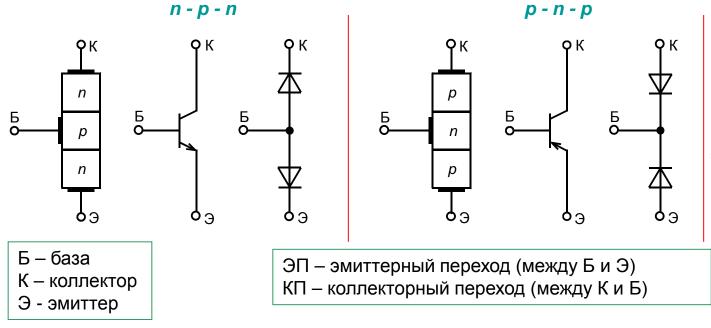
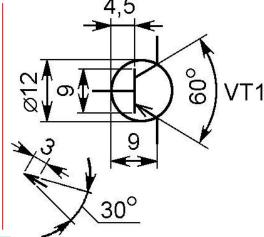

Транзисторы

Транзисторы – полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических сигналов. Позволяют регулировать ток в электрической цепи.



Классификация основных типов транзисторов и обозначение на схеме

Биполярные транзисторы (BJT)


Биполярные транзисторы – полупроводниковые приборы с двумя взаимодействующими *р- n*-переходами и тремя выводами.

Термин «биполярный» - используются носители обоих знаков: электроны и дырки.

На пластинке полупроводника создаются три области различной электропроводности. В зависимости от порядка расположения областей различают n - p - n и p - n - p-транзисторы.

Расстояние между переходами (толщина базового слоя - базы) весьма мало – единицы мкм. Концентрация примесей в коллекторе и эмиттере значительно больше, чем в базе.

УГО транзистора.
Стрелка показывает направление тока эмиттера при прямом смещении эмиттерного перехода.

Режимы работы биполярного транзистора

1. активный (усилительный) используется в усилителях и генераторах:

КП смещен в обратном направлении;

ЭП смещен в прямом направлении;

- 2. режим отсечки (транзистор заперт) используется в ключевых схемах (ключ разомкнут); КП, ЭП смещены в обратном направлении;
- 3. режим насыщения (транзистор открыт) используется в ключевых схемах (ключ замкнут); КП, ЭП смещены в прямом направлении;
- 4. инверсный режим (К и Э меняют местами) используется редко, т.к. все параметры падают:

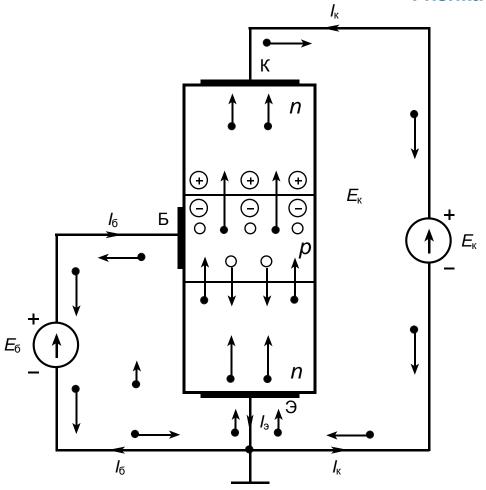
КП смещен в прямом направлении;

ЭП смещен в обратном направлении.

В схемах с транзисторами, как правило, образуется две цепи:

входная цепь — служит для управления транзисторами Выходная цепь - служит для подключения нагрузки.

Принцип действия биполярного транзистора

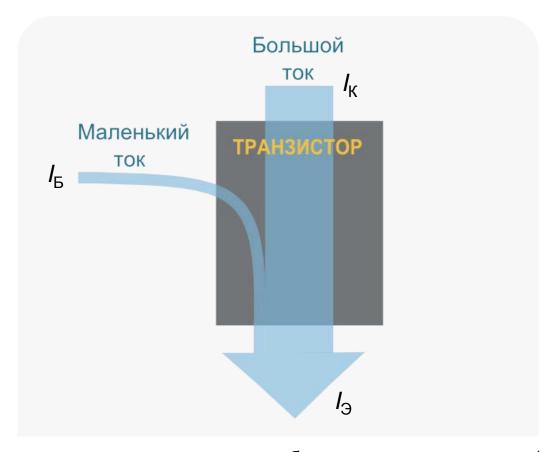

Рассмотрим физические процессы в транзисторе на примере *n-p-n*-транзистора, работающего в активном режиме без нагрузки (статический режим).

Напряжения на переходах задаются внешними источниками постоянного напряжения E_6 и E_κ . Их полярность и величина напряжения обеспечивают смещение ЭП в прямом направлении, а КП – в обратном, т.е. активный режим работы:

 E_6 (десятые доли B) < E_{κ} (единицы ÷ сотни B).

Потенциал базы меньше потенциала коллектора, => КП смещен в обратном направлении, при этом сопротивление ЭП мало, а сопротивление КП велико.

Физика процессов


Ток базы I_6 стараются сделать как можно меньше (считают его бесполезным). С этой целью базу делают очень тонкой и уменьшают концентрацию примесей (дырок). В этом случае меньшее число электронов будет рекомбинировать в базе с дырками и следовательно I_6 будет меньше.

Так как ЭП смещен в прямом направлении, то потенциальный барьер (как в обычном *p-n*-переходе) в этом переходе понижен, поэтому электроны легко, его преодолевая, инжектируются из эмиттера в базу.

Небольшая часть электронов (≈5%) в базе рекомбинируют с дырками и в результате возникает сравнительно небольшой базовый ток I_{5} (дырок в базе мало, т.к. толщина база мала), а большая оставшаяся часть электронов (≈95%) достигает коллекторного перехода. Поскольку КП смещен обратном направлении, то на этом переходе образуются объемные заряды (подобно обычному *p-n*-переходу обратном напряжении). Между зарядами возникает электрическое поле, которое способствует продвижению (экстракции) через КП электронов из эмиттера. Эти электроны и создают коллекторный ток.

