ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Е.О. Кулешова, В.А. Колчанова, В.Д. Эськов, С.В. Пустынников

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ В ЭКСПЕРИМЕНТАХ И УПРАЖНЕНИЯХ. ПРАКТИКУМ В СРЕДЕ ELECTRONICS WORKBENCH

Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета

Издательство Томского политехнического университета 2011 УДК 621.3.11(075.8) ББК 31.211я73 К 845

Кулешова .Е.О.

К 845

Теоретические основы электротехники в экспериментах и упражнениях. Практикум в среде Electronics Workbench: учебное пособие /Е.О. Кулешова, В.А. Колчанова, В.Д. Эськов, С.В. Пустынников; Национальный исследовательский Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2011. – 140 с.

В пособии приведены основные сведения о системе схемотехничекого моделирования Electronics Workbench. На примерах решения типовых задач по электротехнике показаны основные возможности программы. Сборник содержит описания лабораторных работ по установившимся режимам линейных электрических цепей с сосредоточенными параметрами, переходным процессам линейных электрических цепей и установившимся режимам нелинейных цепей с методическими указаниями по их выполнению с учетом специфики среды Electronics Workbench.

Предназначено для самостоятельной работы студентов Энергетического института Томского политехнического университета.

> УДК 621.3.11 (075.8) ББК 31.211я73

Рецензенты

Кандидат технических наук, доцент кафедры общей электротехники и автоматики ТГАСУ, *В.М. Педиков*

Доктор физико-математических наук, ведущий сотрудник Института оптики атмосферы СО РАН им. В.Е.Зуева, Ф.Ю. Канев

- © ГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2011
- © Кулешова Е.О., Колчанова В.А., Эськов В.Д., Пустынников С.В., 2011
- © Оформление. Издательство Томского политехнического университета, 2011

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 5
Система моделирования Electronics Workbench
Работа 1. Исследование линейной разветвленной цепи постоянного тока
Работа 2. Исследование активного двухполюсника 25
Работа 3. Конденсатор и катушка индуктивности в цепи синусоидального тока
Работа 4. Исследование цепей с индуктивно связанными элементами
Работа 5. Исследование воздушного трансформатора 40
Работа 6. Исследование резонанса напряжений 45
Работа 7. Исследование резонанса токов 48
Работа 8. Исследование пассивного четырехполюсника 52
Работа 9. Исследование трехфазной цепи, соединенной звездой
Работа 10. Исследование трехфазной цепи, соединенной треугольником
Работа 11. Электрические цепи с источником несинусоидального напряжения
Работа 12 Исследование переходных процеессов в цепя первого порядка
Работа 13 Изучение обобщенных законов коммутации 80

Работа 14 Апериодический переходный процесс в цепи второго порядка
Работа 15 Переходный процесс в цепи второго порядка
Работа 16 Исследование нелинейных цепей постоянного тока 92
Работа 17 Нелинейный резистивный элемент в цепи с источником гармонического напряжения
Работа 18 Исследование нелинейных цепей переменного тока 101
Работа 19 Катушка с ферромагнитным сердечником в цепи источника гармонического напряжения105
Работа 20 Электрические цепи с вентилями 110
Работа 21. Интегрирующий операционный усилитель 122
Работа 22. Дифференцирующий операционный усилитель 127
Работа 23. Исследование цепи с распределёнными перемерами 131
Список литературы 139

введение

Руководство предназначено для студентов всех направлений и специальностей Электроэнергетического института и Института дистанционного образования Томского политехнического университета учебные планы которых включают дисциплину «Теоретические основы электротехники» (ТОЭ). Оно может быть полезно студентам электротехнических специальностей Физико-технического института, Института инженерного предпринимательства, Института физики высоких технологий, Института природных ресурсов и Института кибернетики, изучающих курс «Электротехника», «Электротехника и электроника» или «Общая электротехника», а также студентам Института дистанционного образования, которые изучают вышеназванные курсы в условиях отсутствия экспериментальной лабораторной базы.

