МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Руководитель Отделения электронной инженерии _____ М. В. Тригуб «___»____2022 г.

Лабораторная работа №1 Параметрическое моделирование упругих элементов микромеханических систем в SolidWorks

Методические указания по выполнению лабораторной работы по курсу «Сенсорные и актюаторные элементы микросистемной техники» для студентов IV курса, обучающихся по образовательной программе направления 11.03.04 – Электроника и наноэлектроника

Томск-2022

Цель лабораторной работы:

1. Изучить различные типы упругих элементов, применяемых при разработке микромеханических устройств.

Задачи:

1. Научиться пользоваться параметризацией в SolidWorks.

2. Научиться пользоваться библиотекой материалов SolidWorks и создавать характеристики новых материалов.

3. Научиться определять оптимальное количество конечных элементов, необходимых для корректного проведения конечно-элементного анализа.

4. Задавать необходимые граничные условия для проведения конечноэлементного анализа.

5. Научиться обрабатывать результаты конечно-элементного анализа.

6. Рассчитывать жёсткость упругих элементов микромеханических систем.

Введение

Микросистемная техника (МСТ) является одним из наиболее динамично развивающихся направлений микроэлектроники.

Разработка и исследование компонентов современных микроэлектромеханических систем (МЭМС) связаны с решением задач математической физики, к которым относят задачи теплопроводности, диффузии, электростатики и электродинамики, задачи о течении жидкости, о распределении плотности электрического тока в проводящей среде, задачи о деформациях твердых тел и многие другие.

МЭМС, используемые для ориентации и навигации подвижных объектов, состоят из подвижных масс, которые крепятся к неподвижному основанию с помощью упругих подвесов.

2

На рисунке 1 представлено 7 типов упругих элементов подвесов, предназначенных для исследования в данной лабораторной работе.

Где М – толщина упругого элемента, мкм.

Параметрическое черчение упругого элемента

Для примера будет показано параметрическое черчение упругого элемента типа 6. Создание параметрического чертежа состоит из следующих действий:

1. Запустите SolidWorks. В появившемся окне создания новых деталей, нажмите кнопку Дополнительно. Выберите шаблон gost-part и нажмите кнопку ОК.

Добавить в переменные четыре параметра упругого элемента: М
 = 40 мкм, B = 10 мкм, H = 20 мкм, L = 5.

Для этого в дереве выбрать правой кнопкой мыши (ПКМ): «Название детали → Скрытые элементы дерева → Уравнения → Управление уравнениями».

Либо в верхнем левом углу навести на значок: «SolidWorks → Инструменты → Уравнения». Редактор представлен на рисунке 2.

/равнения, глобальные переменн	ые и размеры								
Тотфильтровать все поля Повторить ввод									
Имя	Значение / Уравнение	Равняется	Заметки	ОК					
Глобальные переменные				Отмена					
Добавить глобальную пере	менную			_					
Элементы				<u>И</u> мпорт					
	нта			<u>Э</u> кспорт					
Добавить уравнение									
				С <u>п</u> равка					
Перестраивать автоматически Связь с внешним файлом:	/гловые единицы: 🗸 🗸 🗸	✓ Автоматический по решения	рядок						

Рисунок 2 – Редактор уравнений, глобальных переменных

и размеров в SolidWorks

Нажать на строку «добавить глобальную переменную». После этого ввести буквенное обозначение глобальной переменной и его численное значение. После ввода численного значения переменной выберите единицы измерения мкм. Между численным значением и единицами измерения не должно быть пробела, в противном случае, программа выдаст ошибку. В колонке «Заметки» оставьте комментарий к добавляемой переменной (рисунок 3).

1мя	Значение / Уравнение	Равняется	Заметки	ОК
Глобальные переменные				Отме
"B"	= 10мкм	0.01мм	Ширина упругого подвеса	
Добавить глобальную переменн	ую			Импор
Элементы				
Добавить погашение элемента				Экспор
Уравнения				
Добавить уравнение				С <u>п</u> рав
			ž poposov	

Рисунок 3 – Задание новой переменной

Аналогичным образом задаются три другие переменные (рисунок 4).

