TOMSK POLYTECHNIC UNIVERSITY

Department: TAMP

COURSEWORK

"Metrology, Standardisation and Sertification"

STUDENT'S GROUP NO: 158Л1А. STUDENT'S NAME: PRINCEWILL F.I. SUPERVISOR'S NAME: KOZLOV V.N.

1. CALCULATION OF INTERFERENCE FIT

Data:

1	Torque	M _{кр}	400	Nm
2	Axial force	P_0	50	KN
3	Nominal diameter of mating parts	d_{HC}	60	mm
	connection			
4	Internal diameter of shaft (hole)	d_1	30	mm
5	External diameter of sleeve	d_2	75	mm
6	Pairing length	L	80	mm
7	Coefficient of friction	f	0,08	
8	Module of elasticity of sleeve	E_D	$2x10^{11}$	N/m^2
9	Module of elasticity of shaft	E_d	$2x10^{11}$	N/m^2
10	Poisson coefficient of sleeve	μ_D	0,3	
11	Poisson coefficient of shaft	μ_d	0,3	
12	Yield strength of sleeve	σ_{TD}	$38x10^{8}$	N/m^2
13	Yield strength of shaft	σ_{Td}	$38x10^8$	N/m^2
14	Roughness of sleeve	R _{aD}	1.25	μm
15	Roughness of shaft	R _{ad}	0.8	μm

Material of sleeve is steel 40

Material of shaft is steel 50

1) Minimum stress on mating surface:

$$[\mathbf{P}_{\min}] = \frac{\sqrt{P_0^2 + \left(\frac{2M_{\rm Kp}}{d_{\rm HC}}\right)^2}}{\pi * l * f * \partial_{\rm HC}} = \frac{\sqrt{(50 * 10^3)^2 + \left(\frac{2 * 400}{60 * 10^{-3}}\right)^2}}{3.14 * 60 * 10^{-3} * 50 * 10^{-3} * 0.08} = \frac{51747.24}{7.53 * 10^{-4}} = 68.7 * 10^6 \frac{N}{m^2}$$

Where,

 P_0 – longitudinal axial force, N

 $M_{\kappa p}$ – Torque, Nm

l-Length of contact of the mating surfaces, (m)

f - Coefficient of friction

2) On the basis of the value of $[P_{min}]$ we determine the smallest estimated interference:

$$N_{\min}^{l} = [P_{\min}]^{*} d_{HC}^{*} \left(\frac{c_{1}}{E_{1}} + \frac{c_{2}}{E_{2}} \right)$$

Where,

 $E_1 \mbox{ and } E_2 \mbox{ yield strength corresponding to the shaft and hole respectively, <math display="inline">N/m^2$

 C_1 and C_2 -Lame coefficients which can be determined by the formulae below

For shaft:
$$C_1 = \frac{1 + \left(\frac{d_1}{d_{HC}}\right)^2}{1 - \left(\frac{d_1}{d_{HC}}\right)^2} - \mu;$$
 $C_1 = \frac{1 + \left(\frac{30}{60}\right)^2}{1 - \left(\frac{30}{60}\right)^2} - 0, 3 = 1,36$

For sleeve:
$$C_2 = \frac{1 + \left(\frac{d_{HC}}{d_2}\right)^2}{1 - \left(\frac{d_{HC}}{d_2}\right)^2} + \mu;$$
 $C_2 = \frac{1 + \left(\frac{60}{75}\right)^2}{1 - \left(\frac{60}{75}\right)^2} + 0.3 = 4.85$

 $N_{\min}^{l} = 68,7 \times 10^{6} \times 0,060 \times \left(\frac{1,36+4,85}{2*10^{11}}\right) = 12,8 \times 10^{-5} \text{ m} = 128 \ \mu m \quad 8,5 \times 10^{-6} \text{ m}$

3) Determining the minimum permissible interference taking into account adjustment: $[N_{min}] = N^{l}_{min} + \gamma_r + \gamma_{dis} + \gamma_t$

