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PREFACE 
This textbook is intended for students who have already studied basic 
mathematics and need to study the methods of higher mathematics. It covers 
three content areas: Linear Algebra, Vector Algebra and Analytical Geometry. 
Each part contains basic mathematical conceptions and explains new 
mathematical terms. Many useful examples and exercises are presented in the 
textbook. explained and illustrated by examples and exercises. 
The Linear Algebra topics include matrix operations, determinants and systems 
of linear equations.  
In the section “Vector Algebra”, a main attention is paid to the geometrical 
applications of vector operations. The vector approach is considered to be basic 
for discussion of classic problems of Analytical Geometry. 
The author welcomes reader’s suggestions for improvement of future editions of 
this textbook. 
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LINEAR ALGEBRA 
1. Matrices 

Matrices allow us to operate with arrays consisting of many numbers, 
functions or mathematical statements, just as if we operate with several 
items. 
Matrices have a wide application in different branches of knowledge, for 
instance, in mathematics, physics, computer science, and so on. Matrices 
allow us to solve systems of ordinary equations or sets of differential 
equations, to predict the values of physical quantities in quantum theory, to 
encrypt messages in the Internet, and so on. 
In this chapter, we discuss the basic concepts of the matrix theory, 
introduce matrix characteristics, and study some matrix applications. The 
important propositions are proved and illustrated by examples. 

1.1. Basic Definitions 

A matrix is a rectangular array of numbers, algebraic symbols or 
mathematical functions, provided that such arrays are added and 

multiplied according to certain rules. 

Matrices are denoted by upper case letters: A, B, C, …  
The size of a matrix is given by the number of rows and the number of 
columns. A matrix with m rows and n columns is called an  matrix 
(pronounce m-by-n matrix). The numbers m and n are the dimensions of the 
matrix. Two matrices have the same size, if their dimensions are equal. 

nm×

Examples: 
matrix23×  matrix32×  matrix22×  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

43
01
72

A  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

833
01 5

B  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

xx
xx

C
sincos
cossin

 

Members of a matrix are called its matrix elements or entries. The entry 
in the i-th row and the j-th column of a matrix A is denoted by  or . 
The subscripts indicate the row first and the column second. 

jia , jiA ,

In the examples above, the boldface elements are 42,3 =a  and . 52,1 =b

A matrix with one row is called a row matrix: ( )naaa ,12,11,1 K . 
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A matrix with one column is called a column matrix:  . 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1,

1,2

1,1

ma

a
a

L

In the general form, a matrix is written as follows: 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nmjmmm

nijiii

nj

nj

aaaa

aaaa

aaaa
aaaa

A

,,2,1,

,,2,1,

,2,22,21,2

,1,12,11,1

LL

LLLLLL

LL

LLLLLL

LL

LL

 

A short form of this equality is  |||| , jiaA = . 
A square matrix has as many rows as columns, the number of which 
determines the order of the matrix, that is, an nn×  matrix is the matrix of 
the n -th order. 

1.2. Matrix Operations 
Equality of Matrices 
Two matrices,  and |||| , jiaA = |||| , jibB = , are equal, if they have the same 
sizes and their elements are equal by pairs, that is, 

BA =   ⇔    jiji ba ,, =  
for each pair of indexes },{ ji . 

Scalar Multiplication 
Any matrix A may be multiplied on the right or left by a scalar quantity λ . 
The product is the matrix AB λ=  (of the same size as A) such that 

jiji ab ,, λ=  
for each },{ ji . 

To multiply a matrix by a scalar, multiply every 
matrix element by that scalar. 

Example: Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

141
032

A . Then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

5205
01510

5A . 
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The Sum of Matrices 
If  and  are matrices of the same size, then the sum, |||| , jiaA = |||| , jibB =

BA + , is the matrix  such that |||| , jicC =

jijiji bac ,,, +=  
for each pair },{ ji . 

To add matrices, add the corresponding matrix elements. 

Example: Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
021
173

A  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

214
3156

B . Then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=+
233
489

214
3156

021
173

BA . 

Multiplication of a Row by a Column 
Let A  be a row matrix having as many elements as a column matrix . B
In order to multiply A  by , it is necessary to multiply the corresponding 
elements of the matrices and to add up the products. Symbolically, 

B

( ) ∑
=

=+++=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=
n

k
kknn

n

n babababa

b

b
b

aaaAB
1

1,,11,,11,22,11,11,1

1,

1,2

1,1

,12,11,1 K
L

L  

Thus, multiplying a row matrix by a column matrix we obtain a number. 
Later we will show that any number can be considered as an  matrix. 11×

To multiply a two-row matrix  by the 

column matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

n

aaa
aaa

A
A

A
,22,21,2

,12,11,1

2

1

K

K

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

1,

1,1

1)(

nb

b
BB M , we multiply each row of A by the column 

of . In this case, the product B AB  is the following 12×  matrix: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++
+++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1,,21,22,21,11,2

1,,11,22,11,11,1

12

11
1

2

1 )(
nn

nn

bababa
bababa

BA
BA

B
A
A

AB
K

K
. 

Similarly, the multiplication of an m-row matrix by an n-column matrix 
generates the nm×  matrix. 
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Matrix Multiplication 
The product of two matrices, A and B, is defined, if and only if the number 
of elements in a row of A  equals the number of ones in a column of .  B
Let A be an lm ×  matrix and B be an nl ×  matrix. Then the product AB  is 
the  matrix such that its entry in the i-th row and the j-th column is 
equal to the product of the i-th row of 

nm ×
A  and the j-th column of . If we 

denote the rows of A by  and the columns of B by , then 
B

K,, 21 AA K,, 21 BB

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

nmmm

n

n

n

m BABABA

BABABA
BABABA

BBB

A

A
A

ABC

L

LLLL

L

L

L
L

21

22212

12111

21
2

1

 

To find the element  in the i-th row and the j-th column of the  jic ,

matrix ABC = , multiply the i-th row of A by the j-th column of B: 

∑
=

==
l

k
jkkijiji baBAc

1
,,, . 

Note 1: The symbolic notation 2A  means the product of two equal square 
matrices:    AAA ⋅=2 . 
Similarly,     AAAA ⋅⋅=3 , 

43421
K

n

n AAAA ⋅⋅⋅= . 

Note 2: In general, the product of matrices is not commutative: BAAB ≠ . 

Examples: 
1) For each of the following matrices, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

31
02

B ,    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
2

C ,    ( )02=D ,   and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
1211

12
F , 

determine whether it equals the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

30
12

A   or not. 

Solution: The dimensions of both matrices, C and D, differ from ones 
of A. Therefore, CA ≠  and DA ≠ .  
There are two matrices, B and F, which consist of the same elements as 
A and have the same order. However, the corresponding entries of A and 
B are not equal in pairs, and so BA ≠ .  
The matrix F satisfies all conditions of matrix equality, that is, A = F. 
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2) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
42

31
A  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

155
104

B .  

Solve for X the matrix equation 
X + 4 A = B.  

Solution: 

.
313

20
168
124

155
104

42
31

4
155
104

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−= ABX

 

3) Given two matrices ( )321=A  and , find the matrix 

products AB and BA. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=
0
4

5
B

Solution: 

( ) 303)4(251
0
4

5
321 −=⋅+−⋅+⋅=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⋅=AB , 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅⋅⋅
⋅−⋅−⋅−
⋅⋅⋅

=⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

000
1284

15105

302010
342414

352515
321

0
4

5
BA . 

4) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

30
12

A   and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
14

53
B .  Find the difference between 

matrix products AB BA and . 
Solution: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+⋅⋅+⋅
−⋅+⋅⋅+⋅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

312
910

)1(3504330
)1(1524132

14
53

30
12

AB , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−+⋅⋅−+⋅

⋅+⋅⋅+⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
18

186
3)1(140)1(24

35130523
30
12

14
53

BA , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−
44
94

18
186

312
910

BAAB . 
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5) Find 2002A  , if  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
11

A . 

Solution: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅=

10
21

10
11

10
112 AAA , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅=

10
31

10
21

10
1123 AAA , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅=

10
41

10
31

10
1134 AAA ,  and so on. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
200212002A . 

 

1.3. Types of Matrices 
In a square matrix , the elements , with i = 1, 2, 3, ... , are 
called the diagonal matrix elements. The set of the entries  forms the 
leading (or principle) diagonal of the matrix. 

|||| , jiaA = iia ,

iia ,

A square matrix  is called a diagonal matrix, if off-diagonal 
elements are equal to zero or, symbolically,  

|||| , jiaA =
0, =jia  for all  ji ≠ : 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nna

a
a

A

,

2,2

1,1

00

00
00

L

MLLM

L

L

. 

Identity matrices I are square matrices such that 
AAI =⋅    and    AIA =⋅ . 

Compare these matrix equalities with the corresponding property of real 
numbers:   aa =⋅1     and    aa =⋅1 . 
Theorem: Any identity matrix I is a diagonal matrix whose diagonal 
elements are equal to unity: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

100

010
001

L

MLLM

L

L

I . 

This theorem is proved in the following section. 
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Examples: 
1) It is not difficult to verify that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dc
ba

dc
ba

10
01

  and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dc
ba

dc
ba

10
01

. 

Therefore, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 is the identity matrix of the second order. 

2) Let    be any |||| , jiaA = 32×  matrix. Then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3,22,21,2

3,12,11,1

3,22,21,2

3,12,11,1

10
01

aaa
aaa

aaa
aaa

    and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3,22,21,2

3,12,11,1

3,22,21,2

3,12,11,1

100
010
001

aaa
aaa

aaa
aaa

. 

A matrix is called a zero-matrix (0-matrix), if it consists of only zero 
elements:  for each 0, =jia },{ ji . 
In a short form, a zero-matrix is written as 0: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≡

00

00
0

L

MOM

L

. 

By the definition of a zero-matrix, 
000 =⋅=⋅ AA  

and 
AA =+ 0 , 

that is, a zero-matrix has just the same properties as the number zero. 
However, if the product of two matrices is equal to zero, it does not mean 
that at least one of the matrices is a zero-matrix.  

For instance, both matrices, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

40
10

A  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
23

B , are non-zero 

matrices, while their product is a zero-matrix: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
00

00
23

40
10

AB . 
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A square matrix has a triangular form, if all its elements above or below 
the leading diagonal are zeros: 

.fororfor0all , jijia ji <>=  

Examples: 

Upper-triangular matrix Lower-triangular matrix 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

400
0

52
cb

a
A  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

302
074
001

B  

Given an  matrix , the transpose of A is the  matrix 

 obtained from A by interchanging its rows and columns.  

nm× |||| , jiaA = mn ×

|||| ,ijaA =T

This means that the rows of the matrix A are the columns of the matrix TA ; 
and vise versa: 

ijji
T aA ,,)( = . 

For instance, the transpose of  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

43
01
72

A   is  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
407
312TA . 

A square matrix  is called a symmetric matrix, if A is equal to the 

transpose of A:     

|||| , jiaA =
TAA =    ⇔  ijji aa ,, = . 

The examples below illustrate the structure of symmetric matrices: 

TR
bc
ca

R =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=    and    . TS

cfe
fbd
eda

S =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

A square matrix  is called a skew-symmetric matrix, if A is equal 
to the opposite of its transpose: 

|||| , jiaA =

ijji aa ,, −= . 