Ток коллектора $I_{\rm K}$ получается меньше тока эмиттера $I_{\rm 9}$ на величину тока базы $I_{\rm 6}$. В соответствии с 1 законом Кирхгофа между токами всегда справедливо соотношение:

$$I_{\rm 9} = I_{\rm K} + I_{\rm 0},$$
 t.k. $I_{\rm 0} << I_{\rm 9},$ to $I_{\rm 9} \approx I_{\rm K}.$

Демонстрация протекания токов биполярного транзистора (n-p-n)

Физические процессы в p-n-p транзисторе подобны процессам, рассмотренным для n-p-n транзистора.

Для перехода от одного типа транзистора к другому необходимо:

- 1. поменять носители: дырки и электроны;
- 2. изменить полярности напряжений на противоположные;
- 3. изменить направление токов в транзисторе.

При изменении напряжений на КП и ЭП происходит изменение толщины этих переходов, а => меняется толщина базы. Это явление (эффект) называется модуляцией толщины базы.

Соотношения между токами транзистора

Ранее было показано, что $I_{\rm K} < I_{\rm 9}$ из-за тока базы. Поэтому можно записать:

$$I_{\kappa} = \alpha \cdot I_{\vartheta}$$

Чем меньше I_6 , тем ближе α →1.

где α – коэффициент передачи тока эмиттера.

$$\alpha_{\text{TMI}} = 0.950 \div 0.998$$

Выразим
$$I_{\kappa}$$
. $I_{\kappa} = \alpha \cdot I_{\vartheta} = \alpha \cdot I_{\kappa} + \alpha \cdot I_{\vartheta} \Rightarrow I_{\kappa} (1 - \alpha) = \alpha \cdot I_{\vartheta} \Rightarrow$

$$I_{\kappa} = \frac{\alpha}{1-\alpha} I_{\delta} = \beta \cdot I_{\delta}$$

$$β = \frac{α}{1 - α}$$
 - коэффициент передачи тока базы (десятки \div сотни).

$$I_{\kappa} = \beta \cdot I_{\delta}$$

Видно, что между током базы и током коллектора существует линейная связь, поэтому говорят, что транзистор управляется током I_6 .

Зная β, можно рассчитать α по формуле:

$$\alpha = \frac{\beta}{1+\beta}$$
.

Коэффициенты α, β зависят от режима работы транзистора. Максимум их достигается при средних токах, а при малых и больших данные коэффициенты снижаются.

Через обратно смещенный КП всегда протекает тепловой (обратный) ток . Различают два вида тока:

 $I_{\rm k0}$ – обратный ток, протекающий из коллектора в базу (для *n-p-n* транзистора), составляет единицы мкА. В справочниках может обозначаться как $I_{\rm K60}$. Данный ток определяется при оторванном проводе эмиттера, т.е. $I_{\rm 9} = 0$.

 I_{k0} — **сквозной** или **начальный ток**, протекающий из коллектора в эмиттер (для *n-p-n* транзистора) через все переходы, определяется про оторванной базе, т.е. I_{6} = 0, составляет десятки ÷ сотни мкА.

С учетом обратного тока коллекторный ток равен:

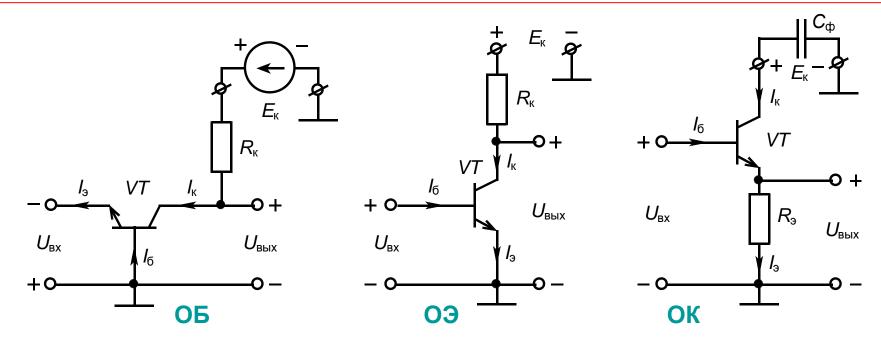
$$I_{_{\mathrm{K}}}=\mathbf{\Omega}\cdot I_{_{\mathrm{9}}}+I_{_{\mathrm{KO}}}, \qquad$$
 t.k. $I_{_{\mathrm{9}}}>>I_{_{\mathrm{KO}}},$ to $I_{_{\mathrm{K}}}\cong\mathbf{\Omega}\cdot I_{_{\mathrm{9}}}.$

Выразим
$$I_{\kappa}$$
 с учетом $I_{\kappa 0}$: $I_{\kappa} = \alpha \cdot I_{\vartheta} + I_{\kappa 0} = \alpha \cdot (I_{\kappa} + I_{\delta}) + I_{\kappa 0} \Longrightarrow$

$$I_{\kappa}(1-\alpha) = \alpha \cdot I_{\delta} + I_{\kappa 0} \Longrightarrow I_{\kappa} = \frac{\alpha}{1-\alpha}I_{\delta} + \frac{I_{\kappa 0}}{1-\alpha} = \beta \cdot I_{\delta} + I_{\kappa 0(9)}.$$

$$I_{\kappa} = \beta \cdot I_{\delta} + I_{\kappa 0(3)}$$

При
$$I_6 = 0$$
 $I_K = I_{KO(3)} = \frac{I_{KO}}{1-\alpha} = \frac{\alpha}{1-\frac{\beta}{\beta+1}} = \frac{I_{KO}(\beta+1)}{\beta+1-\beta} = I_{KO}(\beta+1) \cong I_{KO} \cdot \beta.$


