Appendix to practice works "Cutting of materials & cutting tools"

THE COMMON DATA

about cutting modes choic

The inquiry (hand-book) data about cutting modes is developed with using of official publications for cutting by cutting tools from a **high-speed steel** (**HSS**) (red-hard steel) and from a **cemented carbides** (**CC**). They are <u>used</u> for application of tools with best values of geometrical parameters of a cutting part. Finish sharpening is made: for tools with **cemented carbides** by diamond grinding wheels, and with **high-speed steel** – by elbor (cubic boron nitride (CBN)) grinding wheels.

At assignment of cutting modes it is necessary to take into account character (kind) of machining, type and sizes of the cutting tool, material of its cutting part, material and blank condition, type and an equipment condition.

Elements of cutting modes is usually fixed in the next order.

Depth of cut *t*: at rough (preliminary) machniing (handling) depth of cut is fixed whenever possible maximum, equal to all machining stock or greatest its parts; at finish machniing – depending on requirements of processed sizes because with increasing *t* the cutting force is also increased, including its radial component P_y that results increasing of an elastic deformation of system MATP (machine tool – attachment – tool – part) and decreasing of machniing accuracy.

Feeding (feed rate) *s*: at rough processing the greatest possible feed is fixed, proceeding from <u>rigedness</u> and strength of MATP system, drive power of the machine tool, strength of cemented carbide plate (<u>replacable insert</u>) and other restricting factors, including demanded roughness of the processed surface; at a finish machining – depending on demanded degree of accuracy (grade of tolerance) and roughness of the processed surface.

Cutting speed v is calculated under the empirical formulas fixed for each type of machining which have a general view

$$v_{table} = \frac{C_v}{T^m \times t^x \times s^y} \,. \tag{1}$$

Values of factor (coefficient) C_v and the power exponents containing in this formula as well as the cutting tool life *T*, applied to the given aspect of machining, are specified in tables for each type of machining. Calculated with use of the table data cutting speed v_{table} (v_t) considers concrete values of cut depth *t*, feed s and tool life *T* also it is actual at certain table values of some other factors. Therefore for determine of the actual value of cutting speed taking into account concrete values of the mentioned factors correction factor K_v is used. Then the actual value of cutting speed v= $v_t K_v$, where K_v – product of some factors. Major of them, the common for various aspects of handling, are:

 K_{mv} – the factor considering strength or hardness of processed material (tab. 1);

 K_{sv} – the factor considering a surface condition of blank (tab. 5);

 K_{tv} – the factor considering quality of a cutting tool material, its type if it differs from the conditions specified in the common table (tab. 6).

 Correction fact 	tor K_{mv} cons	sidering influer	nce of the physic	comechanical
-------------------------------------	-------------------	------------------	-------------------	--------------

properties of	processed	material	for	cutting speed

properties of processed material for eatting speed						
Worked stock	The settlement formula					
Steel	$K_{mv} = K_{g} \left(\frac{750}{\sigma_{u}}\right)^{n_{v}}$					
Gray cast iron	$K_{mv} = \left(\frac{190}{HB}\right)^{n_v}$					
Malleable cast iron	$K_{mv} = \left(\frac{150}{HB}\right)^{n_v}$					

Notes: 1. σ_u and HB – the actual parametres characterising the processed material for which cutting speed is calculated. $\sigma_u (\sigma_e)$ – ultimate tensile strength (UTS) of the processed material (for steels); HB – hardness of material (for cast irons).

2. Factor Kg characterising group of a steel about machinability, and an exponent n_v see in tab. 2.

IS SHOWN I	II tab.	1					
Factor	Kg for	P	Power exponents n_v at machining				ng
cutting	g tool	by c	utters	by drills,	cor-	by 1	nills
mate	rial	-		drills, rear	ners	-	
HSS	CC	HSS	CC	HSS	CC	HSS	CC
1.0	1.0	-1.0		-0.9		-0.9	1.0
1.0	1.0	1.75		-0.9		-0.9	
1.0	1.0	1.75		0.9		0.9	1.0
1.2	1.1	1.75	1.0	1.05	1.0	1.45	
0.85	0.95	1.75		0.9		1.35	
0.8	0.9	1.5		0.9		1.35	
0.7	0.8	1.25		0.9		1.35	
0.6	0.7	1.25		0.9		1.0	
		1.7	1.25	1.3	1.3	0.95	1.25
		1.7	1.25	1.3	1.3	0.85	1.25
	Factor cutting mate HSS 1.0 1.0 1.0 1.0 1.2 0.85 0.8 0.7	Factor Kg for cutting tool material HSS CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.9 0.7 0.8 0.6 0.7	cutting tool material by cut by cut material HSS CC HSS 1.0 1.0 -1.0 1.0 1.0 1.75 1.0 1.0 1.75 1.0 1.0 1.75 0.8 0.95 1.75 0.8 0.9 1.5 0.7 0.8 1.25 0.6 0.7 1.25 1.7	Factor Kg for cutting tool material Power ex- by cutters HSS CC HSS CC 1.0 1.0 -1.0 1.0 1.75 1.0 1.0 1.75 1.0 1.0 1.75 0.85 0.95 1.75 1.0 0.8 0.9 1.5 0.7 0.8 1.25 0.6 0.7 1.25 1.75	Factor Kg for cutting tool material Power exponents n_y by cutters by drills, drills, rear HSS CC HSS CC HSS 1.0 1.0 -1.0 -0.9 1.0 1.0 1.75 -0.9 1.0 1.0 1.75 0.9 1.2 1.1 1.75 0.9 0.85 0.95 1.75 0.9 0.7 0.8 1.25 0.9 0.6 0.7 1.25 0.9 1.7 1.25 1.3	Factor Kg for cutting tool material Power exponents n_v at m by cutters by drills, cor- drills, reamers HSS CC HSS CC HSS CC 1.0 1.0 -1.0 -0.9 -0.9 1.0 1.0 1.75 -0.9 -0.9 1.0 1.0 1.75 0.9 -0.9 1.0 1.0 1.75 0.9 -0.9 0.85 0.95 1.75 0.9 1.0 0.8 0.9 1.5 0.9 0.9 0.6 0.7 1.25 0.9 -0.9 0.7 0.8 1.25 0.9 -0.9	Factor Kg for cutting tool material Power exponents n_v at machini by cutters by drills, cor- drills, reamers by r HSS CC HSS CO HS CO 9 0.9 0.9 0.9 0.9 1.35 0.9 1.35 0.6 0.7 1.25 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.

2. Values of factor Kg and power exponent n_v in the formula for calculation of machinability factor K_{mv}
which is shown in tab. 1

Note: HSS - high-speed steel; CC - cemented carbide.

3. Correction factor K_{mv} considering influence of physicomechanical properties of heat resisting and corrosion resistance steels and alloys for cutting speed

Mark of steel or an alloy	σ_u , MPa	Average value of factor K_{mv} ,	Mark of steel or an alloy	σ_u , MPa	Average value of factor K_{mv} ,
12X18H9T	550	1.0	XH60BT	750	0.48
13X11H2B2MΦ	1100 - 1460	0.8 - 0.3	ХН77ТЮ	850-1000	0.40
14X17H2	800 - 1300	1.0 - 0.75	ХН77ТЮР		0.26
13Х14Н3В2ФР	700 - 120	0.5 - 0.4	XH35BT	950	0.50
37Х12Н8Г8МФБ		0.95 - 0.72	ХН70ВМТЮ	1000-1250	0.25
45X14H14B2M	700	1.06	ХН55ВМТКЮ	1000-1250	0.25
10X11H20T3P	720 - 800	0.85	ХН65ВМТЮ	900-1000	0.20
12X21H5T	820 - 10000	0.65	ХН35ВТЮ	900-950	0.22
20X23H18	600-620	0.80	BT3-1; BT3	950-1200	0.40
31Х19Н9МВБТ		0.40	BT5; BT4	750-950	0.70
15Х18Н12С4ТЮ	730	0.50	BT6; BT8	900-1200	0.35
XH78T	780	0.75	BT14	900-1400	0.53 - 0.43
ХН75МБТЮ		0.53	12X13	600-1100	1.5 - 1.2
			30X13; 40X13	850-1100	1.3 - 0.9

4. Correction factor K_{mv} considering influence of physicomechanical properties of copper and aluminium alloys for cutting speed

Copper alloys	K_{mv}	Aluminium alloys	K_{mv}		
The heterogeneous		Silumin and cast alloys (quanched), $\sigma_u = 200 \dots 300$ MPa,	0.8		
<i>HB</i> > 140	0.7	<i>HB</i> > 60;			
<i>HB</i> 100 140	1.0	Duralumin (quanched), $\sigma_u = 400 \dots 500$ MPa, $HB > 100$	0.8		
Leaden at heterogeneous structure	1.7	Silumin and cast alloys, $\sigma_u = 100 \dots 200$ MPa, $HB < 65$	1.0		
Copper	8	Duralumin, $\sigma_u = 300 \dots 400$ MPa, $HB < 100$	1.0		
Alloys with lead content >15 %	12	Duralumin, $\sigma_u = 200 \dots 300$ MPa	1.2		

5.	Factor K_{sv}	considering	influence a	surface	condition	of blanks

	With a rim								
	Rolled	Forged	Steel and cast iron ca	stings with a rim	Copper aluminium				
Without a rim	workpiece	workpiece	The normal	Strongly soiled	alloys				
1.0	0.9	0.8	0.8 - 0.85	0.5 - 0.6	0.9				

Material	Values of factor K_{tv} , depending on the mark of cutting tool material								
Carbon steel	T5K12B	T5K10	Т14К8	Т15К6	ТТ17К6	Т30К4	BK8		
	0.35	0.65	0.8	1.00	1.15	1.4	0.4		
Noncorrosive and heat-	ВК8	T5K10	Т15К6	P18					
resistant steels	1.0	1.4	1.9	0.3					
		HRC 35-50				HRC 51-62			
Hardened (quenched) steel	Т15К6	Т30К4	ВК6	ВК8	ВК4	ВК6	ВК8		
	1.0	1.25	0.85	0.83	1.0	0.92	0.74		
Gray and malleable cast iron	ВК8	ВК6	BK4	ВК3	ВКЗ				
	0.83	1.0	1.1	1.15	1.25				
Steel, cast iron, copper and	P6M5	BK4	ВК6	9XC	ХВГ	У12А			
aluminium alloys	1.0	2.5	2.7	0.6	0.6	0.5			

6. Correction factor K_{tv} considering influence of cutting tool material

Cutting tool life T is the period (duration) of operation of the cutting tool to dull (allowable wear-out). At multytool machining the tool life T should be increased, because machine tool idle times is increased for cutting tool **rechanging**?? It depends first of all on simultaneously working tools, a time in cut ratio by time of a working stroke, tool material, an equipment type. At multimachine service the tool life T it is necessary to increase with increasing of served machine tools quantity.

Tool life at multytool machining

$$T_{mt} = T \times K_{Tmt},\tag{2}$$

and at multimachine service

$$T_{ms} = T \times K_{Tms} \tag{3}$$

where T – tool life of the limiting tool (with the least tool life); K_{Tt} – factor of tool life changing at multytool machining (tab. 7); K_{MC} – factor of tool life changing at multimachine service (tab. 8).