мя	Значение / Уравнение	Равняется	Заметки	OI	
Глобальные переменные				Отме	
"B"	= 10мкм	0.01мм	Ширина упругого подвеса	OTME	
"H"	= 20мкм	0.02мм	Высота упругого подвеса	<u>И</u> мпор	
"L"	= 5	5	Количество звеньев		
"M"	= 40мкм	0.04мм	Высота выталкивания		
Добавить глобальную переменн	iyio			<u>Э</u> кспо	
Элементы				Спра	
Добавить погашение элемента				C <u>n</u> put	
Уравнения					
Добавить уравнение					

Рисунок 4 – Окно редактора с четырьмя переменными

Для удобства черчения в программе SolidWorks объектов с размерами до одного микрометра, необходимо произвести предварительную настройку документа. Для этого необходимо подвести указатель мыши на «Параметры» (рисунок 5) и нажать на него.

Рисунок 5 – Открытие диалогового окна «Параметры» Затем откройте вкладку «Свойства документа» (рисунок 6).

\sim
~
Q,

Рисунок 6 - Свойства документа

Слева выберите пункт «единицы измерения» и настройте для базовых единиц измерения в выпадающем меню точность для Длины до 5 знаков после запятой (рисунок 7).

Масштабная сетка/Привязать					1	
Единицы измерения	Тип	Единицы измерения	Десятичные дроби	Дроби	Больше	^
Отображение модели Свойства материала	Базовые единицы измерен	ния				-
Качество изображения MBD для листового металла	Длина	миллиметры	.12345 🗸			
Листовой металл Сварные детали Отображение плоскости	Длина двойного размера	дюймы	.12			
Конфигурации	Угол	градусы	.12			
	Параметры массовых хара	актеристик/сечения				
	Длина	метры	.12			

Рисунок 7 – Настройка точности единиц измерения

В дереве модели выберите «Вид сверху → Эскиз».

3. Создайте новую вертикальную вспомогательную прямую произвольной длины с началом в нулевой точке глобальной системы координат. Данная линия впоследствии, станет половиной ширины упругого подвеса (рисунок 8).

Рисунок 8-Вертикальная осевая линия

Затем нажмите на верхней панели автоматическое нанесение размеров и нажмите на ранее нарисованную линию (рисунок 9).

Рисунок 9 – Присвоение размера вертикальной вспомогательной прямой После присвоения размера откроется меню, в которое необходимо ввести ранее созданную переменную ширины упругого подвеса (рисунок 10).

Рисунок 10-Параметризация размера

Создать новую вертикальную вспомогательную прямую произвольной длины с началом в нулевой точке глобальной системы координат и направленной вниз. Присвойте параметр B/2 (рисунок 11).

Рисунок 11 – Задание второй половины ширины упругого элемента

Создать две новые горизонтальные прямые с параметром В/2, начинающиеся в точке глобальной системы координат (рисунок 12).

Рисунок 12 – Создание параметрических горизонтальных прямых Создать вертикальную прямую линию с параметром Н (рисунок 13) с началом в точке глобальной системы координат.

Рисунок 13 – Создание вертикальной прямой

Создайте две вертикальные прямые с началом в конечной точке вертикальной линии, созданной на рисунке 13. Присвойте построенным линиям параметр B/2 (рисунок 14).

Рисунок 14 – Создание вертикальных прямых

Создать горизонтальную прямую с началом в точке глобальной системы координат с параметром Н (рисунок 15).

Рисунок 15 - Создание горизонтальной прямой

Создать две новые горизонтальные прямые с параметром В/2 (рисунок 16) от построенной на рисунке 12 горизонтальной прямой.