The example below shows the structure of a skew-symmetric matrix: 

TAA −=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

021
203

130
. 
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1.4. Kronecker Delta Symbol 
The Kronecker delta symbol is defined by the formula 

⎩
⎨
⎧

≠
=

=
.if,0
,if,1

, ji
ji

jiδ  

The delta symbol cancels summation over one of the indexes in such 
expressions as 

∑
i

jiia ,δ ,      ∑
j

jija ,δ , 

∑
i

jijia ,, δ ,      ∑
j

jijia ,, δ ,  and so on. 

For instance, the sum ∑
i

jiia ,δ  may contain only one nonzero term 

jjjj aa =,δ , while all the other terms are equal to zero, because of 0, =jiδ  
for any ji ≠ . 

If   njk ≤≤ ,  then  j

n

ki
jii aa =∑

=
,δ . 

If  kj <   or  nj > ,  then  0, =∑
=

n

ki
jiia δ . 

Likewise, if ,  then  . i

n

kj
jij aa =∑

=
,δnik ≤≤

Otherwise, if ki <  or ,  then  . ni > 0, =∑
=

n

kj
jija δ

Examples: 

904130201 2222
100

1
3,

2 =+⋅+⋅+⋅+⋅=∑
=

K
i

ii δ . 

102422 10
20

1
10, ==∑

=k
k

kδ ,   however     02
5

1
10, =∑

=k
k

kδ . 

Now we can easily prove the above-mentioned theorem of identity 
matrix: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

100

010
001

|||| ,

L

MOLM

L

L

jiI δ . 
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The theorem states that the |||| , jiI δ=  is an identity matrix. Therefore, we 
have to prove that AIA =⋅  for any matrix A . 
Proof: Let A  be an arbitrary nm×  matrix and |||| , jiδ  be the square matrix 
of the n-th order. Then the matrix product IA ⋅  is the matrix of the same 
size as A .  
By the definition of the matrix product and in view of the properties of the 
delta symbol, we obtain that 

ji

n

k
jkkiji aaIA ,

1
,,,)( ==⋅ ∑

=

δ  

for each pair of indexes },{ ji . 
The equality of the corresponding matrix elements implies the equality of 
the matrices: AIA =⋅ . 

1.5. Properties of Matrix Operations 
Properties involving Addition 

1. For any matrix A there exists the opposite matrix  (– A)  such that 
A + (– A) = A – A = 0. 

2. If A and B are matrices of the same size, then 
A + B = B + A. 

3. If A, B, and C are matrices of the same size, then 
(A + B) + C = A + (B + C). 

4. The transpose of the matrix sum is the sum of the transpose of the 
matrices: 

TTT BABA +=+ )( . 
The above properties of matrices result from the properties of real numbers. 
The proofs are left to the reader. 
Properties involving Multiplication 

1. Let A be a matrix. If λ  and µ  are scalar quantities, then 
AA )()( µλµλ = . 

2. Let A and B be two matrices such that the product AB is defined. If 
λ  is a scalar quantity, then 

)()()( BABAAB λλλ == . 

3. Let A, B, and C be three matrices such that all necessary 
multiplications are appropriate. Then 

(AB)C = A(BC). 
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4. Let A and B be two matrices such that the product AB is defined. 
Then 

TTT ABAB =)( . 

5. If A and B are two diagonal matrices of the same order, then 
BAAB = . 

Properties 1) and 2) simply result from the properties of real numbers and 
the definition of the scalar multiplication. 
To prove Property 3, we have to show that the corresponding elements of 
the two matrices, CAB)(  and )(BCA , are equal. 
By the definition, the matrix element in the i-th row and the k-th column of 
the matrix AB  is 

∑=
l

klliki baAB ,,,)( . 

The matrix element in the i-th row and the j-th column of the matrix 
CAB)(  can be expressed as 

∑∑∑ ==
k

jk
l

klli
k

jkkiji cbaCABCAB ,,,,,, )())(( . 

By changing the order of summation, we obtain 

.))(()(

))((

,,,

,,,,,,,

ji
l

jlli

l
jk

k
klli

l
jk

k
klliji

BCABCa

cbacbaCAB

==

==

∑

∑ ∑∑∑
 

The equality of the corresponding matrix elements is satisfied that implies 
the equality of the matrices:  )()( BCACAB = . 

To demonstrate Property 4, we transform the entry in the i-th row and the 
j-th column of the matrix . In view of the definition of the transpose 
of matrix, 

TAB)(

.)(

)()(

,,,,,

,,,,

ji
TT

k
jk

T
ki

T

k
ki

T
jk

T
k

ikkjijji
T

ABABBA

baABAB

===

==

∑∑

∑
 

Thus, nd (  obey the conditions of equality of matrices. TAB)(  a )TT AB

Property 5 is based on the following reasons: 1) diagonal matrices are 
symmetric ones; 2) the product of diagonal matrices is a diagonal matrix. 
Therefore, we need only to show that iiii BAAB ,, )()( = . Indeed, 

iiik
k

ki
k

kiik
k

ikkiii BAabbabaAB ,,,,,,,, )()( ==== ∑∑∑ . 
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Properties involving Addition and Multiplication 
1. Let A , , and B C  be three matrices such that the corresponding 

products and sums are defined. Then 
ACABCBA +=+ )( , 

BCACCBA +=+ )( . 

2. Let A  and  be two matrices of the same size. If B λ  is a scalar, then 
BABA λλλ +=+ )( . 

To prove Property 1, consider the element on the i-th row and the j-th 
column of the matrix )( CBA + .  
By the definition of the matrix product and in view of the addition 
properties, we have 

jijiji
k

jkki
k

jkki

k
jkjkki

k
jkkiji

ACABACABcaba

cbaCBaCBA

,,,,,,,

,,,,,,

)()()(

)()())((

+=+=+=

+=+=+

∑∑

∑∑
 

for each pair of indexes },{ ji . 

Therefore, the matrices A(B + C) and (AB + AC) are equal. 
The equality of the matrices (A + B)C and  (AC + BC)  can be proven in a 
similar way: 

.)()()(

)()())((

,,,,,,,

,,,,,,

jijiji
k

jkki
k

jkki

k
jkkiki

k
jkkiji

BCACBCACcbca

cbaCBACBA

+=+=+=

+=+=+

∑∑

∑∑
 

The corresponding matrix elements are equal by pairs. Hence, the matrices 
are equal. 
Property 2 results from the properties of real numbers. The proof can be 
performed by the reader. 
Short Summary: Operations with matrices, such as addition and 
multiplication, have similar properties as that with usual real numbers.   
Numerical matrices of the first order can be interpreted as usual real 
numbers, that is, . The set of matrices is a generalization of the 
set of real numbers. 

1,11,1 |||| aa ≡
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Examples: 

1) Let , ( )21=A ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

40
13

B ,  and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

205
142

C . 

By a straightforward procedure, show that  (AB)C = A(BC). 

Solution: ( ) ( 73
40
13

21 =⎟⎟ )
⎠

⎞
⎜⎜
⎝

⎛ −
⋅=⋅BA , 

( ) ( 171229
205
142

73)( =⎟⎟ )
⎠

⎞
⎜⎜
⎝

⎛−
⋅=⋅ CBA , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⋅

8020
11211

205
142

40
13

CB , 

( ) ( ) CBACBA )(171229
8020
11211

21)( ⋅==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
⋅=⋅ . 

2) Let  and  be two matrices of the second order.  |||| , jiaA = |||| , jibB =

Verify the identity  TTT ABAB =)( .
Solution: Find the matrix product of A and B and the transpose of AB: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅

2,22,22,11,21,22,21,11,2

2,22,12,11,11,22,11,11,1

2,21,2

2,11,1

2,21,2

2,11,1

babababa
babababa

bb
bb

aa
aa

BA , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=⋅
2,22,22,11,22,22,12,11,1

1,22,21,11,21,22,11,11,1)(
babababa
babababa

BA T . 

Then find the matrix product TT AB  to see that  TTT ABAB =)( :

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2,22,21,22,12,12,21,12,1

2,21,21,21,12,11,21,11,1

2,22,1

1,21,1

2,22,1

1,21,1

abababab
abababab

aa
aa

bb
bb

AB TT . 

3) Let  and 12)( 2 +−= xxxf ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

20
11

A .  Find f (A). 

Solution: The matrix-analogue of the number 1 is the identity matrix I. 
Therefore,  

.
10
12

10
01

40
31

40
22

10
01

20
11

20
11

20
11

22)( 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=+−= IAAAf
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2. DETERMINANTS 
2.1. Permutations and Transpositions 

A permutation of elements of a set of ordered elements is any one-to-one 
transformation of the set onto itself. 
Let S be the ordered set of the natural numbers from 1 to n: 

},,3,2,1{ nS K= . 
A permutation of S is the set of the same numbers arranged in a particular 
way: 

},,,,{},,3,2,1{ 321 niiiin KK ⇒ . 

A permutation is called a transposition, if the order of two elements of the 
set is changed but all other elements remain fixed. 

Example of a permutation: 
}4,3,2,1{       ⇒ }3,1,4,2{

Example of a transposition: 
}4,3,2,1{        ⇒ },3,2,{ 14

Every permutation of ordered elements can be expressed through a 
sequence of several transpositions. For instance, permutation  can 
be presented by the sequence of the following transpositions: 

}3,1,4,2{

},3,2,{ 41             ⇒ }4,1,,{ 23 ⇒ },1,,2{ 43 ⇒ }3,1,4,2{  

It is said that a permutation of S contains the inversion of elements  and 
, if 

ji

ki
j < k   and  . kj ii >

The total number of inversions determines the inversion parity of the 
permutation that takes on two values: either even or odd. 
A permutation is called an even permutation, if it contains an even number 
of inversions. This means that an even permutation is formed by an even 
number of transpositions of S. 
An odd permutation contains an odd number of inversions.  
This means that an odd permutation is a sequence of an odd number of 
transpositions of S. 

Example: The permutation {2, 4, 1, 3} of  is odd, since it }4,3,2,1{
contains three inversions: 

2  and 1, 4  and 1,  4  and 3. 
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Theorem 1 
Any transposition changes the inversion parity of a permutation. 

Proof: It is not difficult to see that the transposition of neighboring 
elements  and  changes the inversion parity of a given permutation. ji 1+ji
The transposition of elements  and  can be expressed as the sequence 
of 

ji kji +

)12( −k  transpositions. Really, by k transpositions of the element  with 
the neighboring element on the right of  we get the permutation 

: 

ji

ji
},,,{ LL jkj ii +

 
Then, by k - 1 transpositions of the element  with the neighboring 
element on the left of , we get the desired permutation 

: 

kji +

kji +

},,,,{ LLL kjj ii +

 
The total number 12)1( −=−+ kkk  of the transpositions is an odd number, 
and hence the inversion parity of the permutation is changed. 

Theorem 2 
Given the set },,3,2,1{ nS K= , there are n! different permutations of S. 

Proof: Consider an arbitrary permutation of S. 
The first position can be displaced by any of n elements. 
The second position can be displaced by any of the remaining  1−n  
elements. 
The third position can be displaced by any of the remaining   
elements, and so on. 

2−n

The n-th position can be displaced by the rest single element. 
Therefore, there are n(n – 1)(n – 2)…1 = n! ways to get a new permutation 
of the elements of S. 
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Example: 
The set }3,2,1{=S  consists of three elements, and so the number of 
different permutations is 6!3 = : 

}3,2,1{ ,      { , }1,3,2{ , }2,1,3

}2,3,1

}

}

}

}1,2,3{ ,      { . }3,1,2{ ,

a) The permutations 
}3,2,1{ ,  and }1,3,2{ }2,1,3{  

are even, since each of them is a sequence of an even number of 
transpositions of the elements of S: 

{1, 2, 3}   {3, 2, 1}   → → 1,3,2{ ,

{1, 2, 3}   {2, 1, 3}   → → 2,1,3{ .