7. Factor of tool life changing K_{Tmt} depending on quantity of simultaneously working tools

at average on unnormity of their work								
Quantity of working tools	1	3	5	8	10	15		
K_{Tmt}	1	1.7	2	2.5	3	4		

Note: 1. At uniform work of tools factor K_{Tmt} increase in 2 times.

2. At tool work with the great non-uniformity factor K_{Tmt} diminish on 25 ... 30 %.

8. Factor of tool life changing K_{Tms} in dependence on quantity of simultaneously served machine tools								
Quantity of served machine tools	1	2	3	4	5	6	7 and more	
K _{Tms}	1.0	1.4	1.9	2.2	2.6	2.8	3.1	

9. A correction factor *Kmp* for steels and cast irons, considering influence of quality of a worked stock on power dependences

		r r r r					
			Exponent <i>n</i> at definition				
		Component P_z of Torque <i>M</i> and axial force P_o at Tang					
		cutting force at	drilling, redrilling and a core	component P_z at			
Worked stock	The formula	cutting by cutter	drilling	milling			
Carbon and allowed	$K_{mp} = \left(\frac{\sigma_u}{750}\right)^{n_v}$	0.75/0.05		0.0/0.0			
steels σ_u , MPa: ≤ 600	^{mp} (750)	0.75/0.35	0.75/0.75	0.3/0.3			
>600	~ /	0.75/0.75	0.75/0.75	0.3/0.3			
Gray cast iron	$K_{mp} = \left(\frac{HB}{190}\right)^n$	0.4/0.55	0.6/0.6	1.0/0.55			
Malleable cast iron	$K_{mp} = \left(\frac{HB}{150}\right)^n$	0.4/0.55	0.6/0.6	1.0/0.55			

Note: in numerator – exponent values *n* for CC, in a denominator – for HSS.

Copper alloys	K_{mp}	Aluminium alloys	K_{mp}
The geterogeneous: HB 120	1.0	Aluminium and silumin	1.0
HB>120	0.75	Duralumin, σ_u ($\sigma_{\rm B}$), MПa:	
The homogeneous	1.8 - 2.2	250	1.5
Copper	1.7 - 2.1	350	2.0
Alloys with lead content >15 %	0.25 - 0.45	> 350	2.75

10. The correction factor K_{mp} considering influence of quality of copper aluminium alloys on power dependences

Force of cutting. Its principal component P_z (tangential component of resultant cutting force *R*) defining power N_e spent for cutting and a torque *M* of the machine tool spindle usually is meant cutting force. Power dependences are calculated under empirical formulas, values of factors and apparent exponents in which for various aspects of machining are reduced in corresponding tables.

Calculated with use of the table data power dependences consider concrete technological parametres (depth of cutt, feed, width of milling, etc.) and are actual at defined values of some other factors. Their values corresponding to actual cutting conditions be received by multiplication of factor K_P – the common correction factor considering changed in comparison with table cutting conditions, representing product of some factors. Major of them is the factor K_{mp} considering quality of a worked stock which value for a steel and cast iron are specified in table 9, and for copper and aluminium alloys – in table 10.

TURNING

Depth of cutt *t*: at rough turning and absence of power limitations of the equipment, ruggedness of MATP system is accepted equal to machining stock; at finish cutting the machining stock is cut off for two strokes and more. On each subsequent stroke it is necessary to fix less depth of cutt, than on the previous. At parameter of have processed surface roughness Ra = 3.2 microns inclusively $t = 0.5 \dots 2.0$ mm; at 3.2 > Ra > 0.8 microns, $t = 0.1 \dots 0.4$ mm.

Feed *s*: at rough turning feed is fixed as much as possible admissible on power of the equipment, ruggedness of MATP system, cutting insert (plate) strength and shank strength. Recommended feeds from the point of view of MATP system ruggedness at rough external turning are specified in tab. 11, and at a rough boring – in tab. 12.

The maximum feed values at steel 45 (C 1020) turning, admissible strength of a CC plate are specified in tab. 13.

Depending on demanded parametres of **have processed** surface roughness and nose radius of a cutter as much as possible admissible feeds are specified in tab. 14.

At cutting of slots and cut-off operation value of cross feed depends on properties of blank material, the sizes of a slot and machining diameter (tab. 15).

At shaped turning operations recommended feeds are specified in tab. 16.

Diameter	The shank		Workpiece material (worked stock)						
of a part,	size of	Carb	on steel, allow	wed and heat-	resistance	(Cast irons and	l copper alloy	s
mm	cutting tool,			Feed s,	mm/rev, at de	epth of cu	ıt <i>t</i> , mm		
	mm	To 3	Over 3 to 5	Over 5 to 8	Over 8 to	To 3	Over 3 to 5	Over 5 to 8	Over 8
					12				to 12
To 20	Fr. 16 × 25	0.3-0.4							—
	to 25 × 25								
20 40	Fr. 16 × 25	0.4-0.5	0.3-0.4			0.4-0.5			—
	to 25 × 25								
40 60	Fr. 16 × 25	0.5-0.9	0.4-0.8	0.3-0.7		0.6-0.9	0.5-0.8	0.4-0.7	—
	to 25 × 40								

11. Feeds at rough external turning for cutters with cemented carbide inserts and high-speed steels

60 100	Fr. 16 × 25	0.6-1.2	0.5-1.1	0.5-0.9	0.4-0.8	0.8-1.4	0.7-1.2	0.6-1.0	0.5-0.9
	to 25 × 40								
100400	Fr. 16 × 25	0.8-1.3	0.7-1.2	0.6-1.0	0.5-0.9	1.0-1.5	0.8-1.9	0.8-1.1	0.6-0.9
	to 25 × 40								

Notes: 1. The lower values of feeds correspond to the less shank sizes of a cutting tool and to stronger worked stocks, the upper values of feeds – to the greater shank sizes of a cutting tool and to less strong worked stocks.

2. At machining of heat-resistant steels and alloys the feed over 1 mm/rev is not applied.

3. At machining of interrupted surfaces and at operations with blows table values of feeds should be diminished by factor 0.75 - 0.85.

4. At machining of hardened (quenched) steels table values of feeds should be diminished with factor 0.8 for the steel with *HRC* 44–56 and with factor 0.5 for the steel with *HRC* 57–62.

12. Feeds at a rough boring with cemented carbide inserts and with high-speed steel

Cutter or s	hank		Workpiece material (worked stock)						
Diameter of	Cutter or								
cutting tool	mandrel	Carbon st	eels, allowe	ed and heat-	resistance	Cas	t irons and	copper allo	ys
cross-section or	sweep,			Feed s, 1	nm/rev at o	depth of cut	t, mm		
sizes of a	mm	To 2	3	5	8	To 2	3	5	8
rectangular			_	-			-	-	
shank, mm									
			Lathe an	d turret lath	e machines	5			
10	50	0.08				0.12-0.16			
12	50	0.1	0.08			0.12-0.2	0.12-0.18		
16	80	0.1-0.2	0.15	0.1		0.2-0.3	0.15-0.25	0.1-0.18	
20	100	0.5-0.3	0.15-0.25	0.12		0.3-0.4	0.25-0.35	0.12-0.25	_
25	125	0.25-0.5	0.15-0.4	0.12-0.2		0.4-0.6	0.3-0.5	0.25-0.35	_
30	150	0.4-0.7	0.2-0.5	0.12-0.3		0.5-0.8	0.4-0.6	0.25-0.45	_
40	200		0.25-0.6	0.15-0.4			0.6-0.8	0.3-0.8	_
40×40	150		0.6-1.0	0.5-0.7	_	_	0.7-1.2	0.5-0.9	0.4-0.5
	300		0.4-0.7	0.3-0.6			0.6-0.9	0.4-0.7	0.3-0.4
60×60	150		0.9-1.2	0.8-1.0	0.6-0.8		1.0-1.5	0.8-1.2	0.6-0.9
	300		0.7-1.0	0.5-0.8	0.4-0.7		0.9-1.2	0.7-0.9	0.5-0.7

Notes: 1. Upper limits of feeds are recommended for smaller cutting depth at machining of less strong materials, lower - for greater depth and stronger materials. 2. See notes 2 - 4 in tab. 11.

13. Feeds, mm/rev, admissible by strength of CC inserts, at turning of carbon steels by cutters
with the main angle in the plan $\varphi = 45^{\circ}$

	Depth of cut <i>t</i> , mm, to						
Insert thickness, mm	4	7	13	22			
4	1.3	1.1	0.9	0.8			
6	2.6	2.2	1.8	1.5			
8	4.2	3.6	3.0	2.5			
10	6.1	5.1	4.2	3.6			

Notes: 1. Depending on mechanical properties of a steel for the table feeds values use a correction factor 1.2 st = -480 (40 MBs; 1.0 st = -650 MHs; and 0.85 st = -870 = -1170 MBs;

1.2 at $\sigma_u = 480 \dots 640$ MPa; **1.0** at $\sigma_u = 650 \dots 870$ MIIa and **0.85** at $\sigma_u = 870 \dots 1170$ MPa.

2. At cast iron machining a table value of feeds multiply by factor 1.6.

3. A table value of feeds multiply by a correction factor 1,4 at $\phi = 30^{\circ}$; 1.0 at $\phi = 45^{\circ}$; 0.6 at $\phi = 60^{\circ}$ and 0.4 at $\phi = 90^{\circ}$. 4. At machining with blows (striking) feeds diminish by 20 %.

	14. Feeds, min/rev, at turning						
Surface roughness	parametre, micron		Nose radius of a cutter tip r, mm				
Ra	Rz	0.4	0.8	1.2	1.6	2.0	2.4
0.63	-	0.07	0.10	0.12	0.14	0.15	0.17
1.25		0.10	0.13	0.165	0.19	0.21	0.23
2.50		0.144	0.20	0.246	0.29	0.32	0.35
-	20	0.25	0.33	0.42	0.49	0.55	0.60
	40	0.35	0.51	0.63	0.72	0.80	0.87
	80	0.47	0.66	0.81	0.94	1.04	1.14

14. Feeds, mm/rev, at turning

Notes: feeds are given for machining of steels with $\sigma_u = 700 \dots 900$ MPa and cast irons; for steels with $\sigma_u = 500 \dots 700$ MPa a table value of feed multiply by a correction factor 0.45; for steels with $\sigma_u = 900 \dots 1100$ MPa a table value of feed multiply by a correction factor 1.25.

Diameter of	Width of a	Blank material						
machining, mm	cutting tool, mm	Carbon steels, allowed and heat-resistance	Cast irons and copper alloys					
To 20	3	0.06-0.08	0,11-0.14					
20 40	3 - 4	0.1-0.12	0.16-0.19					
40 60	4 - 5	0.13-0.16	0.20-0.24					
60 100	5 - 8	0.16-0.23	0.24-0.32					
100 150	6 - 10	0.18-0.26	0.3-0.4					
150	10 - 15	0.28-0.36	0.4-0.55					

15. Feeds, mm/rev, at turning of slots and cut-of operations for lathe and turret lathe machines

Notes: 1. At cutting-off of a continuous blank with diameter more than 60 mm at cutting tool approach to a blank axis to 0,5 radiuses should be diminished table feed values on 40 - 50 %.