Данное учебное пособие посвящено исследованию установившихся режимов линейных электрических цепей с сосредоточенными параметрами, лабораторных работ по переходным процессам линейных электрических цепей и установившимся режимам нелинейных цепей, цепей с распределёнными параметрами. В нем содержатся методические указания по моделированию лабораторных работ в программной среде **Electronics Workbench** (далее **EWB**).

Параметры схем обычно выбираются в соответствии с номером шифра расчетно-графических работ для студентов дневного отделения или с номером шифра контрольных работ для студентов-заочников (последней цифре шифра соответствует номер столбца таблицы вариантов параметров). Если одной из целей работы является обучение студента экспериментальному определению параметров конкретных двухполюсников или четырехполюсников, то предусматривается включение в схему соответствующих блоков, которые могут быть вызваны по известному паролю из файла, указанного в программе работы.

Прежде, чем приступить к работе, студент должен изучить соответствующий теоретический материал по учебнику, рекомендованному преподавателем [1,2], а также раздел «Пояснения к работе», чтобы ответить на вопросы в разделе «Подготовка к работе». Разумеется, необходимо иметь определенные навыки работы в программной среде **EWB**. Для этого с помощью компьютера следует изучить ее особенности, например, по практикуму на Electronics Workbench под ред. П. И. Панфилова [4]. Некоторые из этих особенностей, наиболее часто встречающиеся при выполнении лабораторных работ, и рекомендации по сборке схем лабораторных работ по теоретическим основам электротехники описаны ниже. Программа Electronics Workbench, предназначенная для конструирования и моделирования работы электронных схем, получила у специалистов достаточно широкое распространение благодаря своим функциональным возможностям и удобному пользовательскому интерфейсу. Существует несколько версий этой программы, различающихся функциональными возможностями и платформами запуска (для DOS, Windows). В частности, версия 4.1/5.12 работает в ОС Windows и предъявляет следующие требования к аппаратному обеспечению: процессор не ниже 80386, математический сопроцессор, видеоадаптер VGA, память не менее 4 МБ, манипулятор мышь. Несмотря на имеющиеся различия, все версии программы Electronics Workbench имеют общие принципы организации работы.

Система моделирования Electronics Workbench

Система схемотехнического моделирования Electronics Workbench предназначена для моделирования и анализа электрических схем. После первого запуска основную часть экрана занимает рабочее поле, первоначально пустое.

В верхней части окна системы (рис. 1) видны пять характерных панелей, которые перечислены ниже:

- 1. строка заголовка строка с именем системы;
- командная строка строка с пунктами главного меню, открывающая доступ к подменю с различными командами (после щелчка мышью по любому пункту главного меню на экране появляется соответствующее падающее меню);
- стандартная панель инструментов панель с кнопками, обеспечивающими быстрое выполнение наиболее важных команд при работе с системой;
- 4. панель компонентов библиотеки элементов и приборов;
- 5. строка имени строка с именем файла.

Находящаяся в правом верхнем углу окна кнопка 6 (рис. 1) производит запуск моделирования (начала анализа), кнопка 7 – остановку моделирования.

Краткая инструкция по сборке схем.

Экспериментальное исследование электрических цепей с помощью программы **EWB** подобно исследованию их физических моделей на лабораторном столе. Роль последнего играет рабочее поле в окне программы **EWB**. Вычислительный эксперимент, как и реальный, проводится с обычной последовательностью операций: сборка схемы электрической цепи, установка параметров ее пассивных и активных элементов, подключение измерительных приборов и их настройка, запуск моделирования. Результаты измерений считываются с панелей приборов: амперметра, вольтметра, ваттметра, фазометра или в виде осциллограмм.

Рабочее окно программы **EWB** версий 5.0 и выше начинается с командной строки, содержащей разделы **File** (работа с файлами), **Edit** (редактирование схемы), **Circuit** (преобразование и оформление схемы), **Analysis** (параметры моделирования), **Window** (упорядочивание информации в окне программы), **Help** (сведения о программе, командах и компонентах). Средняя строка окна дублирует основные команды первой строки (на ее кнопках изображены вполне понятные символы - пиктограммы). Нижняя строка меню представляет собой библиотеку компонентов электрических цепей и содержит, в частности, разделы, широко используемые при сборке схем лабораторных работ по ТОЭ. Ниже они перечисляются слева направо.