In terms of inversions, the permutations   and 
 are even, since each of them contains an even number of 

inversions of the elements. For instance, the permutation 
contains two inversions of the elements: 

}3,2,1{ , }1,3,2{
}2,1,3{

}1,3,2{  

2  and 1, since 2  is on the left from 1, and  2  > 1, 
3  and 1, since 3  is on the left from 1, and  3 > 1. 

b) Likewise, the permutations 
}1,2,3{ ,      and   3,1,2{ }2,3,1{  

are odd, since each of them is a sequence of an odd number of 
transpositions of the elements of S. In particular, the permutation 

 is the transposition of the elements 1 and 3 of S. }1,2,3{
In terms of inversions, the permutation  is odd, since it 
contains the odd number of the inversions: 

}1,2,3{

3  and  2, since  3  is on the left from  2  and  3 > 2, 
3   and  1, since  3  is on the left from  1  and  3 > 1, 
2   and  1, since  2  is on the left from  1  and  2 > 1. 

The permutation  contains the inversion of the elements 2 
and 1. 

}3,1,2{

The permutation  contains the inversion of the elements 3 
and 2. 

}2,3,1{
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2.2. General Definition 
Let  be  a square matrix of the order n, and let |||| , jiaA = },,2,1{ nS L=  be 
the ordered set of the first n natural numbers. 
Consider the following product of n matrix elements: 

},,,{
,,2,1

21
21

)1( n
n

kkkP
knkk aaa KK − ,  (1) 

where  is a permutation of S, and  is the 
inversion parity of the permutation . That is,  for an 
even permutation, and  for an odd one: 

},,,{ 21 nkkk L },,,{ 21 nkkkP L

},,,{ 21 nkkk L 1)1( =− P

1)1( −=− P

},,,{sign)1( 21
},,,{ 21

n
kkkP kkkn KK =− . 

Expression (1) is the product of matrix elements such that each row and 
each column of A is presented by one and only one its element. According 
to Theorem 2, there are n! different permutations of S, each of which 
generates the product of type (1). 
The sum of products (1) over all possible permutations  is 
called the determinant of the matrix A: 

},,,{ 21 nkkk L

∑ −=
},,,{

},,,{
,,2,1

21

21
21

)1(det
n

n
n

kkk

kkkP
knkk aaaA

K

KK .  (2) 

It is denoted by the array between vertical bars: 

nnnn

n

n

aaa

aaa
aaa

A

,2,1,

,22,21,2

,12,11,1

det

L

MLLM

L

L

= .   (3) 

Sum (2) contains n! terms (1) with even and odd permutations, fifty-fifty. 
The determinant is very important characteristic of the matrix. As a rule, it 
is important only whether the determinant of a given matrix equals zero or 
not. For instance, the inverse matrix of A exists if and only if 0det ≠A .  
Do not confuse the determinant of a matrix with the matrix itself!  
While a numerical matrix A is an array of numbers, Adet  is some single 
number but not an array of numbers. 
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Particular cases 
1. A matrix of the first order contains only one element. The determinant 

of that matrix is equal to the matrix element itself: . 1,11,1 ||||det aa =

2. Let A be a square matrix of the second order:  . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2,21,2

2,,11,1

aa
aa

A

There exist the following two permutations of  }  and  }2,1{ : 2,1{ }1,2{ .
The permutation  is even, since it does not contain any inversions, 
while the permutation  is odd, since two elements form the inversion. 
These permutations generate two products of the elements with opposite 
signs, 

}2,1{
}1,2{

2,21,1 aa+    and   1,22,1 aa− , 
the sum of which gives the determinant of A: 

1,22,12,21,1
2,21,2

2,11,1 aaaa
aa
aa

−=  

3. If a matrix has the third order then we have to consider all possible 
permutations of the set . There exist the following six 
permutations of  

}3,2,1{
}3,2,1{ :

}3,2,1{ ,     } }

} }

1,3,2{ , 2,1,3{ ,

}1,2,3{ ,     3,1,2{ , 2,3,1{ .

The permutations  }, and  are even since each of 
them contains an even number of inversions of elements. 

}3,2,1{ , 1,3,2{ }2,1,3{

The permutations  }, and  are odd since there are 
odd numbers of inversions of elements in these permutations. (See details 
in the above example.) 

}1,2,3{ , 3,1,2{ }2,3,1{

Therefore, 

2,33,21,13,31,22,11,32,23,1

2,31,23,11,33,22,13,32,21,1

3,32,31,3

3,22,21,2

3,12,11,1

aaaaaaaaa

aaaaaaaaa
aaa
aaa
aaa

−−−

++=
 

To remember this formula, apply the Sarrus Rule which is shown in the 
figure below. 
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The elements on a diagonal or at the vertices of a triangular form the 
product of three elements. If the base of the triangle is parallel to the 
leading diagonal of the matrix, the product keeps the sign; otherwise, the 
product changes the sign. 

2.3. Properties of Determinants 
1. The determinant of the transpose of A is equal to the determinant of 

the given matrix A: 
AAT detdet = . 

Proof: This property results from the determinant definition since both 
determinants consist of the same terms. 

2. Multiplying any row or column of a determinant by a number λ , 
multiplies the determinant by that number: 

 
This means that the common factor of a row (column) can be taken 
out. 

Proof: Every term of the sum 

∑ −=
},,,{

},,,{
,,2,1

21

21
21

)1(det
n

n
n

iii

iiiP
inii aaaA

K

KK  

contains one and only one element of a row and a column of the matrix. 
Therefore, if the row (or column) is multiplied by a number, each term is 
multiplied by that common factor. 



Determinants 

 26

3. The determinant changes  the sign, if two rows (or columns) of a 
matrix are interchanged: 

 

Proof: By Theorem 1, any transposition changes the inversion parity of a 
given permutation. Therefore, each term of the sum 

∑ −=
},,,{

},,,{
,,2,1

21

21
21

)1(det
n

n
n

iii

iiiP
inii aaaA

K

KK  

changes its sign. 
4. If a matrix has a zero-row or zero-column, then the determinant is 

equal to zero: 

00000

,3,2,1,

,3,2,1,

=

LLLLL

L

L

L

LLLLL

njjjj

niiii

aaaa

aaaa
 

Proof: Every product of the sum 

Aaaa
n

n
n

iii

iiiP
inii det)1(

},,,{

},,,{
,,2,1

21

21
21

=−∑
K

KK  

contains a zero factor and so equals zero. 
5. If a matrix has two equal rows (or columns) then the determinant is 

equal to zero: 

0

,3,2,1,

,3,2,1,

=

LLLLL

L

LLLLL

L

LLLLL

niiii

niiii

aaaa

aaaa
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Proof: Let two identical rows (or columns) be interchanged. Then, by 
Property 3, the determinant changes the sign. On the other hand, the rows 
(or columns) are equal, and hence the determinant keeps its value: 

AA detdet −=     ⇒ .0det =A  
6. If two rows (or columns) of a matrix are proportional to each other 

then the determinant is equal to zero: 

0

,3,2,1,

,3,2,1,

=

LLLLL

L

LLLLL

L

LLLLL

niiii

niiii

cacacaca

aaaa
 

Proof: Multiplying the i-th row of the matrix by the constant of 
proportionality we obtain the determinant with equal rows. 

7. If each element of a row (column) of a determinant is the sum of 
two entries then 

 

 

Proof:  

∑∑

∑

+=

=−+

},,,{
,

},,,{
,

},,,{
,

},,,{
,,,1

2121

21

21
1

)1()(

n
k

n
k

n
n

n
kk

iii
ik

iii
ik

iiiP
in

iii
ikiki

ba

abaa

KK

K

K

KKKK

KK
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8. A determinant holds its value, if a row (column) is multiplied by a 
number and then is added to another one: 

LLLLL

LL

LLLLL

LL

LLLLL

LLLLL

L

LLLLL

L

LLLLL

inknikik

inii

knkkk

iniii

caacaacaa

aaa

aaaa

aaaa

+++
=

2211

21

321

321

 

Proof: The determinant on the right hand can be expressed as the sum of 
two determinants, one of which contains two proportional rows. 
Therefore, the determinant equals zero. 

9. Let A and B be square matrices of the same order. Then the 
determinant of their product is equal to the product of the 
determinants: 

BAAB detdet)det( ⋅= . 

10. The determinant of a triangular matrix is equal to the product of the 
elements on the principle diagonal: 

nn

nn

n

n

n

aaaa

a

aa
aaa
aaaa

,3,32,21,1

,

,33,3

,23,22,2

,13,12,11,1

000

00
0

⋅⋅⋅⋅= K

L

LLLLL

L

L

L

. 

 In particular, the determinant of an identity matrix I equals the unity. 
Proof: First, there is only  which is a non-zero element in the first 
column Therefore, sum (2) consists of zero terms for all values of  
except for .  

1,1a

1i
11 =i

Next, we have to ignore the first row and choose a non-zero element on 
the second column. Only the element  satisfies these conditions, and 
so we can set  in sum (2).  

2,2a
22 =i

Likewise, on the third column we can take only the element  to get a 
non-zero product of elements and so on.  

3,3a

Therefore, all appropriate permutations of indexes give zero products of 
elements, except for the product of the elements on the principle diagonal. 
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Examples: 

1) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
xx
xx

A
sincos
cossin

.  Find Adet . 

Solution:   

1cossin
sincos
cossin

det 22 =+=
−

= xx
xx
xx

A . 

2) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dc
ba

A .  Verify that TAA detdet = . 

Solution: 

bcad
dc
ba

A −==det      and  .det bcad
db
ca

AT −==  

3) Evaluate 
987
654
321

. 

Solution: 

0
012
012
321

2
024
012
321

987
654
321

133
122

3
2

===
−→
−→

rrr
rrr

. 

4) Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
05

A  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

23
17

B .  Verify that .detdetdet BAAB ⋅=  

Solution: 

10
21
05

det ==A ,   11
23
17

det ==B , 

110detdet =⋅ BA . 

,
513
535

23
17

21
05

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=AB  

110)1335(5
113
135

5
513
535

det =−=⋅==AB . 
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5) Evaluate 1000det A , if ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12
13

A . 

Solution: Note that 
10001000 )(detdet AA = . 

Then 

123
12
13

det =−==A     ⇒ 11det 10001000 ==A . 

6) Let .   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

100
510
432

A

Calculate:     (a) Adet ,    (b) 3det A ,    (c) )2det( A ,    (d)  )3det( A− ,  
(e)  )2det( IA− . 

Solution: (a)  The determinant of a matrix in the triangular form equals 
the product of the principle diagonal elements. Therefore, 

2)1(12
100

510
432

det −=−⋅⋅=
−

=A . 

(b) The determinant of the product of matrices is equal to the product of 
their determinants, and so 

8)2()(detdet 333 −=−== AA . 

(c)   Let I be the identity matrix of the third order. Then 

16)2(2det)2det()2det( 3 −=−=⋅= AIA . 

(d)  Likewise, 

54)2()3(det)3det()3det( 3 =−−=⋅−=− AIA . 

(e)  Simplify the matrix )2( IA− : 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=−

300
510
430

200
020
002

100
510
432

2IA . 