Рисунок 16 - Создание горизонтальных прямых

Создать горизонтальную прямую с параметром Н (рисунок 17) от конца созданной на рисунке 15 прямой.

Рисунок 17 – Создание горизонтальной прямой с параметром Н

Создать одну новую горизонтальную прямую с параметром В/2 от конца созданной на рисунке 17 прямой, рисунок 18.

Рисунок 18 – Новая горизонтальная прямая

Через полученные точки необходимо провести осевые линии бесконечной длины для корректной работы параметризации (рисунок 19). Для этого выберите: Линия → Осевая линия → Как нарисовано → бесконечная длина.

Рисунок 19-Вспомогательные линии бесконечной длины

Обвести линии построения линиями изображения, как показано на рисунке 20.

Рисунок 20 – Обводка линиями изображения

На этом построение эскиза закончено. Можно из него выйти.

4. Затем необходимо выбрать эскиз в дереве модели, выбрать «Вытянутая бобышка/основание» и вытолкнуть созданный эскиз на высоту, равную параметру M = 40 мкм (рисунок 21).

Рисунок 21-Задание параметрического выталкивания

Для того, чтобы вручную не рисовать остальные звенья упругого элемента, воспользуемся операцией «Линейный массив» (рисунок 22). Количество звеньев установите равным параметру L (L=5). Интервал установите равным параметру H+H.

Рисунок 22 – Линейный массив звена упругого подвеса

5. Достроить слева часть звена. Для этого необходимо выбрать грань упругого подвеса (рисунок 23).

Рисунок 23 – Выбранная грань упругого подвеса Нарисовать эскиз части звена (рисунок 24).

Рисунок 24 – Эскиз части звена

Параметрический размер нужен только для ширины элемента, он равен параметру B, а высота элемента является высотой выталкивания звена, которая равна параметру M.

6. Далее эскиз (рисунок 24) необходимо вытолкнуть на параметр H-В (рисунок 25).

Рисунок 25-Выталкивание эскиза

7. Упрощение спроектированного тела, так как были построены лишние рёбра. Для этого необходимо выбрать: «Вставка → Элементы → Скомбинировать тела» (рисунок 26).

Рисунок 26–Объединение упругого подвеса На этом построение упругого подвеса закончено.

Добавление нового материала в библиотеку материалов программы SolidWorks и применение нового материала к 3D-модели.

Для проведения конечно-элементного моделирования необходимо задать физические характеристики кремния. Так как данный материал отсутствует в стандартной библиотеке материалов, его необходимо добавить в библиотеку.

В дереве модели необходимо выбрать: «Материал → Редактировать материал» (рисунок 27).

Рисунок 27 – Окно выбора и создания материалов

В левой части окна необходимо открыть меню и выбрать «Новая библиотека» (рисунок 28).

Рисунок 28 – Создание новой библиотеки

При сохранении новой библиотеки формат библиотеки должен выглядеть следующим: фамилия студента_МСТ (например: Иванов_МСТ). Далее необходимо создать новую категорию в ранее созданной библиотеке (рисунок 29).

Рисунок 29 – Добавление новой категории

Далее необходимо добавить новый материал в созданную категорию и задать ему физические характеристики (рисунок 30).

