|u_{\text{max}}|}{\sqrt{2}}$.

8. По результатам измерений п.7 вычислить коэффициент усиления интегрирующего ОУ по формуле (21.1). Результаты расчетов внести в табл. 21.3.

9. Повторить вычисления п.7 и п.8, увеличивая частоту f_1 с шагом 10 Гц (4-5 опыта).

Таблица 21.3

f_1			
$k_u(f_1)$			
$\frac{U_{\text{вых}}}{U_1}$			

10. С помощью программы *MathCad* построить графики входного и выходного напряжений как функции времени.

11. Проанализировать полученные результаты и сформулировать выводы по работе.

РАБОТА 22

ДИФФЕРЕНЦИРУЮЩИЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

Цель работы. Исследовать поведение дифференцирующего ОУ в динамике. Построить амплитудно-частотной характеристики.

Пояснения к работе

Операционные усилители (ОУ) представляют собой широкополосные усилители напряжения постоянного тока, которые в определенном частотном диапазоне усиливают также и напряжения переменного тока. Это свойство ОУ используются в схемах фильтров, интегрирующих и дифференцирующих цепей и других устройствах.

Дифференцирующий ОУ (дифференциатор) – это ОУ, напряжение, на выходе которого пропорционально производной входного напряжения. Дифференциатор является усилителем высокой частоты. Принципиальная схема дифференциатора напряжений показана на рис. 22.1.

Напряжения и токи этой схемы связаны уравнениями:

$$i = i_C$$
, $u_{\text{BX}} = u_C$, $u_{\text{Bbix}} = -i \cdot R$.

Поскольку

$$\begin{split} i_C &= C \frac{du_C}{dt} \ , \\ u_{\rm BMX} &= -R \cdot C \frac{du_{\rm BX}}{dt} \end{split}$$

то

Коэффициент усиления:

$$k_u = 2 \cdot \pi \cdot f \cdot R \cdot C \,. \tag{22.1}$$

Для устранения самовозбуждения усилителя последовательно с емкостью включают резистор.

Зависимость коэффициента усиления от частоты, т.е. $k_u(f)$, называют амплитудно-частотной характеристикой усилителя.

Схемы электрических цепей

а) Дифференцирование треугольного входного сигнала

Схема электрической цепи для дифференцирующего ОУ показана на рис. 22.2. Выбор ОУ осуществляем так же, как в предыдущей работе (см. рис. 21.2).

Приборы устанавливаются на измерение переменных величин напряжений. В табл. 22.1 приведены десять вариантов значений сопротивлений и емкостей (выбор по указанию преподавателя).

Таблица 22.1

Вариант	1	7	2	3	6	4	5	9	8	10
<i>R</i> ₁ , кОм	200	300	300	250	250	350	300	250	350	350
<i>R</i> , кОм	5	5.5	6	5	5.5	6	5	5.5	6	5
С, пФ	100	100	120	110	130	130	100	110	120	120

Puc. 22.2

б) Дифференцирование гармонического входного сигнала с шумом

Схема электрической цепи для дифференциатора, на вход которого подается гармонический сигнал с шумом, изображена на рис. 22.3.

Приборы устанавливаются на измерение переменных величин напряжений. В табл. 22.2 приведены параметры схемы для разных вариантов.

Рис. 22.3

	Таблица 22.2									a 22.2
Вариант	1	2	3	4	5	6	7	8	9	10
U_1, B	5	6	7	8	9	5	6	7	8	9
U_2, B	0,5	1	0,5	1	0,5	1	0,5	1	0,5	1
<i>f</i> ₁ , Гц	50	50	50	50	50	60	60	60	60	60
f ₂ , кГц	2	2,5	3	3,5	4	2	2,5	3	3,5	4

Подготовка к работе

Изучив теоретический материал, ответить на следующие вопросы.

- 1. Что представляет собой дифференцирующий ОУ?
- 2. Фильтром каких частот является дифференцирующий ОУ?
- 3. Что такое амплитудно-частотная характеристика усилителя?