 The determinant of this matrix equals zero: 0)2det( =− IA . 
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2.4. Calculation of Determinants 
Methods of determinant calculation are based on the properties of 
determinants. Here we consider two methods which being combined 
together result in the most efficient computing technique. 

2.4.1. Expanding a determinant by a row or column 
Before formulating the theorem, let us introduce a few definitions. 
Let A be a square matrix of the order n. By removing the i-th row and j-th 
column, we obtain a submatrix of A, having the order . The 
determinant of that submatrix is called the minor of the element , which 
is denoted by . 

)1( −n
jia ,

jiM ,

 
The cofactor of the element  is defined as the minor  with the sign 

. It is denoted by the symbol : 
jia , jiM ,

ji+− )1( jiA ,

ji
ji

ji MA ,, )1( +−= . 

The following theorem gives a systematic procedure of determinant 
calculation. 

The determinant of a matrix A equals the sum of the products  
of elements of any row of A and the corresponding cofactors: 

∑
=

=

+++=
n

j
jiji

niniiiii

Aa

AaAaAaA

1
,,

,,2,2,1,1,det K

 

The above theorem is known as the expansion of the determinant according 
to its i-th row. 
Proof: By the definition, Adet  is the algebraic sum of the products 

 taken with the signs  
nknkk aaa ,,2,1 21

K
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},,,{
21

21)1(},,,{sign nkkkP
nkkk KK −≡  

over all possible permutations , that is, },,,{ 21 nkkk K

∑ −=
},,,{

},,,{
,,2,1

21

21
21

)1(det
n

n
n

kkk

kkkP
knkk aaaA

K

KK . 

Each product contains the element  on the i-th row 
and j-th column. Therefore, by regrouping the terms, the above sum can be 
expressed as the linear combination of the elements  (

nknkk aaa ,,2,1 21
K jia ,

jia , nj ,,2,1 L= ): 

niniiiii AaAaAaA ,,2,2,1,1,det +++= K . 
Here 

}.,,,,,,{sign 111

},,,,,,{
,,1,1,2,1,

111
1121

nii

kkjkkk
knkikikkji

kkjkk

aaaaaA
niii

nii

LL

KL
LL

+−

=
+−

⋅

= ∑
+−

+−

 

By the theorem of inversion parity of a permutation, 
},,,,,,{sign)1(},,,,,,{sign 111

1
111 nii

i
nii kkkkjkkjkk LLLL +−

−
+− −= . 

There are )1( −j  inversions of j in the permutation , and so },,,{ 1 nkkj L

},,,,,{sign)1(},,,,,,{sign 111
1

111 nii
j

nii kkkkkkkkj LLLL +−
−

+− −= , 

},,,,,{sign)1(},,,,,,{sign 111111 nii
ji

nii kkkkkkjkk LLLL +−
+

+− −= . 

However, jiii
kkkk

kiki Mkkaa
nii

ii ,11
},,,,,{

,1,1 },,,{sign
111

11
=+−+−∑

+−
+−

LLKL
LL

 

is the minor of the element .  jia ,

Therefore,  is the cofactor of the element . ji
ji

ji MA ,, )1( +−= jia ,

Since both matrices, A and the transpose of A, have equal determinants, the 
theorem can be formulated in terms of expanding a determinant by a 
column: 

The determinant of a matrix A equals the sum of the products of 
elements of any column of A and the corresponding cofactors: 

∑
=

=

+++=
n

i
jiji

jnjnjjjj

Aa

AaAaAaA

1
,,

,,,2,2,1,1det K

 

Due to the theorem, a given determinant of the order n is reduced to n 
determinants of the order (n –1). 
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Examples: 
1) Expand the determinant of the matrix |||| ijaA =  of the order 3 by  

(i) the first row; (ii) the second column. Compare the results. 
Solution: 

,
)()()(

det

312213332112322311322113312312332211

312232211331233321123223332211

3231

2221
13

3331

2321
12

3332

2322
11

333231

232221

131211

aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa

aa
aa

a
aa
aa

a
aa
aa

a
aaa
aaa
aaa

A

−−−++=
−+−−−=

+−==

 

.
)()()(

det

312213332112322311322113312312332211

211323113231133311223123331212

2321

1311
32

3331

1311
22

3331

2321
12

333231

232221

131211

aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa

aa
aa

a
aa
aa

a
aa
aa

a
aaa
aaa
aaa

A

−−−++=
−−−+−−=

−+−==

 

Both results are identically equal. 

2) Calculate the determinant 
573
041
352

−

−
, by its expansion  

according to the first row and the second column. 
Solution: The expansion by the first row yields 

,122)127(3515542

73
41

3
53
01

)5(
57
04

2
573
041
352

=++⋅⋅+⋅⋅=

−
+

−
−−=

−

−

 

Now expand the determinant according to the second column: 

.122)30(7)910(4)05(5

01
32

7
53
32

4
53
01

)5(
573
041
352

=−−+++=

−
−

+
−

−−=
−

−
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2.  Evaluation of determinants by elementary operations on matrices 
By means of elementary row and column operations, a matrix can be 
reduced to the triangular form, the determinant of which is equal to the 
product of the diagonal elements. 
Let us define the elementary operations.  
In view of the properties of determinants, any techniques which are 
developed for rows may be also applied to columns. 
In order to calculate a determinant one may: 

1. Interchange two rows. 
As a result, the determinant changes its sign. 

2. Multiply a row by a nonzero number. 
As a consequence of this operation, the determinant is multiplied by 
that number. 

3. Add a row multiplied by a number to another row. 
By this operation, the determinant holds its value. 

We can also use the elementary operations to get some row or column 
consisting of zero elements except for one element, and then to expand the 
determinant by that row (or column). 

Examples: 

1) Let .  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=

321
523
142

A

By elementary row and column operations on the matrix, reduce the 
matrix to the triangular form and calculate Adet . 

Solution: 

.
900

1480
321

580
1480
321

321
1480

580

321
523
142

det

23331

322
311

3
2

−=
−−

−=

−−
=−

−
=

+→↔

+→
−→

rrrrr

rrr
rrr

A

 

The determinant of the matrix in the triangular form is equal to the 
product of the elements on the principle diagonal. Therefore, 

72981det −=⋅⋅−=A . 
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2) Evaluate the determinant of the matrix 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

−

=

1254
3107
1613

0251

A . 

Solution: First, transform the first row via elementary column 
operations.  
Keeping the first and last columns, subtract the first column multiplied 
by 5 from the second one, and add the first column multiplied by 2 to 
the third one: 

110154
315357
112143

0001

1254
3107
1613

0251

det
133
122

2
5

−
−

−−
=

−
−

=
+→
−→

ccc
ccc

A . 

Then expand the determinant by the first row: 

11015
31535
11214

det
−
−

−−
=A  

Transform the third column by adding the third row to the first one and 
subtracting the third row multiplied by 3 from the second row: 

11015
01510
02229

11015
31535
11214

322
311
3

−
−

−
=

−
−

−− −→
+→

rrr
rrr

 

Expand the determinant by the third column: 

1510
2229

det
−

−
=A  

We can still take out the common factor 5 from the last row: 

105)222)3()29((5
32

2229
5det =⋅−−⋅−=

−
−

=A . 
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3. Inverse Matrices 
Let A be a square matrix. 
A matrix 1−A  is called an inverse matrix of A if 

IAAAA == −− 11 , 
where I is an identity matrix. 
If the determinant of a matrix is equal to zero, then the matrix is called 
singular; otherwise, if 0det ≠A , the matrix A is called regular. 
If each element of a square matrix A is replaced by its cofactor, then the 
transpose of the matrix obtained is called the adjoint matrix of A: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n
T

nnnn

n

n

AAA

AAA
AAA

AAA

AAA
AAA

A

,,2,1

2,2,22,1

1,1,21,1

,2,1,

,22,21,2

,12,11,1

adj

L

LLLL

L

L

L

LLLL

L

L

. 

3.1. Three Lemmas 
Lemma 1: Given a square matrix A of the order n, the sum of the products 
of the elements of any row (or column) and the cofactors of another row 
(column) is equal to zero: 

)(,0
1

,, jiAa
n

k
kjki ≠=∑

=

  (1) 

and 

)(,0
1

,, jiAa
n

k
jkik ≠=∑

=

.  (2) 

Proof: To prove (1), consider an auxiliary matrix A~  that is obtained from 
the matrix A by replacing the j-th row with the i-th one: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⇒

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

LLLLL

L

LLLLL

L

LLLLL

LLLLL

L

LLLLL

L

LLLLL

niiii

niiii

njjjj

niiii

aaaa

aaaa
A

aaaa

aaaa
A

,3,2,1,

,3,2,1,

,3,2,1,

,3,2,1, ~  

Expand A~det  by the j-th row: 

