

Национальный исследовательский Томский политехнический университет

Механика 1.3

3.09.24:

Лектор - Козлов Виктор Николаевич, доцент отделения машиностроения ИШНПТ моб. тел. +7-913-812-58-34, kovn@tpu.ru **ВКС** 380 440 5794, Пароль: 1DepTr Лекции – 24 часа, практические занятия – 32 часа, 88 часов самостоятельной работы, расчётно-графические работы (РГР) всего 144 ч., 4 кредита. Экзамен

1. Расчеты на прочность

$$\sigma_{p(c)} = F/A \leq \sigma_{p(c)p}$$
. $[\sigma_{B}] [\sigma_{B}]$

где $\sigma_{p(c)}$ – фактическое напряжение на растяжение или сжатие; $\sigma_{p(c)p}$ – допускаемое напряжение на растяжение или сжатие. Это неравенство называется условием прочности. С его помощью могут быть решены задачи следующих трех типов. 2. Определение предельной (допускаемой) нагрузки для детали с определенными размерами поперечного сечения *A* и допускаемым напряжением σ_p : $F_p \leq A \cdot \sigma_p$.

Группа	Марка	Механические характеристики								
сталей	стали	σ _в , МПа	στ, МПа	σ.1p, МПа	σ.1 , МПа	τ.1, МПа	HB			
Углеродистые	10	340-420	210	120-150	160-220	80-120	137			
стали	20	420-500	250	120-160	170-220	100-130	156			
качественные	30	500-600	300	170-210	200-270	110-140	179			
	40	580-700	340	180-240	230-320	140-190	187-217			
-	45	610-750	360	190-250	250-340	150-200	197-241			
	50	640-800	380	200-260	270-350	160-210	207-241			

 $A_1 = (\pi \cdot d_1^2)/4 = (\pi \cdot 20^2)/4 = 314 \text{ MM}^2; F_{1 \text{ max}} = \sigma_{\tau} \cdot A_1 = 360 \cdot 314 = 1130097 \text{ H} = 113 \text{ kH}.$ $A_2 = (\pi \cdot d_2^2)/4 = (\pi \cdot 30^2)/4 = 707 \text{ MM}^2; F_{2 \text{ max}} = \sigma_{\tau} \cdot A_2 = 360 \cdot 707 = 254469 \text{ H} = 254 \text{ kH}.$

3.6.8 Расчеты при растяжении (сжатии) (продолжение 1)2. Расчеты на жесткость

В некоторых случаях работоспособность конструкции определяют не величиной предельной нагрузки или предельного напряжения, а величиной предельной деформации Δl_p . В этом случае по уравнению находят фактическую деформацию и сопоставляют ее с предельной:

Это неравенство называют условием жесткости, а расчеты, проводимые по этому неравенству, – расчетами на жесткость.

Пример расчетов на прочность

и жесткость при растяжении (сжатии)

Рассмотрим ступенчатый брус (рис.1 а), нагруженный продольными силами F_1 и F_2 , для которого следует определить во всех поперечных сечениях бруса (стержня) внутреннюю продольную силу F_R (рис. 1 б) и напряжения σ (рис. 1 в), вертикальные перемещения δ (рис.1 г). Результаты привести в графическом виде, построив графики (эпюры) F_R =f (l); σ =f (l) и δ =f (l).

$$\Delta l = \frac{Fl}{EA} \le \Delta l_p \,.$$

Рис. 1. Расчёт ступенчатого бруса

3.6.9 Расчеты на прочность и жесткость при растяжении

Решение. Для определения внутренних сил в поперечных сечениях бруса используем метод сечений. Мысленно разрежем брус по сечениям *I-I* и *II-II* (рис. 2 а, д, г). Составим уравнение равновесия части стержня, расположенной ниже сечения *I-I* (рис. 2 д) : $\Sigma F_{y_1} = F_{RI} - F_1 = 0$, откуда: $F_{RI} = F_1$. Эти уравнения будут справедливы при изменении текущей координаты y_1 в пределах от 0 до l_1 , то есть при: $0 \le y_1 \le l_1$. Уравнение равновесия части стержня, расположенной ниже сечения *II-II* (рис. 2 е): $\Sigma F_{y_{II}} = -F_{R_{II}} + F_2 - F_1 = 0$, откуда: $F_{R_{II}} = F_2 - F_1 = 0$. Эти уравнения будут справедливы при: $2F_{y_{II}} = -F_{R_{II}} + F_2 - F_1 = 0$, откуда: $F_{R_{II}} = F_2 - F_1 = 0$. Эти уравнения будут справедливы при: $l_1 \le y_1 \le l_1 + l_2$.