1. Поле вспомогательных компонентов **Favorites** находится у левого края нижней строки и предназначено для хранения блоков (подсхем), являющихся частью общей схемы. В первую очередь это двухполюсники и четырехполюсники, параметры которых подлежат определению в данной лабораторной работе.

Для извлечения блока нужно открыть раздел (один щелчок левой кнопкой мыши, когда курсор находится на пиктограмме раздела). При этом выпадает меню подсхем **Subcircuit**. Затем следует установить курсор на изображение нужного блока, нажать левую кнопку мыши и, удерживая ее, вывести блок на рабочее поле. Точно также извлекаются и другие компоненты из соответствующих полей.

В нескольких работах используется блок wattmeter, который предназначен для измерения активной мощности в цепях синусоидаль-

ного тока. К выходным зажимам блока подключается вольтметр, показания которого в вольтах равны активной мощности цепи в ваттах. Для правильного измерения активной мощности этот вольтметр должен работать в режиме **DC**.

2. Поле источников сигналов **Sources** включает как идеальные источники постоянных и синусоидальных напряжений и токов, так и некоторые специальные источники. Сюда же помещен и компонент «заземление» (левая верхняя пиктограмма в выпадающем меню). За ней (по порядку слева направо) следуют пиктограммы независимых источников постоянных напряжения и тока, а затем источников синусоидальных напряжения и тока. В лабораторных работах по первой части курса ТОЭ используются источники напряжения (ЭДС).

3. Поле основных пассивных компонентов **Basic** содержит резисторы, конденсаторы, катушки индуктивности, трансформаторы и коммутационные устройства (например, ключ, управляемый одной из клавиш), а также соединяющий узел. Для определения их параметров нужно после установки элемента в рабочем поле двойным щелчком левой кнопки мыши открыть диалоговое окно **Component Properties**, в разделе **value** задать нужные параметры и нажатием клавиши **Enter** подтвердить их установку.

В схемах могут быть использованы элементы, параметры которых изменяются ступенчатым образом (например, реостат). Среди его характеристик указывается не только наибольшее значение сопротивления, но и величина однократного изменения в процентах от этого максимума, а также управляющая клавиша \mathbf{R} , нажатие на которую вызывает увеличение сопротивления. Для уменьшения сопротивления требуется одновременное нажатие клавиш Shift+R.

Операция поворота выбранного элемента на угол 90° выполняется по команде **Rotate** из меню **Circuit** или после нажатия клавиш **Ctrl+R**. Удалить элемент с рабочего поля можно по команде **Delete** из меню **Ed**-**it** или нажатием одноименной клавиши.

4. Поле Indicators (четвертое от правого края строки компонентов схем) наряду с другими индикаторами содержит цифровые амперметр и вольтметр. Для измерения постоянных токов и напряжений необходимо при настройке приборов в разделе value в строке mode задать режим DC, а для измерения действующих значений периодически изменяющихся величин – режим AC.

5. Поле контрольно-измерительных приборов (КИП) Instruments в числе других приборов содержит осциллограф (Oscilloscop) и анализатор частотных характеристик **Bode**, используемый в качестве фазометра. Последний уже настроен на измерение разности фаз сигналов, подаваемых на входы **In** (напряжение на зажимах двухполюсника) и **Out** (напряжение, пропорциональное его току) в пределах от -90° до $+90^{\circ}$. Правые зажимы обоих входов при этом соединяются с общей точкой **Ground**. Перед каждым измерением угла сдвига фаз необходимо, используя левую кнопку мыши, выключить (**O**) и включить (**I**) схему с помощью переключателя, находящегося в правом верхнем углу экрана (перезапуск моделирования режима). Чтобы можно было прочитать результат измерения, следует двойным щелчком левой кнопкой мыши вывести увеличенное изображение лицевой панели прибора в нижнюю часть экрана.