4. Как и почему изменятся коэффициент усиления дифференцирующего ОУ при изменении частоты?

Программа работы

1. Собрать электрическую цепь дифференцирующего ОУ по схеме рис. 22.3, используя данные для сопротивления *R* и емкости *C* согласно варианту из табл. 22.1.

2. Исследуемую цепь подключить к **треугольному источнику** напряжения. Вольтметры переключить на измерение переменного напряжения. Установить частоту f = 0,5 кГц и с помощью первого воль-

тметра установить значение напряжение $U_{V1} = \frac{|u_{\text{BX}}|}{\sqrt{3}} = 2.885 \text{ B}.$

3. К первому каналу осциллографа подключить входное напряжение. Второй канал осциллографа подключить на выход ОУ и отрегулировать его так, чтобы на экране было изображение не менее одного периода напряжения. Записать масштабы времени m_t и напряжения m_{u1} и m_{u2} . Скопировать осциллограмму входного и выходного напряжений (пример на рис. 22.3).

Puc. 22.3.

4. Для получения амплитудно-частотной характеристики ОУ необходимо изменяя плавно частоту входного напряжения зафиксировать значения выходного напряжения с помощью второго вольтметра $U_2 = U_{V2}$ при плавном изменении частоты входного напряжения. Результаты внести в табл. 22.2.

5. По результатам измерений п.4 вычислить коэффициент усиления интегрирующего ОУ по формуле (22.1). Построить амплитудночастотную характеристику ОУ $k_{\mu}(f)$.

Таблица 22.2

Таблица 223

<i>U</i> ₁ =2,885 B								
<i>f</i> , кГц	Дифференцирующий ОУ:	$R = $ кОм, $C = $ мк Φ						
	U_2,B	k _u						
0,5								
0,75								
1								
1,25								
1,5								
1,75								
2								

6. Подключить исследуемую цепь к гармоническому сигналу с шумом (рис. 22.3), используя данные согласно варианту из табл. 22.2 согласно принятому варианту. Сопротивление *R*=6 кОм, *C*=20 нФ.

7. Отрегулировать осциллограф так, чтобы на экране было изображение не менее одного периода напряжения. Записать масштабы времени m_t и напряжения m_{u1} и m_{u2} . Скопировать осциллограмму входного и выходного напряжений (рис. 22.3). По осциллограмме выходного

напряжения определить его действующее значение $U_{\hat{a}\hat{u}\,\tilde{o}} = \frac{|u_{\max}|}{\sqrt{2}}$.

8. По результатам измерений п.7 вычислить коэффициент усиления интегрирующего ОУ по формуле (22.1). Результаты вычислений внести в табл. 22.3.

9. Повторить вычисления п.7 и п.8, увеличивая частоту f_1 с шагом 10 Гц (4-5 опыта).

			= -	
f_2				
$k_u(f_2)$				
<u>$U_{\text{вых}}$</u>				
U_2				

10. С помощью программы *MathCad* построить графики входного и выходного напряжений.

11. Проанализировать полученные результаты и сформулировать выводы по работе.

РАБОТА 23

ИССЛЕДОВАНИЕ ЦЕПИ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Цель работы. Изучение и исследование установившихся синусоидальных режимов работы однородных двухпроводных линий без потерь, являющихся частным случаем линий без искажения.

Пояснения к работе

Однородная двухпроводная линия является распространенным примером цепи с распределенными параметрами. Напряжения и ток в линии являются функциями двух независимых переменных: пространственной координаты *x*, определяющей место наблюдения, и времени *t*, определяющего момент наблюдения. Элементарный участок линии с равномерно распределенными параметрами показан на рис. 23.1.

Puc. 23.1

Здесь обозначены первичные параметры однородной линии на единицу длины:

 R_0 – активное сопротивление, Ом;

 L_0 – индуктивность, Гн;

 C_0 – емкость, Φ ;

 G_0- проводимость изоляции между проводами, См.