2. For the quenched constructional steel table values of feed should be diminished on 30 % at HRC < 50 and on 50 % at HRC > 50.

3. At operation by the cutting tools fixed in a turret, table values should be multiplied by factor 0.8.

1	10. 1 eeds, hill/10 v, at shaped turning							
Width of a cutting		Diameter of blank, mm						
tool, mm	20	25	40	60 and more				
8	0,03 - 0,09	0,04 - 0,09	0,04 - 0,09	0,04 - 0,09				
10	0,03 - 0,07	0,04 - 0,085	0,04 - 0,085	0,04 - 0,085				
15	0,02 - 0,05	0,035 - 0,075	0,04 - 0,08	0,04 - 0,08				
20	—	0,03 - 0,06	0,04 - 0,08	0,04 - 0,08				
30	_	—	0,035 - 0,07	0,035 - 0,07				
40			0,03 - 0,06	0,03 - 0,06				
50 and more				0,025 - 0; 055				

16. Feeds, mm/rev, at shaped turning

Note: less feeds should be used for more difficult and deep profiles and hard metals, big – for simple profiles and soft metals.

Cutting speed v, m/min: at external direct both cross-section turning and a boring calculation is made under the empirical formula (1), and at cut-off, procutting and shaped turning with radial feed – under the formula (4)

$$v_{table} = \frac{c_v}{T^m \times s^v} \times K_v. \tag{4}$$

Average tool life for singl tool machining is equal 30 - 60 minutes. Values of factors and power exponents for formulas (1) and (4) are specified in table 17.

Factor K_v is product of the factors considering influence of a blank material by K_{mv} (see tab. 1 - 4), surface conditions K_s (tab. 5), cutting tool material K_t (tab. 6 see).

At multytool machining and multimachine service the cutting tool life should be inreased, using factors from tables 7 and 8.

The account of cutting tools geometrical parametres influence is executed by introduction of factors from table 18.

17. Values of factor C_{ν} and power exponents in formulas of cutting speed at machining by cutters								
Kind of machining	Cutting tool material	Feed, mm\rev	Factor	Factor and power exponents				
			C_{v}	x	у	т		
	Machining of carbon ste	els, $\sigma_{\rm e} = 750 MPa$						
External longitudinal turning by	Т15К6*	<i>s</i> ≤ 0.3	420		0.20			
through passage? cutter		$0.3 < s \le 0.7$	350	0.15	0.35	0.20		
		s > 0.7	340		0.45			
The same, cutting tools with an	Т15К6*	$s \leq t$	292	0.30	0.15	0.18		
additional edge		s > t	292	0.15	0.30	0.18		
Cut-off operation	T5K10*		47		0.80	0.20		
	P18 **		23.7		0.66	0.25		
Shaped turning	P18 **	—	22.7	—	0.50	0.30		
	Т15К6*		244	0.23	0.30	0.20		

17. Values of factor C_{ν} and power exponents in formulas of cutting speed at machining by cutters

Threading by a cutter	P6M5	Rough strokes:				
		P < 2 mm	14.8	0.70	0.30	0.11
		$\frac{1}{2}$ mm	30	0.60	0.25	0.08
	P6M5	Finish strokes	41.8	0.45	0.30	0.13
Rotational threading	Т15К6*	_	2330	0.50	0.50	0.50
_	Machining of gray ca	st iron, HB 190		1 1		I
External longitudinal turning by	ВК6	$s \le 0.40$	292	0.15	0.20	0.20
through passage? cutter		s > 0.40	243	0.15	0.40	0.20
External longitudinal cutter with an	ВК6 **	<i>s</i> > t	324	0.40	0.20	0.28
additional blade		$s \leq t$	324	0.20	0.40	0.28
Cut-off operation	ВК6*		68.5	—	0.40	0.20
Нарезание a fastening thread	ВК6*		83	0.45		0.33
	Machining of malleable	cast iron, HB 150				
External longitudinal turning by	ВК8 *	$s \le 0.40$	317	0.15	0.20	0.20
through passage? cutter		s > 0.40	215	0.15	0.45	0.20
Cut-off operation	ВК6*	—	86		0.4	0.20
Machining of copp	per haterogeneous alloys	of average hardnes	s, HB 100 -	- 140		
External longitudinal turning by	P18*	$s \le 0.20$	270	0.12	0.25	0.23
through passage? cutter		s > 0.20	182	0.12	0.30	0.23
Machining of silumi	n and foundry aluminiun	$n alloys, \sigma_n = 100 - 2$	00 MPa, H	B < 65;		
	Duralumin, $\sigma_u = 300 - 40$					
External longitudinal turning by	P18*	$s \le 0.20$	485	0.12	0.25	0.28
through passage? cutter		s > 0.20	328	0.12	0.50	0.28

* Without cutting fluids; ** With cutting fluids.

Notes: 1. At an internal machining use a correction factor 0.9.

2. At machining of carbon and heat-resistance steels and steel castings by HSS cutters without cutting fluids use a correction factor for cutting speed **0.6** (**0.8**).

3. At cut-off operation of carbon steels and steel castings and procutting by cutters with cemented carbide T15K6 with cutting fluids use a correction factor 1.4.

4. At shaped turning deep and an intricate shape use a correction factor 0.85.

5. At machining of the heat treated steels by HSS use a correction factor: at normalization -0.95; at an annealing -0.9; at improvement -0.8.

10. The conte	18. The confection factors considering influence of a cutting tool geometrical parametres for cutting speed									
The main angle in	Factor	Auxiliary angle in	Factor $K_{\varphi I \nu}$	Nose radius at a cutter	Factor K_{rv}					
the plan ϕ ^	$K_{\varphi v}$	the plan ϕ_1 °		tip r *, mm						
20	1.4	10	1.0	1	0.94					
30	1.2	15	0.97	2	1.0					
45	1.0	20	0.94	3	1.03					
60	0.9	30	0.91	—	—					
75	0.8	45	0.87	5	1.13					
90	0.7	_			_					

18. The correction factors considering influence of a cutting tool geometrical parametres for cutting speed

* It is considered only for cutting tools with high-speed steel.

Finishing turning has series of the features distinguishing it from rough and in-process turning, therefore recommended cutting modes at thin (diamond) turning on high-speed lathes of increased accuracy and boring machine tools are reduced separately in tab. 19.

Cutting modes at turning of quenched steels by cemented carbide cutters are reduced in tab. 20.

Cutting modes at turning and a boring work of cast irons, quenched steels and cemented carbide by the cutters equipped with polycrystals of aggregates 01 (elbor-R), 05, 10 (geksanit-R) and 10D (two-layer plates with a working layer from geksanit-R) are reduced in tab. 21.

19. Cutting modes at thin turning and a borning work										
Blank material	Cutting tool material	Surface roughness Ra,	Feed s,	Cutting speed v,						
	of a working part	micron	mm/rev	m/min						
Steel: $\sigma_u < 650$ MPa				250 - 300						
$\sigma_u = 650 - 800 \text{ MPa}$	Т30К4	1.25 - 0.63	0.06 - 0.12	150 - 200						
$\sigma_u > 800 \text{ MPa}$				120 - 170						
Cast iron: HB 149 - 163				150 - 200						
<i>HB</i> 156 - 229	ВКЗ	2.5 - 1.25	0.06 - 0.12	120 - 150						
<i>HB</i> 170 - 241				100 - 120						
Aluminium alloys and babbit	ВКЗ	1.25 - 0.32	0.04 - 0.1	300 - 600						
Bronze and brass	ВКЗ		0.04 - 0.08	180 - 500						
N (1 D (1 C () 10	1 0 1 7									

19. Cutting modes at thin turning and a boring work

Notes: 1. Depth of cut is equal 0.1 - 0.15 mm.

2. Preliminary stroke with depth of cut of 0.4 mm improves the geometrical shape of the maachined surface.

3. Smaller values of a surface roughness correspond to smaller feed.

20.	Cutting modes at t	turning of que	enched steels by	cutters with	cemented carbide inserts

Feed <i>s</i> ,	Width of	Hardness of workpiece, HRC									
mm\rev	procutting, mm	35	39	43	46	49	51	53	56	59	62
					C	Cutting s	speed v, r	n/min			
			Exte	rnal lon	gitudina	al turnir	ng				
0,2		157	135	116	107	83	76	66	48	32	26
0,3	—	140	118	100	92	70	66	54	39	25	20
0,4		125	104	88	78	60	66	45	33	—	
0,5		116	95	79	71	53		—	—		
0,6		108	88	73	64	48					
				Slot _I	procutti	ng					
0,05	3	131	110	95	83	70	61	54	46	38	29
0,08	4	89	75	65	56	47	41	37	31	25	19
0,12	6	65	55	47	41	35	30	27	23	18	14
0,16	8	51	43	37	32	27	23	<u> </u>		—	<u> </u>
0,20	12	43	36	31	27	23	20				

Notes: 1. Depending on depth of cut for a table cutting speed value use a correction factor: 1.15 at t = 0.4 - 0.9 mm; 1.0 at t = 1 - 2 mm and 0.91 at t = 2 - 3 mm.

2. Depending on surface roughness for a table cutting speed value use a correction factor: 1.0 for $R_z = 10$ microns; 0.9 for Ra = 2.5 microns and 0.7 for Ra = 1,25 microns.

3. Depending on the cemented carbide mark for a table cutting speed value use a correction factor K_{n}

Hardness of workpiece	HRC 35 - 49				<i>HRC</i> 50 - 62		
Cemented carbide mark	Т30К4	Т15К6	ВК6	ВК8	BK4	ВК6	ВК8
Factor K_{tv}	1.25	1.0	0.85	0.83	1.0	0.92	0.74

4. Depending on the main angle in the plan of a cutting tool use correction factors: 1.2 at φ > 45 °;

0.9 at $\varphi = 60^{\circ}$; 0.8 at $\varphi = 75^{\circ}$; 0.7 at $\varphi = 90^{\circ}$.

5. At operation without cutting fluides for a table cutting speed value use correction factor 0.9.

21. Cutting modes at turning and a boring by cutters with plates equipped with an compound
on the basis of a cubic boron nitride

Workpiece material	Character of machining	Mark of an	Depth of cut	Feed s,	Cutting speed v,				
		compound	<i>t</i> , mm	mm/rev	m/min				
Quenched steels, HRC 40 - 58	Without blow	01; 05	0.05 - 3.0	0.03 - 0.2	50 - 160				
	With blow	10; 10D	0.05 - 1.0	0.03 - 0.1	40 - 120				
Quenched steels, HRC 58 - 68	Without blow	01	0.05 - 0.8	0.03 - 0.1	50 - 120				
	With blow	10; 10D	0.05 - 0.2	0.03 - 0.07	10 - 100				
Gray and high-tensile cast irons,	Without blow	05; 01	0.05 - 3.0	0.05 - 0.3	300 - 1000				
<i>HB</i> 150 - 300	Without blow	10; 10D; 05;	0.05 - 3.0	0.05 - 0.15	300 - 700				
		01							
Bleached quenched cast irons,	Without blow	05; 01	0.05 - 2.0	0.03 - 0.15	80 - 200				
<i>HB</i> 400 - 600	With blow	10; 10D	0.05 - 1.0	0.05 - 0.1	50 - 100				
Cemented carbides BK15,	Without blow,	10; 10D; 01	0.05 - 1.0	0.03 - 0.1	5 - 20				
BK20, BK25, etc., HRA 80 - 86	palpation is supposed								

Cutting force, N. It is accepted to decompose resultant cutting force *R* on the component forces directed on coordinate axes of the machine tool (tangential P_z , radial P_y and axial P_x). At external longitudional and cross turning, a boring work, cut-off operations, procutting of slots and shaped turning these components are calculated by the formula

$$P_{z, y, x} = 10C_p t^x s^y v^n K_p \tag{5}$$

At cut-off operations, procutting and shaped turning *t* is the length of a cutter edge.