∑∑
==

==
n

k
kjki

n

k
kjkj AaAaA

1
,,

1
,,

~~~det . 
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The only difference between matrices A~  and A is the j-th row. However, 
the cofactors kjA ,

~  do not depend on the elements on the j-th row, and so 

kjkj AA ,,
~ = , which implies 

∑
=

=
n

k
kjki AaA

1
,,

~det . 

On the other hand, the matrix A~  has two equal rows. Therefore, by the 
properties of determinants, 

0~det
1

,, == ∑
=

n

k
kjki AaA ,      )( ji ≠ . 

Statement (2) can be proven in a similar way. 

Lemma 2: The matrix products AA adj⋅  and AA⋅adj  are diagonal 
matrices, that is, 

0)adj( , =⋅ jiAA    )( ji ≠ , 
0)ad( , =⋅ ijAAj   )( ji ≠ . 

Proof: If  ji ≠  then, by Lemma 1,  

0
1

,, =∑
=

n

k
kjki Aa     ⇒ 0

1
,, =∑

=

n

k

T
jkki Aa     ⇒ 0)adj( , =⋅ jiAA , 

and 

0
1

,, =∑
=

n

k
jkik Aa     ⇒ 0

1
,, =∑

=

n

k
ik

T
kj aA     . ⇒ 0)adj( , =⋅ ijAA

Lemma 3: The diagonal elements of the matrices AA adj⋅  and AA⋅adj  
are equal to the determinant of the matrix A: 

AAAAA iiii det)adj()adj( ,, =⋅=⋅ . 

Proof: By the theorem of expansion of determinants according to a row, 

ii

n

k

T
ikki

n

k
kiki AAAaAaA ,

1
,,

1
,, )adj(det ⋅=== ∑∑

==

. 

Likewise, the theorem of expansion determinants by a column yields 

ii

n

k
ik

T
ki

n

k
ikik AAaAAaA ,

1
,,

1
,, )adj(det ⋅=== ∑∑

==
. 

Hence, the lemma. 
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3.2. Theorem of Inverse Matrix 

For any regular matrix A there exists the unique inverse matrix: 

A
A

A adj
det

11 =− . 

Any singular matrix has no an inverse matrix. 

Proof: 
1. Assume that there exists an inverse of matrix A. Then 

1detdet 11 =⋅⇒= −− AAIAA , 
and hence 0det ≠A .  
Therefore, singular matrices have no inverse matrices. 

2. Assume that each of the matrices, 1−A  and 1−B , is an inverse of A: 
IAAAA == −− 11    and   IABAB == −− 11 . 

Then 
11111111 )( −−−−−−−− ===== AIAAABAABIBB . 

Therefore, there exists the unique inverse of A. 
3. Find the inverse of matrix A. 

By the Lemma 2, 
0)adj( , =⋅ jiAA ,   if  ji ≠ . 

By the Lemma 3, 

1)adj(
det

1
, =⋅ iiAA

A
. 

Combining the above equalities, we obtain 

jijiAA
A ,,)adj(

det
1 δ=⋅ , 

where the delta symbol ji ,δ  denotes the matrix elements of an identity 
matrix.  
Therefore, 

IA
A

A =⋅ adj
det

1 . 

Likewise, IAA
A

=⋅)adj
det

1( , and hence, 

1adj
det

1 −= AA
A

. 
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3.2.1. Examples of Calculations of Inverse Matrices 

Example 1: Given the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
43

A , find the inverse of A. 

Solution: First, calculate the determinant: 

.246
21
43

det =−==A  

Next, find the cofactors of all elements: 
,22)1( 11

1,1 =−= +A    ,11)1( 21
2,1 −=⋅−= +A

,44)1( 12
1,2 −=⋅−= +A    .33)1( 22

2,2 =−= +A
Then, find the adjoint matrix of A: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

31
42

34
12

adj
2,21,2

2,11,1
TT

AA
AA

A . 

Finally, obtain 

.
2
3

2
1

21

31
42

2
1

31
42

det
11

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=−

A
A  

Verification: 

IAA =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

10
01

20
02

2
1

31
42

21
43

2
11 , 

and 

IAA =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=−

10
01

20
02

2
1

21
43

31
42

2
11 . 

Example 2: Let . Find the inverse of A. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

987
654
321

A

Solution: Calculate the determinant: 

0
333
333
321

333
654
321

det ===A . 

Therefore, the given matrix is singular, and so it has no the inverse of A. 
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Example 3: Let   Find the inverse of matrix A. .
105
140

321

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
=A

Solution: 
1) To calculate the determinant of A, add the first row doubled to the 

second row. Then expand the determinant by the second column. 

.46
15
52

)1()2(
105
502
321

105
140

321
det 21122 2

−=−⋅−=
−

=−
−

= +
+→ rrr

A  

2) Find the cofactors of the elements of the matrix. 

,4
10
14

)1( 11
1,1 =

−
−= +A   ,5

15
10

)1( 21
2,1 −=

−
−= +A  

,20
05
40

)1( 31
3,1 −=−= +A   ,2

10
32

)1( 12
1,2 =

−
−= +A  

,14
15
31

)1( 22
2,2 −=−= +A   ,10

05
21

)1( 32
3,2 −=

−
−= +A  

,10
14

32
)1( 13

1,3 −=
−

−
−= +A   ,1

10
31

)1( 23
2,3 =

−
−= +A  

.4
40
21

)1( 33
3,3 =

−
−= +A  

3) Write down the adjoint matrix of A. 

.
41020
1145
1024

4110
10142
2054

adj
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

=

T

A  

4) The inverse of matrix A is 

.
41020
1145
1024

46
11

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−
−=−A  
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5) Verification: 

.
100
010
001

4600
0460
0046

46
1

41020
1145
1024

105
140

321

46
11

I

AA

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−
⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−
−=−

 

Likewise, 

.
100
010
001

4600
0460
0046

46
11 IAA =

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
−=−  

Example 4: Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
53

A  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

13
14

B .  

Solve for X the matrix equation 
X A = B. 

Solution: Note that 01
21
53

det ≠==A , that is, A is a regular matrix. 

Therefore, there exists the inverse of A: 
1−⋅= ABX . 

Find the inverse of matrix A. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

31
52

35
12

adj
T

A    ⇒

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
==−

31
52

adj
det

11 A
A

A . 

Thus, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

125
177

31
52

13
14

X . 

Verification: 

BAX ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⋅
13
14

21
53

125
177

. 
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3.3. Calculation of Inverse Matrices by Elementary 
Transformations 

Let A be a regular matrix.  
The inverse of A can be found by means of the elementary transformations 
of the following extended matrix 

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞
=

10

01
)|(

,1,

,11,1

L

LLL

L

L

LLL

L

nnn

n

aa

aa
IA , 

where I is the identity matrix of the corresponding order. 
By making use of elementary row operations we have to transform the 
extended matrix to the form ( I | B ). Then 1−= AB . 
The following elementary transformations (involving only rows) can be 
applied: 

1) Multiplying a row by a nonzero number. 
2) Adding a row to another row. 

Example: Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
43

A . Find the inverse of A. 

Solution: Consider the extended matrix   .
10
01

21
43

)|( ⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
=IA  

Multiply the second row by the number 2 and then subtract the result 
from the first row: 

⎜⎜
⎝

⎛
⎟⎟
⎠

⎞−
→⎜⎜

⎝

⎛
⎟⎟
⎠

⎞
10
21

21
01

10
01

21
43

. 

Subtract the first row from the second one: 

.
31
21

20
01

10
21

21
01

⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
−

−
→⎜⎜

⎝

⎛
⎟⎟
⎠

⎞−
 

Divide the second row by 2: 

.
2
3

2
1

21

10
01

31
21

20
01

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

−

−
→⎜⎜

⎝

⎛
⎟⎟
⎠

⎞
−

−
 

The desired form is obtained and hence, 

.
31
42

2
1

2
3

2
1

21
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
=−A  
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4. Systems of Linear Equations 
4.1. Matrix Rank 

An  matrix A is said to be the matrix of rank r, if nm×
– there exists at least one regular submatrix of order r ; 
– every submatrix of a higher order is singular. 

According to the definition, 
},min{rank nmA ≤ . 

The rank of a matrix can be evaluated by applying just those elementary 
row and column operations which are used to simplify determinants, that is, 

1. Interchanging two rows or columns. 
2. Multiplying a row (column) by a nonzero number. 
3. Multiplying a row (column) by a number and adding the result to 

another row (column). 
If a row or column consists of zeros then it can be omitted. 
These operations are said to be elementary transformations of a matrix. 
Theorem: If a matrix A~  is obtained from A by elementary transformations 
then AA rank~rank = . 
Proof: Interchanging two rows or two columns of a matrix changes the 
sign of the determinant. 
Multiplying a row (column) by a nonzero number multiplies the 
determinant by that number. 
Adding a row (column) to another one holds the magnitude of the 
determinant. 
Therefore, all singular submatrices are transformed into singular 
submatrices, and  regular submatrices are transformed into regular 
submatrices. Hence, the theorem. 
By elementary transformations of a matrix we try to obtain as many zeros 
as possible to reduce  the matrix to the echelon form: 
For instance, 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

24100
33160
10272

A  

is the matrix of the reduced row echelon form.  
The number of the rows gives the rank of A:  rank A = 3. 
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Examples: 

1) Let .

2813
11327
3301
2514

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−
−

=A   

Find the rank of A. 
Solution: Subtract the first and fourth rows from the third one: 

.

2813
1000
3301
2514

2813
11327
3301
2514

4133

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−
−

−−→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−
−

= rrrrA  

Add the third row multiplied by suitable numbers to the other rows: 

.

0813
1000
0301
0514

2
3
2

2813
1000
3301
2514

344

322

311

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

+→
−→
−→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−
−

rrr
rrr
rrr

 

Subtracting the first row from the fourth row and then adding the 
second row to the fourth one we obtain 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

−

+→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

0000
1000
0301
0514

0301
1000
0301
0514

244 rrr . 

Any further transformations are not necessary, because the 
determinant of the order 4 is equal to zero, but there is a submatrix of 
the third order the determinant of which is nonzero: 

31)3()1(
100
030
051

=⋅−⋅−=−
−

. 

Hence, rank A = 3. 
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4.2. Main Definitions 
Consider a system of m linear equations with n unknowns: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+++

=+++
=+++

mnmnmm

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

K

L

K

K

2211

22222121

11212111

   (1) 

Here  are numerical coefficients;  are constants ija ib ),,2,1( mi L=  and  
are unknowns 

jx
),,2,1( nj L= . 

A solution of system (1) is a set of values of the unknowns  that reduces 
all equations (1) to identities. If there exists a solution of simultaneous 
equations then the system is called consistent; otherwise, the system is 
inconsistent. 

jx

Using matrix multiplications, system of equations (1) can be represented by 
a single matrix equation 

BAX = , 
where A is the coefficient matrix consisting of ; the column matrix 

 is called the non-homogeneous term; X is the column matrix, 
whose elements are the unknowns : 

ija
|||| 1,ibB =

jx

,

21

22221

11211

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mnmm

n

n

aaa

aaa
aaa

A

L

LLLL

L

L

         ,2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nx

x
x

X
L

.2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mb

b
b

B
L

If the non-homogeneous term B is equal to zero, then the linear system is 
called the homogeneous system: 

0=AX . 
Two linear systems are called equivalent, if they have the same solution 
set. 
Elementary transformations of the linear system is the process of 
obtaining an equivalent linear system from the given system by the 
following operations: 

1) Interchange of two equations. 
2) Multiplication of an equation by a nonzero number. 
3) Addition of an equation multiplied by a constant to another 

equation. 
Each of the above operations generates an equivalent linear system. 
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Two linear systems of equations are equivalent if one of them 
can be obtained from another by the elementary transformations. 

Applying the linear transformations we try to find an equivalent system 
which can be easier solved. 

4.3. Gaussian Elimination 
Consider the augmented matrix of system (1): 

.)|( 2

1

21

22221

11211

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

=

mmnmm

n

n

b

b
b

aaa

aaa
aaa

BA
L

L

LLLL

L

L

 

There is one-to-one correspondence between the elementary 
transformations of the linear system and linear row operations on the 
augmented matrix. Indeed: 

– Interchanging two equations of the system corresponds to 
interchanging the rows of the augmented matrix.  

– Multiplication of an equation by a nonzero number corresponds to 
multiplication of the row by that number. 

– Addition of two equations of the system corresponds to addition of 
the rows of the matrix. 

The main idea is the following.  
First, transform the augmented matrix to the upper triangle form or row 
echelon form: 

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⋅

⋅
⋅
⋅⋅
⋅⋅⋅

⇒

M

M

LL

LL

MOLLM

LL

LL

LL

rrr b

b
b
b

a

a
a

a

BA

~

~
~
~

000

~000

~00

~0

~

)|( 3

2

1

33

22

11

 

Then write down the linear system corresponding to the augmented matrix 
in the triangle form or reduced row echelon form. This system is equivalent 
to the given system but it has a simpler form. 
Finally, solve the system obtained by the method of back substitution. If it 
is necessary, assign parametric values to some unknowns.  
This systematic procedure of solving systems of linear equations by 