К вторичным параметрам линии относятся:

 \underline{Z}_{B} – волновое сопротивление, Ом;

 β – коэффициент фазы, рад/км;

α – коэффициент затухания, Нп/км;

 $\gamma = \alpha + j\beta$ – постоянная распространения, (1/км);

λ – длина электромагнитной волны, км;

v – скорость распространения электромагнитной волны.

Линией без искажения является линия, у которой форма сигнала в начале и конце линии одинакова. Это условие выполняется, если коэффициент затухания линии и соответственно фазовая скорость на всех частотах одинаковы. Для неискаженной передачи сигналов требуется, чтобы коэффициент затухания α не зависел от частоты, а коэффициент фазы β был прямо пропорционален частоте.

Линиями без потерь называют линии, у которых $R_0 \ll \omega L_0$ и $G_0 \ll G_0 \ll \omega C_0$ Электромагнитные волны вдоль таких линий распространяются без затухания.

Если в начале однородной линии без потерь подключен источник синусоидального напряжения с угловой частотой ω , а в конце – приемник с комплексным сопротивлением <u>Z</u>₂, то напряжение и ток на расстоянии *x* от конца линии могут быть найдены по формулам:

$$\dot{U}(x) = \dot{U}_2 \cos\beta x + j\dot{I}_2 Z_B \sin\beta x,$$

$$\dot{I}(x) = j \frac{\dot{U}_2}{Z_B} \sin\beta x + \dot{I}_2 \cos\beta x.$$
 (23.1)

Здесь \dot{I}_2 и $\dot{U}_2 = \dot{I}_2 \underline{Z}_2$ – комплексы тока и напряжения в конце линии.

Коэффициент фазы определяется по формуле:

$$\beta = \omega \sqrt{L_0 C_0} . \tag{23.2}$$

Волновое сопротивление линии без потерь является действительным числом и определяется по формуле:

$$\underline{Z}_B = \sqrt{\frac{L_0}{C_0}} = Z_B.$$
(23.3)

Длина электромагнитной волны будет равна:

$$\lambda = \frac{2\pi}{\beta}.\tag{23.4}$$

Скорость распространения электромагнитной волны определяется как:

$$v = \frac{\omega}{\beta} = \frac{1}{\sqrt{L_0 C_0}}.$$
(23.5)

Время, за которое падающая волна достигнет конца линии, рассчитывается по формуле:

$$t_{3a\Pi} = \frac{l}{v} \tag{23.6}$$

Если в линии без потерь сопротивление нагрузки отличается от волнового, то в месте присоединения нагрузки возникают отражения.

В линии без потерь напряжение и ток могут быть представлены соответственно как сумма и как разность двух волн, движущихся с одинаковой скоростью (формула (23.5)) в противоположных направлениях без изменения их формы. При этом в любой точке линии отношение напряжения и тока для прямой и обратной волны равно волновому сопротивлению.

В предельном случае, когда линия на конце разомкнута ($Z_{\rm H}=\infty$), ток в конце линии равен нулю. Напряжение на разомкнутом конце линии удваивается, и возникает отраженная волна с напряжением того же знака, что и падающая. Когда отраженная волна достигает начала линии, она опять отражается с коэффициентом отражения равным -1 (т.к. сопротивление источника ЭДС ничтожно мало). Через время, равное времени $3t_{3ad}$, отраженная волна достигает конца линии, в результате чего суммарное напряжение в конце линии будет равно нулю.

В случае замыкания накоротко конца линии ($\underline{Z}_{\rm H}$ =0) напряжение в конце линии равен нулю, а ток в конце линии удваивается. При этом возникает отраженная волна, знак тока которой противоположен знаку падающей волны.

В тех режимах работы линии, когда отсутствует передача энергии от источника к приемнику, в результате наложения двух бегущих в противоположные стороны волн одинаковой амплитуды образуются стоячие волны. Расстояние между соседними пучностями тока (напряжения) составляют половину длины волны, а пучности тока сдвинуты относительно пучностей напряжения на $\frac{\lambda}{4}$ (иными словами, совпадают с узлами напряжения и наоборот).