To define γ_r ($\gamma_{roughness}$), we take the value of the roughness of the sleeve and the shaft below: because from the formula $\gamma_r = 2 \times k \times (Rzd+RzD)$,

Where: k=1,2 (rate guarantee);

Rad=0,8 μ m for 6 grade of shaft tolerance, so Rzd=4×0,8=3,2 μ m;:

RaD=1,25 μm for 7grade of hole tolerance, so RzD=4×1,25=6 μm ;

 $\gamma_r = 2 \times k \times (\text{Rzd} + \text{RzD}) = 2 \times 1, 2 \times (3, 2 + 6) = 5,52 \mu m$

Taking into account reducing of diameter when disassembling: $\gamma_{dis} = 10 \mu m$;

 $\gamma_t=0$, because coefficient of temperature extension of the shaft and the sleeve diameter is equal (material is the same (steel 40X)).

Then $[N_{min}] = 128 + 5,52 + 10 + 0 = 143 \,\mu m$ $24,02 \approx 24 \,\mu m$

4) Determining the maximum permissible pressure, in which there is no plastic deformation on the contact surfaces of the parts. As $[P_{max}]$ we take the smaller of the two values:

For shaft:
$$P_1 = 0.58 * \sigma_{TI} * \left[1 - \left(\frac{d_1}{d_{HC}}\right)^2 \right] = 0.58 * 38 * 10^8 * \left[1 - \left(\frac{30}{60}\right)^2 \right] = 16.53 * 10^8 \text{ N/m}^2;$$

For sleeve: $P_2 = 0.58 * \sigma_{TI} * \left[1 - \left(\frac{d_{HC}}{d_{HC}}\right)^2 \right] = 0.58 * 38 * 10^8 * \left[1 - \left(\frac{60}{60}\right)^2 \right] = 7.93 * 10^8 \text{ N/m}^2;$

For sleeve: $P_2 = 0.58 * \sigma_{TI} * \left[1 - \left(\frac{\alpha_{HC}}{d_2} \right) \right] = 0.58 * 38 * 10^8 * \left[1 - \left(\frac{35}{75} \right) \right] = 7.93 * 10^8 \text{ N/m}^2;$ We choose $[P_{\text{max}}] = 7.93 * 10^8 \text{ N/m}^2$

(100000 [1 max] = 7,55 10 10 mm)

5) Defining the maximum value of the calculated interference N_{max} :

$$N_{max}^{l} = [P_{max}]^{*} d_{HC}^{*} \left(\frac{c_{1}}{c_{1}} + \frac{c_{2}}{c_{2}}\right) = 7,93^{*}10^{8} \times 0,060^{*} \frac{1,36 + 4,85}{2 \times 10^{11}} = 3,5^{*}10^{-4} - m = 1,477 \times 10^{-3} \text{ m} = 1500 \ \mu m$$

Defining the maximum value of the calculated interference taking adjustment into account:

$$N_{max} = N'_{max} * \gamma_p + \gamma_r$$

Where,

 γ_p – Enlargement of the specific pressure at the face end of the sleeve. We take $\gamma_p = 0.93$. $[N_{max}] = 350*0.93+5.52 = 331.02\mu m \approx 331\mu m$ $[N_{max}] = 1500 * 0.93 + 5.52 = 1400.52 \mu m \approx 1400 \ \mu m.$

6) Choosing a fit from the given data $[N_{min}] = 143 \ \mu m$; $[N_{max}] = 1400 \ \mu m$; $d_{HC} = 60 \text{mm}$. [Choosing a fit from the given data $[N_{min}] = 34 \mu m$; $[N_{max}] = 331 \mu m$; $d_{HC} = 60 \text{mm}$

We choose the fit $\frac{H7}{u7} \left(\frac{+0,030}{+0,117} + 0,087 \right)$, for which N_{max} = 117 $\mu m < [N_{max}] = 331 \ \mu m$;

 $N_{min} = 57 \mu m > [N_{min}] = 34$]