elementary row operations is known as Gaussian elimination. 
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4.3.1. Some Examples 
1) Solve the system below by Gaussian elimination: 

⎪⎩

⎪
⎨

⎧

=++
−=−+
=+−

142
23
1052

321

321

321

xxx
xxx

xxx
 

Solution: Reduce the augmented matrix to a triangle form: 

.
1
14

10

100
1130
512

43
14

10

4300
1130
512

15
14

10

2160
1130
512

5
14

10

720
1130
512

1
4

10

142
622
512

1
2

10

142
311
512

43
2

3

2

3
3233

33
122

233

22

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−
→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−
−→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−
→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−

−→
−→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−
→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−

r
rrrr

rr
rrr

rrr

rr

 

The later matrix corresponds to the system 

⎪⎩

⎪
⎨

⎧

=
−=−

=+−

1
14113

1052

3

32

321

x
xx

xxx
 

which is equivalent to the initial system. 
Now the solution can be easily found: 

1311143 232 −=⇒−=+−= xxx , 
245102 1121 =⇒=−+= xxxx . 

Thus we obtain the solution   of the given sysytem. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1
1

2

3

2

1

x
x
x

X

It is not difficult to verify the values of the unknowns satisfy all the given 
equations: 

⎪⎩

⎪
⎨

⎧

≡+−⋅+⋅=++
−≡⋅−−+=−+
≡⋅+−−⋅=+−

.11)1(42242
,213)1(23

,1015)1(2252

321

321

321

xxx
xxx

xxx
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2) Find all solutions of the system of equations via Gaussian elimination 

⎪⎩

⎪
⎨

⎧

=−+
−=−−

=−+

534
22

0

321

321

321

xxx
xxx

xxx
 

Solution: The system can be represented by the augmented matrix. Apply 
the linear row operations: 

.
7
2

0

000
130
111

9
2

0

130
130
111

5
2

0

314
112
111

233

122

233

2

2

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛
−

−
+→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛

−
−

−

−→
−→

⎟
⎟
⎟

⎠

⎞
−

⎜
⎜
⎜

⎝

⎛

−
−−
−

rrr

rrr

rrr

 

The third row corresponds to the equation 
7000 321 =⋅+⋅+⋅ xxx , 

which evidently has no solutions. 
Therefore, the given system is inconsistent. 

3) Use Gaussian elimination to solve the system of equations. 

⎪⎩

⎪
⎨

⎧

=+−+−
−=+−+

=−−+

43
22

02

4321

4321

4321

xxxx
xxxx
xxxx

 

Solution: By elementary transformations, the augmented matrix can be 
reduced to the row echelon form: 

.
0
2

0

9200
5110
2111

4
2

0

1420
5110
2111

4
2

0

1311
1112
2111

233

122

133

2

2

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞
−

−
−

−−
+→

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞
−

−−
−

−−

−→
+→

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞
−

−−
−

−−

rrr

rrr

rrr

 

The reduced matrix has the rank 3 and corresponds to the following system 
of linear equations: 
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⎪⎩

⎪
⎨

⎧

=+−
−=++−

=−−+

092
25

02

43

432

4321

xx
xxx
xxxx

 

The variable  is considered to be an arbitrary parameter c, regardless of 
the value of which the remaining values of  reduce all 
equations of the given system to identities. 

4x
321 and,, xxx

From the last equation we find 

43 2
9 xx = . 

Then we obtain 

444432 2
1925

2
9252 xxxxxx +=++=++= , 

44444231 3222
2

19
2
92 xxxxxxxx −−=+−−=+−= . 

The general solution of the system 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
+

−−

=

c

c

c
c

X

2
9

2
192

32

 

depends on the arbitrary parameter c. Any particular value of c gives a 
particular solution of the system. Assigning, for instance, the zero values to 

the parameter c, we obtain a particular solution 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

=

0
0
2
2

1X . 

Setting c = 2 we obtain another particular solution  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

=

2
9
21

8

2X . 

Conclusion: The given system has an infinite number of solutions. 
Solution check: Let us verify that the set of values 
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cx 321 −−= ,  cx
2

1922 += ,  cx
2
9

3 = ,   cx =4

satisfies the given system of equations: 

⎪⎩

⎪
⎨

⎧

=+−+−
−=+−+

=−−+

43
22

02

4321

4321

4321

xxxx
xxxx
xxxx

  ⇒  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=+−+++

−=+−++−−

=−−++−−

4
2
27

2
19232

2
2
9

2
19264

02
2
9

2
19232

cccc

cccc

cccc

  ⇒   
⎪⎩

⎪
⎨

⎧

≡
−≡−

≡

44
22

00
 

That is true. 

4.4. Homogeneous Systems of Linear Equations 
A homogeneous system of linear equations has the following form;

0=AX ,    (2) 
where A is the coefficient matrix, and X is the column matrix of the 
unknowns. 

Evidently, any homogeneous system has the particular solution   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

0
MX

which is called the trivial solution. 

Theorem:  
If  and  are solutions of a homogeneous system then 1X 2X

a linear combinations of the solutions 
2211 XcXc +  

is also a solution of the system. 

Proof: By the conditions of the theorem, 
01 =AX     and    02 =AX . 

For any constants  and  1c 2c
011 =AXc     ⇒ 0)( 11 =XcA , 
022 =AXc    ⇒ 0)( 22 =XcA . 



Systems of Linear Equations 

 51

Adding together the above identities we obtain 
0)()( 2211 =+ XcAXcA , 

which implies 
 0)( 2211 =+ XcXcA . 

Hence, the theorem. 

4.4.1. Examples 
1) Use Gaussian elimination to solve the following homogeneous system 

of equations.  

⎪⎩

⎪
⎨

⎧

=++−
=+−+
=+−−

0424
02
03

4321

4321

4321

xxxx
xxxx
xxxx

 

Solution: By elementary transformations, the coefficient matrix can be 
reduced to the row echelon form 

.
9900
2120

3111

11820
2120

3111

1424
1211
3111

233

133

122

4

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−−
−→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−−

−→
−→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

rrr

rrr

rrr

 

The rank of this matrix equals 3, and so the system with four unknowns has 
an infinite number of solutions depending on one free variable. If we 
choose  as the free variable and set 4x cx =4 , then the leading unknowns,  

,  and , are expressed through the parameter c. The above matrix 
corresponds to the following homogeneous system 

1x 2x 3x

⎪⎩

⎪
⎨

⎧

=−
=−−
=+−−

099
022
03

3

32

321

cx
cxx
cxxx

 

The last equation implies  cx =3 . 
Using the method of back substitution we obtain 

cxccxx
2
3322 232 =⇒=+= , 

cccccxxx
2
13

2
33321 −=−+=−+= . 
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Therefore, the general solution of the system is 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛−

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛−

=

1
1
2
3
2
1

2
3
2
1

c

c
c
c

c

X . 

To obtain a particular solution  we have to assign some numerical value 
to the parameter c. If we set c = 4, then 

1X

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

=

4
4
6
2

1X  

Solution check: The set of values of the unknowns 

cx
2
1

1 −= ,  cx
2
3

2 = ,  cx =3 ,  cx =4  

reduces equations of the given linear system to the identities: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=++−−

=+−+−

=+−−−

04
2
6

2
4

02
2
3

2
1

03
2
3

2
1

cccc

cccc

cccc

     ⇒
⎪⎩

⎪
⎨

⎧

≡
≡
≡

00
00
00

 

2) Let 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−
=

4255
1122
1111

A .  

Find the solution of the homogeneous system of linear equations 
0=AX . 

Solution: Transform the coefficient matrix to the row echelon form: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−

−−→
−→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−

1300
1300

1111

4255
1122
1111

1233

122

2

2

rrrr

rrr
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−−
+→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−

0000
1300

1111

1300
1300

1111

233 rrr . 

Since 2rank =A , we have to choose two unknowns as the leading 
unknowns and to assign parametric values to the remaining unknowns. 
Setting   and  we obtain the following linear system: 12 cx = 23 cx =

⎩
⎨
⎧

=−
=+−−

03
02

42

4211

xc
xccx

 

Therefore, 

24 3cx =     and  212211 2
1)3(

2
1 cccccx −=−+= . 

Thus, the given system has the following general solution: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

=

2

2

1

21

3

2
1

c
c
c

cc

X . 

In view of the matrix properties, the general solution can be also expressed 
as the linear combination of particular solutions: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

3
1
0
1

0
0
1
21

3

0

0
0

2
1

21

2

2

2

1

1

cc

c
c

c

c

c

X . 

The particular solutions   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0
0
1
21

1X    and  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

=

3
1
0
1

2X   form the system of 

solutions which is called the fundamental set of solutions. 
Thus, 

2211 XcXcX += . 
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3) Let .  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

=
312
113
111

A

i)   Solve the following homogeneous system of linear equations 
0=AX . 

ii)  Explain why there are no solutions, an infinite number of solutions, 
or exactly one solution. 
Solution: Note that any homogeneous system is consistent and has at least 
the trivial solution. 
Transform the coefficient matrix to the triangular or row echelon form. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−−

−→
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

+→
+→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−
−−

100
320
111

540
320
111

322
113
111

233
133

122 2
2

3
rrr

rrr

rrr
. 

The rank of A equals 3. Therefore, there are no free variables and the 
system 

⎪⎩

⎪
⎨

⎧

=
=−
=−+−

0
032
0

3

32

321

x
xx
xxx

 

has the trivial solution  0321 === xxx , only. 

4.5. Cramer’s Rule 
There is a particular case when the solution of a system of linear equations 
can be written in the explicit form. The corresponding theorem is known as 
Cramer’s Rule whose importance is determined by its applications in 
theoretical investigations. 
Cramer’s Rule: Let 

A X = B     (3) 
be a system of n linear equations with n unknowns. 
If the coefficient matrix A is regular, then the system is consistent and has a 
unique solution set  which is represented by the formula: },,,{ 21 nxxx K

D
Dx i

i = ,   i =1, 2, …, n,  (4) 

where AD det= ;  is the determinant of the matrix obtained by replacing 
the i-th column of A with the column matrix B: 

iD
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nninninn

nii

i

aabaa

aabaa
D

LL

MLM

LL

1,1,1

11,111,111

+−

+−

= . 

Proof: We have to prove the following statements: 
1) a solution is unique; 
2) formulas (4) follow from system (3); 
3) formulas (4) yield system (3). 

Since 0det ≠A , there exists the inverse of A. Therefore, matrix equality (3) 
implies 

BAX 1−= .    (5) 
By the theorem of inverse matrix, for any regular matrix A there exists a 
unique inverse matrix 

A
A

A adj
det

11 =−  

that proves the uniqueness of solution (5). 
The i-th row of Aadj  is formed by the cofactors  of the 
elements in the i-th column of the matrix A. The equality (5) implies 

inii AAA ,,2,1 ,,, K

( ) ∑
=

− =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅==
n

k
kik

n

iniiii bA
D

b

b
b

AAA
D

BAx
1

,
2

1

,,2,1
1 11)(

M
L . 

The sum on the right side is the expansion of the determinant  in terms 
of the elements in the i-th column. Hence, we have obtained the desired 
formula: 

iD

D
Dx i

i = . 

Now prove that the set , with },,,{ 21 nxxx K ∑
=

=
n

k
kiki bA

D
x

1
,

1 , implies 

system (3). 
Multiply both sides of this equality by  and then sum the result over i: ijaD ,

∑∑∑
= ==

=
n

i

n

k
kijik

n

i
iij baAxaD

1 1
,,

1
, . 

Interchange the order of summation in the expression on the right side. 
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∑ ∑∑
= ==

=
n

k

n

i
ijikk

n

i
iij aAbxaD

1 1
,,

1
, .   (6) 

In view of the theorem of inverse matrix, 

AaA kj

n

i
ijik det

1
,, δ=∑

=

, 

where kjδ  is the Kronecker delta. 
The Kronecker delta takes away the summation over k in expression (6): 

j

n

k
kjk

n

i
iij DbbDxaD == ∑∑

== 11
, δ . 

Hence, we have the desired linear system of equations: 

j

n

i
iij bxa =∑

=1
,    (i = 1, 2, …, n). 

The theorem is proven. 

Example: Use Cramer’s Rule to solve the following system of linear 
equations. 

⎪⎩

⎪
⎨

⎧

=++
−=−+
=+−

142
23
1052

321

321

321

xxx
xxx

xxx
 

Solution: 

43
45

113

450
311

1130

142
311

512
133

211 2

=
−

−
−=

−
−

−
=−

−
=

−→
−→

rrr
rrr

D , 

86
19

104

141
190

1040

141
312

5110
322
211 5

1 =
−
−

=−
−

=−−
−

=
+→
+→

rrr
rrr

D , 

43
75
49

750
321

490

112
321

5102
133
311

2
2 −=−=−−=−−=

−→
−→

rrr
rrr

D , 
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43
52
95

520
211

950

142
211

1012
133

211 2

3 =
−

−=−
−

=−
−

=
−→
−→

rrr
rrr

D . 

Therefore, 

2
43
861

1 −=
−

==
D
Dx ,    1

43
432

2 −=
−

==
D
Dx ,    1

43
433

3 ===
D
Dx . 

Compare this solution with that obtained by Gaussian elimination in 
Example 1, p. 44. 

4.6. Cramer’s General Rule 
Cramer's General Rule formulates the existence condition of a solution for 
any given system of linear equations. 
Cramer's General Rule: A system of m linear equations with n unknowns  

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+++

=+++
=+++

mnmnmm

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

K

L

K

K

2211

22222121

11212111

 

is consistent if and only if the rank of the augmented matrix is equal to the rank of 
the coefficient matrix. 

Proof: Let A be the coefficient matrix and let A  be the augmented matrix of the 
given system. We have to prove that 