Материал					×
Поиск > E SolidWorks DIN Materials > Solidworks materials > Sustainability Extras > Hacrpoeнный пользователем материал > Фамилия студента_МСТ • Кремний Е Кремний	Свойства Внешний ви, Свойства материала Материалы в библи скопировать матери отредактировать. Дип модели: Единицы измерения: <u>К</u> атегория: <u>И</u> мя:	 д Штриховка Наст отеке по умолчанию настроенную по Линейный упругий СИ - Н/м^2 (Па) Кремний Кремний 	ройка Данные программно оне могут редактироваться. Н ользователем библиотеку и з изотропн ↓ Сохранить ↓	го обеспечения Часто используемые Лист Чеобходимо натем его ь тип в <u>б</u> иблиотеке	овой ()
	Описание: Источник: Sustainability: Свойство Модуль упругости	- Не определено	Вы Значение 1.6893e+11	ібрать Единицы измерения Н/м^2	
	Koothuuuout Duocoo		0.076107		
	коэффициент туассо	Hd	0.070197	не применимо	
	Модуль сдвига		7.8486e+10	Н/м^2	
	Массовая плотность		2329	кг/м^3	
	Предел прочности пр	ои растяжении	17000000	Н/м^2	
	Предел прочности пр	ои сжатии	340000000	Н/м^2	
	Предел текучести		165000000	H/m^2	
	Коэффициент теплово	ого расширения	2.5301e-06	/K	
	Теплопроводность		126	· W/(M·K)	
	Удельная теплоемко	ть	700	J/(Kr·K)	
	Коэффициент демпфи	прования материала		Не применимо	
			1		
	При	іменит <u>ь</u>	За <u>к</u> рыть <u>С</u> охран	нить <u>К</u> онфигурация <u>С</u> п	равка

Рисунок 30 – Физические свойства материала

После задания имени и всех свойств материала, нажмите кнопкой мыши кнопку «Сохранить» и кнопку «Применить». Созданный материл должен примениться к спроектированной модели.

Определение жёсткости упругого элемента по осям X, Y, Z с помощью метода конечных элементов, реализованного в программном модуле SolidWorks Simulation.

Для определения жёсткости упругого элемента, необходимо выбрать: «Добавления SOLIDWORKS \rightarrow SolidWorks Simulation \rightarrow Hoboe исследование \rightarrow Статический».

После этого производится полное закрепление одной грани упругого элемента. В дереве настройки модели выбрать: «Крепления→ Зафиксированная геометрия». Выбрать левую крайнюю грань упругого элемента, и нажать кнопку . Результат представлен на рисунке 31.

Рисунок 31 – Результат операции фиксированная геометрия

Противоположной грани упругого подвеса необходимо задать частичное закрепление. Для этого на верхней панели необходимо выбрать: «Консультант по креплениям → Дополнительные крепления» и настроить согласно рисунку 32.

Рисунок 32-Настройка частичного закрепления

Для определения жёсткости по оси Z необходимо к концу упругого элемента с дополнительным креплением приложить силу вдоль оси Z, равную 0,001 H. Для этого выбрать: «Simulation \rightarrow Консультант по внешним нагрузкам \rightarrow Сила».

Выбрать ребро упругого элемента и после этого произвести настройку приложения силы, как показано на рисунке 33.

Рисунок 33 – Настройка параметров приложения силы вдоль оси Y
Затем необходимо наложить на модель конечно-элементную сетку. Для
этого выбрать: «Simulation → Запустить этот исследование → Сетка».
Выбрать плотность сетки «Высокая» и нажать сультат представлен на рисунке 34.

Рисунок 34 – Модель упругого подвеса с конечно-элементной сеткой

После этого можно выполнить расчёт задачи. Для этого выбрать: «Simulation → Запустить это исследование».

После окончания расчёта перейти к результатам решённой задачи (рисунки 35, 36).

Рисунок 35 – Перемещения, модуль

Рисунок 36 – Эквивалентные напряжения

Чтобы оценить правильность полученных результатов, необходимо увеличить количество конечных элементов на некоторое значение и посчитать задачу заново. Результат КЭ анализа считается верным, если новые результаты отличаются от предыдущих не более, чем на 3%:

$$\frac{N_2 - N_1}{N_2} \cdot 100\% \le 3\%,$$

где N₁ – результат, полученный на предыдущем шаге решения задачи;

N₂ – новый результат.

Таким образом, постепенно увеличивая количество конечных элементов, повышают точность решения задачи.