Рис. 2. Расчёт ступенчатого бруса: $F_2 = 254$ кH; $F_1 = 114$ кH; $d_1 = 20$ мм; $d_2 = 30$ мм. $l_1 = 30$ мм; $l_2 = 20$ мм; $A_1 = (\pi \cdot d_1^2)/4 = (\pi \cdot 20^2)/4 = 314$ мм²; $F_{1 \text{ max}} = \sigma_{\tau} \cdot A_1 = 360 \cdot 314 = 1130097$ H=113кH

3.6.9 Расчеты на прочность и жесткость при растяжении (продолжение 1)

Выбрав масштаб μ_F (Н/мм), строим эпюру продольных сил (рис. 2 б). При этом растягивающую продольную силу F_{RI} считаем положительной, сжимающую F_{RII} – отрицательной. В выбранном масштабе μ_F строим эпюру продольных сил (рис. 2 б).

Напряжения σ : **a**) в сечениях нижней части стержня: $\sigma_I = F_{RI} / A_1$ (растяжение); б) в сечениях верхней части стержня: $\sigma_{II} = F_{RII} / A_2$ (сжатие);

В выбранном масштабе μ_{σ} (МПа/мм) строим эпюру напряжений (рис. 2 в).

Рис. 2. Расчёт ступенчатого бруса: $F_2 = 254$ кH; $F_1 = 114$ кH; $d_1 = 20$ мм; $d_2 = 30$ мм. $l_1 = 30$ мм; $l_2 = 20$ мм

3.6.9 Расчеты на прочность и жесткость при растяжении (продолжение 2)

Для построения эпюры вертикальных перемещений (деформаций) δ (рис. 2 г) определяем перемещения характерных сечений *B-B* и *C-C* (рис. 2 а) (перемещение сечения *A-A* равно нулю). Перемещение сечения вниз считаем положительным, вверх – отрицательным.

а) Сечение *B-B* будет перемещаться вверх, поскольку верхняя часть стержня сжимается: $\delta_B = (\sigma_{II} \cdot l_2)/E$ (вверх, знак минус –) (рис. 2 г) ($\approx 0,034$ мм). Сталь: $E \approx 2 \cdot 10^{11}$ H/м² = 2,1 · 10⁵ МПа = 2,1 · 10⁵ H/мм² = 210 ГПа.

б) Перемещение сечения *C-C* является алгебраической суммой перемещения сечения *B-B* (δ_B) и удлинения части стержня длиной $l_1 : \delta_C = \delta_B + \Delta l = \delta_B + (\sigma_I \cdot l_1)/E$.

В выбранном масштабе μ_{δ} (мм/мм) откладываем на эпюре значения δ_{C} и δ_{B} (рис. 2 г),

СОЕДИНЯЕМ ПОЛУЧЕННЫЕ **ТОЧКИ ПРЯМЫМИ** ЛИНИЯМИ, так как при действии сосредоточенных внешних сил **перемещения линейно зависят** от абсцисс сечений стержня, и получаем график (эпюру) перемещений.

Рис. 2. Расчёт ступенчатого бруса $F_2 > F_1$; $F_2 = 254$ кН; $F_1 = 114$ кН; $d_1 = 20$ мм; $d_2 = 30$ мм. $l_1 = 30$ мм; $l_2 = 20$ мм

3.6.9 Расчеты на прочность и жесткость при растяжении (продолжение 3)

Построить эпюры напряжений (рис.4в) и вертикальных перемещений (деформаций) δ (рис.4 г),

3) эпюры напряжений σ : a) в сечениях нижней части стержня: $\sigma_I = F_{RI}/A_1$ (растяжение) (рис.4 в); б) в сечениях верхней части стержня: $\sigma_{II} = F_{RII}/A_2$ (сжатие) (рис.4 в);