(a)  If  the system is consistent, then AA rankrank = . 
(b)  If AA rankrank = , then the system is consistent. 

To prove statement (a), we have to assume that the system is consistent.  
Consider the augmented matrix A : 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mnmm b

b

aa

aa
A M

L

MLM

L 1

,1,

1,11,1

. 

If we subtract the first column multiplied by , the second column multiplied by 1x
2x , and so on from the last column, then we obtain the matrix of the same rank 

as A  (by the theorem of matrix rank): 
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⎟
⎟
⎟

⎠

⎞

++−

++−

⎜
⎜
⎜

⎝

⎛
=

)(

)(
rankrank

,11,

,111,11

,1,

,11,1

nnmmm

nn

nmm

n

xaxab

xaxab

aa

aa
A

K

M

K

L

MLM

L

. 

Since the system is consistent, each elements of the last column equals zero. 
Therefore, 

A
aa

aa

aa

aa
A

nmm

n

nmm

n

rankrank
0

0
rankrank

,1,

,11,1

,1,

,11,1

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

L

MLM

L

M

L

MLM

L

. 

(b) Now suppose that rAA == rankrank . It means there exists a nonsingular 
rr ×  submatrix A~  of the matrix A, by which we select r leading unknowns and 

assign parametric values to the remaining )( rn −  free unknowns.  The reduced 
system of linear equations is equivalent to the initial system, and, by Cramer’s 
Rule, it has a unique solution for each set of values of the free unknowns. 
Hence, the theorem. 
Corollary:  

i) If AA rankrank =  and equals the number n of unknowns, then the 
solution of the system is unique. 

ii) If nAA <= rankrank  then there exist an infinite number of solutions 
of the given system. 

Statement i) follows from the Cramer’s Rule. 
If nrAA <== rankrank  then the given system is equivalent to the system of r 
linear equations with r leading unknowns.  
An infinite number of the values of the remaining (n - r) unknowns leads to an 
infinite number of solutions. 

Examples: 
1. The system of linear equations is given below. Formulate the 

conditions on a, b, and c, making the system 

⎪⎩

⎪
⎨

⎧

=++
=++
=++

cxxx
bxxx
axxx

321

321

321

987
654
32

 

to be inconsistent. 
Solution: Consider the augmented matrix and transform it to the 
reduced row echelon form. 
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.
23

2
000
012
321

3
2

024
012
321

987
654
321

233

133

122

2

3

2

⎟
⎟
⎟

⎠

⎞

−−
−

⎜
⎜
⎜

⎝

⎛
−→

⎟
⎟
⎟

⎠

⎞

−
−

⎜
⎜
⎜

⎝

⎛

−→
−→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

bac
ab

a

ac
ab

a

c
b
a

rrr

rrr

rrr

 

The system is inconsistent, if 
023 ≠−− bac . 

Otherwise, one of unknowns is a parametric variable, and the system 
has an infinite number of solutions. 

2. Given the reduced row echelon form of the augmented matrix, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

=

3
1
4
2

1000
0300
2070
5131

A , 

find the number of solutions of the corresponding system. It is not 
necessary to solve the system. 

Solution: The rank of the coefficient matrix equals the rank of the 
augmented matrix and equals the number of the unknowns. Hence, by 
the Corollary to Cramer’s General Rule, the solution is unique. 

3. Let a system of linear equations be given by the augmented matrix  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

a

A
3
2
1

0000
9800
7650
4321

. 

How many solutions has the system? 

Solution: If  then 0≠a 4rank =A  while 3rank =A . By Cramer’s 
General Rule, the system is inconsistent, and so it has no solutions. 
If  then 0=a 3rankrank == AA , while the number of the unknowns is 

4=n . So one of the unknowns has to be considered as a parameter, and 
the system has a solution for each value of that parameter. Hence, the 
system has an infinite number of solutions. 
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VECTOR ALGEBRA 
5. Vectors 

5.1. Basic Definitions 
A three-dimensional vector in some coordinate system is an ordered 
triplet of numbers that obeys certain rules of addition and multiplication, 
and that are transformed under rotation of a coordinate system just as the 
coordinates of a point. 
The members of the triplet are called the coordinates of the vector.  
Likewise, one can define an n-dimensional vector. 
Usually, vectors are denoted by boldface letters: a, b, c, …. The notation 

},,{ 321 aaa=a  
means that the numbers 321 and, aaa  are the coordinates of the vector a 
in a three-dimensional coordinate system. 
Two vectors, },,{ 321 aaa=a  and },,{ 321 bbb=b , are equal, if their 
coordinates are respectively equal, that is, 

ba =   ⇔     
⎪⎩

⎪
⎨

⎧

=
=
=

.
,
,

33

22

11

ba
ba
ba

 

Note that a vector equality is equivalent to the system of three scalar 
equalities for the coordinates of the vector. 
Linear vector operations include the multiplication of a vector by a scalar 
quantity and the addition of vectors. 
If a vector },,{ 321 aaa=a  is multiplied by a scalar λ , then ab λ=  is the 
vector such that 

⎪⎩

⎪
⎨

⎧

=
=
=

.
,
,

33

22

11

ab
ab
ab

λ
λ
λ

 

The sum of two vectors },,{ 321 aaa=a  and },,{ 121 bbb=b  is the vector 
}.,,{ 332211 bababa +++=+= bac  

The difference between two vectors  is defined in terms of addition: 
c = a – b = a + (– b). 

Therefore,  
bac −=   ⇔     111 bac −= ,   222 bac −= ,    333 bac −= . 
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5.2. Geometric Interpretation 
5.2.1. Vectors in Three-Dimensional Space 

Consider a rectangular coordinate system. 
Let  be a given vector, and  and  be two points with the 
coordinates  and , respectively. 

},,{ 321 aaa=a 1P 2P
),,( 111 zyx ),,( 222 zyx

The points  and  can be selected so as to satisfy 
conditions 

),,( 1111 zyxP ),,( 2222 zyxP

121 xxa −= ,  122 yya −= ,  123 zza −= . 

Therefore, vector a can be interpreted as the directed line segment  
from  to : 

→

21PP
1P 2P

 
The coordinates of  are equal to the differences between the 
corresponding coordinates of the points  and : 

→

21PP
),,( 2222 zyxP ),,( 1111 zyxP

},,{ 12121221 zzyyxxPP −−−=
→

. 

The point  is the base of  and  is the head. The base of a vector is 
also called the vector tail or the origin of the vector. 

1P
→

21PP 2P

The length of a vector  is defined as the length of the line segment 
joining  and . 

→

21PP
1P 2P

Note that a vector is a quantity possessing both magnitude and direction at 
once. The boldface letter a represents a vector quantity, while  is the 
magnitude of the vector a, that is, a is a scalar quantity entirely defined by 
a numerical value. 

|| a=a

If a vector joins the origin of the coordinate system with a point P(x, y, z), 
then it is called the radius-vector of the point P and denoted as r. 
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5.2.2. Linear Vector Operations 
Equality of Vectors 
By parallel translation, equal vectors should coincide with each other: 

 
Scalar Multiplication 
The length of the vector ab λ=  is ab ||λ= . 
If 0>λ  then b is a vector of the same direction as a: 

 
If 0<λ  then vector ab λ=  has the opposite direction with respect to a: 

 
The opposite vector of 

→
AB  is the vector 

→→
−= ABBA . 

 
The length of a unit vector equals unity. If a is a non-zero vector then   

a
au =    is the unit vector in the direction of a. 

The Sum of Two Vectors 
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The Difference Between Two Vectors 
In order to subtract a vector b from a, add the opposite of b to a: 

c = a – b = a + (– b). 
Thus, the difference between two vectors a and b is the vector c = a – b 
such that  c + b = a. 

 

5.2.3. Projection of a Vector in a Given Direction 
Let θ  be an angle between two vectors, a and b.  
The quantity 

θcosProj a=ab     (1) 

is called the projection of a on b. 
If θ  is an acute angle then the projection is positive.  
If θ  is an obtuse angle then the projection is negative. 

    
One can easily prove that 

 
If the direction is determined by the x-axis, then the projection of a onto the 
x-axis equals the difference between the coordinates of the endpoints of the 
vector: 
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5.2.4. Properties of Linear Vector Operations 
All the below formulated properties are based on the properties of real 
numbers, and they are result of the definitions of linear vector operations. 
Proofs can be easily performed by the reader. 

1) The commutative law for addition: 
    a + b = b + a 

 
2) The associative law for addition: 

a + (b + c) = (a + b) + c = a + b + c 

 
3) The distributive laws for multiplication over addition:  

baba λλλ +=+ )( ,      aaa µλµλ +=+ )( . 

 
 

5.3. Decomposition of Vectors into Components 
5.3.1. Rectangular Orthogonal Basis 

1)   Let i = {1, 0, 0} be the unit vector in the positive direction of the x-
axis. Any vector  can be expressed as }0,0,{ xa=a

ia xxx aaa === }0,0,1{}0,0,{ . 
The vector i is said to be a basis in an one-dimensional space of vectors. 
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2)   Let i = {1, 0, 0} and j = {0, 1, 0} be two unit vectors in the positive 
directions of the x-axis and y-axis, respectively. 
Any vector  can be expressed as }0,,{ yx aa=a

jia yxyxyx aaaaaa +=+== }0,1,0{}0,0,1{}0,,{ . 

 
They say that i and j are the basis vectors in a two-dimensional space of 
vectors. 
3)   Let i = {1, 0, 0}, j = {0, 1, 0}, and  k = {0, 0, 1}  be three mutually 
orthogonal unit vectors in the positive directions of the Cartesian 
coordinate axes. 

 
Any vector  can be expressed as the linear combination of 
the vectors  i,  j and k: 

},,{ zyx aaa=a

}1,0,0{}0,1,0{}0,0,1{},,{ zyxzyx aaaaaa ++==a . 
Therefore, we obtain the resolution of an arbitrary vector  a

kjia zyx aaa ++=     (2) 

over the orthogonal basis of vectors, where quantities  and  are 
called the coordinates of the vector a with respect to this basis. 

yx aa , za
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5.3.2. Linear Dependence of Vectors 
Let  be any vectors and naaa ,,, 21 K nλλλ ,,, 21 K  be numbers.  
The expression of the form 

nnλλλ aaa +++ K2211  
is called a linear combination of the vectors . naaa ,,, 21 K

If there exists a non-trivial solution of the homogeneous vector equation 
02211 =+++ nnλλλ aaa K     (3) 

with respect to nλλλ ,,, 21 K , then it is said that  is the set of 
linear dependent vectors.  

},,,{ 21 naaa K

Otherwise, if equation (3) has only the trivial solution 
021 ==== nλλλ K , 

then  is called the set of linear independent vectors. },,,{ 21 naaa K

In other words, the set of vectors is linear dependent, if one of the vectors 
can be expressed as a linear combination of the other vectors of the set. 
For instance, if 01 ≠λ , then 

)(1
22

1
1 nnλλ

λ
aaa ++−= K . 

Theorem: 
1) Any two non-zero vectors are linear dependent, if and only if they 

are collinear. 
2) Any three non-zero vectors are linear dependent, if and only if they 

are coplanar. 
3) Any four vectors in a three-dimensional space are linear dependent. 

Important note: The theorem states that two non-collinear vectors are 
linear independent, and three non-coplanar vectors are linear independent. 
Proof: 
1) Two vectors,  and , are linear dependent, if the equation 1a 2a

02211 =+ aa λλ  
has a non-zero solution with respect to .  21 and λλ
In this case,  is the opposite vector of , that is,  and  are 
collinear vectors. 

22aλ 11 aλ 1a 2a

Hence, any two collinear vectors are linear dependent, and any two non-
collinear vectors are  linear independent. 
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2)  Consider a set of three vectors . In the coordinate form, the 
vector equation 

},,{ 321 aaa

0332211 =++ aaa λλλ  
can be expressed as the homogeneous system of the following linear 
equations: 

⎪
⎩

⎪
⎨

⎧

=++

=++

=++

.0

,0

,0

333232131

323222121

313212111

aaa

aaa

aaa

λλλ

λλλ

λλλ

 

At first, let us assume that the vectors , 
 and  are coplanar.  

},,{ 1312111 aaa=a
},,{ 2322212 aaa=a },,{ 3332313 aaa=a

Then there exists a coordinate system in which 
0332313 === aaa . 

Therefore, the above homogeneous system is reduced to the system of two 
linear equations with three unknowns , and hence, has a 
non-zero solution. 

321 and λλλ ,

Thus, a set of three coplanar vectors is linear dependent. 
Assume now that vectors  are non-coplanar. 321 and, aaa
A linear combination of vectors  is a vector lying in the same 
plane as . Hence,  cannot be expressed as a linear combination 
of , and so a set of three non-coplanar vectors is linear 
independent. 

21 and aa
21 and aa 3a

21 and aa

3) In case of four vectors, the equation 
044332211 =+++ aaaa λλλλ , 

is equivalent to the homogeneous system of three linear equations with four 
unknowns . Such system has an infinite number of 
solutions. Hence, any set of four vectors is linear dependent. 

4321 and, λλλλ ,,

A set of n linear independent vectors is called a basis in the n-dimension 
space of vectors. Therefore, any three non-coplanar vectors form the basis 
in the three-dimensional space of vectors, that is, any vector d can be 
expressed as a linear combination of the basis vectors: 

332211 aaad ddd ++= . 
This formula generalizes the concept of the rectangular vector basis {i, j, k} 
to an arbitrary set  of non-coplanar vectors in a three-
dimensional space. The numbers  are called the coordinates 
of d in the basis of vectors . 

},,{ 321 aaa
321 and, ddd

321 and, aaa
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5.3.3. Vector Bases 
Let  and },,{ 321 aaa }~,~,~{ 321 aaa  be two different bases in a three-
dimensional space of vectors. By the theorem of linear independent 
vectors,  

332211 aaad ddd ++=     (4) 
and 

332211
~~~~~~ aaad ddd ++=     (5) 