Rated C_p and power exponents x, y, n for concrete (rated) conditions of machining for each of cutting force component are shown in tab. 22.

The correction factor K_p represents product of some factors $(K_p = K_{Mp}K_{\varphi p}K_{\gamma p}K_{\lambda p}K_{rp})$, considering actual conditions of cutting. Numerical values of these factors are reduced in tab. 9, 10 and 23.

Cutting power, kW, is calculated under the formula

$$N = \frac{P_z v}{1020 \times 60} \tag{6}$$

At simultaneous operation of several cutting tools effective power is defined as total power of separate tools.

Worked	Cutting	22. Values of factor e_p and power expon				power e					as for	com	poner	nts
stock	tool material	Machiing kind	Ta	angei	ntial	P_z		Rad	ial P _y	,		Axia	al P_x	
			C_p	x	у	п	C_p	х	у	п	C_p	x	у	n
Carbon steels	CC	External longitudinal both cross turning and boring	300	1.0	0.75	-0.15	243	0.9	0,6	-0,3	339	1,0	0,5	-0,4
$\sigma_u = 750$ MPa		External longitudional turning by cutters with an additional edge	384	0.90	0.90	-0.15	355	0.6	0.8	-0.3	241	1.05	0.2	-0.4
		Cutting-off and procutting	408	0.72	0.8	0	173	0.73	0.67	0	_	—	_	—
		Threading by cutter	148	-	1.7	0.71	—	—	—	—	—	—	—	-
	HSS	External longitudinal, undercutting and boring	200	1.0	0.75	0	125	0.9	0.75	0	67	1.2	0.65	0
		Cutting-off and procutting	247	1.0	1.0	0	_	—	—		—	—	_	—
		Shaped turning	212	1.0	1.0	0	-	—	—	—	—	—	_	—
12X18H9T <i>HB</i> 141	CC	External longitudinal both cross turning and boring of heat- resistance steel	204	1.0	0.75	0	-	-	—	—	-	—		—
Gray cast iron,	CC	External longitudinal both cross turning and boring	92	1.0	0.75	0	54	0.9	0.75	0	46	1.0	0.4	0
HB 190		External longitudional turning by cutters with an additional edge	123	1.0	0.85	0	61	0.6	0.5	0	24	1.05	0.2	0
		Threading by cutter	103	-	1.8	0.82	—	—	—	—	—	—	—	—
	HSS	Cutting-off and procutting	158	1.0	1.0	0	—	—	—	—	—	—	—	—
Malleable cast iron,	CC	External longitudinal both cross turning and boring	81	1.0	0.75	0	43	0.9	0.75	0	38	1.0	0.4	0
HB 150		External longitudional turning by cutters with an additional edge	100	1.0	0.75	0	88	0.9	0.75	0	40	1.2	0.65	0
		Cutting-off and procutting	139	1.0	1.0	0	—	—	—	—	—	—	—	—
Copper haterogene	HSS	External longitudinal both cross turning and boring	55	1.0	0.66	0	—	-	—		-	—	—	—
ous alloys, <i>HB</i> 120		Cutting-off and procutting	75	1.0	1.0	0	—	—	—	—	—	—	—	—
Aluminium and		External longitudinal both cross turning and boring	40	1.0	0.75	0	-	-	—	—	-	—	—	—
silumin		Cutting-off and procutting	50	1.0	1.0	0	—	—	—	—	—	—	—	-

22. Values of factor C_p and power exponents for cutting force formula at turning

Parame	tres	Cutting tool material	Correction factors					
The name	Magnitude		Designa	Designa Value of fac		tor for components		
	_		tion	Tangential P_z	Radial P_y	Axial P_x		
	30			1.08	1.30	0.78		
Main angle in	45	CC	$K_{\varphi p}$	1.0	1.0	1.0		
the plan ϕ°	60		11	0.94	0.77	1.11		
	90			0.89	0.50	1.17		
	30			1.08	1.63	0.70		
	45	HSS	$K_{\varphi p}$	1.0	1.0	1.0		
	60			0.98	0.71	1.27		
	90			1.08	0.44	1.82		
Face (side rake)	-15			1.25	2.0	2.0		
angle γ°	0	CC	$K_{\gamma p}$	1.1	1.4	1.4		
	10			1.0	1.0	1.0		
Face (side rake)	12 - 15	HSS	$K_{\gamma p}$	1.15	1.6	1.7		
angle γ	20 - 25		~	1.0	1.0	1.0		
Angle of main	-5				0.75	1.07		
cutting edge	0	CC	$K_{\lambda p}$	1.0	1.0	1.0		
inclination λ°	5				1.25	0.85		
	15				1.7	0.65		
	0,5			0.87	0.66			
Nouse radius r,	1,0	HSS	K_{rp}	0.93	0.82	1.0		
mm	2,0		-	1.0	1.0			
	3,0			1.04	1.14			
	4,0			1.10	1.33			

23. The correction factors considering influence of cutter geometrical parametres on cutting force components at turning of steels and cast irons

SHAPERING, SLOTTING

Depth of cutting. At all kind of shaping, planing and slotting depth of cutting is determined the same as at turning.

Feed. At rough shaping and planing feed *s*, mm/double stroke (**mmpdst**), is selected maximum from acceptable values on tab. 11, 13 in accordance to cut depth, shank cross-section value, strength of an insert; at finish shaping – from tab. 14, at cutting-off and slots procutting – from tab. 15.

Fig. 1. A tool shaper for finish machining

Cutting modes for planing of plains by

wide cutter (fig. 1) are shown in tab. 24. At shaping of plains by through passage cutters, at procutting of slots and cut-off machining cutting speed is calculated by correspondent formulas for turning with introduction of an additional correction factor $K_{sh\nu}$ considering a shock load.

6	24. Cutting modes at plaining of plains on east non parts by wide cutters with BKo inserts									
Character of machining	The workpiece	Quantity of	Depth of cutt <i>t</i> ,	Feed s,	Cutting speed					
	surface area, m ²	strokes i	mm	mm/double stroke	v, m/min					
Semifinish $R_z = 40 - 10$ microns	_	1	To 2	10-20	14-18					
Finish $Ra = 2.5 - 1.25$ microns:										
preliminary stroke	—	1	0,15 - 0,3	10 - 20	5 - 15					
finish stroke	6	1 - 2	0,05 - 0,1	12 - 16	15					
	8				11					
	12				7					
	17				55					
	22				4					

24. Cutting modes at planing of plains on cast iron parts by wide cutters with BK8 inserts

Notes: 1. An workpiece surface to moisten with kerosene.

	Values of factor $K_{sh v}$							
Machine tool type	Planer	Shaper	Slotter					
K_{yv}	1.0	0.8	0.6					

Cutting force. Components of cutting force are calculated by the same formula as for turning. **Cutting power** is calculated by the same formula as for turning at similar conditions.

DRILLING, REDRILLING, CORE-DRILLING, REAMING

Depth of cut *t*. At drilling depth of cutting t = 0.5 D (fig. 2, *a*), at redrilling; a core-drilling and reaming t = 0.5 (D - d) (fig. 2, *b*). s

Feed *s*. At a drilling without limitation factors it is selected as much as possible admissible feed on a drill strength (tab. 25). At redrilling of holes the feed is recommended 2 times more as for drilling. At presence of limitation factors feeds for drilling and for redrilling can be equal. They are calculated taking into account the corresponding correction factors in the notes to the table and data of others table.

Feeds at a core-drilling are shown in tab. 26, and at reaming – in tab. 27.

Cutting speed. Cutting speed, m/min, at drilling

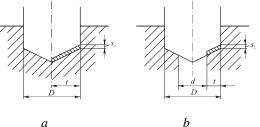


Fig. 2. The cutting schem at drilling (*a*) and redrilling (*b*)

$$v = \frac{C_v D^q}{T^m s^v} K_v, \tag{7}$$

and at redrilling, a coredrilling, reaming

$$v = \frac{C_v D^q}{T^m t^x s^y} K_v.$$
(8)

Values of factors C_v and power exponents are specified for drilling in tab. 28, for redrilling, core-drillings and reaming – in tab. 29, and values of cutting tool life T – in tab. 30.

The common correction factor for cutting speed, considering actual conditions of cutting,

$$K_{\nu} = K_{M\nu} \times K_{t\nu} \times K_{l\nu}, \qquad (9)$$

where $K_{M\nu}$ – the factor considering the workpiece material (tab. 1 - 4); $K_{t\nu}$ – the factor considering the cutting tool material (tab. 6); $K_{t\nu}$ – the factor considering depth of drilling (tab. 31). At redrilling and a core-drilling of molten or stamped holes correction factor $K_{s\nu}$ (tab. 5) is used in addition.

25. Feeds, mm/rev, at drilling of a steel, cast iron, copper and aluminium alloys by HSS drills

Drill		Ste	eel		Gray and malleable cast iron, copper						
diameter D,			and aluminium alloys								
mm	HB <160	HB 160-240	HB 240-300	<i>HB</i> > 300	$HB \le 170$	<i>HB</i> > 170					
2 - 4	0.09 - 0.13	0.08 - 0.10	0.06 - 0.07	0.04 - 0.06	0.12 - 0.18	0.09 - 0.12					
4 - 6	0.13 - 0.19	0.10 - 0.15	0.07 - 0.11	0.06 - 0.09	0.18 - 0.27	0.12 - 0.18					
6 - 8	0.19 - 0.26	0.15 - 0.20	0.11 - 0.14	0.09 - 0.12	0.27 - 0.36	0.18 - 0.24					
8 - 10	0.26 - 0.32	0.20 - 0.25	0.14 - 0.17	0.12 - 0.15	0.36 - 0.45	0.24 - 0.31					
10 - 12	0.32 - 0.36	0.25 - 0.28	0.17 - 0.20	0.15 - 0.17	0.45 - 0.55	0.31 - 0.35					
12 - 16	0.36 - 0.43	0.28 - 0.33	0.20 - 0.23	0.17 - 0.20	0.55 - 0.66	0.35 - 0.41					
16 - 20	0.43 - 0.49	0.33 - 0.38	0.23 - 0.27	0.20 - 0.23	0.66 - 0.76	0.41 - 0.47					
20 - 25	0.49 - 0.58	0.38 - 0.43	0.27 - 0.32	0.23 - 0.26	0.76 - 0.89	0.47 - 0.54					
25 - 30	0.58 - 0.62	0.43 - 0.48	0.32 - 0.35	0.26 - 0.29	0.89 - 0.96	0.54 - 0.60					
30 - 40	0.62 - 0.78	0.48 - 0.58	0.35 - 0.42	0.29 - 0.35	0.96 - 1.19	0.60 - 0.71					
40 - 50	0.78 - 0.89	0.58 - 0.66	0.06 - 0.07	0.35 - 0.40	1.19 - 1.36	0.71 - 0.81					

Niotes: rated feeds is applied at drilling with depth l < 3D with grade of tolerance not higher 12th in the conditions of rigid technological system. Otherwise use correction factors:

1) on hole depth $-K_{ls} = 0.9$ at $l \le 5D$; $K_{ls} = 0.8$ at $l \le 7D$; $K_{ls} = 0.75$ at $l \le 10D$;

2) for reaching more quality of a hole in connection with the subsequent machining by reamer or a tap $-K_{qs} = 0.5$;

3) at insufficient rigidness of MATP system: at average rigidness $K_{rs} = 0.75$; at small rigidness $K_{rs} = 0.5$; 4) on cutting tool material $-K_{ts} = 0.6$ for CC drills.