$$I_{\kappa 0(\mathfrak{g})} \square I_{\kappa 0}$$

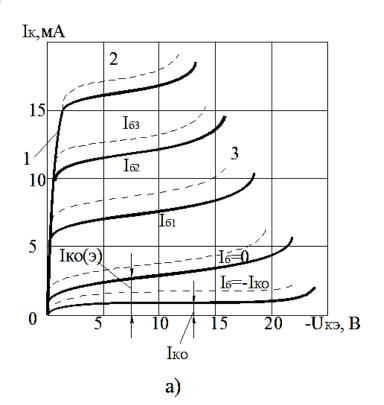
Схемы включения биполярного транзистора

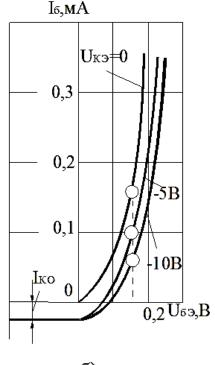
На практике применяют три основных схемы включения транзисторов:

- с общим эмиттером (ОЭ);
- с общей базой (ОБ);
- с общим коллектором.

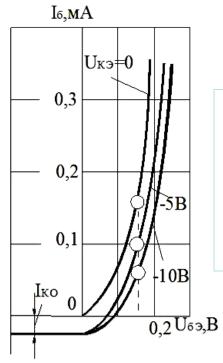
Правило! Тип схемы включения определяется по выводу (электроду) транзистора, который является общим для входной и выходной цепей по переменному току.

В схеме ОК коллектор соединен с общей точкой схемы, входом и выходом через источник $E_{\rm k}$ по переменной составляющей, для которой $C_{\rm c}$ является закороткой.


Отсюда, требование к источнику E_{κ} : для переменного тока его внутреннее сопротивление должно быть равно нулю!


Статические вольт-амперные характеристики биполярного транзистора

Статические характеристики снимаются на постоянном токе и без нагрузки в выходной цепи. Данные характеристики используются для расчета транзисторных схем. На практике интересны входные и выходные характеристики. Входные ВАХ отражают зависимость напряжения и тока во входной цепи, выходные ВАХ – в выходной цепи.


Для каждой из схем включения транзистора имеют место быть свои характеристики. Наиболее распространены ВАХ для схем ОЭ и ОБ, которые и приводятся в справочниках.

Входные и выходные ВАХ подобны ВАХ полупроводникового диода. Входные х-ки относятся к прямо смещенному ЭП, поэтому они подобны прямой ветви ВАХ диода. Выходные х-ки отражают свойства обратно смещенного коллекторного перехода и аналогичны обратной ветви ВАХ диода.

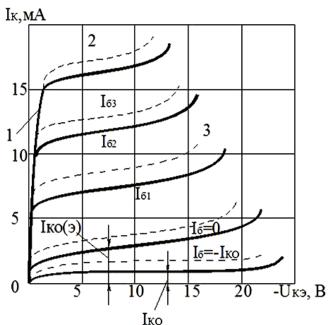
ВАХ биполярного транзистора (p-n-p) в схеме ОЭ: а) выходные; б) входные.

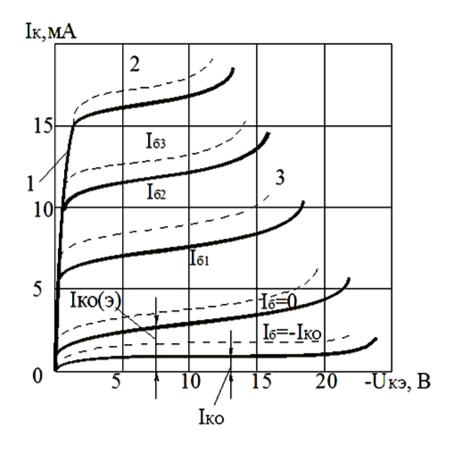
Схема ОЭ

Входные характеристики
$$I_{6} = f(U_{69})|_{U_{69}=\mathrm{const}}$$

При $U_{\kappa_9} = 0$ входная х-ка представляет собой прямую ветвь ВАХ двух параллельно включенных диодов.

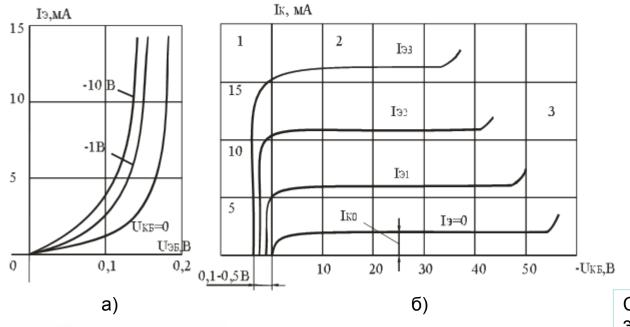
При $U_{\rm K9} < 0$ характеристики сдвинуты вправо и вниз относительно предыдущего случая. Смещение вниз вызвано протеканием встречно основному базовому току обратного тока $I_{\rm K0}$, и при $U_{\rm 69} = 0$ значение $I_{\rm 6} < 0$. Смещение х-к вправо обусловлено эффектом модуляции базы: с ростом $U_{\rm K9}$ растет $U_{\rm K6} =>$ толщина обратно смещенного КП увеличивается, а толщина базы уменьшается => в базе рекомбинирует меньше носителей и => ток $I_{\rm 6}$ уменьшается.


Входные х-ки при $U_{\kappa_9} > 0$ расположены близко друг к другу, поэтому в справочниках, как правило, приводят одну х-ку при заданном U_{κ_9} и иногда при $U_{\kappa_9} = 0$.


Выходные характеристики
$$I_{\kappa} = f(U_{\kappa 3})|_{I_{6}=\mathrm{const}}$$

Первая снизу х-ка соответствует режиму глубокой отсечки, когда $U_{69} < 0$. При этом ЭП и КП заперты ($I_6 = -I_{K0}$). Из К в Б течет тепловой ток I_{K0} . Характеристика при $I_6 = 0$ соответствует режиму с оторванной базой, т.е. $I_{K} = \beta \cdot I_6 + I_{K0(9)} = I_{K0(9)} = (1+\beta) \cdot I_{K0}$, при этом из К в Э течет сквозной ток $I_{K0(9)}$.