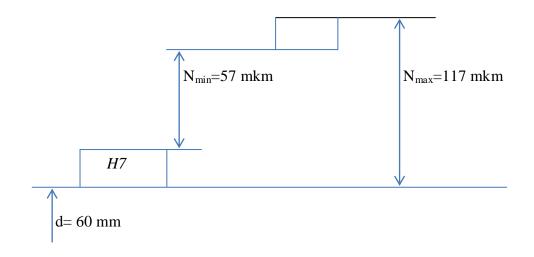
Safety coefficient of the joint:

 N_{min} -[N_{min}] = 57-34 = 23 μm

Safety coefficient of the parts:

 $[N_{max}]-N_{max} = 140-117 = 23\mu m$

Defining the conditions of press-fit:


 $R_n = f_n * P_{max} * \pi * d*l$, where

 $f_n = 1,2f = 1,2*0,08 = 0,096 - coefficient of friction during press-fitting$

$$P_{\max} = \frac{N_{max} - \gamma_{\text{III}}}{d_{HC} \left(\frac{C_1}{E_1} + \frac{C_2}{E_2}\right)} = \frac{(117 - 5.52) \times 10^{-6}}{0.060 \times \left(\frac{1.36 + 4.85}{2 \times 10^{11}}\right)} \approx 5.9 \times 10^7 \text{ N/m}^2$$

Specific pressure Axial force of press at Nmax

 $R_{axial} = 0,096*5,9*10^7*3,14*0,060*0,080 = 5,3*10^3 N \approx 5 \text{ tons}$

Tolerance zones of the coupled details limit gages.

Ø60u7K–Go 60,120±0,001 60,121_{-0,002}mm

2. ASSIGNMENT OF CONTROLLED PARAMETERS OF GEAR

Data:

Table 2:

1	Module, MM	М	2,5
2	Teeth No.	Z_1	40
3	Teeth No.	Z_2	80
4	center distance	Aw	150
5	width of gear	В	25
6	d ₅ ,MM		50
7	d ₈ ,MM		64
8	accuracy of manufacturing of gear		8-7-7-В
9	Assignment of reducer		Automotive

8-degree of accuracy on norms of kinematic accuracy

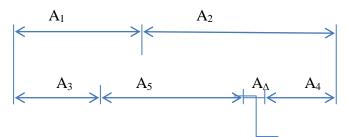
7-degree of accuracy on norms of smoothness of work

7-degree of accuracy on norms of teeth contact

B-type of interface

Controlled parameters of a gear are: kinematic accuracy, smoothness of work, completeness of contact. The control of kinematic accuracy includes: the verification of kinematic error in a single profiled engagement, cumulative pitch error, and radial run-out of the ring gear. The control of the smoothness of work includes the measurement of the local kinematic errors, deviations and errors of step profile. The control of complete contact includes measurements of total contact area, the axial step directions tooth error.

Controlled parameters of a gear


Table 3.

Controlled Parameter	Tolerance, MM		Type of Instrument				
	Z1=40	Z2=80	18 20 БВ–5033 БВ–5053,БВ–50360				
			БВ–936, УКМ–5 and others				
Control of kinematic Accuracy							
kinematic error in a single	74	103	18 20 БВ-5033 БВ-5053,БВ-50360				
profiled engagement			БВ–936, УКМ–5 and others				
radial run-out of the ring gear	45	63	25 36 25003, Б-10М, БВ-5015,БВ-				
			5050,БВ-5060,БВ-5061				
Control of the smoothness of work							
Tolerance on the	25	30	BB-5024, $BB-5053$ and others $IIIM-1$,				
local kinematic errors			БВ–5079. КЭУМ, БВ–5057, БВ–				
			5062, 5B–5078 and others				
Deviations of step \pm							
Error of profile							
Control of complete contact							
total contact area:			control-flow forming of				
-along the length of the tooth			machines and equipment				
not less than	60%						
-along the height of the tooth							
not less than	45%						

3. CALCULATION OF DIMENSIONAL CHAIN

Basic data: $A_1=33 \text{ mm}$ $A_2=40 \text{ mm}$ $A_3=8 \text{ mm}$ $A_4=A_3=8 \text{ mm}$ $A_5=56 \text{ mm}$

 $A_0 = 1 \pm 0,7 \text{ mm}$

We define the character of the links of the chain:

A₁, A₂-increasing links (sizes);

A₃, A₄, A_5 – decreasing links (sizes).