	20. Foods, him for, for our drifts and founders from fibb and co									
		Diameter of end reamer D, mm								
Worked stock	To 15	15 20	20 25	25 30	30 35	35 40	40 50	50 60	60 80	
Steel	0.5 - 0.6	0.6 - 0.7	0.7 – 0.9	0.8 - 1.0	0.9 – 1.1	0.9 – 1.2	1.0 – 1.3	1.1 – 1.3	1.2 - 1	
Cast iron $HB \leq 200$	0.7 – 0.9	0.9 – 1.1	1.0 - 1.2	1.1 – 1.3	1.2 – 1.5	1.4 - 1.7	1.6 - 2.0	1.8 - 2.2	2.0 - 2	
and copper alloys										
Cast iron, HB>200	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 – 0.9	0.9 – 1.1	1.0 - 1.2	1.2 - 1.4	1.3 – 1.5	1.4 – 1	

26. Feeds, mm/rev, for cor-drills and reamers from HSS and CC

Notes: 1. Values of feeds are applied for holes machining with grade of tolerance not higher 12th. For reaching more high accuracy (9-11th grade of tolerance) and also at holes preparing for the subsequent machining by one reamer or by a tap use correction factor $K_{qs} = 0.7$.

2. At a core-drilling of blind holes feed should not exceed 0.3 - 0.6 mm/rev.

27. Feeds, mm/rev, at preliminary (rough) reaming by HSS re	eamers
---	--------

Worked stock		Diameter of a reamer D, mm								
	To 10	10 15	15 20	20 25	25 30	30 35	35 40	40 50	50 60	60 80
Steel	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.7	2.0
Cast iron $HB \leq 200$	2.2	2.4	2.6	2.7	3.1	3.2	3.4	3.8	4.3	5.0
and copper alloys										
Cast iron, HB>200	1.7	1.9	2.0	2.2	2.4	2.6	2.7	3.1	3.4	3.8

Notes: 1. Feed should be diminished: at finish reaming for one stroke with accuracy of 9-11 grade of tolerance and surface roughness Ra = 3.2 - 6.3 microns or at reaming for the subsequent burnishing and a honing, multiplying by factor $K_{qs} = 0.8$; at finish reaming after rough for reaching accuracy of 7 grade of tolerance and surface roughness Ra =0.4 - 0.8 microns multiplying by factor $K_{qs} = 0.1$; for CC reamers multiplying by factor $K_{ts} = 0.7$. 2. At reaming of blind holes feed should not exceed 0.2 - 0.5 mm/rev.

	r • ··· ··· r •··· r •···			-r		0	
			F	Factor and power			
			exponents				Cutting
Worked stock	Material of a cutting	Feeding s,	C_{v}	q	y	m	fluids
	part of the tool	mm/about		1	5		
Carbon steel $\sigma_u = 750 \text{ M}\Pi a$		\leq 0,2	7,0	0,40	0,70	0,20	Yes
	P6M5	> 0,2	9,8	0,40	0,50	0,20	
Heat- resistance steel 12X18H9T, HB 141		—	3,5	0,50	0,45	0,12	Yes
Gray cast iron, HB 190		≤0,3	14,7	0,25	0,55	0,125	No
		> 0,3	17,1	0,25	0,40	0,125	
	ВК8	—	34,2	0,45	0,30	0,20	No
Malleable cast iron, HB 150	P6M5	≤0,3	21,8	0,25	0,55	0,125	Yes
		> 0,3	25,3	0,25	0,40	0,125	
	ВК8	—	40,4	0,45	0,3	0,20	No
Copper heterogeneous alloys of average		$\leq 0,3$	28,1	0,25	0,55	0,125	Yes
hardness (HB 100-140)	P6M5	> 0,3	32,6	0,25	0,40	0,125	
Silumin and foundry aluminium alloys,]	≤0,3	36,3	0,25	0,55	0,125	Yes
$\sigma_u = 100 - 200$ MPa, <i>HB</i> <65;		> 0,3	40,7	0,25	0,40	0,125	
duralumin, HB <100							

28. Values of factor C_{v} and power exponents in the formula of cutting speed at drilling

Notes: rated data are actual for HSS drills with double sharpening and undegrinded web. At single sharpening of HSS drills the calculated cutting speed should be diminished multiplying by factor $K_{sh v} = 0.75$.

29. Values of factor C_{ν} and power exponents	s in the formula of cutting speed	at redrilling, coredrilling and reaming
	01	

			Facto					
Worked stock	Kind of	Cutting tool			Cutting			
	machining	material	C_{v}	q	x	у	т	fluids
	Redrilling	P6M5	16.2	0.4	0.2	0.5	0.2	Yes
Carbon steel $\sigma_u = 750$ MPa		ВК8	10.8	0.6	0.2	0.3	0.25	
	Core-drilling	P6M5	16.3	0.3	0.2	0.5	0.3	Yes
		Т15К6	18.0	0.6	0.2	0.3	0.25	
	Reaming	P6M5	10.5	0.3	0.2	0.65	0.4	Yes
		Т15К6	100.6	0.3	0	0.65	0.4	

Qenched carbon steel,	Core-drilling	Т15К6	10.0	0.6	0.3	0.6	0.45	Yes
$\sigma_u = 1600 - 1800$ MPa, <i>HRC</i> 49 - 54	Development		14.0	0.4	0.75	1.05	0.85	Yes
	Redrilling	P6M5	23.4	0.25	0.1	0.4	0.125	No
		ВК8	56.9	0.5	0.15	0.45	0.4	
Gray cast iron, HB 190	Core-drilling	P6M5	18.8	0.2	0.1	0.4	0.125	No
		ВК8	105.0	0.4	0.15	0.45	0.4	
	Reaming	P6M5	15.6	0.2	0.1	0.5	0.3	No
		ВК8	109.0	0.2	0	0.5	0.45	
	Redrilling	P6M5	34.7	0.25	0.1	0.4	0.125	Yes
Malleable cast iron, HB 150		ВК8	77.4	0.5	0.15	0.45	0.4	
	Core-drilling	P6M5	27.9	0.2	0.1	0.4	0.125	Yes
		ВК8	143.0	0.4	0.15	0.45	0.4	
	Reaming	P6M5	23.2	0.2	0.1	0.5	0.3	Yes
		ВК8	148.0	0.2	0	0.5	0.45	No

30. Average values of cutting tool life T of drills, core-drills and reamers

Cutting tool	Worked stock	Cutting tool		Firmne	ess T, mi	nes, at dia	ameter of	the instr	ument, m	m
(process)		material	To 5	6-10	11-20	21-30	31-40	41-50	51-60	61-80
	Carbon and alloy	HSS	15	25	45	50	70	90	110	-
Drills	steel	CC	8	15	20	25	35	45	-	-
(drilling and	Corrosion	HSS	6	8	15	25	-	-	-	-
redrilling)	resistance steel									
	Gray and	HSS	20	35	60	75	105	140	170	-
	malleable cast									
	iron, copper and	CC	15	25	45	50	70	90	-	-
	aluminium alloys									
	Carbon and alloy	HSS and CC	-	-	30	40	50	60	80	100
Core-drills	steel, gray and									
(coredrilling)	malleable cast iron									
	Carbon and alloy	HSS	-	25	40	80	80	120	120	120
Reamers	steel	CC	-	20	30	50	70	90	110	140
(reaming)	Gray and	HSS	-	-	60	120	120	180	180	180
	malleable cast iron	CC	-	-	45	75	105	135	165	210

31. Correction factor K_{lv} for cutting speed at drilling, considering a hole depth

Parametre			Drilling			Redrilling, core-drilling, reaming
Depth of machined hole	3D	4D	5D	6D	8D	_
Factor K_{lv}	1.0	0.85	0.75	0.7	0.6	1.0

Torque *M*, N·m, and **axial force** P_o , N, are calculated under formulas: at drilling

$$M = 10C_M D^q s^y K_p; \tag{10}$$

$$P_o = 10C_p D^q s^y K_p; \tag{11}$$

at drilling and a core-drilling

$$M_{\rm kp} = 10C_M D^q t^x s^y K_p; \tag{12}$$

$$P_o = 10C_p D^q t^x s^y K_p; aga{13}$$

Values of factors C_M and C_p , and power exponents are shown in tab. 32.

The factor considering actual conditions of machining, in this case depends only on a workpiece material and is defined by expression $K_p = K_{mp}$.

Values of factor K_{mp} are shown for a steels and cast irons in tab. 9, and for copper and aluminium alloys – in tab. 10.

For torque definition at reaming each tooth of the cutting tool can be considered as a boring tool. Then at diameter of tool D a torque, N·m,

$$M_{sp} = \frac{C_p \times t^x \times s_z^y \times D \times z}{2 \times 100}$$
(14)

Here s_z – feed, mm per one tooth of the reamer, equal to s/z, where s – feed, mm/rev, z – quantity of reamer teeth. Values of factors C_p and power exponents see in tab. 32.

Power of cutting, kW, is calculated by the formula

$$N_e = M_{\kappa p} \times n / 9750, \tag{15}$$

where an cutting tool or workpiece rotational speed (frequency of rotation), rpm (revolution per minute), $n = 1000 \cdot v / \pi \cdot D$.