На выходных характеристиках можно выделить три области.


- 1. Нелинейная область с сильной зависимостью I_{κ} от $U_{\kappa 9}$. При малых $U_{\kappa 9}$ и $U_{69} > 0$ КП смещен в прямом направлении. (режим насыщения).
- 2. Линейная область. КП смещен в обратном направлении (активный режим). Здесь наблюдается слабая зависимость I_{κ} от $U_{\kappa 9}$. Небольшой подъем характеристик объясняется эффектом модуляции базы.

Эффект модуляции. При увеличении $U_{\rm кэ}$ толщина базы уменьшается => ток $I_{\rm 6}$ уменьшается (аналогично случаю для входной х-ки), но т.к. ток базы необходимо поддерживать постоянным ($I_{\rm 6}={\rm const}$) приходится увеличивать $U_{\rm 69}$. За счет этого ток $I_{\rm 6}$ увеличивается, и ток $I_{\rm K}=I_{\rm 6}$ - β тоже возрастает.

3. Область пробоя КП. Как правило, это нерабочая область за исключением специальных типов транзисторов.

U_{KE}=-10 B U_{KE}=-10 B U_{KE}=0

B)

Выходные характеристики (рис. б)

$$I_{_{\mathrm{K}}}=f(U_{_{\mathrm{K}ar{\mathrm{O}}}})ig|_{I_{_{\!\scriptscriptstyle{9}}=\mathrm{const}}}$$

Выходные ВАХ имеют три области:

1. Нелинейная область с сильной зависимостью I_{κ} от $U_{\kappa\delta}$ (режим насыщения). Находится левее оси ординат.

Самая нижняя характеристика при $I_9 = 0$ соответствует режиму с оторванным эмиттером. Это значит, что напряжение приложено только к КП и через него в базу течет обратный ток $I_{\kappa 0}$.

Схема ОБ

Входная характеристика (рис. а)

$$I_{\mathfrak{g}} = f(U_{\mathfrak{g}\mathfrak{g}})\big|_{U_{\mathsf{K}\mathfrak{g}} = \mathsf{const}}$$

X-ки, снятые при большем $U_{\kappa\delta}$ сдвинуты влево и вверх относительно случая $U_{\kappa\delta}=0$. X-ки подняты вверх за счет протекания сквозного тока $I_{\kappa O(9)}$ через ЭП, что явно видно при $U_{9\delta}=0$ (рис. в).

Сдвиг характеристик влево обусловлен эффектом модуляции базы.

- 2. Линейная область со слабой зависимостью $I_{\rm K}$ от $U_{\rm K\bar{0}}$ (активный режим). Ее особенностью является небольшой подъем характеристик (меньший, чем у сх. ОЭ), обусловленный эффектом модуляции базы.
- 3. Область пробоя. При некотором $U_{\kappa\delta}$ начинается электрический пробой КП и ток I_{κ} резко возрастает.

Схемы для снятия ВАХ биполярного транзистора

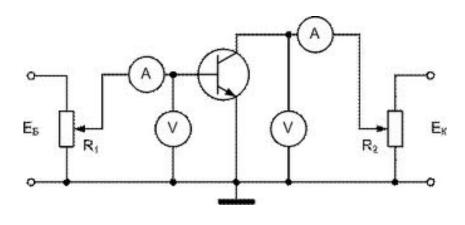


Схема ОЭ

 R_1 , R_2 – переменные резисторы, предназначенные для регулировки напряжения.

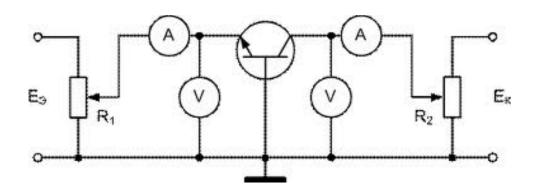
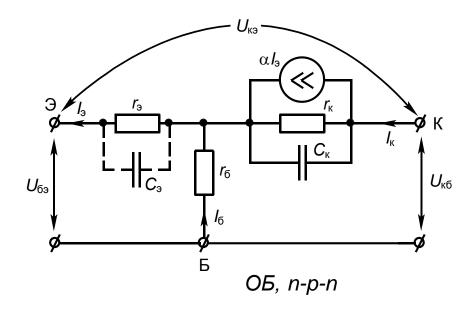
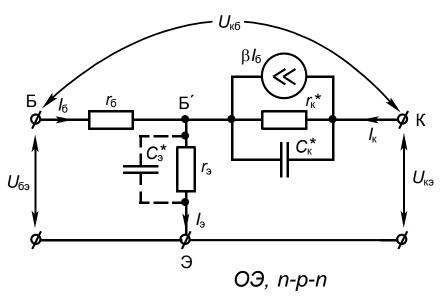




Схема ОБ

Схемы замещения биполярного транзистора в физических параметрах

Т – образные малосигнальные схемы замещения построены с помощью физических (внутренних) параметров транзистора, которые характеризуют физические свойства трехслойной полупроводниковой структуры транзистора. Состав этих схем одинаков.

Границы применимости схем замещения:

- 1) транзисторы работают в активном режиме;
- 2) справедливы для переменных составляющих токов и напряжений (название «схема замещения на переменном токе»);
- 3) справедливы для транзисторов, работающих на линейных участках входных и выходных статических характеристик.

Так как значения переменных составляющих токов и напряжений транзистора, как правило, значительно меньше постоянных составляющих, то данные схемы замещения называют малосигнальными, а их параметры – малосигнальными.

Все сопротивления, входящие в схемы являются дифференциальными, т.е. определяются для приращений (изменений) тока и напряжения.