3.1. Calculation of the dimensional chain is carried out with the method of complete interchangeability. This calculation is carried out by the method described in (3 pg. 23).

We have the nominal value of the tolerance of the closing link T_{A0} =1,4 mm

$$T_{A_0} = \sum_{i=1}^{5n} T_{A_i}$$

We find the coefficient of accuracy of the producing link:

$$a_{n} = \frac{T_{A_{0}}}{\sum_{i=1}^{5n} i_{n}} = \frac{1400}{1,56+1,56+0,9+1,86+0,9} = 206,5$$

Where,

I_{Ai}-value of unit of tolerance for the dimensions: A₁, A₂, A₃, A₄, A₅.

According to table 1.8 (2 Pg.45) we find that values of unit tolerances like these exist, for example the 13-th quality equals 250.

Defining the tolerance according to the 13-th quality.

T_{A1}=0,39 T_{A2}=0,39 T_{A3}=0,22

Assigning the deviation to all links apart from A₄:

 $A_1=33\pm0,195$ $A_2=40\pm0,195$ $A_3=8-0,22$ $A_4=8-0,22$

Calculating the lower deviation of link A_5

$$\Delta_{A_0}^B = (\Delta_{A1}^B + \Delta_{A2}^B) - (\Delta_{A3}^H + \Delta_{A4}^H + \Delta_{A3}^B)$$

+0,7=(+0,195 + 0,195) - ((0,22) + Δ_{A4}^H + (-0,22))
 $\Delta_{A4}^H = -0,7 + 0,83 = +0,13$

Calculating the upper deviation of link A₄

$$\Delta_{A_0}^B = (\Delta_{A1}^H + \Delta_{A2}^H) - (\Delta_{A3}^B + \Delta_{A4}^B + \Delta_{A3}^B)$$

-0,7=(-0,195-0,195)-(0 + Δ_{A4}^B + 0)
 $\Delta_{A4}^B = 0,7-0,39 = 0,31$

Finding the tolerance A₄

$$\Delta_{A4}^B - \Delta_{A4}^H = +0,31 - 0,13 = 0,18$$

Verifying:

 $T_{A1} + T_{A2} + T_{A3} + T_{A4} + T_{A3} = 0,39 + 0,39 + 0,22 +),22 + 0,18 = 1,4 \ mm = T_{A0}$

Accepted dimensions of links:

 $A_{1}=33\pm0,195$ $A_{2}=40\pm0,195$ $A_{3}=8-0,22$ $A_{4}=56^{+0,31}_{+0,13}$

4. TOLERANCE ZONES OF PAIRING SHAFT AND ANTI-FRICTION BEARING

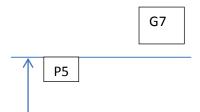
Basic data:

Internal diameter of bearing d₆=55 mm

External diameter of bearing D₁=90 mm

Class of accuracy of bearing P₅,

Width of bearing B=18 mm


Fit along–D₁–G7,

Fit along d₆–h6.

According to GOST, the bearing is N111

Determining the deviations of the dimension of the internal and external diameters of the bearing of class of accuracy P_5 .

Tolerance zone for outer (external) ring P5 \rightarrow p5 (<u>hole</u> diameter of the body (case) G7):

Location of the maximum deviation of the outer ring of the bearing and hole in the case. Guaranteed clearance $12\mu m$.

Tolerance zone for internal ring P5 (diameter of shaft $H6 \rightarrow h6$):

Location of the maximum deviation of the inner ring of the bearing and shaft.