В частности, в режиме короткого замыкания $U_2=0$ и ток $\dot{I}(x) = \dot{I}_{2\kappa} \cos\beta x$, т.е. в конце линии существует пучность тока и узел напряжения. В режиме холостого хода, наоборот, в конце линии существует узел тока $(I_2=0)$ и пучность напряжения; при этом $\dot{I}(x) = j \frac{\dot{U}_{2x}}{Z_B} \sin\beta x = j\dot{I}' \sin\beta x$, где I' – действующее значение тока на расстоянии $\lambda/4$ от конца линии. При чисто реактивной нагрузке с сопротивлением $0 < |x_2| < \infty$ пучности тока и напряжения смещаются от конца линии, причем смещение определяется отношением x_2/Z_P .

Если нагрузка на конце линии имеет активную составляющую, то узловые точки на линии отсутствуют, однако результирующие напряжения и токи по-прежнему распределяются волнообразно вдоль всей линии, образуя бегущие волны.

Т.к. волновое сопротивление является чисто активным, то при согласованной нагрузке ($Z_H = Z_B$) изменяются только фазы тока и напряжения вдоль линии, а амплитуды остаются неизменными.

Схема электрической цепи

Соберите исследуемую схему линии без потерь (рис. 23.3), выбрав необходимый блок длинной линии согласно варианту (рис. 23.2).

Puc. 23.2

Частоту источника ЭДС установить равной $f=10^6$ Гц. На вход подается напряжение синусоидальной формы U₁=220 В. Рассчитать вторичный параметр $Z_{\rm B}$ по уравнению (23.3), приняв значение первичных параметров согласно таблице 23.1.

Таблица 23.1

Вариант	1	2	3	4	5	6	7	8	9	10
<i>l</i> , м	1000	1000	1000	1000	1000	500	500	500	500	500
L_0 , мкГн	1	2	0,5	0,25	4	1	0,25	0,5	2	0,125
С ₀ , нФ	1	0,5	2	4	0,25	0,25	1	0,5	0,125	2

Подготовка к работе

Проработав соответствующий теоретический материал, ответить на вопросы:

1. Какие параметры линии с распределенными параметрами являются первичными, а какие – вторичными?

2. Что представляет собой линия без искажений? Что представляет собой линия без потерь?

3. Зависит ли волновое сопротивление линии от ее длины?

4. В каком случае в линии возникают отражения?

5. Записать уравнения линии без потерь для режимов холостого хода, короткого замыкания, и согласованной нагрузки.

6. Пояснить физический смысл коэффициентов распространения, затухания и фазы ($\gamma = \alpha + j\beta$).

7. Как подсчитывается волновое сопротивление линии без потерь? Почему оно называется волновым?

8. В каких случаях в линии без потерь наблюдаются стоячие волны? И какой вид для этих случаев имеют графики распределения действующих значений токов вдоль линии? Изобразите.

9. Какие волны существуют в режиме согласованной нагрузки? Какой вид для этого случая имеет график распределения действующих значений тока вдоль линии без потерь?

Программа работы

1. Открыть файл "Длинные линии". В появившемся окне выбрать "Use "

2. Переключатели [1] установить в исходное состояние согласно схеме рис. 23.3. Величину сопротивления нагрузки линии принять равной значению волнового сопротивления (23.3).

3. Определить по формуле (23.5) фазовую скорость (скорость распространения волны), а затем рассчитать время запаздывания сигнала t_{3an} по формуле (23.6).

4. Убедиться по осциллограммам входного и выходного напряжений линии при согласованной нагрузке, что фазовый сдвиг между входным и выходным напряжениями при длине линии, кратной длине волны, отсутствует. Для этого необходимо использовать меню диалогового окна команды **Transient Analysis** (рис. 12.5) по пути **Analysis < Transient**. Время начала расчёта **TSTART** установить равным нулю, а время окончания **TSTOP** рассчитать по формуле $3t_{3an}$.