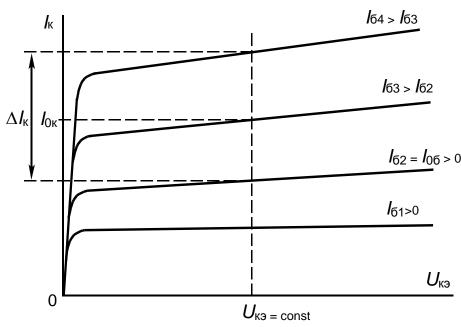
Элементы схемы замещения

 r_6 — объемное сопротивление базового слоя (базы), справочный параметр, иногда приводится в справочниках и составляет 100 \div 400 Ом.

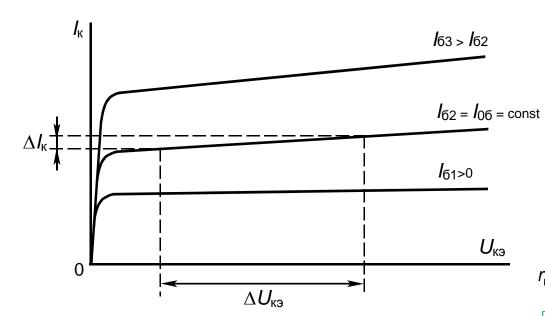
 $r_{\rm 3}$ – дифференциальное сопротивление прямо смещенного эмиттерного перехода. Величина $r_{\rm 3}$ зависит от величины постоянной составляющей эмиттерного тока $I_{\rm 03}$ (тока покоя эмиттера) и определяется:

$$r_{\mathfrak{g}} = \frac{\varphi_{\mathsf{T}}}{I_{\mathfrak{g}}}; \quad \varphi_{\mathsf{T}} = \frac{k \cdot T}{e},$$

где ϕ_T – температурный потенциал.


Пример: если I_{09} = 1мA, то $r_9 \approx 26$ Ом при t = 27°C. Ориентировочные значения: r_9 = единицы ÷ десятки Ом.

 $\beta \cdot I_{\delta}$ — эквивалентный источник тока, учитывающий зависимость коллекторного тока от базового.


β – динамический коэффициент передачи тока базы; определяется по выходным характеристикам для сх. ОЭ:

$$eta = rac{\Delta \emph{I}_{ extsf{K}}}{\Delta \emph{I}_{ extsf{G}}}igg|_{\emph{U}_{ extsf{K9}} = ext{const}}$$

- динамический коэффициент передачи тока эмиттера; может быть определен по выходным х-кам сх. ОБ.

Пример определения приращений тока для расчета β

Пример определения приращений тока и напряжения для расчета r,*

 $r_{\kappa}^{*} = r_{\kappa(3)}$ — дифференциальное сопротивление обратно смещенного КП (справочный параметр):

$$r_{\scriptscriptstyle \mathrm{K}}^{\;\star} = r_{\scriptscriptstyle \mathrm{K(3)}} = rac{\Delta U_{\scriptscriptstyle \mathrm{K3}}}{\Delta I_{\scriptscriptstyle \mathrm{K}}} \bigg|_{I_{\scriptscriptstyle \mathrm{G}} = \mathrm{const}}$$
 .

 r_{κ}^* = десятки ÷ сотни кОм.

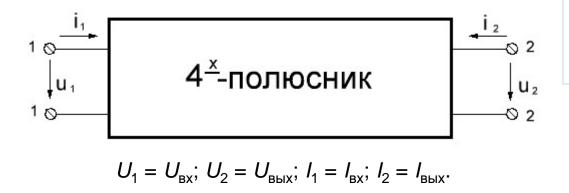
$$r_{\kappa} = r_{\kappa(\delta)} = r_{\kappa(3)}(1+\beta)$$
 - сх. ОБ (сотни кОм ÷ единицы МОм).

 $C_{\kappa}^{*} = C_{\kappa(\mathfrak{g})}$ — емкость обратно смещенного КП — справочный параметр: $C_{\kappa(\mathfrak{g})}$ = единицы \div сотни пФ. Зависит от частотных свойств транзистора.

Чем меньше $C_{\kappa(3)}$, тем лучше частотные свойства!

$$C_{_{\mathrm{K}}} = C_{_{\mathrm{K}(5)}} = \frac{C_{_{\mathrm{K}(3)}}}{1+\beta} pprox \frac{C_{_{\mathrm{K}(3)}}}{\beta}$$
 - емкость обратно смещенного КП в сх. ОБ $\tau_{_{C\mathrm{K}}} = C_{_{\mathrm{K}}} * \cdot r_{_{\mathrm{K}}} * = C_{_{\mathrm{K}}} \cdot r_{_{\mathrm{K}}} * = C_{_{\mathrm{K}}}$

 $C_{9}^{*} = C_{9(9)} -$ емкость эмиттерного перехода. Обычно в расчетах не учитывается, т.к. $\tau_{\text{вх}} < \tau_{\text{вых}}$.


$${C_{9}}^{*}={C_{9(9)}}-$$
 единицы \div сотни пФ. Полагают: ${C_{9(9)}}={C_{9(6)}}$

При анализе малосигнальных схем замещения (напр., усилительных каскадов) рассматриваются только переменные составляющие токов и напряжений, следовательно все принятые обозначения I_6 , I_k , I_9 , U_{6916} U_{k9} , U_{69} и др. характеризуют действующие значения гармонического сигнала, т.е. $I_m = \sqrt{2} \cdot I_{\text{дейст}}$

h - параметры транзистора

Физические параметры, входящие в Т-образную схему замещения транзистора не могут быть измерены напрямую, т.к. слои и и переходы транзистора недоступны для подключения измерительных приборов. Поэтому в качестве измеряемых параметров выбраны те, которые отражают свойства транзистора как четырехполюсника.