[at dr	illing, redrilling and									
		Cutting tool									
Worked stock	The process name	material	Torque				Axial force				
			C_M	q	x	У	C_p	q	x	у	
Carbon steel,	Drilling		0.0345	2.0	-	0.8	68	1.0	-	0.7	
$\sigma_u = 750 \text{ MPa}$	Redrilling and core- drilling	HSS	0.09	1.0	0.9	0.8	67	-	1.2	0.65	
Heat-resistence steel	Drilling	HSS	0.041	2.0	-	0.7	143	1.0	-	0.7	
12X18H9T, <i>HB</i> 141	Redrilling and core- drilling		0.106	1.0	0.9	0.8	140	-	1.2	0.65	
	Drilling		0.012	2.2	-	0.8	42	1.2	-	0.75	
Gray cast iron, <i>HB</i> 190	Redrilling and core- drilling	CC	0.196	0.85	0.8	0.7	46	-	1.0	0.4	
	Drilling		0.021	2.0	-	0.8	42.7	1.0	-	0.8	
	Redrilling and core- drilling	HSS	0.085	-	0.75	0.8	23.5	-	1.2	0.4	
Malleable cast iron,	Drilling	HSS	0.021	2.0	-	0.8	43.3	1.0	-	0.8	
HB 150	0		0.01	2.2	-	0.8	32.8	1.2	-	0.75	
	Redrilling and core- drilling	CC	0.17	0.85	0.8	0.7	38	-	1.0	0.4	
Heterogeneous	Drilling	HSS	0.012	2.0	-	0.8	31.5	1.0	-	0.8	
copper alloys of average hardness, <i>HB</i> 120	Redrilling and core- drilling	пээ	0.031	0.85	-	0.8	17.2	-	1.0	0.4	
Silumin and duralumin	Drilling	HSS	0.005	2.0	-	0.8	9.8	1.0	-	0.7	

32. Values of factors and power exponents in formulas of a torque and axial force	9
at drilling, redrilling and a core-drilling	

Note. The axial force calculated by the formula at drilling are actual for drills with undegrinded web; with not undegrinded web axial force at drilling is increased in 1.33 times.

MILLING

The configuration of a processed surface and equipment kind define type of an applied

milling cutter (mill) (fig. 3). Its sizes are defined by the sizes of a processed surface and depth of a cut off layer (or depth of cut). Diameter of a mill for reduction of cost and the expense of the cutting tool gets out whenever possible the least size, considering thus rigidity of technological system, the cutting scheme, the shape and the sizes of processed blank (workpiece). For reduction of basic technological time diameter of a mill gets out such whenever possible to process a surface for one stroke or with the least quantity of strokes.

At face milling for achievement of productive cutting modes the diameter of mill D should be more width of milling B, i.e. $D = (1.25...1.5) \times B$, and at machining of blanks their asymmetrical arrangement concerning a mill is obligatory: for carbon steel and alloyed steel blanks - their shift (displacement) in a direction of incision (start of cutting) of a mill tooth (fig. 4, a), than a small thickness of a cut off layer is provided in the cutting beginning; for heat-résistance and corrosion-résistance steel blanks shift of blank towards an exit of a mill tooth from cutting (fig. 4, b), than

minimum possible thickness of a cut observance of the specified rules leads to considerable decreasing of cutting tool life.

Depth of milling t and width milling B _ the concepts of connected with the sizes of a blank layer, removed at milling (fig. 3). In all kinds of milling, except for face milling, t defines duration of a mill tooth contact with blank: t is measured in the direction.

Cylindrical mills Face mills B Disk mills Plain side disk mills End mills Angular mills and slitting saws Shaped mills With convex With concave profile profile Two-flute end mills in milling on machine tools on vertical milling machine with pendulum feed tools (in one stroke)

Fig. 3. Types of milling cutters (mills)

minimum possible thickness of a cut off layer is provided at exiting of tooth from cutting. Non-

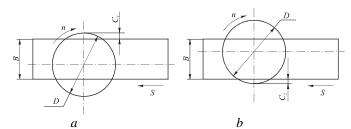


Fig. 4. An arrangement of steel blank at face milling concerning a mill: a – incision of a mill tooth at $c_1 = (0.03 \dots 0.05) D$; b – an exit of a mill tooth at $c_2 = 0$.

perpendicular to a mill axis. The width of milling B defines length of mill tooth edge, participating in cutting; B is measured in the direction parallel to an axis of a mill. At face milling these concepts are interchanged the position.

Feed. In milling feed can be (**it distinguish**??): feed per one tooth s_z (mmpt), feed per one revolution of a mill *s* (mmpr) and feed per minute s_m , (mmpm) which are calculated in the ratio:

$$s_{\rm m} = s \times n = s_z \times z \times n$$

where n – frequency of a mill rotation (the rotational speed), rpm; z – teeth quantity of a mill.

Initial value of feed at rough milling is its feed per one tooth s_z , at finish milling – on one feed per minute s_m which is used for the further calculation of feed per one tooth $s_z = s/z$. Recommended feeds for various mills and cutting conditions are specified in tab. 33 – 38.

Cutting speed *v* in milling is the peripheral speed of the cutter (a mill), m/minute (mpm),

$$v = \frac{C_v D^q}{T^m t^x s_z^y B^u z^p} K_v \tag{1}$$

Values of factor C_{ν} and power exponents are specified in tab. 39, and cutting tool life T – in tab. 40.

The general correction factor for cutting speed, considering actual conditions of cutting,

$$K_{\nu} = K_{M\nu} \times K_{s\nu} \times K_{t\nu}, \qquad (2)$$

where K_{Mv} – the factor considering quality of the processed material (tab. 1 - 4); K_{sv} – the factor considering a condition of blank surface (tab. 5); K_{tv} - the factor considering a material of the tool (tab. 6).

Power of the	Ste	eels	Cast irons and	l copper alloys
machine tool, kW	F	Feed per mill tooth s_z , mm	(mm/tooth), for CC mill	ls
	Т15К6	T5K10	ВК6	ВК8
5 - 10	0.09 - 0.18	0.12 - 0.18	0.14 - 0.24	0.20 - 0.29
Over 10	0.12 - 0.18	0.16 - 0.24	0.18 - 0.28	0.25 - 0.38

Notes: 1. The specified values of feeds for cylindrical mills are valid at width of milling B < 30 mm; at B > 30 mm tabular values of feeds should be reduced by 30 %.

2. The specified values of feeds for disk mills are valid at milling of a plane and shoulders; at milling of grooves tabular values of feeds should be reduced in 2 times.

3. In milling with the feeds specified in the table the surface roughness $Ra = 0.8 \dots 1.6$ microns is reached.

34. Feeds in rough milling by face, cylindrical and disk mills from high-speed steel (HSS)

Capacity			Mi	ills	
of the	Rigidity	Face and	d disk	Cylind	rical
machine	(stiffness) of	Feed	per one tooth s_z , mm	(mm/tooth), in machin	ning
tool or	blank –	Carbon steel	Cast iron and	Carbon steel	Cast iron and
milling	attachment		copper alloys		copper alloys
head, kW	system	Mills with	n large tooth and mil	ls with plug-in knifes ((blades)
Over 10	Higher	0.20 - 0.30	0.40 - 0.60	0.40 - 0.60	0.60 - 0.80
	Medium	0.15 - 0.25	0.30 - 0.50	0.30 - 0.40	0.40 - 0.60
	Lowered	0.10 - 0.15	0.20 - 0.30	0.20 - 0.30	0.25 - 0.40
5 - 10	Higher	0.12 - 0.20	0.30 - 0.50	0.25 - 0.40	0.30 - 0.50
	Medium	0.08 - 0.15	0.20 - 0.40	0.12 - 0.20	0.20 - 0.30
	Lowered	0.06 - 0.10	0.15 - 0.25	0.10 - 0.15	0.12 - 0.20
To 5	Medium	0.06 - 0.07	0.15 - 0.30	0.08 - 0.12	0.10 - 0.18
	Lowered	0.04 - 0.06	0.10 - 0.20	0.06 - 0.10	0.08 - 0.15
			Mills with	small tooth	
5 - 10	Higher	0.08 - 0.12	0.20 - 0.35	0.10 - 0.15	0.12 - 0.20
	Medium	0.06 - 0.10	0.15 - 0.30	0.06 - 0.10	0.10 - 0.15
	Lowered	0.04 - 0.08	0.10 - 0.20	0.06 - 0.08	0.08 - 0.12
To 5	Medium	0.04 - 0.06	0.12 - 0.20	0.05 - 0.08	0.06 - 0.12
	Lowered	0.03 - 0.05	0.08 - 0.15	0.03 - 0.06	0.05 - 0.10

Notes: 1. Great values of feeds take for smaller depth and width of milling, smaller – for great values of depth and width.

2. In milling of heat-resistance and a corrosion-resistance steels the feeds are used the same as for a carbon steels, but not above 0.3 mm/tooth.

35. Feeds in milling of steel blanks by various mills from high-speed steel

Diamet			Fee	ed per tooth s _z	, mm, at dept	h of milling <i>t</i> ,	mm	
er of a		3	5	6	8	10	12	15
mill D,	Milling	-		-	-			
mm	cutter type							
16	End	0.08 - 0.05	0.06 - 0.05	—	-	—	—	—
20		0.10 - 0.06	0.07 - 0.04	—	-	—	—	—
25		0.12 - 0.07	0.09 - 0.05	0.08 - 0.04	_	—	—	—
35		0.16 - 0.10	0.12 - 0.07	0.10 - 0.05	_	—	—	—
35	Angular and shaped	0.08 - 0.04	0.07 - 0.05	0.06 - 0.04	—	—	—	—
40	End Angular and shaped Plain side	0.20 - 0.12 0.09 - 0.05 0.009-0.005	$\begin{array}{c} 0.14 - 0.08 \\ 0.07 - 0.05 \\ 0.007 - 0.003 \end{array}$	0.12 - 0.07 0.06 - 0.03 0.01 - 0.007	0.08 - 0.05 0.06 - 0.03	_	_	—
50	End Angular and shaped Plain side	0.25 - 0.15 0.10 - 0.06	$\begin{array}{c} 0.15 - 0.10\\ 0.08 - 0.05\\ 0.008 - 0.004 \end{array}$	$\begin{array}{c} 0.13 - 0.08 \\ 0.07 - 0.04 \end{array}$	$\begin{array}{c} 0.10 - 0.07 \\ 0.06 - 0.03 \\ 0.012 - 0.008 \end{array}$			_
60	Angular and shaped Plain side Slitting saws	0.10 - 0.06 0.013-0.008	0.08 - 0.05 0.010 - 0.005 	$\begin{array}{c} 0.07 - 0.04 \\ 0.015 - 0.01 \\ 0.025 - 0.015 \end{array}$	0.06 - 0.04 0.015-0.022 0.01 - 0.012	$\begin{array}{c} 0.05 - 0.03 \\ 0.015 - 0.01 \\ 0.02 - 0.01 \end{array}$	_	—
75	Angular and shaped	0.12 - 0.08	0.10 - 0.06	0.09 - 0.05	0.07 - 0.05	0.06 - 0.04	0.06 - 0.03	-
	Plain side Slitting saws		0.015 - 0.005	0.025 - 0.01 0.03 - 0.015		0.02 - 0.01 0.025 - 0.01	0.017 - 0.008 0.022 - 0.01	0.015 - 0.007 0.02 - 0.01
90	Angular and shaped		0.12 - 0.05	0.03 - 0.013	0.027 = 0.012 0.10 = 0.05	0.023 - 0.01 0.09 - 0.04	0.022 = 0.01 0.08 = 0.04	0.02 - 0.01 0.07 - 0.03
	Slitting saws	—	—	0.03 - 0.02	0.028 - 0.016	0.027 - 0.015	0.023 - 0.015	0.022 - 0.012
110	Slitting saws	—	—	0.03 - 0.025	0.03 - 0.02	0.03 - 0.02	0.025 - 0.02	0.025 - 0.02
150-200	In milling a	—	—	—	_	— 	—	0.03 - 0.02

Notes: 1. In milling of cast iron, copper and aluminium alloys feed increase on 30 - 40 %.