После размещения компонентов схемы на рабочем поле их нужно соединить между собой проводниками. Для этого необходимо подвести курсор к одному из выводов элемента. После появления на нем большой черной (или красной) точки нажать левую кнопку мыши и, удерживая ее, протянуть провод к клемме другого элемента. При отпускании кнопки провод устанавливается между элементами. Если количество проводников, подключенных к одному из выводов данного элемента больше двух, то следует извлечь из меню **Basic** соединяющий узел и установить его на уже существующий проводник. К такому узлу можно подключить еще два провода.

Запуск и отключение собранной схемы осуществляется кнопкой «Пуск» в режимах [I] и [O] соответственно.

Многие вопросы по использованию **EWB** можно решить при обращении к **Help**.

Технология подготовки схем и проведения анализа

Процесс создания схемы начинается с выбора элементов и приборов из библиотек программы (перетаскиванием мышью необходимых элементов на рабочий стол), расположение компонентов схемы в соответствии подготовленным эскизом. При размещении компонентов на рабочем поле можно воспользоваться динамическим меню, всплывающим после щелчка правой кнопкой мыши по компоненту,

с помощью которого можно копировать (Copy), удалять (Delete), вырезать (Gut), вставлять (Paste) элемент схемы. Можно также поворачивать его (Rotate), отображать по вертикали или по горизонтали (Flip Vertical, Flip Horizontal), а также изменять параметры (Component Properties).

После размещения элементов схемы в рабочем поле их выводы соединяются проводниками. Курсор мыши подводится к выводу компонента, и после появления жирной черной точки (узла) нажимается левая кнопка мыши и появляющийся при этом проводник протягивается к выводу другого компонента до появления на нем такой же жирной точки, после чего левая кнопка мыши отпускается и соединение готово. Подключение измерительных приборов выполняется аналогично подключению компонентов схемы. При этом можно использовать цветные проводники, которые выделяют подключенный прибор и окрашивают в соответствующий цвет выводимые графики. Для изменения цвета проводника нужно два раза щелкнуть левой кнопкой мыши на изображение и в открывшемся окне выбрать нужный цвет. Для начала анализа схемы системой необходимо активизировать схему нажатием кнопки 6 (рис. 1), для остановки анализа – кнопку 7. Чтобы сохранить рабочий лист (документ) под нужным названием, необходимо щелкнуть мышью по третьей кнопке в третьей строке сверху – пиктограмме с изображением дискеты. Появится диалоговое окно Save as (Сохранение). В текстовом поле File name (Имя файла) нужно дать имя файлу (документу). Система автоматически добавит расширение .ewb.

Список команд главного меню

File – загрузка и запись файлов.

New (Ctrl+N) – создать новый документ.

Open (Ctrl+O) – открыть документ.

Save (Ctrl+S) – сохранить документ.

Save As – сохранить документ с другим именем.

Revert to Saved – стирание всех изменений, внесенных в текущем сеансе редактирования, и восстановление схемы в первоначальном виде.

Import – импорт документов.

Export – экспорт документов.

Print (Ctrl+P) – выбор данных для печати Schematic (схемы); Description (описания к схеме); Part list (перечня выводимых на принтер документов); Model list (списка, имеющихся в схеме компонентов), Subcircuits (подсхем); Analysis options (перечня режима моделирования); Instruments (списка приборов).

Print Setup – настройка принтера.

Exit (Alt F4) – выход из программы.

Install – установка дополнительных программ с гибких дисков.

Export to PSB – составление списка соединений схемы в формате **OrCAD** и другие разработки печатных плат.

Import from SPICE – импорт текстовых файлов описания схемы и задания на моделирование схемы в формате **SPICE** (с расширением .cir) и автоматическое построение схемы по ее текстовому описанию.

Export to SPICE – составление текстового описания схемы и задания на моделирование в формате **SPICE**.

Edit – редактирование схем.

Cut (Ctrl+X) – стирание (вырезание) выделенной части схемы с сохранением ее в буфере обмена.

Сору (Ctrl+C) – копирование в буфер обмена.