5. По формуле (23.2) вычислить коэффициент фазы β , а затем по формуле (23.4) определить длину волны λ . Напряжение на выходе линии появиться с запозданием на некоторое время. Измерить это время и сравнить, его с расчетным значением. Для этого необходимо переместить первый визир курсором мыши, установив курсор на верхний треугольник визира и протянув его при нажатой левой кнопке мыши. Параметр x1 и будет соответствовать времени задержки (рис. 23.4).

6. Исследовать режим холостого хода. Снять осциллограмму напряжений вначале и в конце линии, установив параметр TSTOP равным $7t_{3an}$.

7. Исследовать режим бегущей волны. Для этого в схеме рис. 23.3 изменить блок **dl** на **dl_beg** под номером заданного варианта (рис.23.5). Значения первичных параметров соответствуют данным табл. 23.1. Длина линии l = 100 м. Снять осциллограмму входного и выходного напряжений. При этом установить параметр **TSTOP** равным $3t_{3an}$. Аналогично п.5 определить t_{3an} , соответствующее новой длине линии.

Puc. 23.5

8. Рассчитать коэффициент фазы по формуле (23.2) и сравнить его со значением β_{\Im} , полученным в результате моделирования (23.7). Для этого необходимо определить период T=1/f.

$$\beta_{\mathfrak{Z}} = \frac{t_{3a\mathfrak{Z}} \cdot 2\pi}{T \cdot l} \tag{23.7}$$

9. Сделать выводы по проделанной работе.

Список литературы

- 1. Теоретические основы электротехники : учебник для вузов / К. С. Демирчян, Л. Р. Нейман, Н. В. Коровкин. — 5-е изд. — СПб. : Питер, 2009.
- 2. Теоретические основы электротехники : учебное пособие / Р. Н. Сметанина, Г. В. Носов, Ю. Н. Исаев ; Томский политехнический университет (ТПУ), Институт дистанционного образования (ИДО). 3-е изд., испр. Томск : Изд-во ТПУ, 2009. 88 с.
- 3. Бессонов Л. А. Теоретические основы электротехники. Электрические цепи : учебник для вузов / Л. А. Бессонов. 11-е изд., испр. и доп. М. : Гардарики, 2007. 701 с.
- 4. Эськов В.Д. Носов Г.В., Исаев Ю.Н. Руководство к лабораторным работам по теоретическим основам электротехники. Часть 1.,Томск: Изд-во ТПУ, 2001. – 52 с.
- 5. Электротехника и электроника в экспериментах и упражнениях. Практикум на Electronics Workbench : учебное пособие для вузов : в 2 т. / под ред. Д. И. Панфилова. — М. : Додэка, 1999-2000.
- 6. Теоретические основы электротехники : учебное пособие / В. Д. Эськов, А. В. Каталевская, А. Г. Сипайлов ; Томский политехнический университет (ТПУ). Томск : Изд-во ТПУ, Ч. 1. 2009. 168 с.

Учебное издание

КУЛЕШОВА Елена Олеговна КОЛЧАНОВА Вероника Андреевна ЭСЬКОВ Владислав Дмитриевич ПУСТЫННИКОВ Сергей Владимирович

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ В ЭКСПЕРИМЕНТАХ И УПРАЖНЕНИЯХ. ПРАКТИКУМ В **СРЕДЕ ELECTRONICS WORKBENCH**

Учебное пособие

Издано в авторской редакции

Научный редактор кандидат технических наук, доцент В.Д. Эськов Редактор В.А. Колчанова Компьютерная верстка И.О. Фамилия Дизайн обложки И.О. Фамилия

Отпечатано в Издательстве ТПУ в полном соответствии с качеством предоставленного оригинал-макета

Формат 60х84/16. Бумага «Снегурочка». Подписано к печати Печать XEROX. Усл.печ.л. 8,45. Заказ . Тираж 50 экз.

Национальный исследовательский Томский политехнический университет Система менеджмента качества Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2008

ИЗДАТЕЛЬСТВОТТПУ. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56-35-35, www.tpu.ru