Maximum interference clearance $9 \mu m$

Minimum interference $19 \ \mu m$

Tolerance on the dimension of the hole: $T_D=9-0=9 \ \mu m$

Tolerance on the dimension of the shaft: $T_d=19-0=19 \ \mu m$

Determining the average quadratic deviation of interference

$$\delta_r = \frac{1}{6} * \sqrt{T_D^2 + T_d^2} = \frac{1}{6} * \sqrt{19^2 + 9^2} \approx 3.5$$

Medium interference $N_m = m_d - m_D = (-9,5) - (-4,5) = -5 \ \mu m$.

Determining the limit of integration

$$Z = \frac{N_m}{\delta_r} = -\frac{5}{3.5} \approx -1.43.$$

Using the table, we find the value of the integration of probability when z=-1,43

 $F_{(1,43)} = -0,4236$

Because z<0 we find

Probability of interference-clearance $P'_S=0,5-F_Z=0,5-0,4236=0,0764$;

Probability of elearance interference $P'_N=0,5+0,4236=0,9236$.

Consequently, during assembly 92,36% of all connection will be with clearance interference and 7,64% with interference clearance.

Fit of the external ring of the bearing provides the guarantee of a minimum clearance, which facilitates the mounting of bearings into the case but in the absence of axial tightening external clips during work.

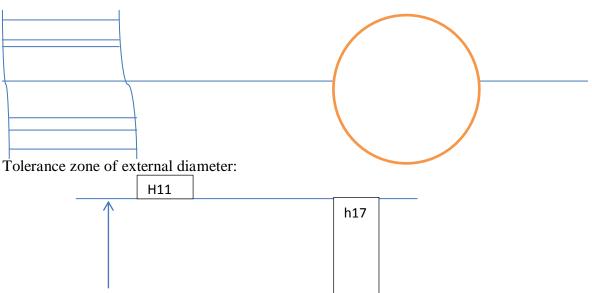
5. SPLINED JOINT

Basic data:

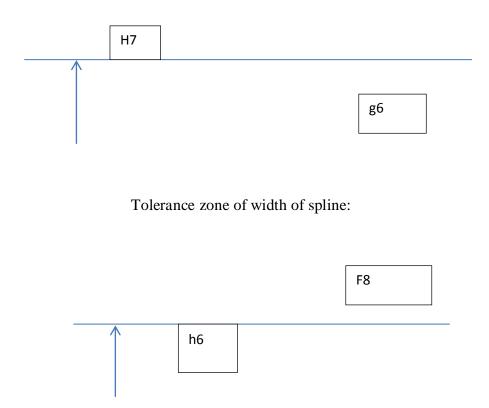
Centered diameter D; No. of splines 8; Internal diameter d=56 mm,

External diameter D=65mm; Width of the spline b=10 mm; Fit of centered diameter-D H7/g6;

Fit along the width of spline b F8/h6


Tolerance along the diameter d when centered along the diameter D standard is undefined, but diameter d must not be less than d1 (groove to release the grinding wheel), that corresponds to approximately h17; tolerance on the hole H11.

Designation:


-spline connection D-8 × $56\frac{H11}{h17}$ × $65\frac{H7}{g6}$ × $10\frac{F8}{h6}$

-spline shaft D-8 \times 56h17 \times 65g6 \times 10h6

–spline hole D–8 \times 56H11 \times 65H7 \times 10F8

Tolerance zone of internal diameter:

Control of the spline joint is a complex multilayered gauge.

6. KEY FIT

Basic data:

 $d_7=50 \text{ mm}; b_1=14 \text{ mm}; h=9 \text{ mm}; l_3=82 \text{ mm}; b_2=10 \text{ mm}; h_1=8 \text{ mm}; l_4=82 \text{ mm}; l_5=110 \text{ mm}$

Tolerance zone and quality of shaft d_7 -J_S7; Fit of key in the groove of the shaft $\frac{N9}{h9}$

For the groove of sleeve of the connecting element, we assign fit $\frac{J_S9}{h9}$ based on the recommendation of GOST 26360(1 pg. 206).