После подбора оптимального значения конечных элементов, определяется жёсткость упругого элемента:

$$k_i = \frac{F}{\Delta L}$$

где k_i – жёсткость упругого элемента по осям X, Y, Z;

F – сила, воздействующая на упругий элемент, H;

Δ*L* – максимальные перемещения упругого элемента при воздействии на него силы F, м.

Задание

1. Выполнить параметрические чертежи упругих элементов, представленных на рисунке 1. Размеры взять из таблицы 1, согласно варианту.

2. Для каждого упругого элемента определить оптимальное значение конечных элементов для корректного проведения статического анализа. Построить графики изменения оптимального количества конечных элементов.

Для каждого упругого элемента определить жёсткости по осям X,
 Y, Z, изменяя каждый параметр, представленный в таблице 1 на ±20 %. Силу,
 прикладываемую вдоль осей X, Y, Z задать равной 0,001 H.

22

4. Построить графики, показывающие изменение жёсткости от изменения параметров упругого элемента. Меняется один параметр, остальные остаются неизменными.

5. Написать выводы.

Все значения параметров в таблице 1 даны в микрометрах.

Таблица 1-Вар	ианты заданий
---------------	---------------

N⁰	А	В	С	D	Е	F	G	Η	J	K	L	М
1	70	6	8	260	15	20	5	15	5	10	25	40
2	75	7	9	255	16	19	6	14	6	9	23	40
3	80	8	10	250	17	18	7	13	7	8	21	40
4	85	9	11	245	18	17	8	12	8	7	20	40
5	90	10	12	240	19	16	9	11	9	6	19	40
6	95	10	13	235	20	15	10	11	10	5	18	40
7	100	9	14	230	15	14	5	12	5	10	17	40
8	105	6	8	225	16	13	6	8	6	9	16	40
9	110	7	9	220	17	12	7	15	7	8	15	40
10	115	8	10	215	18	11	8	14	8	7	25	40
11	120	9	11	210	19	10	9	13	9	6	23	40
12	125	10	12	205	20	20	10	12	10	5	21	40
13	130	11	13	200	15	19	5	13	5	10	20	40
14	135	10	14	195	16	18	6	12	6	9	19	40
15	140	6	8	190	17	17	7	9	7	8	18	40
16	145	7	9	185	18	16	8	8	8	7	17	40
17	150	8	10	180	19	15	9	15	9	6	16	40
18	155	9	11	175	20	14	10	14	10	5	15	40
19	160	10	12	170	15	13	5	13	5	10	25	40
20	165	11	13	165	16	12	6	12	6	9	23	40
21	170	12	14	160	17	11	7	16	7	8	21	40
22	175	6	8	155	18	10	8	10	8	7	20	40
23	180	7	9	150	19	20	9	9	9	6	19	40
24	185	8	10	145	20	19	10	8	10	5	18	40
25	190	9	11	140	15	18	5	15	5	10	17	40

Содержание отчёта

- 1. Цель.
- 2. Задачи.
- 2. 3D-модели построенных упругих элементов.
- 3. Конечно-элементные модели упругих элементов.
- 4. Графики зависимостей жёсткости упругих элементов по осям Х,

Y и Z в зависимости от изменяемых параметров.

7. Выводы.

Литература

1. Руководство для учащихся по изучению программного обеспечения SolidWorks [Электронный ресурс]. - Режим доступа:

<u>https://www.solidworks.com/sw/docs/student_wb_2011_rus.pdf</u> (Дата обращения 30.05.2021).

2. Дмитрий Зиновьев. Основы моделирования в SolidWorks. Практическое руководство по освоению программы SolidWorks в кратчайшие сроки.

3. Алямовский А.А. SolidWorks Simulation. Как решать практические задачи. – СПб.,: БХВ-Петербург, 2012. – 448 с.: ил.

4. Алямовский А.А. SolidWorks Simulation. Инженерный анализ для профессионалов: задачи, методы, рекомендации. – М.: ДМК Пресс, 2015. – 562 с.: ил.