Paste (Ctrl+V) – вставка содержимого буфера обмена на рабочее поле.

Delete (Delete) – стирание выделенной части.

Select All (Ctrl+A) – выделение всей схемы.

Сору as Bitmap – копирование выделенной части. Копирование всего экрана производится нажатием клавиши Print Screen. Копирование активной в данный момент части экрана, например, диалогового окна производится с помощью комбинации клавиш Alt+ Print Screen.

Show Clipboard – показ содержимого буфера обмена.

Circuit – подготовка схем.

Rotate (Ctrl+R) – вращение выделенной части.

Flip Horizontal – зеркальное изображение по горизонтали.

Flip Vertical – зеркальное изображение по вертикали.

Zoom In (Ctrl++) – увеличение выделенной части.

Zoom Out (Ctrl+-) – уменьшение выделенной части.

Create Subcicuit (Ctrl+B) – преобразование предварительно выделенной части схемы в подсхему, т.о. что выделенная часть схемы:

Copy from Circuit – копируется в библиотеку без внесения изменений в исходную схему.

Move from Circuit – вырезается из общей части схемы и копируется в библиотеку.

Replace in Circuit – заменяется в исходной схеме подсхемой с присвоенным ей именем с одновременным копированием её в библиотеку.

Schematic Options... – элементы оформления схемы.

Grid (Show Grid) показать сетку на схеме,(Use Grid) – убрать сетку.

Show /Hide – наличие обозначений на схеме

Show labels – показать позиционное обозначение компонентов, например, C1, C2 для конденсаторов.

Show models – показать имена моделей компонентов.

Show values – показать номиналы компонентов, например, сопротивления для резисторов – 100Ω , 200Ω .

Show nodes – показать нумерацию узлов.

Analysis – задание параметров моделирования.

Activate (Ctrl+G) – запуск моделирования.

Stop (Ctrl+T) - остановка моделирования.

Pause (F9) – прерывание моделирования.

Options (Ctrl+Y) – набор команд установки параметров.

Operating Point – расчет режима по постоянному току.

AC Frequency – расчет частотных характеристик.

Transient – расчет переходного режима.

Fourier – спектральный анализ Фурье.

Monte Carlo – статистический анализ.

Display Graph – вывод результатов анализа.

Window – окна.

Arrange (Ctrl+W) – упорядочение информации в рабочем окне.

Circuit – вывод схемы на передний экран.

Description (Ctrl+D) – вывод на передний экран описания схемы.

Help – меню настроено стандартным для Windows способом, содержит сведения по всем командам, компонентам и о самой программе.

Краткий обзор библиотечных компонентов программы EWB

Favorites – вспомогательные компоненты. Размещаются подсхемы, если они есть в данной схеме (в исходном состоянии раздел пуст).

Ŧ

Sources – источники сигналов (меню для выбора компонентов показано на рис. 2). Сюда же помещен компонент «заземление».

Рис. 2

Источники.

В общем случае источники могут быть представлены генераторами напряжения или генераторами тока.

Рис. 3. Источники: а – идеальный источник постоянного напряжения; б – идеальный источник постоянного тока; в – источник переменного напряжения; г – источник переменного тока Источники тока делятся на источники постоянного тока, переменного тока и управляемые (функциональные) источники. Кроме того, они подразделяются на измерительные источники и источники для электропитания. Примером измерительного источника является функциональный генератор.

Источники постоянного напряжения и тока. Величина ЭДС идеального источника постоянного напряжения или батареи (рис. 3,а) (Voltage) задается от мкВ(μ V) до кВ(kV) в диалоговом окне, вызываемое двумя щелчками левой кнопки мыши (рис. 4). Короткой чертой в изображении батареи обозначается вывод, имеющий отрицательный потенциал по отношению к другому выводу. Батареи в Electronics Workbench имеют внутреннее сопротивление, равное нулю.

Величина задающего тока идеального источника тока задается от мкА до кА. Стрелка указывает направление тока от + к – во внешней цепи.