4) эпюры деформаций δ : **a**) Сечение *B-B* будет перемещаться вверх, поскольку верхняя часть стержня сжимается: $\delta_B = (\sigma_{II} \cdot l_2)/E$ (сжимается, знак «минус» «--») (рис. 4 г), т.е. $\delta_B = -(\sigma_{II} \cdot l_2)/E$. Сталь: $E \approx 2 \cdot 10^{11} \text{ H/m}^2 = 2,1 \cdot 10^5 \text{ МПа} = 2,1 \cdot 10^5 \text{ H/mm}^2 = 210 \Gamma \Pi a$.

б) Перемещение сечения *C-C* является алгебраической суммой перемещения сечения *B-B* (δ_B) и удлинения части стержня длиной l_1 : $\delta_C = \delta_B + \Delta l = \delta_B + (\sigma_I \cdot l_1)/E = (-\sigma_{II} \cdot l_2)/E + (\sigma_I \cdot l_1)/E$.

В выбранном масштабе μ_{δ} (мм/мм) откладываем на эпюре значения δ_{C} и δ_{B} (рис. 4 г), соединяем полученные точки прямыми линиями, так как при действии сосредоточенных внешних сил перемещения линейно зависят от абсцисс (площади) сечений стержня, и получаем график (эпюру) перемещений.

Рис. 4. Расчёт ступенчатого бруса: $\sigma_I = +250$ МПа; $\sigma_{II} = -300$ МПа; $d_1 = 20$ мм; $d_2 = 30$ мм. $l_1 = 40$ мм; $l_2 = 30$ мм

ИДЗ-З состоит из нескольких задач:

- 1. Растяжение-сжатие ступенчатого бруса;
- 2. Сдвиг;
- 3. Кручение;
- 4. Изгиб балки;
- 5. Сложное сопротивление;
- 6. Прочность материалов при переменных напряжениях.

Расчеты ИДЗ - 3.1 (схема по последней цифре зачётной книжки) (продолжение 4)

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 11)

Напряжения при изгибе. Расчеты на прочность при изгибе

Наибольшую деформацию растяжения (или сжатия) претерпевают периферийные слои изгибаемой балки. Очевидно, что эти деформации тем больше, чем больше изгибающий момент. Следовательно, при изгибе величина нормальных напряжений зависит от величины изгибающего момента. Величина же касательных напряжений зависит от величины поперечной силы.

Изгибающий момент или поперечная сила в любом сечении балки могут быть определены с помощью эпюр рассмотренными выше методами.

При расчетах на прочность большое значение имеет распределение **нормальны**х и **касательных** напряжений **по сечению**. Длительная практика эксплуатации **изогнутых балок** показывает, что **наиболее опасной**, определяющей работоспособность конструкции, является **точка**, расположенная **на крайних растянутых волокнах**. Лишь в некоторых специфических случаях **касательное напряжение** может оказаться решающим фактором, определяющим прочность изогнутой балки. Тогда производят полный **расчет балки по эквивалентным напряжениям**.

Необходимо установить зависимость между изгибающим моментом, действующим в сечении, и возникающими при этом нормальными напряжениями, а также определить закон распределения нормальных напряжений по сечению. Если прямолинейная балка, имеющая продольную вертикальную плоскость симметрии, подвергается чистому изгибу под влиянием силовых факторов, действующих в этой плоскости (см. рис. 1). Указанную плоскость будем называть плоскостью изгиба.