При любой схеме включения транзистор может быть представлен в виде активного (линейного) четырехполюсника — «черного ящика».

На входе действует переменное напряжение U_1 и протекает переменный ток I_1 , а на выходе действует переменное напряжение U_2 и переменный ток I_2 .

Существуют различные системы параметров, которые связывают переменные токи и напряжения в четырехполюснике. Наиболее удобными для измерения считаются *h* - параметры.

«h» от слова «hybrid» - гибридное или смешанные. Включают в себя: 2 коэффициента, одно сопротивление, одну проводимость. Приводятся в справочниках.

Система уравнений, связывающая токи и напряжения через *h* - параметры:

$$\begin{cases} U_{1} = h_{11} \cdot \Delta I_{1} + h_{12} \cdot \Delta U_{2} \\ I_{2} = h_{21} \cdot \Delta I_{1} + h_{22} \cdot \Delta U_{2} \end{cases}$$

Физический смысл коэффициентов (*h* - параметров) в уравнениях

$$h_{11} = \frac{\Delta U_1}{\Delta I_1} \bigg|_{\Delta U_2 = 0}$$

 $h_{11} = \frac{\Delta U_1}{\Delta I_1} \bigg|_{\Delta U_2 = 0}$ - входное сопротивление транзистора переменному току при неизменном выходном напряжении (по переменке на выходе К.З., т.е. переменки нет, т.е $U_2 = 0$

$$h_{21} = \frac{\Delta I_2}{\Delta I_1} \bigg|_{\Delta U_2 = 0}$$

 $h_{21} = \frac{\Delta I_2}{\Delta I_1} \bigg|_{\Delta U_2 = 0}$ - коэффициент передачи по току при неизменном выходном напряжении (по переменке на выходе К.З., т.е. переменки нет, т.е U_2 = const);

$$h_{12} = \frac{\Delta U_1}{\Delta U_2} \bigg|_{\Delta I_1 = 0}$$

- коэффициент обратной связи по напряжению при неизменном входном токе, показывает какая часть переменного выходного напряжения передается на вход транзистора из-за наличия обратной связи в нем (по переменке входная цепь разрыв, т.е. $I_1 = \text{const}$);

$$h_{22} = \frac{\Delta I_2}{\Delta U_2} \bigg|_{\Delta I_1 = 0}$$

- выходная проводимость транзистора при неизменном входном токе транзистора (по переменке входная цепь разрыв, т.е. $I_1 = \text{const}$), измеряется в сименсах.

Значения h – параметров зависят от схемы включения:

Схема ОЭ: $I_1 = I_6$; $I_2 = I_{\kappa}$; $U_1 = U_{69}$; $U_2 = U_{\kappa 9}$.

Схема ОБ: $I_1 = I_3$; $I_2 = I_{\kappa}$; $U_1 = U_{36}$; $U_2 = U_{\kappa 6}$.

h – параметры для схемы ОЭ

$$h_{119} = \frac{\Delta U_{69}}{\Delta I_{6}} \Big|_{U_{89} = \text{const}} = r_{BX}$$

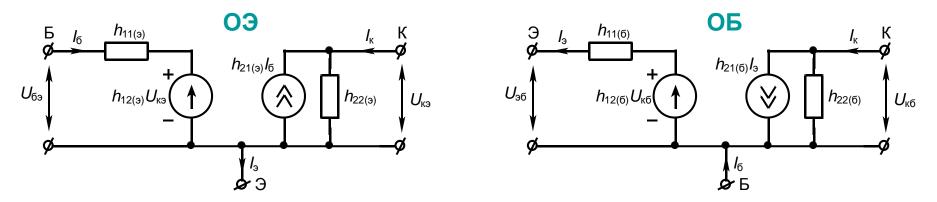
$$h_{219} = \frac{\Delta I_{\kappa}}{\Delta I_{\delta}}\Big|_{U_{\kappa_{2}} = \text{const}} = \beta$$

 $h_{219} = \frac{\Delta I_{\rm K}}{\Delta I_{\rm G}} \Big|_{U_{\rm m}={
m const}} = eta$ - коэффициент передачи тока базы; определяется по выходным характеристикам;

$$h_{129} = \frac{\Delta U_{69}}{\Delta U_{K9}}\Big|_{I_{6}=\text{const}} = \varepsilon$$

 $h_{_{12\, 9}} = rac{\Delta U_{_{69}}}{\Delta U_{_{K9}}}igg|_{_{I_{_{6}}={
m const}}} = \epsilon$ - коэффициент обратной связи по напряжению; определяется по входным характеристикам;

$$h_{22\,\Im} = \frac{\Delta I_{\kappa}}{\Delta U_{\kappa \Theta}}\Big|_{I_{\delta} = \text{const}}$$


 $h_{_{22\, \Im}} = rac{\Delta I_{_{
m K}}}{\Delta U_{_{
m K3}}}igg|_{_{I_{_{
m S}}={
m const}}}$ - выходная проводимость транзистора; определяется по выходной характеристике.

Если провести замену соответствующих параметров можно записать h – параметры для схемы ОБ. Однако, если известны h – параметры для схемы ОЭ, параметры для схемы ОБ получаются простым пересчетом.

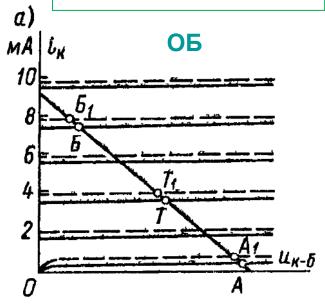
Подробнее в книге:

Жеребцов И.П. Основы электроники. – Л.: Энергоатомиздат. Ленигр. отд-ние, 1990. – 352 с.

