

TOMSK POLYTECHNIC UNIVERSITY FACULTY OF MECHANICAL ENGINEERING

UNDERGRADUATE THESIS

HIGH PRESSURE EJECTION SYSTEM OF DREDGING

BY

INNOCENT ETELI DIGITEMIE

SCIENTIFIC SUPERVISORS

ALEXANDER VALENTINE IOPPA *PhD*

VICTOR NIKOLAEVITCH KOZLOV PhD

TOMSK-2008

TABLE OF CONTENT

1-Introduction

- 2-Distribution of sand in water
- 3-Component parts of the mini-dredger and How it works
- 4- Layout of sampled dredger
- 5- Sand velocity experiment
- 6- Results of calculations
- 7-Centrifugal pump
- 8-Ejector pump
- 9-Ejector pump's specifications
- 10-Centrifugal pump against Ejector pump
- 11-Design drawing
- 12-Production sequence of operations
- 13-Conclusion

INTRODUCTION

REQUIREMENTS OF UNDERGRADUATE THESIS

1. TO DETERMINE THE METHODOLOGY OF CALCULATING THE HYDRAULIC PARAMETERS OF A DREDGER.

2. TO DESIGN A PRODUCTION PROCESS FOR THE MANUFACTURE OF A DRIVING SHAFT (COMPONENT PART OF THE DREDGER).

INITIAL DATA

DREDGING DEPTH.	1m 5m
MAXIMUM DISTANCE BETWEEN PONTOON AND	
DISCHARGE POINT.	120m
PRODUCTIVITY.	15m ³ /hr
DESIGN DRAWING OF DRIVING SHAFT	GIVEN
MINIMUM THICKNESS OF SAND LAYER	0.5m
DESIRED RANGE OF SAND GRAINS	0.062.1mm

FIG.1 -DISTRIBUTION OF SAND AND GRAINS OF SAND UNDER WATER QUANTITY

D1=D2 , Vs2>>Vs1 where: 1-water ,2-sand layer ,3-land above water level ,Vs1- volume of sand close to riverbank ,Vs2- volume of sand at a distance L1 from the river bank.

FIG.2 - LAYOUT OF COMPACT SAND DREDGER

Where 1-discharged sand, 2- Hopper ,3-discharge pipe ,4-onboard suction pump ,5 onboard water-injector pump ,6-pontoon /barge, 7-water injection pipe ,8-suction pipe ,9-sand layer ,

SUCTION LINE

SAND VELOCITY EXPERIMENT

GRAPH OF TIME AGAINST SAND GRAINS

GRAPH OF VELOCITY AGAINST SAND GRAINS DIAMETER

RESULTS

SUCTION LINE

 $v_{sandgrain} = k_v \times D_{sandgrain} = 0.068 \times 2.1 = 0.143 [\frac{m/s}{mm} \times mm] = 0.143 m/s$

V=0.3m/s; D= 0.133m; Δp_Σ =0.03MPa

DISCHARGE LINE

V=2.5 m/s; D=0.05m; Δp_Σ =0.4MPa

$$N_{P(D=50mm)} = 2.8Kwatts$$

CENTRIFUGAL PUMP

EJECTOR PUMP

The design is quite simple; an ejector is a pumping device. It has no moving parts. Rather, it uses a fluid or gas as a motive force. Very often, the motive fluid is steam and the device is called a "steam jet ejector." Basic ejector components are the steam chest, nozzle, suction, throat, diffuser and the discharge

FIG.4.5 PARTS OF EJECTOR PUMP FOR DREDGING

EJECTOR PUMP SPECIFICATIONS

- D₂=50mm- discharge pipe diameter from previous calculations;
- H₃=(2...5)D_{THROAT}-from hydraulic engineer's manual;
- H₂=(2...5)D_{NOZZLE}-from hydraulic engineer's manual;
- H₁=(0.8...3)D_{NOZZLE}-from hydraulic engineer's manual;
- These conditions are required to be met in throat depending on the kind of pressure needed in the diverging discharge line.
- The converging-diverging angles are within the range of (5.....15) degrees $\frac{Area_{throat}}{Area_{mottive-fluid-nozzle}} \ge 4; high-pressure$

$$\frac{Area_{throat}}{Area_{motive-fluid-nozzle}} < 4; low-pressure$$

For an ejector pump, the discharge flow rate (Q_2) is the sum of the motive fluid's flow rate the inlet fluid's flow rate: where the motive fluid constitutes 20% of the total flow rate and the inlet fluid accounts for the remaining 80%.

 $Q_2 = Q_0 + Q_1 \implies Q_0 = 0.2Q_2 = 0.2 \times 0.0042 = 0.00084m^3 / s$ $P_0 = (P_0 - P_2) + \Delta P_{\Sigma} \qquad (P_0 - P_2) = \Delta P_0$

 $\Rightarrow \Delta P_0 = \rho_0 gh$

COMPARISON OF CENTRIFUGAL AND EJECTOR PUMP

CHARACTERISTICS	CENTRIFUGAL PUMP	EJECTORPUMP
Discharge diameter	50mm	50mm
Discharge velocity	2.5m/s	2.5m/s
Suction velocity	0.3m/s	
Total pressure loss	0.4MPa	0.4MPa
Pump power	1.67Kwatts	1.64Kwatts
Construction	Very hard	Quite simple
Cavitation	Certain	Practically no
Vane/bearing damage	yes	no
Shaft breakage	yes	no
Rotating parts	yes	no

CONCLUSION

Based on the content of the table above we conclude that the ejector pump is preferable to centrifugal pump in the design of a mini dredger.

3. CENTRE HOLE ON LEFT SIDE OF SHAFT IS ALLOWED.

GRADUATE WORK.TAMP.TME.54.2 GRADUATE WORK. TECHNOLOGY OF AUTOMATED MANUFACTURINGAND PRODUCTION. LECHNOLOGY OF MECHANICAL ENGINEERING. ΛИТ MASS SCALE DOC. NO SIGN, DATE SHAFT PRODUCTION 1:1 4/03/0 DESIGNER KA, DIGITEMIET DRAWING CHECKED BY NO PAGES: 2 -. KOZLOV V.N AGE NO: 2 TOMSK POLYTECHNICAL UNIVERSITY. DESIGN AND PRODUCTION FACULTY. STUDY GROUP:154A4A STEEL 40X GOST 2.801-74