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 12)

Радиус кривизны дуги тп изогнутой оси балки можно считать постоянным. Обозначив его через ρ , получим: $ds = \rho d\phi$; $ds' = (\rho + y)d\varphi.$ Относительное удлинение дуги: $\varepsilon = \frac{ds' - ds}{ds} = \frac{(\rho + y)d\varphi - \rho d\varphi}{\rho d\varphi} = \frac{y}{\rho}.$ По закону Гука напряжение в слое, отстоящем на расстоянии **y** от нейтрального равно: $\sigma = E\varepsilon = E\frac{y}{2}$. (2) 6 Таким образом, нормальные напряжения в do поперечном сечении изогнутой балки прямо пропорциональны расстояниям от рассматриваемых точек до нейтральной оси (рис. 1, б), т. е. изменение напряжений по сечению в плоскости изгиба подчиняется линейному закону (**рис. 1**, *a*). Тогда: $\sigma = 0$ при $\gamma = 0$; Рис. 1. Чистый изгиб балки $\sigma = \sigma_{\max}$ при $y = y_{\max}$,

то есть нормальное напряжение равно нулю на нейтральной оси и достигает максимальных значений в наиболее удаленных от этой оси волокнах.

На выделенный элемент **ABCD** (рис. 1, *a*) действуют со стороны правой части балки распределенные по сечению *CD* силы: где dA – элементарная площадка, расположенная на $dF = \sigma dA = \frac{Ey}{dA}$,

где **d**A — элементарная площадка, расположенная на расстоянии у от нейтральной оси

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 13)

Эта система элементарных сил эквивалентна системе внешних сил, действующих на правую часть балки, сводящихся в данном случае к одному изгибающему моменту Mи (поперечная сила $F_{Rt} = 0$, так как рассматривается чистый изгиб). Таким образом, главный вектор распределенных по сечению CD сил равен нулю, а главный момент их относительно любого центра равен изгибающему моменту в этом сечении. Поэтому при выбранной системе осей:

 $\Sigma F_r = 0;$

$$\Sigma F_x = \Sigma dF = \int_A \frac{E}{\rho} y dA = \frac{E}{\rho} \int_A y dA = 0; \quad (3)$$

$$\Sigma M_{z} = -\Sigma y dF = -\int_{A} \frac{E}{\rho} y^{2} dA = -\frac{E}{\rho} \int_{A} y^{2} dA = -M_{H}, \quad (4)$$

Рис. 1. Чистый изгиб балки

где $\int_{A} y dA = S_z$ – статический момент площади сечения относительно нейтральной оси; $\int_{A} y^2 dA = J_z$ — момент инерции площади сечения относительно нейтральной оси. Отсюда, так как *E*/ρ ≠ 0, то *S*_z=0.

 EJ_z
 M_и. (5)
 Т.е. нейтральная ось проходит через центр тяжести сечения и для симметричных сечений она является одной из главных центральных осей инерции.

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 14)

Для наиболее распространенных сечений (рис. 2) величины моментов инерции равны: 1) прямоугольник высотой h и шириной b: b_{h}^{3}

для того же прямоугольника момент инерции относительно оси, проходящей через основание:

2) круг диаметром *d*:

$$J_z = J_y = \frac{\pi d^4}{64} \approx 0,05d^4;$$

3) круговое кольцо с наружным диаметром*D* и внутренним *d*:

$$J_{z} = J_{y} = \frac{\pi \left(D^{4} - d^{4} \right)}{64} \approx 0,05 \left(D^{4} - d^{4} \right).$$
 (9) a)

ружным диаметром
$$h$$

$$J_{z} = \frac{bh^{3}}{12}; (6) J_{y} = \frac{hb^{3}}{12}; (7)$$
$$J_{z_{1}} = \frac{bh^{3}}{3}; (8)$$

Рис. 2. Виды поперечного сечения балки

$$\frac{EJ_z}{\rho} = M_{\mu} \cdot \frac{1}{\rho} = \frac{M_{\mu}}{EJ_z}$$

10) Величина 1/р представляет собой кривизну изогнутой оси балки и характеризует величину деформации при изгибе.

Произведение модуля упругости *E*, характеризующего механические свойства материала балки, на момент инерции сечения *J_z*, характеризующий форму и размеры сечения, называют жесткостью при изгибе.

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 15)

Величина **деформации изогнутой оси** балки прямо пропорциональна **изгибающему моменту** *М*_и и **обратно пропорциональна жесткости** при изгибе *Е*·*J*_z. 1 *М*_и

Жёсткость при изгибе характеризует способность балки из данного материала с заданной формой и размерами поперечного сечения сопротивляться воздействию изгибающего момента.

$$\sigma = E\varepsilon = E\frac{y}{\rho}, \quad \boxed{\frac{1}{\rho}} = \frac{M_{\mu}}{EJ_{z}} \rightarrow \sigma = Ey\frac{M_{\mu}}{EJ_{z}} = \frac{M_{\mu}y}{J_{z}}. \quad (11)$$

ymax.

Наибольшие по абсолютной величине напряжения возникают на наиболее удаленных от нейтральной оси волокнах, то есть при: *y* = *y*_{max}.

Формула (11) выведена для чистого изгиба. С достаточной для практики точностью она может применяться и при поперечном изгибе. Обозначим: Величину *W*, называют осевым моментом сопротивления $J_z = W_z$. (12)

Величину *W*_z называют осевым моментом сопротивления сечения. Момент сопротивления является геометрической характеристикой поперечного сечения балки, определяющей ее прочность при изгибе.

Условия прочности по нормальным напряжениям: необходимо, чтобы наибольшие растягивающие и наибольшие сжимающие напряжения при изгибе в опасном сечении, то есть в сечении, где M_u имеет наибольшее значение, не превосходили соответствующих допускаемых напряжений (рассматриваются только балки с постоянным по всей длине поперечным сечением).

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 16)

 $\sigma_{c_{\text{max}}} = \frac{M_{\mu}h_2}{J}$

Обозначим (рис. 1, б): h_1 – расстояние от нейтральной оси до наиболее удаленного растянутого волокна, h_2 – расстояние от нейтральной оси до наиболее сжатого волокна. Тогда: наибольшее растягивающее напряжение при изгибе равно: $\sigma_{p_{max}} = \frac{M_{\mu}h_1}{J}$, (13)

наибольшее сжимающее напряжение (по абсолютной величине):

Для **хрупких** материалов (например; чугуна) **допускаемые напряжения на растяжение и сжатие различны**: σ_{cp} в 3-5 раз больше σ_{pp} , поэтому для балок из таких материалов обычно **применяют сечения, не симметричные относительно нейтральной оси**.

Рис. 1. Чистый изгиб балки

При этом сечение располагают таким образом, чтобы **h**₁ < **h**₂ , принимая во внимание, что **σ**_{рmax} < **σ**_{c max}. В указанных случаях нужно составлять два условия прочности:

а) по наибольшим растягивающим напряжениям: $\sigma_{p_{max}} = \frac{M_u h_l}{J_z} = \frac{M_u}{W_{zp}} \le \sigma_{pp}$ (15) б) по наибольшим сжимающим напряжениям: $\sigma_{c_{max}} = \frac{M_u h_2}{J_z} = \frac{M_u}{W_{zc}} \le \sigma_{cp}$ (16) W_{zp} и W_{zc} – моменты сопротивления растянутого и сжатого волокон; M_u - наибольшее. 15

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 17)

Если сечение балки симметрично относительно нейтральной оси (такие сечения целесообразно применять для балок из пластичных материалов), то есть: $h_1 = h_2 = \frac{n}{2}$,

то вместо двух формул (13) и (14) получим одну:

Обозначив:
$$W_z = \frac{2J_z}{h}$$
, $\sigma = \frac{M_{_{\rm H}}}{J_z} \frac{h}{2}$. (17)

получим при одинаковых допускаемых напряжениях на растяжение г.е.. следующее условие прочности: $\sigma = \frac{M_{\mu}}{W_z} \le \sigma_p \cdot (18)$

W_z - осевой момент сопротивления или момент сопротивления при изгибе.

4) Для прокатных сечений (двутавры, швеллеры и т.п.) значения W_z приведены в таблицах сортамента.

Рис. 1. Чистый изгиб балки

Рис. 2. Виды поперечного сечения балки

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 18)

Задание: Определить минимально допускаемое поперечного сечения балки при его заданной форме при изгибе под действием равномерно распределенной нагрузки (рис. 3) и подобрать сечение балки двутаврового профиля из стали 30 при заданных l, q и $\sigma_{\rm B}$ (определить из справочника).

Рис. 3. Схема нагрузки балки

Г	руппа	1	M	арка		Механические характеристин							ки	
сталей		cı	гали	σ,,	МПа	σ _τ , МПа		σ.10. MПа		σ.1. MПа		τ.1, МПа	HB	
Угле	родис	тые		10	34	0-420	0 210		120-150		160-220		80-120	137
c	стали			20	42	0-500	25	50	120-	160	170-	220	100-130	156
каче	ствен	ные		30	50	0-600	300		170-210		200-270		110-140	179
				40	58	0-700	34	40	180-	240	230-	320	140-190	187-217
				45	61	0-750 30		360 190-		250	250-	340	150-200	197-241
	5		50	64	640-800		380		200-260		350	160-210	207-241	
		дву	тавр))						1	Габли	ца 2		
№ Размеј		Размеры, мм		A, CM^2	$\begin{array}{c c} A, & \mathcal{J}_x, \\ \mathbb{C}M^2 & \mathbb{C}M^4 \end{array}$		<i>i</i> _x , см	$S_x,$	$\mathcal{J}_y,$	W_y, W_y, W_y, W_y	$i_y,$			
филя	h	b	d	t										
10	100	55	4,5	7,2	12,0	198	39,7	4,06	23,0	17,9	6,49	1,22	Обоз	начения:
12	120	64	4.8	7.3	14.7	350	58.4	4,88	33.7	27,9	8,72	1.38	на стенки f	
14	140	73	4,9	7,5	17,4	572	81,7	5,73	46,8	41,9	11,5	1,55	шаль сечен	ия: Л — момен
16	160	81	5,0	7,8	20,2	873	109	6,57	62,3	58,6	14,5	1,70	сопротивлен	ния; <i>i</i> — радиу
18	180	90	5,1	8,1	23,4	1290	143	7,42	81.4	82.6	18.4	1.88	ский момен	г полусечения

рина балки; d — толщилщина полки; А — плот инерции; W — момент с инерции; S — статиче-

3.6.18 Расчеты на прочность и жесткость при изгибе (продолжение 24)

Швеллеры стальные горячекатаные (по ГОСТ 8240 - 89)

Обозначения:

- *h* высота швеллера;
- b ширина полки;
- d толщина стенки;
- средняя толщина полки;
- F площадь поперечного сечения;
- J осевой момент инерции;

- W момент сопротивления;
- *і* радиус инерции; S статический момент полусечения;
- z₀ расстояние от оси у до наружной грани стенки.

Номер швеллера	Размеры, мм			<i>F</i> , см ²	<i>J</i> ₂ , см ⁴	W ₂ , см ³	<i>і</i> _г , см	Sг. см ³	<i>J</i> _у , см ⁴	W _y см ³	<i>i</i> у, см	Z ₉ , СМ	Масса 1м, кг	
	h	Ь	d	t										
5	50	32	4,4	7,0	6,16	22,8	9,1	1,92	5,59	5,61	2,75	0,95	1,16	4,84
6,5	65	36	4,4	7,2	7,51	48,6	15,0	2,54	9,0	8,7	3,68	1,08	1,24	5,9
8	80	40	4,5	7,4	8,98	89,4	22,4	3,16	13,3	12,8	4,75	1,19	1,31	7,05
10	100	46	4,5	7,6	10,9	174	34,8	3,99	20,4	20,4	6,46	1,37	1,44	8,59
12	120	52	4,8	7,8	13,3	304	50,6	4,78	29,6	31,2	8,52	1,53	1,54	10,4
-14	140	58	4,9	8,1	15,6	491	70,2	5,6	40,8	45,4	11,0	1,7	1,67	12,3
16	160	64	5,0	8,4	18,1	747	93,4	6,42	54,1	63,3	13,8	1,87	1,80	14,2
18	180	70	5,1	8,7	20,7	1090	121	7,24	69,8	86,0	17,0	2,04	1,94	16,3
20	200	76	5,2	9,0	23,4	1520	152	8,07	87,8	113	20,5	2,2	2,07	18,4
22	220	82	5,4	9,5	26,7	2110	192	8,89	110	151	25,1	2,37	2,21	21,0
24	240	90	5,6	10,0	30,6	2900	242	9,73	139	208	31,6	2,60	2,42	24,0
27	270	95	6,0	10,5	35,2	4160	308	10,9	178	262	37,3	2,73	2,47	27,7
30	300	100	6,5	11,0	40,5	5810	387	12,0	224	327	43,6	2,84	2,52	31.8
33	330	105	7,0	11,7	46,5	7980	484	13,1	281	410	51,8	2,97	2,59	36,5
36	360	110	7,5	12,6	53,4	10820	601	14,2	350	513	61,7	3,10	2,68	41,9
40	400	115	8,0	13,5	61,5	15220	761	15,7	444	642	73,4	3,23	2,75	48,3

Детали машин. 1. Заклепочные соединения

Количество рядов заклёпок считается по одну сторону стыка в перпендикулярном ему направлении. В зависимости от числа склепываемых слоев металла (в том числе и накладок) шов имеет различное число поперечных срезов заклепок. Так, шов внахлестку (рис. 4.3, *a*) или встык с одной накладкой (рис. 4.3, *б*) будет односрезным, шов встык с двумя накладками (рис. 4.3, *в*) – двухсрезным. Используются соединения с параллельным (*г*) и шахматным (*д*) расположением заклепок в рядах.

Основными параметрами заклепочных швов являются **шаг** *р* и **диаметр** заклепок *d*, **толщина** склепываемых деталей *s*₁ и *s*₂ (**рис. 4.4**). Шагом заклепочного шва *р* называется расстояние между центрами заклепок в направлении, перпендикулярном к **действующему на шов усилию**. Введем обозначения (**рис. 4.4**): *b* – ширина

склепываемых деталей; z - число заклепок; $n - число плоскостей ссреза заклепок, равное числу плоскостей скольжения листов; <math>s_{\min} = -$ наименьшая толщина одной или нескольких деталей, передающих нагрузку в одну сторону (например, если $s_2 > s_1$, то $s_{\min} = s_1$ (рис. 4.4)); e -расстояние от центра заклепки до края детали в направлении действующего на шов усилия; $p_2 -$ расстояние между рядами заклепок по центру заклепок, $p(p_1) -$ расстояние между центрами заклепками в одном ряду.

Рис. 4.3. Виды соединение заклёпками по конструкции

Рис. 4.4. Параметры заклёпочных швов

Детали машин. Заклепочные соединения (продолжение 1)

1) Условие прочности заклепки на срез, на основании $\tau = F/A < \tau_{con}$ [τ], определяется равенством: $F \le A_{cp} \tau_{cpp} = zn \frac{\pi d^2}{4} \tau_{cp}$ $d \ge \sqrt{\frac{4F}{\pi z n \tau_{cp} p}}$ (1) Допускаемое напряжение при срезе (τ_p) обычно принимается как некоторая <u>часть</u> допускаемого напряжения того же материала <u>при растяжении</u>. Для стали, меди и алюминия: $\tau_p = (0, 5-0, 6)\sigma_p$; для чугуна: $\tau_p = (0, 75-0, 80)\sigma_p$. **2)** Условие прочности соединяемых деталей и заклепки на смятие определяется равенством: $F \le A_{cm}\sigma_{cm\,p} = zds_{min}\sigma_{cm\,p}$, $d \ge \frac{F}{zs_{min}\sigma_{cm\,p}}$, (2)

При применении этих формул (1) и (2) было сделано следующее упрощение. Из рис. 4.1 очевидно, что распределение напряжений риссиятия по поверхности смятия неравномерно – оно равно нулю по за краям площадки смятия и максимально в центре.

3) Условие прочности детали шириной, равной шагу p, на разрыв соединяемых деталей по наиболее опасному их сечению, (сечению, ослабленному отверстиями) имеет вид: $F \leq s_{\min} (b-dz)\sigma_p$, $s_{\min} \geq \frac{F}{(b-dz)\sigma_p}$. (3)

4) Если размер *е* от кромки листа до линии центров первого ряда будет недостаточен, то заклепка может прорезать край листа по плоскостям *mn* и m_1n_1 (рис. 4.4). Условие прочности в этом случае определяется равенством: $F \ge 2s_{\min}ez\tau_{cp\,p}$. $e \ge \frac{F}{2zs_{\min}\tau_{cp\,p}}$. (4)

4.1 Детали машин. Заклепочные соединения (продолжение 2)

Рассчитать заклепки **1**) на **срез** и **2**) на **смятие (***s***=***d***), 3**) на разрыв листа и 4) прорезание края листа, если сила *F*=10кH, число заклёпок *z* определить по схеме на рис. **4.6**.

	Механические свойства*							
Марка стали	Временное сопротивление, МПа	Предел текучести, МПа	Относительное удлинение δ ₅ , %					
Ст3кп	360-460	235	27					
Ст3пс	370-480	245	26					
Ст3сп	380-490	245	26					
Ст3Гпс	370-490	245	26					
Ст3Гсп	390-570	245	24					
* при толщине	до 20 мм							

Материал заклепки	d1 мм	d2 MM	L MM	G MM
	2,4	2,5	4 6 8	0,5–1,5 1,5–3,5 3,5–5,0
Алюминий	3,2	3,3	6 8 10 12	0,8-3,2 3,2-4,8 4,8-6,4 6,4-9,5
Сталь Нерж. сталь	4	4,1	6 8 10 12 14 16	1,5-3,2 3,0-4,5 4,5-6,5 6,5-8,5 8,5-10,5 10,5-12,5
	4,8	4,9	8 10 12 14 16	3,0-4,5 4,5-6,0 6,0-8,0 8,0-10,0 10,0-12,0

- d1 Диаметр рабочей части заклепки
- d2 Диаметр предварительного засверливания
- L Длина рабочей части заклепки
- G Толщина скрепляемого материала

Рис. 4.6. Схема нагрузки заклепочного соединения

	11	L and	dk		diameter		
	01 Bax	K Bax	min	max	min	BAX	d
	1,55	1	4.2	5	2.25	2.48	2.4
25	2	1.3	5, 4	6.3	2.85	3.08	3
	2	1.3	5.8	6.7	3.05	3.28	3.2
	2.45	1.7	6.9	8.4	3.85	4.08	4
1	2.95	2	8.3	10.1	4.65	4.88	4.8
27	2.95	2.1	8.7	10.5	4.85	5.08	5
	3.4	2.5	10.8	12.6	5.85	6.08	6
	3.9	2.7	11.6	13.4	6.25	6.48	6.4

4.1 Детали машин. Заклепочные соединения (продолжение 3)

Рассчитать заклепки на **срез** и на **смятие**, если сила *F*=10кH, число заклёпок z определить по схеме на **рис. 4.6**.

Механические свойства при Т=20 °С									
Сортамент	σ _в , МПа	σ _r , MΠa	δ ₅ , %,	КСU Дж/см ²					
Трубы, ГОСТ 8696-74	372	245	23						
Лист, ГОСТ 14637-89	370-480	205-245	23-26	69-98					
Арматура, ГОСТ 5781-82	373	235	25						

Класс прочности	Марка стали	Граница прочности, МПа	Граница текучести, МПа	Твердость по Бринеллю, НВ
3.6	Ст3кл, Ст3сл, Ст5кл, Ст5сл	300330	180190	90238
4.6	Ст5кл, Ст.10	400	240	114238
4.8	Ст.10, Ст.10кл	400420	320340	124238
5.6	Ст.35	500	300	147238
5.8	Ст.10, Ст.10кл, Ст.20, Ст.20кл	500520	400420	152238
6.6	Ст.35, Ст.45	600	360	181238
6.8	Ст.20, Ст.20кп, Ст.35	600	480	181238
8.8	Ст.35, Ст.45, Ст.35Х, Ст.38ХА, Ст.20Г2Р	800*	640*	238304*
8.8	Ст.35, Ст.35Х, Ст.38ХА, Ст.40Х, Ст.20Г2Р	800830**	640660**	242318**
9.8*	CT.35, CT.35X, CT.45, CT.38XA, CT.40X, CT.30XFCA, CT.35XFCA, CT.20F2P	900	720	276342

Рис. 4.6. Схема нагрузки заклепочного соединения

Дополнительная информация

Заклепочные соединения

Прочностной расчет швов

В настоящее время большинство заклепочных соединений работает на срез и смятие