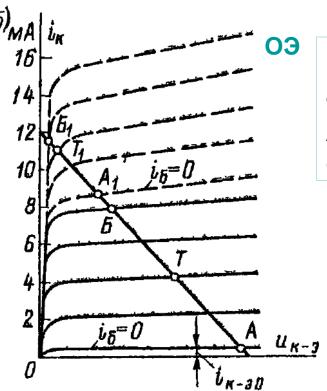
Эквивалентные схемы транзистора на средних частотах через h – параметры

Показатели схем ОЭ, ОБ и ОК для маломощных транзисторов

Параметр	ОЭ	ОБ	ОК
h ₁₁	сотни Ом ÷ единицы кОм	единицы ÷ десятки Ом	десятки ÷ сотни кОм
h ₁₂	10 ⁻³ ÷ 10 ⁻⁴ См	10 ⁻³ ÷ 10 ⁻⁴ См	10 ⁻³ ÷ 10 ⁻⁴ См
h ₂₁	десятки ÷ сотни	0,95 ÷ 0,998	сх. ОЭ
1/h ₂₂	единицы ÷ десятки кОм	сотни кОм ÷ единицы МОм	десятки Ом


Кроме системы h – параметров пользуются также системой параметров в виде проводимостей (Y - параметры).

Влияние температуры


В процессе работы транзисторов в электронной аппаратуре они нагреваются. Причины нагрева транзисторов:

- температура окружающей среды;
- внешние источники тепла (например, находящиеся нагретые детали);
- токи, протекающие через транзистор.

Пунктиром показано изменение тока при увеличении температуры.

$$I_{\kappa} = \alpha \cdot I_{\vartheta} + I_{\kappa 0}$$
,

$$\begin{vmatrix} I_{\kappa} = \beta \cdot I_{\delta} + I_{\kappa 0(3)} = \\ = \beta \cdot I_{\delta} + (1 + \beta)I_{\kappa 0} \end{vmatrix}$$

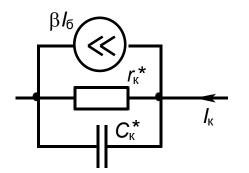
При увеличении температуры изменение коллекторного тока в сх. ОЭ более существенно, чем в схеме ОБ. => Схема ОЭ менее температурно стабильна, чем сх. ОБ.

При изменении температуры изменяются все характеристики и параметры транзистора. На практике для минимизации влияния температуры применяют специальные схемные решения: дополнительные цепи термокомпенсации и термостабилизации.

Частотные свойства транзисторов

С увеличением частоты усиление, даваемое транзистором снижается. Существует две главных причины:

- 1. Влияние емкостей транзистора.
- 2. Снижение коэффициента передачи тока.


1. Влияние емкостей транзистора

С ростом частоты сопротивление емкостей транзистора уменьшается:

$$X_{\rm C} \downarrow = \frac{1}{\omega \uparrow C}.$$

Наиболее существенное влияние оказывается емкость коллекторного перехода $C_{\rm k}$, т.к. имеет наибольшую величину.

Влияние всех емкостей одинаково: они шунтируют цепи транзистора, вызывая тем самым снижение усиления.

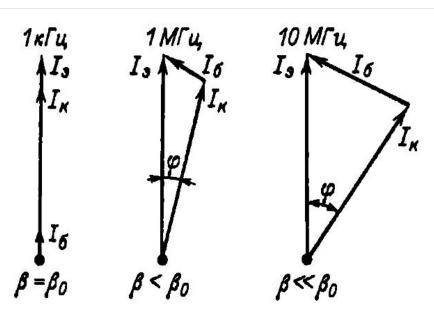
На высоких частотах емкость $C_{\rm k}$ шунтирует источник коллекторного тока. => часть тока источника тока замыкается через $C_{\rm k}$, и лишь оставшаяся часть тока источника будет создавать коллекторный ток $I_{\rm k}$. С ростом частоты ток через $C_{\rm k}$ возрастает, а ток $I_{\rm k}$ уменьшается.

Часть малосигнальной схемы замещения. Полная схема на слайде 14

2. Снижение коэффициента передачи тока

На высоких частотах коэффициент передачи тока базы β является комплексной величиной:

$$\dot{\beta} = \frac{\beta_0}{1+j\frac{\omega}{\omega_{\beta}}} = \frac{\beta_0}{1+j\frac{f}{f_{\beta}}},$$


 $\dot{\beta} = \frac{\beta_0}{1+j\frac{\omega}{\omega}} = \frac{\beta_0}{1+j\frac{f}{f}},$ $f_{\beta}(\omega_{\beta})$ – предельная (аналог граничной частоты при определении полосы пропускания цепи) частота коэффициента передачи тока базы транзистора (сх. ОЭ) – справочный параметр;

 β_0 – статический коэффициент передачи тока базы (на постоянном токе).

Модуль и фаза коэффициента передачи:

$$\beta(\omega) = \frac{\beta_0}{\sqrt{1 + \left(\frac{\omega}{\omega_{\beta}}\right)^2}} = \frac{\beta_0}{\sqrt{1 + \left(\frac{f}{f_{\beta}}\right)^2}},$$

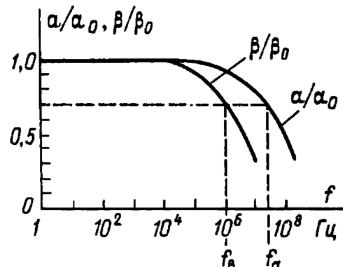
$$\phi_{\beta} = arctg \frac{\omega}{\omega_{\beta}}.$$

Векторные диаграммы, демонстрирующие возрастание тока базы и фазового сдвига между токами с увеличением частоты работы транзистора

Снижение в с ростом частоты с ростом частоты обусловлено инерционностью перемещения носителей из ЭП через базу в КП. Время пробега носителей через базу составляет ≈10⁻⁷с. На частотах единицы ÷ десятки МГц это время соизмеримо (или больше) с периодом усиливаемого сигнала (т.е. носители не успевают перескочить через базу и задерживаются в ней). В результате коллекторный ток отстает от эмиттерного (появляется фазовый сдвиг) и I_{ν} уменьшается, а ток базы I_{6} увеличивается.

Для коэффициента передачи тока эмиттера:

$$\dot{\alpha} = \frac{\alpha_0}{1+j\frac{\omega}{\omega_{\alpha}}}$$


 ω_{α} – предельная частота коэффициента передачи тока эмиттера транзистора (сх. ОБ) – справочный параметр; α_0 – статический коэффициент передачи тока базы.

Формулы для пересчета

$$f_{\beta} = \frac{f_{\alpha}}{1+\beta} \cong \frac{f_{\alpha}}{1+\beta}; f_{\beta} = f_{\alpha}(1-\alpha).$$

Очевидно, что предельная частота в схеме ОЭ в $(1+\beta)$ раз меньше, чем в схеме ОБ, т.е. частотные свойства транзистора при включении по сх. ОБ существенно лучше частотных свойств при включении транзистора по схеме ОЭ.

Граничная частота коэффициента передачи тока базы — это частота, на которой $\beta = 1$, справочный параметр:

Зависимость относительного коэффициента передачи тока транзистора и

$$f_{rp} = f_{\beta} \sqrt{\beta_0^2 - 1} \cong f_{\beta} \cdot \beta_0.$$

 f_{β} – предельная частота коэффициента передачи тока – частота, на которой коэффициент снижается в 1,41 раза (или на 3 дБ) от максимального значения, т.е.

$$f_{rp} = f_{\beta} \sqrt{\beta_0^2 - 1} \cong f_{\beta} \cdot \beta_0.$$

 f_{β} – предельная частота является аналогом граничной частоты, используемой при определении полосы пропускания цепи по AЧX

Основные параметры биполярных транзисторов

Эксплуатационные параметры

- 1. Коэффициенты передачи эмиттерного α или базового β токов.
- 2. Обратный ток коллекторного перехода при заданном обратном напряжении на КП:

$$I_{\text{кбо}} = I_{\text{к0}}$$
 (доли мкА ÷ десятки мА)

- 3. r_6 объемное сопротивление базы (сотни Ом);
- 4. r_{κ} дифференциальное сопротивление обратно смещенного КП (сотни кОм \div единицы МОм) или h_{22} выходная проводимость;
- 5. $U_{\text{кн}}$ напряжение насыщения коллектор-эмиттер (десятые доли В \div единицы В);
- 6. C_{κ} емкость обратно смещенного коллекторного перехода (единицы \div десятки пФ);
- 7. R_T тепловое сопротивление между КП и корпусом $R_T = \Delta T/P_{\kappa \text{ max}}$, где $\Delta T = T_{\text{п}} T_{\kappa}$ перепад температур между переходом и корпусом транзистора;
- 8. f_{β} , f_{α} предельная частота передачи тока в схеме ОЭ и ОБ, соответственно.

Предельно-допустимые параметры

- 9. $I_{\kappa \text{ мах}}$ максимально допустимый ток коллектора (сотни мА ÷ десятки А);
- 10. $U_{\text{кэ max}}$ максимально допустимое напряжение К-Э;
- 11. $P_{\kappa \max}$ максимально допустимая мощность, рассеиваемая коллектором (до десятков Вт);
- 12. $U_{\text{бэ обр max}}$ максимально допустимое обратное напряжение ЭП;
- 13. *I*_{б max} максимально допустимый прямой ток базы.

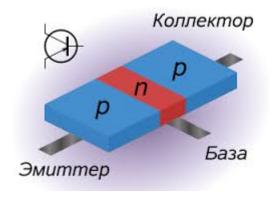
Превышение параметрами предельно-допустимых значений $I_{\text{к max}}$, $U_{\text{кэ max}}$, $P_{\text{к max}}$, $I_{\text{б max}}$, $U_{\text{бэ обр max}}$ ведет к выходу транзистора из строя.

Рекомендации по выбору и эксплуатации биполярных транзисторов

Выбор биполярных транзисторов осуществляется с учетом эксплуатационных и предельно-допустимых параметров транзисторов (слайд 25) и области применения транзистора.

Однако в большинстве случаев при выборе транзистора достаточно учитывать его предельно-допустимые параметры и частотные свойства:

- 1. $I_{\text{к мах}}$ максимально допустимый ток коллектора;
- 2. $U_{\text{кэ max}}$ максимально допустимое напряжение К-Э (ограничивается максимально допустимым напряжением коллекторного перехода);
- 3. $P_{\text{к max}}$ максимально допустимая мощность, рассеиваемая коллектором;
- 4. $U_{69\ oбp\ max}$ максимально допустимое обратное напряжение ЭП;
- 5. $I_{6 \text{ max}}$ максимально допустимый прямой ток базы.
- 6. f_{β} предельная частота передачи тока в схеме ОЭ.


Рекомендация. В целях повышения надежности не эксплуатируйте транзисторы в предельно-допустимых режимах. Используйте облегченные режимы по сравнению допустимыми.

Классификация и система обозначений транзисторов

Самостоятельно по:

1. Лачин В.И., Савёлов Н.С. Электроника: Учебное пособие. – Изд. 8-е. – Ростов н/Д: Феникс, 2010. – 703 с.

Составить конспект!

Ссылки

- 1. <u>www.youtube.com</u>
- 2. http://hightolow.ru
- 3. Забродин Ю.С. Промышленная электроника: Учебник для вузов. М.: Альянс, 2008. 496 с.
- 4. Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная техника: Учеб. для вузов. М.: Высш. шк., 2008. 798 с.
- 5. Степаненко И.П. Основы теории транзисторов и транзисторных схем. М.: Энергия, 1977. 608 с.
- 6. Жеребцов И.П. Основы электроники. Л.: Энергоатомиздат. Ленигр. отд-ние, 1990. 352 с.
- 7. Лачин В.И., Савёлов Н.С. Электроника: Учебное пособие. Изд. 8-е. Ростов н/Д: Феникс, 2010. 703 с.