2. Feeds are specified for shaped mills (formed-tooth milling cutters) with the convex smoothly outlined; for the same mills with sharply outlined or concave profile feeds should be reduced on 40 %.

3. Feeds for plain side milling cutters and slitting saws (mills) with small tooth are specified for depth of milling to 5 mm, with large tooth – for depth over 5 mm.

Kind of CC	Diameter				Rough n	nilling	g		
cutting	of mill D,		Fe	ed per tooth s_z	, mm, at	depth	n of milling <i>t</i> ,	mm	
elements	mm	1 - 3	5	8	12	2	20	30	40
	10 - 12	0.01 - 0.03	—	—		-	—		—
Crown	14 - 16	0.02 - 0.06	0.02 - 0.04			-			—
	18 - 22	0.04 - 0.07	0.03 - 0.05	0.02 - 0.04		-	—		
	20	0.06 - 0.10	0.05 - 0.08	0.03 - 0.05		-			
Screw	25	0.08 - 0.12	0.06 - 0.10	0.05 - 0.10	0.05 - 0	0.08			
inserts	30	0.10 - 0.15	0.08 - 0.12	0.06 - 0.10	0.05 - 0	0.09			
	40	0.10 - 0.18	0.08 - 0.13	0.06 - 0.11	0.05 - 0	0.10	0.04 - 0.07		—
	50	0.10 - 0.20	0.10 - 0.15	0.08 - 0.12	0.06 - 0	0.10	0.05 - 0.09	0.05 - 0.08	0.05 - 0.06
	60	0.12 - 0.20	0.10 - 0.16	0.10 - 0.12	0.08 - 0	0.12	0.06 - 0.10	0.06 - 0.10	0.06 - 0.08
	I	I	I				I	I	
					Finish n	nilling	5		
Diameter of mm	mill <i>D</i> ,	10 -	16	20 - 22			25 - 35	4	0 - 60
Mill feed s, r	nm/rev	0.02 -	0.06	0.06 – 0.1	2		0.12 – 0.24	0.	3-0.6

36. Feeds in milling of planes and shoulders of steel blanks by CC end mills

Notes: 1. In rough milling of cast iron the feeds for rough milling of steel should be increased on 30 - 40 %; in finish milling of cast iron the feed is the same as recommended for fair milling of a steel.

2. The upper limits of feeds are applied for rough milling at small width of milling on machine tools with high rigidity, the lower limits – for the large width of milling on machine tools with insufficient rigidity.

3. At work with feeds for finish milling the surface roughness $Ra = 0.8 \dots 1.6$ microns is reached.

37. Feeds s, mm/rev, in finish milling of planes and shoulders by face, disk and cylindrical mills

Surface		disk mills -in knifes	HSS cylindrical mills at diameter of mill <i>D</i> , mm, depending on a processed material									
roughness <i>Ra</i> ,	For CC mills	For HSS mills	The carbo	on and alloy	red steel	Cast iron,		aluminum				
micron							alloys					
			40 - 75	90 - 130	150 - 200	40 - 75	90 - 130	150 - 200				
6.3		1.2 - 2.7										
3.2	0.5 - 1.0	0.5 - 1.2	1.0 - 2.7	1.7 – 3.8	2.3 - 5.0	1.0 - 2.3	1.4 - 3.0	1.9 – 3.7				
1.6	0.4 - 0.6	0.23 - 0.5	0.6 - 1.5	1.0 - 2.1	1.3 - 2.8	0.6 - 1.3	0.8 - 1.7	1.1 - 2.1				
0.8	0.2 - 0.3					—		—				
0.4	0.15							—				

31. Feeds in milling of steel blanks by two-flute mills (for milling of closed key slot) from high-speed steel

Diameter	Milling on key slot milling machine			milling machine tools in one				
of mill D,	pendulum feed at depth of milling	g on one	S	stroke				
mm	double stroke (component of a key s	lot depth)	Axial feed (for key slot	Longitudinal feed in key slot				
			depth achievement)	milling				
	Depth of milling <i>t</i> , mm		Feed per one tooth s_z , mm,					
6		0.10	0.006	0.020				
8	0.3	0.12	0.007	0.022				
10		0.16	0.008	0.024				
12		0.18	0.009	0.026				
16		0.25	0.010	0.028				
18	0.4	0.28	0.011	0.030				
20		0.31	0.011	0.032				
24		0.38	0.012	0.036				
28		0.45	0.014	0.037				
32	0.5	0.50	0.015	0.037				
36		0.55	0.016	0.038				
40		0.65	0.016	0.038				

Note. Feeds are specified for a carbon steel with $\sigma_u < 750$ MPa; in milling of steels with higher strength feeds should be reduced on 20 - 40 %.

39. Values of factor C_{ν} and power exponents in the formula of cutting speed in milling

		Kind of	Paramet			1		01		U	la of	cutting
Kind of milling	Material of a cutting part	machining		mm	-			-	speed			
cutter	cutting part		В	t	S_z	C_{v}	q	x	У	и	р	т
		Milling	of carbo	on steel	$\sigma_{\rm u}=7$	50 MP	a					
	T15K6* ¹		—	—		332	0.2	0.1	0.4	0.2	0	0.2
Face	P6M5* ²	Milling of planes			≤ 0.1	64,7	0.25	0.1	0.2	0.15	0	0.2
					> 0.1	41			0.4			
	T15K6* ¹		≤35	≤2		390	0.17	0.19	0.28	-0.05	0.1	0.33
Cylindrical				> 2	—	443	0.17	0.38	0.28	0.08	0.1	0.33
			> 35	≤2		616	0.17	0.19	0.28	0.08	0.1	0.33
				>2		700	0.17	0.38	0.28	0.08	0.1	0.33
	P6M5* ²		—	—	≤ 0.1	55	0.45	0.3	0.2	0.1	0.1	0.33
					> 0.1	35,4			0.4			
Disk with plug-	Т15К6* ¹	Milling of planes	—	—	< 0.12		0.2	0.4	0.12	0	0	0.35
in knifes		and shoulders			≥ 0.12	740			0.4			
(blades)	Т15К6* ¹	Milling of slots	—	—	< 0.06		0.2	0.3	0.12	0.1	0	0.35
					≥ 0.06				0.4			
Disk with plug-	P6M5* ²			—	≤ 0.1	75.5	0.25	0.3	0.2	0.1	0.1	0.2
in knifes	2				> 0.1	48.5			0.4			
Solid disk	P6M5* ²	Milling of planes,		—	—	68.5	0.25	0.3	0.2	0.1	0.1	0.2
End with	Т15К6* ¹	shoulders and		<u> </u>	<u> </u>	145	0.44	0.24	0.26	0.1	0.13	0.3
crown		slots										
End with	T15K6* ¹		—	<u> </u>	—	234	0.44	0.24	0.26	0.1	0.13	0.37
brazed CC												
inserts	1											
Solid end	P6M5* ²		—		<u> </u>	46.7	0.45	0.5	0.5	0.1	0.1	0.3
Plain side mills	P6M5* ²	Plain side milling	<u> </u>	—		53	0.25	0.3	0.2	0.2	0.1	0.2

and alitting		of alots and		1								
and slitting		of slots and										
saws	P6M5* ²	sawing				52	0.45	0.2	0.2	0.1	0.1	0.22
Shaped with a	P0M3*	Shaped milling				53	0.45	0.3	0.2	0.1	0.1	0.33
convex profile	D(M5* ²	Multine Commuter				4.4	0.45	0.2	0.2	0.1	0.1	0.22
Angular and	P6M5* ²	Milling of angular				44	0.45	0.3	0.2	0.1	0.1	0.33
shaped with a		flutes and shaped										
concave profile	D () (5+2					1.0	0.0	0.0	0.07	0	0	0.0
Two-flute mills		Key slot milling	-	<u> -</u>	<u> </u>	12	0.3	0.3	0.25	0	0	0.2
		of a heat-resistance	steel 12.	X18H9	T with							
Face	ВК8* ¹			—	<u> </u>	108	0.2	0.06	0.3	0.2	0	0.32
	P6M5 ^{*2}	Milling of planes		—	—	49.6	0.15	0.2	0.3	0.2	0.1	0.14
Cylindrical	P6M5* ²		<u> </u>			44	0.29	0.3	0.34	0.1	0.1	0.24
End	P6M5* ²	Milling of planes		—		22.5	0.35	0.21	0.48	0.03	0.1	0.27
		and shoulders										
		Milli	ng of gra	y cast	iron, H	B 190						
Face	ВК6* ¹		_	Ī—		445	0.2	0.15	0.35	0.2	0	0.32
	P6M5 ^{*2}	Milling of planes		—		42	0.2	0.1	0.4	0.1	0.1	0.15
Cylindrical	ВК6* ¹			< 2.5	≤ 0.2	923	0.37	0.13	0.19	0.23	0.14	0.42
- Jinian van	2110			< 2.5	> 0.2	588	0.37	0.13	0.47	0.23	0.14	0.42
				≥ 2.5	≤ 0.2	1180	0.37	0.40	0.19	0.23	0.14	0.42
				≥ 2.5	> 0.2	750	0.37	0.40	0.47	0.23	0.14	0.42
	P6M5 ^{*1}	-		_ 2.0	≤0.15		0.7	0.5	0.17	0.23	0.3	0.25
	1 01015				>0.15		0.7	0.5	0.2	0.3	0.3	0.25
Disk with plug-	P6M5 ^{*1}	Milling of planes,			20.15	85	0.2	0.5	0.0	0.5	0.5	0.15
in knifes	1 01015	shoulders and				05	0.2	0.5	0.4	0.1	0.1	0.15
Solid disk	P6M5 ^{*1}	slots				72	0.2	0.5	0.4	0.1	0.1	0.15
	P6M5 ^{*1}					72	0.2	0.5	0.4	0.1	0.1	0.15
End	POIND	Milling of planes				12	0.7	0.5	0.2	0.5	0.5	0.25
DI 1 . 11	D(M5*1	and shoulders				20	0.0	0.5	0.4	0.0	0.1	0.15
Plain side mills	P6M5* ¹	Plain side milling		—		30	0.2	0.5	0.4	0.2	0.1	0.15
and slitting		of slots and										
saws		sawing	0 11									
	DIACU	Milling	of malle	able ca								
Face	ВК6*1						0.22	0.17	0.1	0.22	0	0.33
	*7	Milling of planes			>0.18		0.22	0.17	0.32	0.22	0	0.33
	P6M5 ^{*2}				≤0.1	90.5	0.25	0.1	0.2	0.15	0.1	0.2
		_			>0.1	57.4	0.25	0.1	0.4	0.15	0.1	0.2
Cylindrical	P6M5* ²				≤0.1	77	0.45	0.3	0.2	0.1	0.1	0.33
					>0.1	49.5	0.45	0.3	0.4	0.1	0.1	0.33
Disk with plug-	P6M5* ²	Milling of planes,		—	≤0.1		0.25	0.3	0.2	0.1	0.1	0.2
in knifes		shoulders and			>0.1	68	0.25	0.3	0.4	0.1	0.1	0.2
Solid disk	P6M5* ²	slots	—	—		95.8	0.25	0.3	0.2	0.1	0.1	0.2
End	P6M5* ²	Milling of planes				68.5	0.45	0.3	0.2	0.1	0.1	0.33
		and shoulders										
Plain side mills	P6M5* ²	Plain side milling				74	0.25	0.3	0.2	0.2	0.1	0.2
and slitting		of slots and										
saws		sawing										
	Millin	g of heterogeneous	conner a	llovs of	f averag	e hard	ness. 1	HB 100	- 140			I
Face	P6M5*1	o -jo geneous			0.1	136	0.25	0.1	0.2	0.15	0.1	0.2
		Milling of planes			0.1	86.2	0.25	0.1	0.4	0.15	0.1	0.2
Cylindrical	P6M5*1				0.1	115.5		0.1	0.4	0.13	0.1	0.2
- j manou	- 01110				0.1	74.3	0.45	0.3	0.2	0.1	0.1	0.33
Disk with plug-	P6M5*1	Milling of planes,			0.1		0.45	0.3	0.4	0.1	0.1	0.35
in knifes	1 01015	shoulders and			0.1	102	0.25	0.3	0.2	0.1	0.1	0.2
Solid disk	P6M5*1	slots			0.1	102	0.25	0.3	0.4	0.1	0.1	0.2
	P6M5* P6M5* ¹											
End	LOM2.	Milling of planes			<u> </u>	103	0.45	0.3	0.2	0.1	0.1	0.33
DI I I II	DOIST	and shoulders				1 1 1 7	0.27	0.2	0.2	0.2	0.1	0.7
Plain side mills	P6M5* ¹	Plain side milling	—-		—	111.3	0.25	0.3	0.2	0.2	0.1	0.2
and slitting		of slots and										
-	1	sawing	1	1	1	1	1	1	1	1		
saws				1	1	1		1	1	1	1	1