	AC Voltage Source Properties	<u>? ×</u>
Battery Properties		
Label Value Fault Display Analysis Setup Voltage (V): 12 Voltage tolerance: Global % Voltage tolerance	Label Value Fault Display Analysis Setup Voltage (V): 120 V + Frequency: 60 Hz + Phase: 0 Deg Voltage tolerance: Global %	bal tolerance
ОК Отмена	OK	Отмена

Puc. 4

Рис. 5

Источники переменного напряжения и тока. Для генератора синусоидального напряжения (рис. 3, в) задаются частота (Frequency), действующее значение (Voltage) и начальная фаза (Phase) напряжения с помощью диалогового окна (рис. 5).

Значения тока, частоты и начальной фазы идеального генератора синусоидального тока устанавливаются так же, как для источника синусоидального напряжения.

Идеальный генератор импульсного напряжения является источником однополярных импульсов. Для них задаются амплитуда, частота следования и коэффициент заполнения (**Duty cycle** – отношение длительности импульса к периоду следования – величина, обратная скважности).

Clock Properties			? ×
Label Value	Fault Displa	ע	
Frequency (F): Duty cycle (D): Voltage (V):	1000 50 * 5	Hz *	
		OK	Отмена

Рис. 6

Установка этих параметров осуществляется с помощью диалогового окна, показанного на рис. 6. При указанном на рис. 6 значении коэффициента заполнения 50% длительность импульса равна половине периода. Периодическая импульсная последовательность называется *меандром*.

Управляемые источники программы EWB показаны на рис. 7. Источники напряжения управляемый током (ИНУТ) – рис. 7,а. В диалоговом окне этого источника задается единственный параметр – коэффициент передачи, равный отношению выходного напряжения к току управления; параметр имеет размерность сопротивления. Для источника тока управляемого напряжением (ИТУН рис. 7,б) этот параметр имеет размерность проводимости, поскольку коэффициент передачи равен отношению выходного тока к напряжению управления.

Источники на рис. 7,в,г представляют собой источники напряжения и тока, управляемые соответственно напряжением и током (ИНУН и ИТУТ). Коэффициент передачи этих устройств – величина безразмерная.

Пассивные компоненты

Basic – раздел, в котором собраны все пассивные компоненты, а также коммутационные устройства (рис. 8).

Puc. 8

Резисторы. Резисторы являются самыми массовыми изделиями электронной техники. В программе EWB они представлены тремя типами – постоянными, переменными и набором из восьми резисторов. Сопротивление переменного резистора может изменяться нажатием назначенной пользователем клавиши клавиатуры (по умолчанию – клавишей R), начиная от максимального значения до минимального значения с заданным шагом (от 1 до 100%). Все эти установки производятся с помощью диалогового окна, вызываемого аналогично предыдущим описанным компонентам нажатием правой кнопки мыши.

Конденсаторы. Конденсаторы представлены тремя типами. Первый тип охватывает практически все конденсаторы, второй – электролитические, третий – переменные. Значение емкости каждого конденсатора может быть установлено в пределах от 108 п $\Phi(pF)$ до 108 $\Phi(F)$. Емкость переменного конденсатора устанавливается с помощью клавиш – ключей так же, как и положение движка переменного резистора.

Индуктивные элементы. Параметры катушек с постоянной и переменной индуктивностью задаются с помощью диалоговых окон, аналогичных окнам для резисторов и конденсаторов.

Трансформаторы. В диалоговом окне установки параметров линейных трансформаторов задаются коэффициент трансформации N, индуктивность рассеяния LE, индуктивность первичной обмотки LM, сопротивление первичной RP и вторичной RS обмоток. При N>1 – трансформатор является понижающим, при N<1 – повышающим.

Коммутационные устройства (КУ) программы EWB представлены на рис. 8. Устройства на рис. 8,а – переключатель типа однополюсного тумблера, управляемого нажатием назначенной клавиши (по умолчанию клавиши Space – пробел). Имя клавиши устанавливается в диалоговом окне.

КУ на рис. 9,6 – реле времени (переключатель с программируемым временем переключения).