Key joint for the **<u>shaft</u> groove**:

Key joint for the **<u>sleeve</u> groove**:

Control of key joint:

–width of groove of shaft and sleeve plates with sides Go and Not go. –dimension $53.8^{+0.2}$: cap keyed with steps Go and Not go.

-dimension 55,8 . cap keyed with steps 00 and Not go.

–dimension $44,5_{-0,2}$ ring caliber with steps Go and Not go.

-symmetry of grooves relative to axial plane complex gauge:

7. THREADED CONNECTION

Basic data:

Diameter of thread M24 × 1; Fit of thread $\frac{5H6H}{7e6e}$ Nut Tolerance zone of the median diameter D₂-5H Tolerance zone of the internal diameter D₁-6H Bolt Tolerance zone of the median diameter d₂-7e Tolerance zone of the internal diameter d_1 –6e Nominal value of diameters and step threads d(D)=24;p=1 $d_2 = D_2 = 24 - 1 + 0,350 = 23,35$ $d_1 = D_1 = 24 - 2 + 0.917 = 22.917$ Limit of deviation for bolts: $d_{2max}=23,35-0,06=23,29$ (es=60 μ m) $d_{2max}=23,35-0,22=23,13$ (ei=220 μm) $d_{max} = 24-0,06 = 23,94 (es = 60 \ \mu m)$ $d_{min}=22,917-0,06=22,857(es=60 \ \mu m)$ d₁min not specified Limit of deviation for nut: $D_{2max}=23,350+0,132=23,482(ES=132 \ \mu m)$ $D_{2min}=D2=23,35(EI=0)$ D_{1max}=22,917+0,236=23,153(ES=236 µm) D_{1min}=D122,917(EI=0) D_{max} not specified $D_{min}=D=24(EI=0)$

8. TRANSITIONAL FIT (<u>check *below information* your self **ettentively** for self-study work) (there are **mistakes**!!!)</u>

Basic data:

D₅=50 mm

Fit based on the conditions of exploitation:

-accurate centered shaft.

-reduction of gear run-out.

-exclusion of non-rotating sleeve.

-possibility of disassembly etc.

Choosing the transitional fit $d50^{H7}/h6\left(\frac{+0,025}{+0,033}\right) \rightarrow d50^{H7}/n6\left(\frac{+0,025}{+0,017}\right)$

(fit $H7/_{h6}$ as transition fit is wrong!!!)

Defining the probability of the obtained junction with interference and clearance:

Maximum interference N_{max}=33-0=33 μm

Minimum interference N_{min}=17-25=-8 μm

Medium interference $N_m = \frac{33+(-8)}{2} = 12,5 \ \mu m$

Tolerance on the dimension of the hole $T_D=25-0=25 \ \mu m$

Tolerance on the dimension of the shaft $t_d=33-17=16 \ \mu m$

Determining the average quadratic deviation of the interference

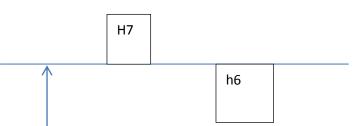
$$\delta_n = \frac{1}{6}\sqrt{T_D^2 + T_d^2} = \frac{1}{6}\sqrt{25^2 + 16^2} = 5 \ \mu m$$

Determining the limit of integration

$$Z = \frac{N_m}{\delta_r} = \frac{12,5}{5} = 2,5$$

From the table, we find the value of the integral function of probability when z=2,5

F(2,5)=0,3938


Because z>0 finding

The probability of interference $P'_{n}=0,5+F(z)=0,5+0,4938=0,9938$

The probability of clearance $P'_{S} = 0.5 - F(z) = 0.5 - 0.4938 = 0.0062$

Consequently, during assembly 99,38% of all junction will be with interference and 0,62% with clearance.

Tolerance zone of interference fit:

