#### Индивидуальное задание № 1, <u>задача 2</u>

# Определение скоростей и ускорений точек твёрдого тела при <u>поступательном</u> и вращательном движениях

По заданному уравнению прямолинейного поступательного движения груза 1 определить скорость, а также касательное, нормальное и полное ускорения точки M механизма в момент времени, когда путь, пройденный

грузом, равен S. Схемы механизмов показаны в табл. 19, а необходимые для расчёта данные помещены в табл. 18.

Пример. Дано: схема механизма 8);  $R_2 = 50 \,\mathrm{cm}$ ;  $r_2 = 40 \,\mathrm{cm}$ ;  $R_3 = 20 \,\mathrm{cm}$ ;  $S = 45 \,\mathrm{cm}$ ; закон движения груза  $\mathbf{1}$   $x = 5 + 10t^2 \,\mathrm{cm}$  ( $t - \mathrm{B}$  секундах).

Определить скорость  $V_{M}$  и полное ускорение  $a_{M}$  точки M , угловую скорость угловое ускорение  $\epsilon_{3}$  звена 3.

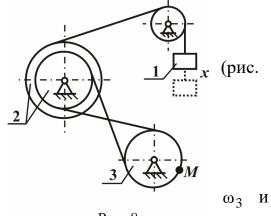



Рис. 8

Решение. Определим момент времени t, когда путь S, пройденный грузом **1**, равен 45 см:

$$x = x(t) = 5 + 10t^2 = 45 \text{ cm},$$

следовательно:

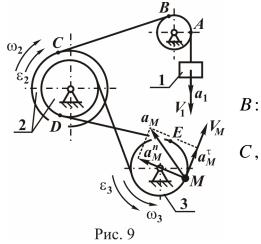
$$t = \sqrt{\frac{45 - 5}{10}} = 2 c.$$

Для определения скорости груза дифференцируем по времени уравнение его движения:

$$V_1 = \dot{x} = 20t \text{ cm/c}.$$

Линейная скорость точки A (рис. 9), равна скорости груза:

$$V_A = V_1 = 20t \text{ cm/c}$$
.


Точка C, находящаяся на колесе  $\mathbf{2}$ , с помощью гибкой связи соединяется с вспомогательным блоком, на котором лежат точки B и A, следовательно, её линейная скорость равна скорости точки

$$V_C = V_B = V_A = 20t \text{ cm/c}.$$

Определив линейную скорость точки находим угловую скорость  $\omega_2$  колеса **2**:

$$\omega_2 = \frac{V_C}{R_2} = \frac{20t}{50} = 0.4t \frac{\text{pag}}{\text{c}}.$$

Точка D принадлежит колесу  ${\bf 2}$  и лежит на окружности меньшего радиуса. Зная угловую скорость  $\omega_2$  колеса  ${\bf 2}$ , определим линейную скорость точки D :



$$V_D = \omega_2 \cdot r_2 = 0,4t \cdot 40 = 16t \text{ cm/c}.$$

Точка E, находящаяся на колесе 3, с помощью гибкой связи соединяется с колесом 2, следовательно, её линейная скорость равна скорости точки D:

$$V_E = V_D = 1.6t \text{ cm/c}$$
.

Точки M и E колеса  ${\bf 3}$  лежат на одной окружности, следовательно,  $V_M = V_E = 1.6t$  см/с. Вектор скорости  $V_M$  направлен перпендикулярно к радиусу в сторону вращения колеса  ${\bf 3}$ .

Зная линейную скорость точки M , находим угловую скорость  $\omega_3$  колеса  ${\bf 3}$ :

$$\omega_3 = \frac{V_M}{R_3} = \frac{16t}{20} = 0.8t \frac{\text{рад}}{\text{c}}.$$

Определив угловую скорость  $\omega_3$  колеса **3**, находим угловое ускорение  $\epsilon_3$  колеса **3**:

$$\epsilon_3 = \dot{\omega}_3 = 0.8 \, \frac{\text{pag}}{c^2} \, .$$

Касательное ускорение точки M:

$$a_M^{\tau} = \varepsilon_3 \cdot R_3 = 0.8 \cdot 20 = 16 \,\mathrm{cm/c}^2$$
.

Вектор касательного ускорения имеет с вектором скорости одинаковое направление, так как в рассматриваемом примере вращение колес равноускоренное ( $\omega_3$  и  $\epsilon_3$  направлены в одну сторону).

Нормальное ускорение точки M:

$$a_M^n = \omega_3^2 \cdot R_3 = 20 \,\omega_3^2 \,\mathrm{cm/c}^2$$

направлено по радиусу к центру колеса 3 (см. рис. 9).

Полное ускорение точки M:

$$a_M = \sqrt{\left(a_M^n\right)^2 + \left(a_M^\tau\right)^2} \; .$$

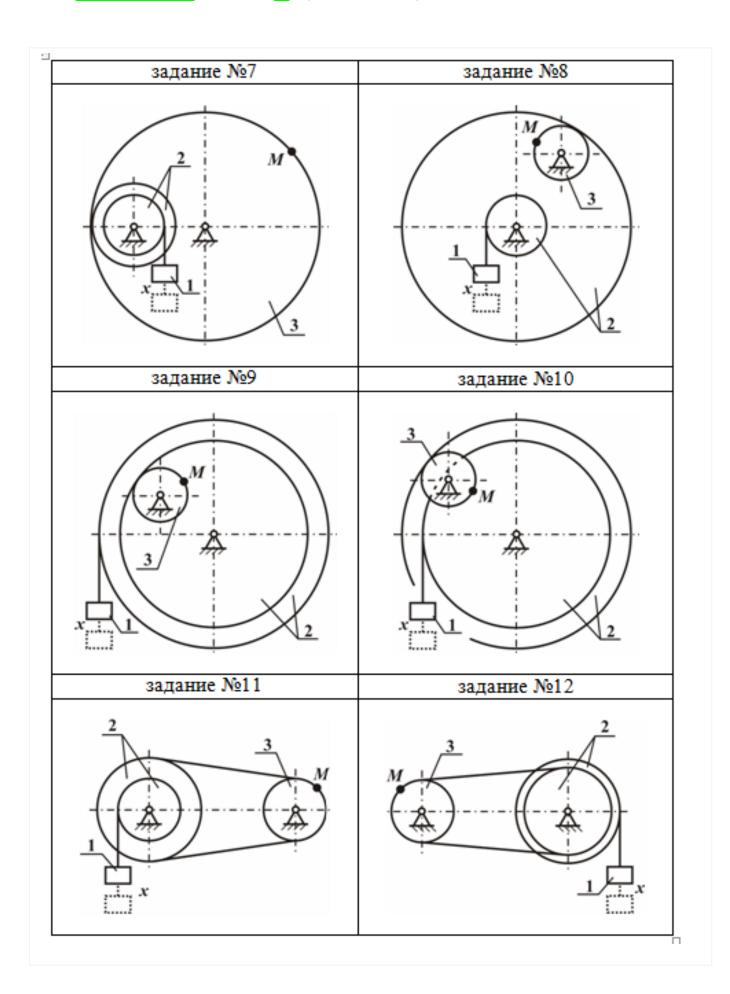
Значения определяемых величин для момента времени  $t=2\,\mathrm{c}$  приведены в табл. 17.

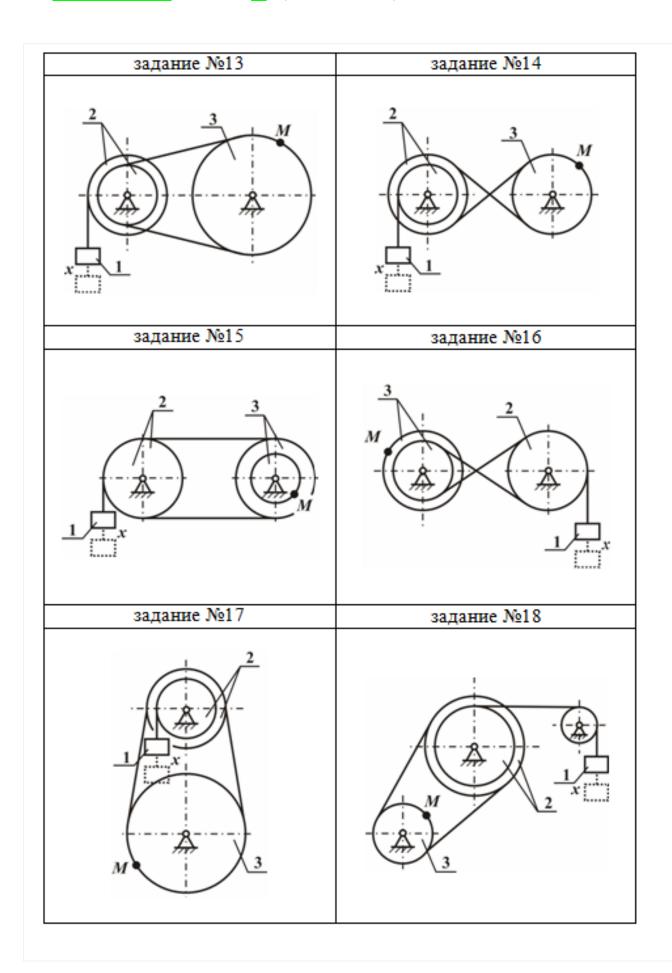
#### Расчетные значения величин

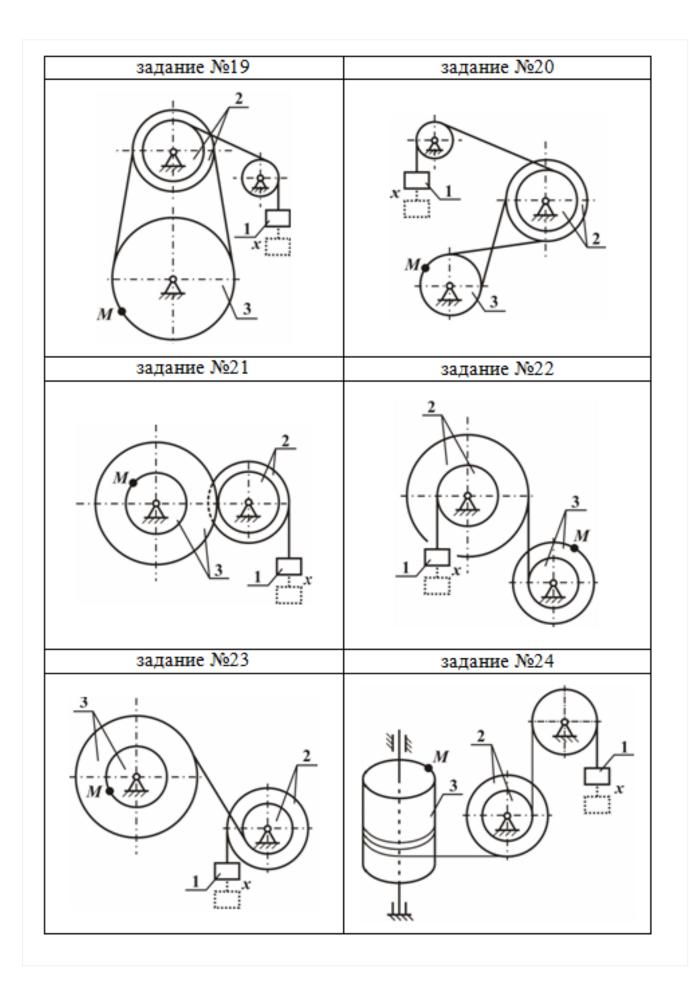
| V <sub>M</sub> CM   | yc      | корение, <u>с</u> | рад   | рад                     |                                |  |
|---------------------|---------|-------------------|-------|-------------------------|--------------------------------|--|
| $V_M, \overline{c}$ | $a_M^n$ | $a_M^{	au}$       | $a_M$ | $\omega_3, \frac{1}{c}$ | $\varepsilon_3, \frac{1}{c^2}$ |  |
| 32                  | 51,2    | 16                | 53,64 | 1,6                     | 0,8                            |  |

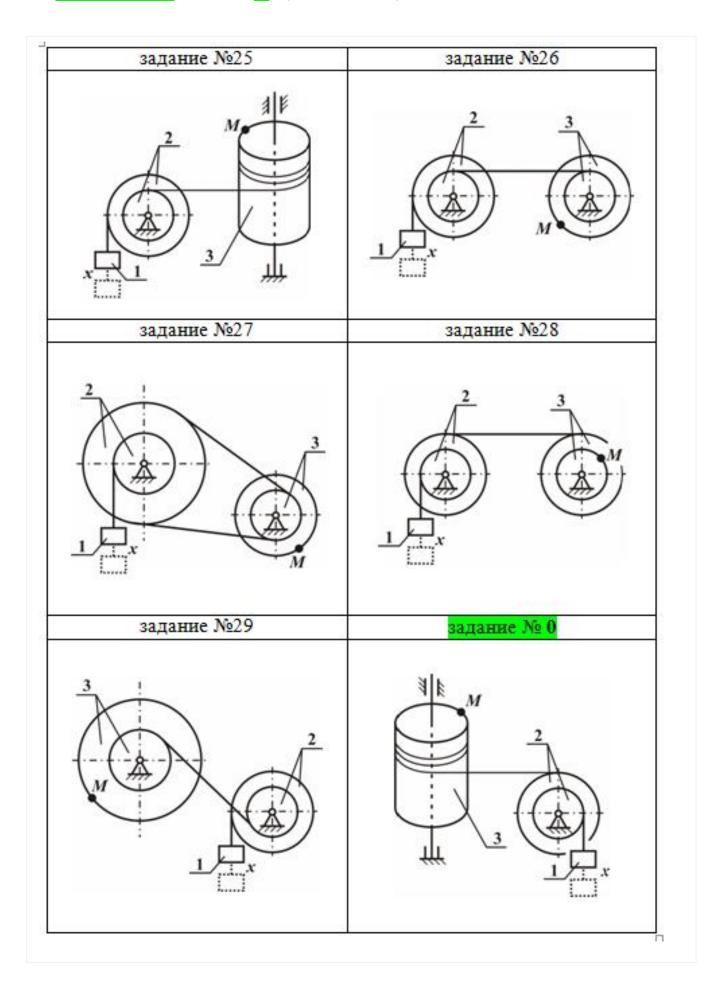
#### Контрольные вопросы к ИДЗ № 1, задача 2

- 1. Какое движение тела называется поступательным?
- 2. Может ли траектория точки тела, совершающего поступательное движение, быть пространственной кривой линией?
  - 3. Каковы основные свойства поступательного движения тела?
  - 4. Какое движение твердого тела называется вращательным?
- 5. По каким траекториям движутся точки тела, вращающегося вокруг неподвижной оси?
  - 6. Каким образом задается вращательное движение тела?
- 7. Какими уравнениями связаны угол поворота, угловая скорость и угловое ускорение тела?
- 8. Какое положение относительно вращающегося тела занимает вектор угловой скорости?
  - 9. Как определяется вектор скорости точки вращающегося тела?
- 10. Как направлены и как определяются составляющие ускорения точки вращающегося тела?
- 11. Как вычисляется ускорение точки вращающегося тела по его составляющим?


# Данные для индивидуального задания №1, <u>задача 2</u> Номер варианта из <u>предпоследней</u> цифры зачётной книжки (например, шифр 65709 — данные из вар. 0)


|         |                                  | Ралиу | сы, см      | Закон |                    |       |
|---------|----------------------------------|-------|-------------|-------|--------------------|-------|
| Вариант |                                  |       |             | T     | движения           | a     |
| задания | D                                |       | D           |       | груза $1 x = x(t)$ | S, cm |
|         | $R_2 \mid r_2 \mid R_3 \mid r_3$ | $r_3$ | (x-cM, t-c) |       |                    |       |
| 0       | 30                               | 15    | 22          | _     | $5+60 t^2$         | 20    |
| 1       | 60                               | 45    | 36          | _     | $10+100 t^2$       | 50    |
| 2       | 80                               | 50    | 60          | _     | $80 t^2$           | 10    |
| 3       | 100                              | 60    | 75          | _     | $18+70 t^2$        | 20    |
| 4       | 58                               | 45    | 60          | _     | $50 t^2$           | 50    |
| 5       | 30                               | 20    | 100         | _     | $8+40 t^2$         | 10    |
| 6       | 100                              | 60    | 15          | _     | $5+60 t^2$         | 50    |
| 7       | 45                               | 35    | 110         | _     | $7+90 t^2$         | 20    |
| 8       | 90                               | 20    | 10          | _     | $4+30 t^2$         | 50    |
| 9       | 120                              | 100   | 30          | _     | $3+80 t^2$         | 20    |
| 10      | 100                              | 80    | 20          | _     | $70 t^2$           | 40    |
| 11      | 40                               | 25    | 10          | _     | $5+40 t^2$         | 30    |
| 12      | 50                               | 30    | 20          | _     | $2+50 t^2$         | 10    |
| 13      | 30                               | 20    | 60          | _     | $60 t^2$           | 40    |
| 14      | 25                               | 10    | 15          | _     | 6+20 t             | 10    |
| 15      | 15                               | _     | 15          | 10    | $8+40 t^2$         | 30    |
| 16      | 30                               | _     | 20          | 15    | $3+40 t^2$         | 40    |
| 17      | 40                               | 30    | 70          | _     | $80 t^2$           | 60    |
| 18      | 30                               | 15    | 20          | _     | 4+20 t             | 30    |
| 19      | 15                               | 10    | 50          | _     | $5+80 t^2$         | 20    |
| 20      | 25                               | 15    | 30          | _     | $50 t^2$           | 30    |
| 21      | 20                               | 10    | 50          | 30    | $4+90 t^2$         | 50    |
| 22      | 40                               | 20    | 30          | 15    | $10+40 t^2$        | 50    |
| 23      | 30                               | 20    | 15          | 10    | 7+40 t             | 60    |
| 24      | 10                               | 30    | 40          | _     | $90 t^2$           | 20    |
| 25      | 50                               | 20    | 32          | _     | 20+50 t            | 50    |
| 26      | 32                               | 16    | 40          | 16    | $5+60 t^2$         | 10    |
| 27      | 40                               | 18    | 30          | 10    | $6+30 t^2$         | 30    |
| 28      | 50                               | 25    | 60          | 15    | $50 t^2$           | 40    |
| 29      | 25                               | 20    | 30          | 60    | 3+30 t             | 60    |
| 30      | 30                               | 15    | 22          | _     | $5+60 t^2$         | 20    |


## Схемы механизмов к ИДЗ №1, <u>задача 2</u>


## Номер варианта <u>схемы</u> из <u>последней</u> цифры зачётной книжки

(например, шифр 657 $\frac{09}{}$   $\rightarrow$  данные из вар.  $\frac{9}{}$ ) + задание №1 задание №2 задание №3 задание №4 задание №5 задание №б





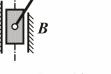




#### Индивидуальное задание № 1, <u>задача 3</u>

#### Определение скоростей и ускорений точек твёрдого тела при плоском движении

Найти для заданного положения механизма скорости точек B и C, ускорение точки C. Схемы механизмов помещены в табл. 23, необходимые для расчёта данные приведены в табл. 22.


Примечание:  $\omega_{OA}$  и  $\epsilon_{OA}$  – угловая скорость и угловое ускорение кривошипа OA при заданном положении механизма;  $\omega_1$  – угловая скорость колеса  ${\bf 1}$  (постоянная);  $\overline{V}_A$  и  $\overline{a}_A$  – скорость и ускорение точки A. Качение происходит без скольжения.

Пример. Схема механизма В заданном положении (рис. 10); исходные данные:  $l_{OA} = 10 \,\mathrm{cm}$ ,  $l_{AB} = 60 \, \text{cm}$  $l_{AC} = 20 \,\mathrm{cm}$ ,  $\omega_{OA} = 1.5 \,\mathrm{pag/c}$ ,  $\varepsilon_{OA} = 1.5 \text{ рад/c}^2$ .

Определить скорости и ускорения точек B и C. Решение.

заданном положении механизма:

 $V_A = \omega_{OA} \cdot OA = 1,5 \cdot 10 = 15 \text{ cm/c}$ .



при

Рис. 10

Вектор скорости точки A перпендикулярен к кривошипу OA. Вектор скорости точки B направлен по вертикали.

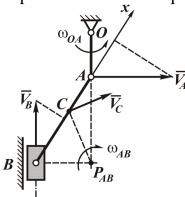



Рис. 11

Мгновенный центр скоростей  $P_{AB}$  звена ABнаходится в точке пересечения перпендикуляров, проведённых из точек А и В к их векторам  $\overline{V}_{A}$  скоростей (рис. 11).

Угловая скорость звена AB:

$$\omega_{AB} = \frac{V_A}{AP_{AB}} = \frac{15}{60 \cdot \cos 30^{\circ}} = 0.29 \,\mathrm{pag/c}.$$

Скорости точек B и C:

$$V_B = \omega_{AB} \cdot BP_{AB}$$
,  $V_C = \omega_{AB} \cdot CP_{AB}$ ,

где:

$$BP_{AB} = AB \cdot \sin 30^{\circ} = 60 \cdot 0,5 = 30 \text{ cm};$$

$$CP_{AB} = \sqrt{BC^2 + BP_{AB}^2 - 2 \cdot BC \cdot BP_{AB} \cos 60^{\circ}};$$

$$CP_{AB} = \sqrt{40^2 + 30^2 - 2 \cdot 40 \cdot 30 \cdot 0,5} = 36,1 \text{ cm}$$

Следовательно,

$$V_B = \omega_{AB} \cdot BP_{AB} = 0.29 \cdot 30 = 8.7 \text{ cm/c};$$

$$V_C = \omega_{AB} \cdot CP_{AB} = 0.29 \cdot 36.1 = 10.5 \text{ cm/c}.$$

Вектор  $\bar{V}_C$  направлен перпендикулярно к отрезку  $CP_{AB}$  в сторону, соответствующую направлению угловой скорости  $\omega_{AB}$  вращения звена AB .

Для проверки определим скорость точки B другим способом. Воспользуемся теоремой о равенстве проекций скоростей точек на ось, проведённую через эти точки.

Направим ось x из точки B вдоль звена AB.

Имеем:

$$V_A \cdot \cos(\overline{V}_A, x) = V_B \cdot \cos(\overline{V}_B, x)$$

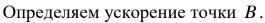
Или, как видно из рис. 11:

$$V_A \cdot \cos 60^\circ = V_B \cdot \cos 30^\circ$$

Отсюда:

$$V_B = V_A \cdot \frac{\cos 60^{\circ}}{\cos 30^{\circ}} = 15 \cdot \frac{0.5}{\sqrt{3}/2} = 8.7 \text{ cm/c}$$

2. Определяем ускорения точек B и C. Ускорение точки A складывается из касательного и нормального ускорений (рис. 12):


$$\overline{a}_A = \overline{a}_A^n + \overline{a}_A^{\tau},$$

где

$$a_A^n = \omega_{OA}^2 \cdot OA = 1,5^2 \cdot 10 = 22,5 \text{ cm/c}^2;$$
  
 $a_A^\tau = \varepsilon_{OA} \cdot OA = 2 \cdot 10 = 20 \text{ cm/c}^2.$ 

Вектор  $\overline{a}_A^n$  направлен к точке O.

Вектор  $\overline{a}_A^{\, \tau}$  перпендикулярен вектору  $\overline{a}_A^{\, n}$  направлен в соответствии с направлением углового ускорения  $\epsilon_{O\!A}$ .



Согласно теореме об ускорениях точек плоской фигуры имеем:

$$\overline{a}_B = \overline{a}_A + \overline{a}_{BA}^{\tau} + \overline{a}_{BA}^n$$
,

где за полюс принята точка A.

Разложим полное ускорение точки A на составляющие:

$$\bar{a}_{B} = \bar{a}_{A}^{\tau} + \bar{a}_{A}^{n} + \bar{a}_{BA}^{\tau} + \bar{a}_{BA}^{n}.$$

$$a_{BA}^{n} = \omega_{AB}^{2} \cdot AB = \frac{1}{12} \cdot 60 = 5,00 \text{ cm/c}^{2}.$$
(1)

Вектор  $\bar{a}_{BA}^n$  направлен к точке A, а касательное ускорение  $\bar{a}_{BA}^{\tau}$  точки B перпендикулярно к нему.

И

Рис. 12

Проектируя векторное равенство (1) на оси x и y, получаем:

$$a_B \cos 30^\circ = -a_A^\tau \cos 60^\circ + a_A^n \cos 30^\circ + a_{BA}^n;$$
 (2)

$$a_B \cos 60^\circ = a_A^{\tau} \cos 30^\circ + a_A^n \cos 60^\circ - a_{BA}^{\tau}.$$
 (3)

Из уравнения (2) определяем величину полного ускорения точки B:

$$a_{B} = \frac{-a_{A}^{\tau} \cos 60^{\circ} + a_{A}^{n} \cos 30^{\circ} + a_{BA}^{n}}{\cos 30^{\circ}};$$

$$a_B = \frac{-20 \cdot 0.5 + 22.5 \cdot 0.866 + 5}{0.866} = 16.7 \text{ cm/c}^2.$$

Из уравнения (3) находим:

$$a_{BA}^{\tau} = a_A^{\tau} \cos 30^{\circ} + a_A^n \cos 60^{\circ} - a_B \cos 60^{\circ};$$
  
$$a_{BA}^{\tau} = 20 \cdot 0,866 + 22,5 \cdot 0,5 - 16,7 \cdot 0,5 = 20,2 \text{ cm/c}^2.$$

Касательное ускорение  $a_{BA}^{\tau}$  можно определить по формуле:

$$a_{BA}^{\tau} = \varepsilon_{AB} \cdot AB$$
,

следовательно,

$$\varepsilon_{AB} = \frac{a_{BA}^{\tau}}{AB} = \frac{20.2}{60} = 0.34 \text{ рад/c}^2.$$

Направление касательного ускорения  $\overline{a}_{BA}^{\tau}$  определяет направление углового ускорения  $\varepsilon_{AB}$  .

Определяем ускорение точки C:

$$\bar{a}_C = \bar{a}_A + \bar{a}_{CA}^{\tau} + \bar{a}_{CA}^n$$

где за полюс принята точка A.

Заменим полное ускорение точки A его составляющими:

$$\overline{a}_{C} = \overline{a}_{A}^{\tau} + \overline{a}_{A}^{n} + \overline{a}_{CA}^{\tau} + \overline{a}_{CA}^{n}. \tag{4}$$

Касательное и нормальное ускорения точки C во вращательном движении звена AB вокруг полюса A :

$$a_{CA}^{\tau} = \varepsilon_{AB} \cdot AC = 0,34 \cdot 20 = 6,8 \text{ cm/c}^2;$$
  
 $a_{CA}^{n} = \omega_{AB}^{2} \cdot AC = \frac{1}{12} \cdot 20 = 1,7 \text{ cm/c}^2.$ 

Вектор  $\overline{a}_{CA}^n$  направлен к точке A, вектор  $\overline{a}_{CA}^{\,\,\,\tau}$  перпендикулярен к вектору  $\overline{a}_{CA}^n$  и направлен соответственно угловому ускорению  $\epsilon_{AB}$ .

## <mark>Механика 1.3.</mark> ИДЗ № <mark>1-</mark>2 ( кинематика)

Ускорение точки C найдём, проектируя равенство (4) на оси x и y (рис. 13):

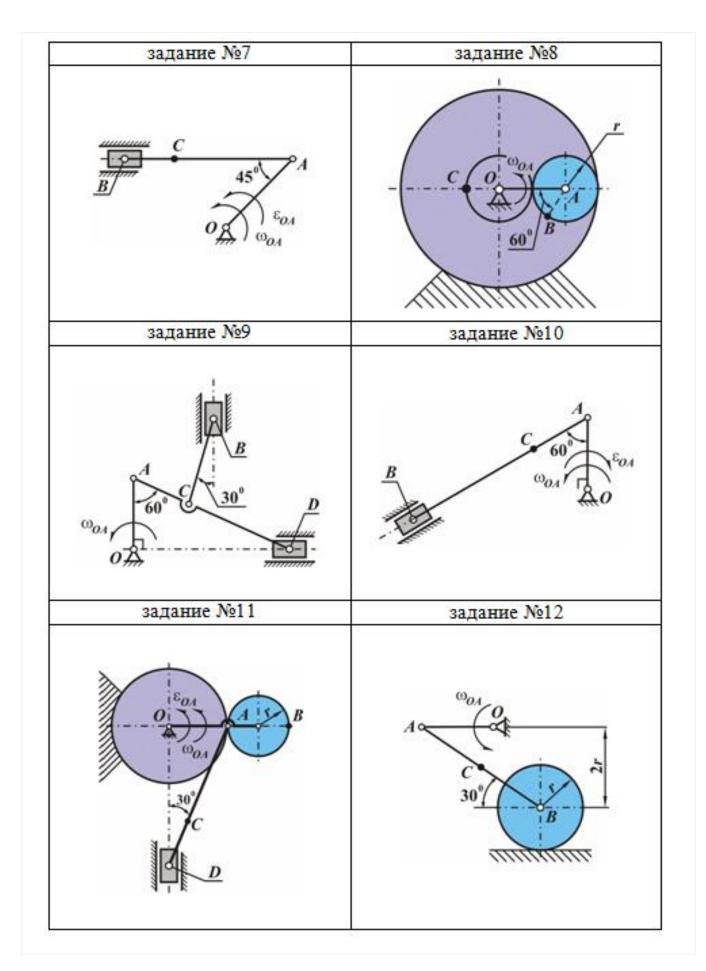
$$a_{Cx} = a_{CA}^{n} + a_{A}^{n} \cos 30^{\circ} - a_{A}^{\tau} \cos 60^{\circ};$$

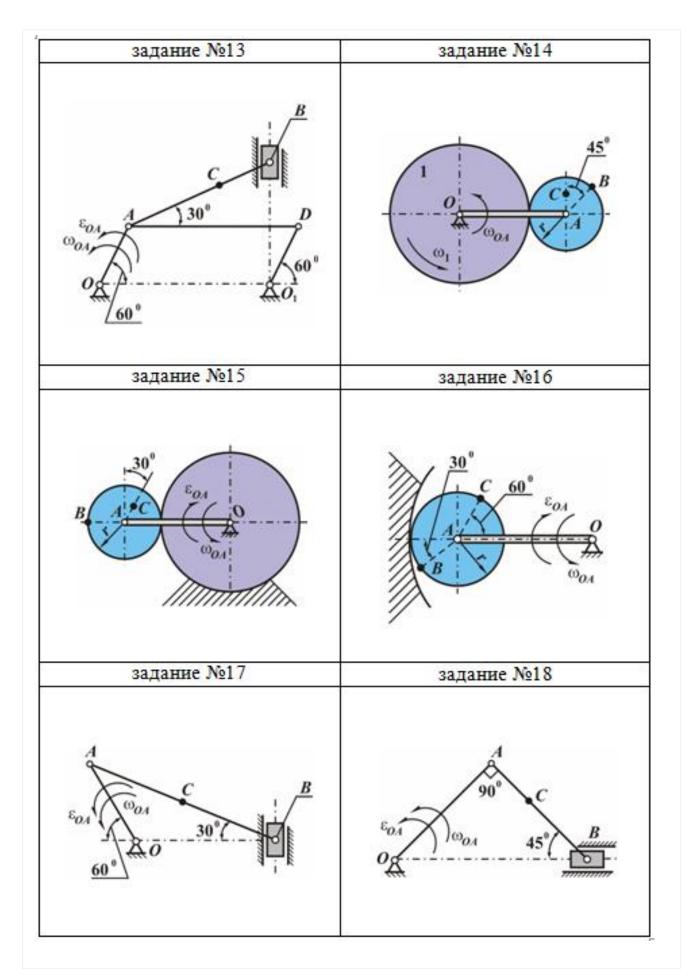
$$a_{Cx} = 1,7 + 22,5 \cdot 0,866 - 20 \cdot 0,5 = 11,2 \text{ cm/c}^{2};$$

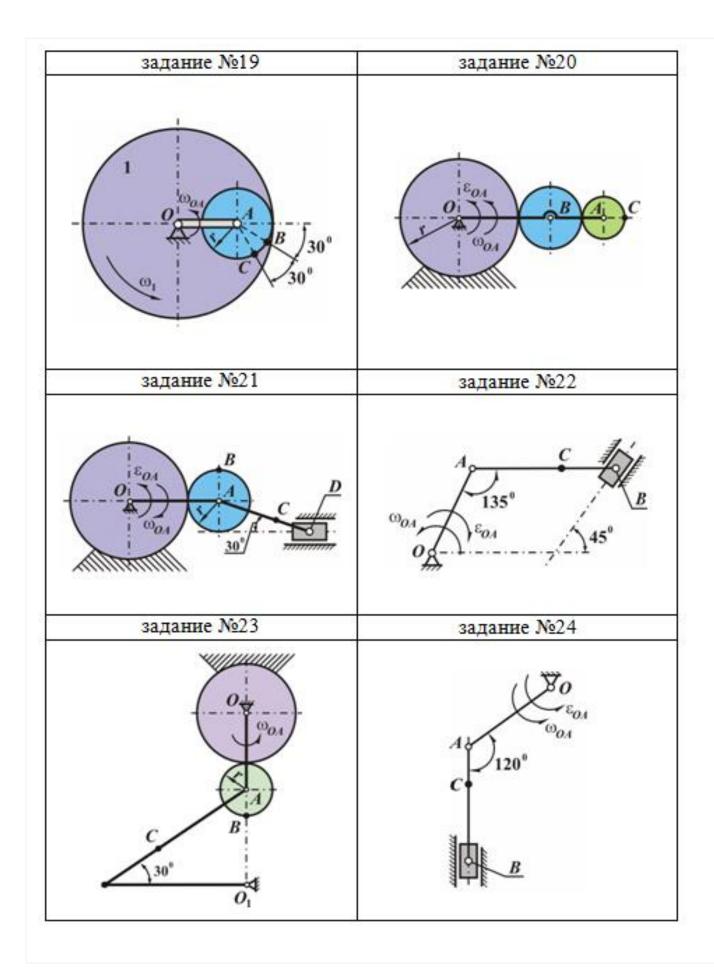
$$a_{Cy} = a_{A}^{n} \cos 60^{\circ} + a_{A}^{\tau} \cos 30^{\circ} - a_{CA}^{\tau};$$

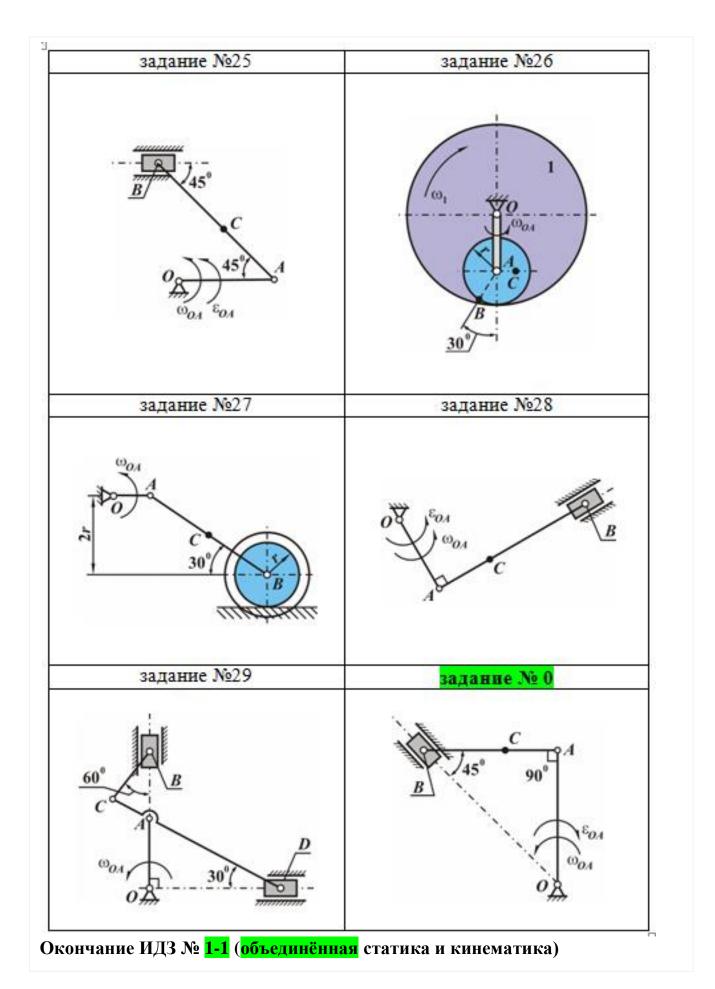
$$a_{Cy} = 22,5 \cdot 0,5 + 20 \cdot 0,866 - 6,8 = 21,8 \text{ cm/c}^{2}.$$
Puc. 13
$$a_{C} = \sqrt{a_{Cx}^{2} + a_{Cy}^{2}} = \sqrt{11,2^{2} + 21,8^{2}} = 24,5 \text{ cm/c}^{2}.$$

#### Контрольные вопросы к ИДЗ 1, задача 3


- 1. Какое движение тела называется плоским?
- 2. Какими уравнениями задается плоское движение?
- 3. Как найти скорость полюса и угловую скорость тела по закону движения плоской фигуры?
- 4. Какой векторной формулой связаны скорость полюса и скорость произвольной точки плоской фигуры?
- 5. Каковы величина и направление скорости  $\overline{V}_{BA}$  в уравнении  $\overline{V}_{B} = \overline{V}_{A} + \overline{V}_{BA}$ ?
- 6. Что называется мгновенным центром скоростей плоской фигуры?
- 7. Как определяется положение мгновенного центра скоростей в различных случаях?
- 8. Как распределяются скорости точек плоской фигуры относительно ее мгновенного центра скоростей?
- 9. Какой векторной формулой связаны ускорение полюса и ускорение любой точки плоской фигуры?
- 10. Каковы величины и направления ускорений  $\overline{a}_{BA}^n$  и  $\overline{a}_{BA}^{\tau}$  в уравнении  $\overline{a}_B = \overline{a}_A + \overline{a}_{BA}^n + \overline{a}_{BA}^{\tau}$  ?


# Данные для индивидуального задания № 1, <u>задача 3</u> Номер варианта из <u>предпоследней</u> цифры зачётной книжки (например, шифр 657<mark>0</mark>9 — данные из вар. 0)


| (например, шифр 037 <mark>0</mark> 9 |             |    |     |                 | 7 данные из вар. <mark>0</mark> ) |                   |                 |          |                           |
|--------------------------------------|-------------|----|-----|-----------------|-----------------------------------|-------------------|-----------------|----------|---------------------------|
| Вариант                              | Размеры, см |    |     | $\omega_{OA}$ , | $\omega_1$ ,                      | $\epsilon_{OA}$ , | $V_A$ ,         | $a_A$ ,  |                           |
| задания                              |             |    | 1.0 | рад             | рад                               | рад               | см              | см       |                           |
|                                      | OA          | r  | AB  | AC              |                                   |                   | $\frac{1}{c^2}$ | <u> </u> | $\frac{\overline{c^2}}{}$ |
|                                      |             |    |     |                 |                                   |                   |                 |          |                           |
| 0                                    | 40          | -  | -   | 20              | 5                                 | _                 | 10              | -        | -                         |
| 1                                    | 40          | 15 | _   | 8               | 2                                 | _                 | 2               | _        | _                         |
| 2                                    | 30          | 15 | _   | 8               | 2 3                               | _                 | 2               | _        | _                         |
| 3                                    | 20          | 40 | _   | 40              | _                                 | _                 |                 | 40       | 100                       |
| 4                                    | 35          | _  | _   | 45              | 4                                 | _                 | -<br>8          | _        | _                         |
| 5                                    | 25          | _  | _   | 20              | 1                                 | _                 | 1               | _        | _                         |
| 6                                    | 40          | 15 | _   | 6               | 1                                 | 1                 | 0               | _        | _                         |
| 7                                    | 35          | _  | 75  | 60              | 5                                 | _                 | 10              | _        | _                         |
| 8                                    | 25          | _  | _   | 40              | _                                 | _                 | _               | 50       | 125                       |
| 9                                    | 10          | _  | _   | 5               | _                                 | _                 | _               | 20       | 50                        |
| 10                                   | 25          | _  | 80  | 20              | 1                                 | _                 | 2               | _        | _                         |
| 11                                   | 15          | 10 | _   | 20              | 2                                 | _                 | 3               | _        | _                         |
| 12                                   | 10          | _  | 40  | 20              | _                                 | _                 | _               | 20       | 50                        |
| 13                                   | 25          | _  | 60  | 30              | 2                                 | _                 | 4               | _        | _                         |
| 14                                   | 45          | 15 | _   | 8               | 3                                 | 12                | 0               | _        | _                         |
| 15                                   | 40          | 15 | _   | 8               | 1                                 | _                 | 1               | _        | _                         |
| 16                                   | 35          | 20 | _   | _               | 2                                 | _                 | 5               | _        | _                         |
| 17                                   | 20          | _  | _   | 0,5AB           | 2                                 | _                 | 4               | _        | _                         |
| 18                                   | 10          | _  | 10  | 5               | 2                                 | _                 | 6               | _        | _                         |
| 19                                   | 20          | 15 | _   | 10              | 1                                 | 2,5               | 0               | _        | _                         |
| 20                                   | 40          | 15 | 15  | 5               | 2                                 | _                 | 4               | _        | _                         |
| 21                                   | 40          | _  | 15  | 15              | 3                                 | _                 | 8               | _        | _                         |
| 22                                   | 35          | _  | 60  | 40              | 4                                 | _                 | 10              | _        | _                         |
| 23                                   | 40          | 15 | 90  | 45              | _                                 | _                 | _               | 20       | 20                        |
| 24                                   | 25          | _  | 35  | 15              | 2                                 | _                 | 3               | _        | _                         |
| 25                                   | 20          | _  | 70  | 20              | 1                                 | _                 | 2               | _        | _                         |
| 26                                   | 20          | 15 | _   | 10              | 2                                 | 1,2               | 0               | _        | _                         |
| 27                                   | 10          | _  | 40  | 20              | 2                                 | _                 | _               | _        | 50                        |
| 28                                   | 20          | _  | 50  | 25              | 1                                 | _                 | 1               | _        | _                         |
| 29                                   | 16          | _  | _   | 20              | _                                 | _                 | _               | 8        | 5                         |
| 30                                   | 40          | _  | _   | 20              | 5                                 | _                 | 10              | _        | _                         |


# Схемы механизмов к ИДЗ № 1, <u>задача 3</u> Номер варианта <u>схемы</u> из <u>последней</u> цифры зачётн<mark>о</mark>й книжки

| ф (например, шифр б | (например, шифр 657 $\frac{09}{0}$ $\rightarrow$ данные из вар. $\frac{9}{9}$ ) |  |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| задание №1          | задание №2                                                                      |  |  |  |  |  |  |
|                     | $\frac{30^{\circ}}{45^{\circ}}$                                                 |  |  |  |  |  |  |
| задание №3          | задание №4                                                                      |  |  |  |  |  |  |
|                     | $\omega_{OA}$ $\varepsilon_{OA}$ $\varepsilon_{OA}$ $\varepsilon_{OA}$          |  |  |  |  |  |  |
| задание №5          | задание №6                                                                      |  |  |  |  |  |  |
|                     |                                                                                 |  |  |  |  |  |  |









**Механика 1.3.** ИДЗ № **1.2** ( кинематика)