Puc. 9

Его параметры задаются с помощью диалогового окна на рис. 10. Параметр Тор – время включения разомкнутого в исходном состоянии контакта после начала моделирования; параметр Toff – время выключения (перевод контактов в исходное состояние), это время также отсчитывается от момента начала моделирования.

Time-Delay Switch Properties	? X Voltage-Controlled Switch Properties	? ×
Label Value Fault Display Time on (TON): 0.5 s * Time off (TOFF): 0 s *	Label Value Fault Display Turn-on voltage (VON): V V Turn-off voltage (VOFF): 0 V On-state resistance (RON): 1 Ω Off-state resistance (ROFF): 1.0/GMIN Ω Off-state resistance ROFF): 1.0/GMIN Ω ОК 0 0 0	Default
Puc 10	Рис. 11	

Представленные на рис. 8,в,г КУ – однополюсные выключатели, управляемые напряжением или током. Параметры цепи управления задаются с помощью диалогового окна на рис. 10 (для компонента на рис 9,в). Первый параметр диалогового окна – напряжение включения, второй – напряжения выключения (для компонента на рис. 9,г – ток включения и выключения соответственно).

Diodes – раздел, объединяющий семейство диодов (рис. 12).

Indicators-индикаторные устройства (рис. 13).

₩

Меню раздела содержит (слева направо) амперметр и вольтметр с цифровым отсчетом, одиночные и многосегментные светоиндикаторы, восьмиразрядное устройство записи данных и звуковой сигнализатор. Вольтметры и амперметры обеспечивают отсчет измеряемой величины с точностью до третьего знака.

Вольтметр (в диалоговом окне задаются внутреннее сопротивление, режимы постоянного **DC** или переменного **AC** тока).

Амперметр (задается внутреннее сопротивление, режим постоянного DC или переменного тока AC).

Лампа накаливания (задаются напряжение, мощность).

Miscellaneous – компоненты смешанного типа (рис.14).

В разделе имеются: плавкий предохранитель, набор подсхем в формате Spice, линии связи с распределенными параметрами с потерями и без потерь, кварцевый генератор, коллекторный электродвигатель постоянного тока, электровакуумный триод, фильтры-накопители на переключаемых индуктивностях.

M

Контрольно-измерительные приборы (рис.15).

🚰 Instruments	×
D 10	

Мультиметр. На лицевой панели мультиметра расположен дисплей для отображения результатов измерения, клеммы для подключения к схеме и кнопки управления:

A 💟 Ω dB

- выбор режима измерения тока, напряжения, сопротивления и ослабления (затухания);
- выбор режима измерения переменного или постоянного тока;

– режим установки параметров мультиметра. После нажатия на эту кнопку открывается диалоговое окно, на котором

обозначено:

Ì	lultimeter				? ×
	Sheet 1				
	Ammeter resistance (R): Voltmeter resistance (R): Ohmmeter current (I): Decibel standard (V):	1 0.01 1	nΩ GΩ μΑ V		
		(эк	Отме	на

Ammeter resistance – внутреннее сопротивление амперметра.

Voltmeter resistance – входное сопротивление вольтметра.

Ohmmeter current – ток через контролируемый объект. **Decobel standart** – установка эталонного напряжения при измерении ослабления или усиления в децибелах (по умолчанию V1=1B).

Функциональный генератор (Function Generator)

На лицевой панели генератора расположены клеммы для подключения к схеме и кнопки управления:

🊰 Function	Generator	×
2	$\sim\sim$	
Frequency	1	Hz 🖨
Duty cycle	50	%
Amplitude	10	
Offset		
ē	Common ()	+

——————————————————————————————————————
ного сигнала: синусоидальной (выбран по
умолчанию), треугольной или прямоуголь-
ной;
Frequency 1 Н Н – установка частоты

выходного сигнала; Duty cycle 50 😤 ж – установка коэффициента

заполнения в %: для импульсных сигналов это отношение длительности импульса к периоду повторения – величина, обратная скважности;

Amplitude 10 🖨 🗸 – установка амплитуды выходного сигнала;

оffset □ → установка смещения (постоянной составляющей) входного сигнала; - Соттоп +

Сотто + – выходные зажимы; при заземлении клеммы
СОММОN (общий) на клеммах "+" и "–" получаем парафазный сигнал.

Осциллограф (Oscilloscope, рис. 16) имеет два канала (CANNEL) A и В с раздельной регулировкой по чувствительности в диапазоне от 10 мкВ/дел (μ V /Div) до 5 кВ/дел (kV/Div) и регулировкой смещения по вертикали (Y POS). Выбор режима по входу осуществляется нажатием кнопок AC, O, DC.

Рис. 16. Лицевая панель осциллографа

Режим AC предназначен для наблюдения только сигналов переменного тока. В режиме O входной зажим замыкается на землю. В режиме DC можно проводить осциллографические измерения как постоянного, так и переменного тока.

Режим развертки выбирается кнопками **ВА АВ**. В режиме **Y/T** (обычный режим, включен по умолчанию) реализуется следующий режим развертки: по вертикали – напряжение сигнала, по горизонтали – время; в режиме **B/A**: по вертикали – сигнал канала **B**, по горизонтали – сигнал канала **A**; в режиме **A/B**: по вертикали – сигнал канала **A**, по горизонтали – сигнал канала **A**.

В режиме развертки **Y/T** длительность развертки (**TIME BASE**) может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1нс/дел (s/div) с возможностью установки смещения в тех же единицах по горизонтали, т.е по оси X (**X POS**).

В режиме Y/T предусмотрен также ждущий режим (TRIGGER) с запуском развертки (EDGE) по переднему или заднему фронту запускающего сигнала (выбирается нажатием кнопок IDE) при регулируемом уровне (LEVEL) запуска, а также в режиме AUTO (от канала A или B,) от канала A, от канала B или от внешнего источника (EXT), подключаемого к зажиму в блоке управления TRIGGER. Названные режимы работы выбираются кнопками

Заземление осциллографа осуществляется с помощью клеммы **GROUND** в правом верхнем углу прибора.

При нажатии на кнопку **ZOOM** лицевая панель осциллографа существенно меняется – увеличивается размер экрана, появляется возможность сканирования с помощью визирных линий (синего и красного цвета), которые могут быть установлены курсором за треугольные ушки (они обозначены также цифрами 1 и 2) в любое место экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений (между визирными линиями). Изображение можно инвертировать нажатием кнопки REVERSE и записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию осциллографа – нажатием кнопки REDUCE.

Puc. 17

Измеритель АЧХ И ФЧХ предназначен для анализа амплитудночастотных (при нажатой кнопке **MAGNI TUDE**, включена по умолчанию) и фазо-частотных (при нажатой кнопке **PHASE**) характеристик при логарифмической (кнопка **LOG**) или линейной (кнопка **LIN**) шкале по осям Y (**VERTICAL**) и X (**HORIZONTAL**).

Настройка измерителя заключается в выборе пределов измерения коэффициента передачи и вариации частоты с помощью кнопок в окош-ках F – максимальное и I – минимальное значение.

Значение частоты и соответствующее ей значение коэффициента передачи или фазы индицируется в окошках в правом нижнем углу измерителя. Значение указанных величин в отдельных точках АЧХ и ФЧХ можно получить с помощью вертикальной визирной линии, находящейся в исходном состоянии в начале координат и перемещаемой по графику мышью или кнопками $\leftarrow \rightarrow$. Результаты измерения можно записать также в текстовый файл. Для этого необходимо нажать кнопку **SAVE** и в диалоговом окне указать имя файла (по умолчанию предлагается имя схемы). В полученном таким образом текстовом файле с расширением **.bod** АЧХ и ФЧХ представляются в табличном виде.

Подключение прибора к исследуемой схеме осуществляется с помощью зажимов IN (вход) и OUT (выход). Левые клеммы зажимов подключаются соответственно ко входу и выходу исследуемого устройства, а правые к общей шине. Ко входу устройства необходимо подключить функциональный генератор или другой источник переменного напряжения, при этом каких-либо настроек в этих устройствах не требуется.