Face	P6M5* ¹	Milling of planes	 	≤0.1	245	0.25	0.1	0.2	0.15	0.1	0.2
				>0.1	155			0.4			
Cylindrical	P6M5*1	-		≤0.1	208	0.45	0.3	0.2	0.1	0.1	0.33
				> 0.1	133.5			0.4			
Disk with plug-	P6M5*1	Milling of planes,		≤0.1	285	0.25	0.3	0.2	0.1	0.1	0.2
in knifes		shoulders and		> 0.1	183.4			0.4			
Solid disk	P6M5* ¹	slots			259	0.25	0.3	0.2	0.1	0.1	0.2
End	P6M5*1	Milling of planes	 		185.5	0.45	0.3	0.2	0.1	0.1	0.33
		and shoulders									
Plain side mills	P6M5* ¹	Plain side milling	 		200	0.25	0.3	0.2	0.2	0.1	0.2
and slitting		of slots and									
saws		sawing									

*¹ Without cooling (without cutting fluids). *² with cooling.

Note. Speed of cutting for the face mills, calculated under the tabular data, is valid at the main angle in the plan $\varphi = 60^\circ$. At other values of this angle it is necessary tabular value of cutting speed to multiply by factors: at $\varphi = 15^\circ$ on 1.6; at $\varphi = 30^\circ$ - on 1.25; at $\varphi = 45^\circ$ - on 1.1; at $\varphi = 75^\circ$ - on 0.93: at $\varphi = 90^\circ$ - on 0.87.

	Cutting tool life <i>T</i> , minutes, at a mill diameter, mm										
Kind of milling cutter	20	25	40	60	75	90	110 150	200	250	300	400
Face		_	120			18	30		240	300	400
Cylindrical with plug-in knifes and solid with							180	240			
large tooth											
Solid cylindrical with small tooth	-	_	120	180							
Disk						12	20 150 180		240	—	
End	80	90	120 18	0				—			
Plain side mills and slitting saws					60	75	120	150			
Shaped and angular	-			120		180			—		

Cutting force. The main component of cutting force in milling – peripheral (tangential) force P_z , N

$$P_{z} = \frac{10C_{p}t^{x}s_{z}^{y}B^{u}z}{D^{q}n^{w}} \times K_{Mp}$$

$$\tag{3}$$

where z – quantity of mill teeth; n – frequency of mill rotation (rotational speed of the cutter), rpm.

Values of factor of C_p and power exponents are specified in tab. 41, correction factor on quality of processed material K_{Mp} for steels and cast irons – in tab. 9, and for copper and aluminum alloys – in tab. 10. Values of other components of cutting force (fig. 5, 6): horizontal (force of feed) P_h , vertical P_u , radial P_y , axial R_h are calculated taking into account ratio with the main component P_z (tab. 42).

Component of cutting force which is forced on a milling arbor $P_{yz} = \sqrt{P_y^2 + P_z^2}$.

Twisting moment, N·m, on a spindle $M = \frac{P_z \times D}{2 \times 100}$, where D – diameter of a mill, mm.

Cutting power (effective), kW: $N_e = P_z \times v / (1020.60)$.

$41.$ values of factor C_p and power ex	Material of a cutting part	1		~		expone	nts
Milling cutter	of the tool	C_p	x	$\frac{r}{y}$	и	q	w
Milling of a	<i>carbon steel</i> , $\sigma_u = 750$ MI	Ia					
Face	CC	825	1.0	0.75	1.1	1.3	0.2
	HSS	82.5	0.95	0.8	1.1	1.1	0
Cylindrical	CC	101	0.88	0.75	1.0	0.87	0
	HSS	68.2	0.86	0.72	1.0	0.86	0
Disk and plain side mills, slitting saws	CC	261	0.9	0.8	1.1	1.1	0.1
	HSS	68.2	0.86	0.72	1.0	0.86	0
End	CC	12.5	0.85	0.75	1.0	0.73	-0.13
	HSS	68.2	0.86	0.72	1.0	0.86	0
Shaped and angular	HSS	47	0.86	0.72	0.1	0.86	0
Milling of a heat-resistance ste	el 12X18H9T with a delive	ery con	dition	HB 14	1		
Face	CC	218	0.92	0.78	1.0	1.15	0
End	HSS	82	0.75	0.6	1.0	0.86	0
Milling of	of gray cast iron, HB 190						
Face	CC	54.5	0.9	0.74	1.0	1.0	0
	HSS	50	0.9	0.72	1.14	1.14	0
Cylindrical	CC	58	0.9	0.8	1.0	0.9	0
	HSS	30	0.83	0.65	1.0	0.83	0
Disk and plain side mills, slitting saws	HSS	30	0.83	0.65	1.0	0.83	0
Milling of 1	nalleable cast iron, HB 15	0					
Face	CC	491	1.0	0.75	1.1	1.3	0.2
	HSS	50	0.95	0.8	1.1	1.1	0
Cylindrical, disk, end and plain side mills, slitting	HSS	30	0.86	0.72	1.0	0.86	0
saws							
Processing of heterogeneous co	pper alloys of average har	dness,	HB 1(00 – 14	0		
Cylindrical, disk, end and plain side mills, slitting saws	HSS	22,6	0.86	0.72	1.0	0.86	0

41. Values of factor C_p and power exponents in the formula of peripheral force P_z in millin	41. Values of factor	C_n and power exponen	ts in the formula of pe	eripheral force P_{τ} in milling
---	----------------------	-------------------------	-------------------------	---------------------------------------

saws Notes: 1. The peripheral force P_z in milling of aluminum alloys is calculated as for a steel with introduction of factor 0.25.

2. The peripheral force P_z calculated under the tabular data corresponds to machining by a sharp mill (without wearout). At wear-out of mill to permissible value (h_{flank} ≤ 0.75 mm for rough cutting) the peripheral force P_z is increased: at processing of a soft steel ($\sigma_u < 600$ MPa) in 1.75 - 1.9 times; in all other cases — in 1.2 - 1.4 times.

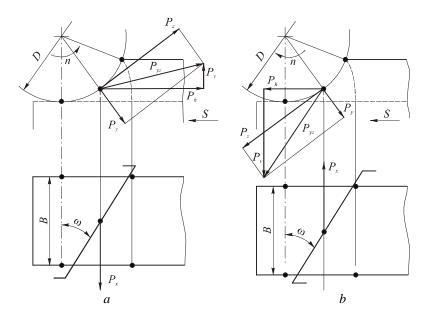


Fig. 5. Components of cutting force in milling by a cylindrical mill: a - in up milling (conventional milling) (cutting speed v is directed against the feed s); b - in down milling (climb milling) (cutting speed v is directed as the feed s)

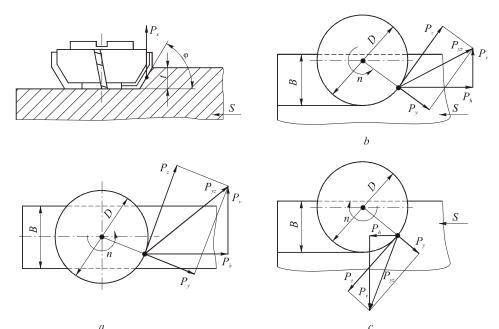


Fig. 6. Components of cutting force in face milling: a - in symmetrical milling; b - in asymmetrical up milling; c - in asymmetrical down milling

42. Relative values of cutting force components in mining							
Scheme of milling	P_h/P_z	P_v/P_z	P_y/P_z	P_x/P_z			
Cylindrical, disk, end ^{*1} , angular and shaped mills (fig. 5)							
Up milling (against feed)	1.1 - 1.2	0 - 0.25	0.4 - 0.6	$(0.2 - 0.4)$ tg ω			
Down milling (in a giving direction)	0.8 - 0.9	0.7 - 0.9	0.4 - 0.6	$(0.2 - 0.4)$ tg ω			
Face and end $*^2$ mills (fig. 6)							
Symmetrical milling	0.3 - 0.4	0.85 - 0.95	0.3 - 0.4	0.5 - 0.55			
Asymmetrical up milling	0.6 - 0.8	0.6 - 0.7	0.3 - 0.4	0.5 - 0.55			
Asymmetrical down milling	0.2 - 0.3	0.9 – 1.0	0.3 - 0.4	0.5 - 0.55			

42. Relative values of cutting force components in milling

*¹ Mills working under the scheme of cylindrical milling when face teeth do not participate in cutting.

*² Mills working under the scheme of face milling.

Note: Changing of making cutting forces P_y and P_x at face milling depending on the main angle in the plan φ see in tab. 23.

CUTTING-OFF

Stock cutoff machine operation

Cutting-off is produced by cut-off cutters, disk and tape saws, band saws, abrasive wheels. **Feed.** For disk saws feed s_z , and for tape saws and abrasive wheels feed s_m are specified in tab. 43. **Cutting speed.** For disk saws, mechanical band saws and tape saws cutting speed is fixed (rated) in m/minute, and for abrasive wheels – in m/s (tab. 44).