for an arbitrary vector d. 
In order to find relations between the coordinates of d in these bases, we 
need to resolve vectors 321

~and~,~ aaa  into the basis vectors  : 321 and, aaa

⎪⎩

⎪
⎨

⎧

++=
++=
++=

3332321313

3232221212

3132121111

~
~
~

aaaa
aaaa

aaaa

aaa
aaa
aaa

 

Coefficients  of the linear combinations are the coordinates of the 
vectors 

ija

ia~  in the basis of vectors  . 321 and, aaa
Substituting these expressions in equality (5) and combining the similar 
terms we obtain 

∑
=

++=
3

1
332211 )~~~(

k
kkkk dadada ad . 

In view of equality (4), we get the transformation formulas of the 
coordinates of a vector from one basis to another: 

⎪
⎩

⎪
⎨

⎧

++=

++=

++=

3332231133

3322221122

3312211111

~~~

~~~

~~~

dadadad

dadadad

dadadad

 

A transformation of a rectangular basis by rotation of the coordinate system 
is considered in section 5.7. 

Example: Let be given the vector resolution kjid ++= 74  and the 
basis vectors }0,2,7{~and}8,1,1{~},5,0,3{~

321 −=−=−= aaa .  
To find the coordinates of  in the basis of d 321

~and~,~ aaa , we have to 
solve the system of linear equations: 

⎪
⎩

⎪
⎨

⎧

⋅+−=

−+⋅=

++=

321

321

321

~0~8~51

~2~~07

~7~~34

ddd

ddd

ddd

   ⇒    2~and3~,5~
321 −=== ddd . 
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5.4. Scalar Product of Vectors 
Assume that vectors a  and  are given by their coordinates in a 
rectangular coordinate system: 

b

},,{ zyx aaa=a     and     },,{ zyx bbb=b . 

The scalar product  is a number that equals the sum of the products of 
the corresponding coordinates: 

ba ⋅

zzyyxx bababa ++=⋅ ba .   (6) 
The scalar product is also known as inner or dot product. It is also denoted 
as (a, b). 
Theorem: If θ  is the angle between vectors a and b then 

θcosba=⋅ba ,    (7) 
where a and b are the lengths of the vectors. 
Proof: Let us choose a rectangular coordinate system such that 

– both vectors, a and b, lie in the x,y-plane; 
– the x-axis is directed along the vector a. 

 
Since     and  ,aax = ,0== zy aa θbbx cos= , we obtain the desired result. 
The theorem states that 

abba ba ojboja PrPr ==⋅ , 

ba
ba
⋅=θcos , 

where 
a
a  and 

b
b  are the unit vectors in the directions of a and b, 

correspondingly. 

If   then ba ⊥ 0
2

coscos ==
πθ , which implies the following orthogonality 

condition of the vectors  and },,{ zyx aaa=a },,{ zyx bbb=b : 

0=++ zzyyxx bababa . 

If  b = a  then 0=θ , 1cos =θ , and so 
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2222
zyx aaaa ++==⋅aa . 

Therefore, the length of the vector a is expressed as 
222
zyx aaaa ++= . 

Applying formulas (6) and (7) we find the cosine of the angle between 
vectors a and b: 

222222
cos

zyxzyx

zzyyxx

bbbaaa

bababa
ba ++++

++
=

⋅
=

baθ  

The most important applications of the scalar product are related with 
finding the angle between vectors. 

5.4.1. Properties of the Scalar Product 
The below properties are based on the definition of the scalar product. They 
can be easily proved by the reader. 
1) The scalar product is commutative: 

abba ⋅=⋅ . 
2) The scalar product is distributive: 

cbcacba ⋅+⋅=⋅+ )( . 

3) If the scalar product of two non-zero vectors equals zero, then the 
vectors are perpendicular; and vice versa, if two vectors are 
perpendicular then their scalar product equals zero: 

ba ⊥     ⇔      0ba =⋅ . 

5.4.2. Examples 
Example 1:  Let i = {1, 0, 0},  j = {0, 1, 0}, and  k = {0, 0, 1}  be three 
basis vectors in a rectangular Cartesian coordinate system. Then 

1=⋅=⋅=⋅ kkjjii , 
0=⋅=⋅=⋅ kjkiji . 

Example 2: If a = {2, –1, 3},  b = {5, 7, 4} and θ  is the angle between 
vectors a and b,  then 

15437)1(52 =⋅+⋅−+⋅=⋅ba , 

143)1(2|| 222 =+−+=⋅== aaaa , 

5480475|| 222 ==++=⋅== bbbb , 
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70
56
3

5144
15

||||
cos ==

⋅
⋅

=
ba

baθ , 

Example 3: Find the angle between two vectors }5,2,3{ −=a  and 
. }4,7,5{=b

Solution: 
03)5(3413 =⋅−+⋅+⋅=⋅ba  

Since the scalar product is equal to zero, the vectors are orthogonal. 

Example 4: Let  p = a + b  and  q = a – b.  Simplify the scalar product of 
the vectors p and q. 
Solution: 

.(( 22 ba −=⋅+⋅−=−⋅+=⋅ 22 b-abbaab)ab)aqp  

Example 5: Given two sides AB and AC of the triangle ABC and the angle 
θ  between these side, find the third side of the triangle. 

 
Solution: Let us denote 

→
= ABa , 

→
= ACb  and 

→
= CBc . Then 

bac −=        ⇒ bababac2 ⋅−+=−= 2)( 222 ⇒

θcos2222 abbac −+= ,      2cc = . 

5.4.3. Direction Cosines 
Let γβα and,  be the angles between a unit vector u and the axes of a 
rectangular coordinate system. The cosines of these angles are called the 
direction cosines.  
Theorem: In a rectangular coordinate system, the coordinates 

 of a unit vector zyx uuu and,, },,{ zyx uuu=u  are equal to the direction 
cosines. 
The theorem follows from the definition of the scalar product. The scalar 
product of the unit vectors },,{ zyx uuu=u  and }0,0,1{=i  can be written 
as  

xu=⋅ iu    and    αα coscos|||| =⋅⋅=⋅ iuiu , 
and so . αux cos=
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Likewise, 
βcos==⋅ yuju    and    γcos==⋅ zuku , 

which required to be proved. 
By the definition of a unit vector, 

1|| 2222 =++= zyx uuuu . 
Therefore, 

1coscoscos 222 =++ γβα . 

The direction cosines of an arbitrary vector a can be expressed as  

a
ax=αcos ,   

a
ay=βcos ,  

a
az=γcos . 

5.5. Vector Product 
Given the vectors  and },,{ zyx aaa=a },,{ zyx bbb=b  in a rectangular 
coordinate system, the vector product ba×  is the vector, which is defined 
by the formula 

zyx

zyx

bbb
aaa
kji

ba =× ,   (8) 

where i, j and k are the unit vectors of the rectangular coordinate basis. 
The vector product is also known as cross product. It is also denoted as 

.  ],[ ba
Expanding the determinant by the first row we obtain 

kjiba )()()( xyyxxxxzyzzy babababababa −+−+−=× . 

Theorem: Let a and b be two non-parallel vectors. Then 
i) the vector  is orthogonal to both a and b; bac ×=
ii) the length of c is expressed by the formula 

θsinabc = , 
 where θ  is the angle between a and b; 
iii) the set of vectors {a, b, c} is a right-handed triplet as it is shown in 

the figure below. 
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Proof: Let the rectangular coordinate system be chosen such that both 
vectors a and b lie in the x,y-plane, and the x-axis is directed along  a. 

 
Then   and   }0,0,{a=a }0,sin,cos{ θθ bb=b . 
Therefore, 

k
kji

bac θ
θθ

sin
0sincos
00 ab

bb
a ==×= . 

Therefore, θsina=|c|  and c is directed along the z-axis which is 
perpendicular to the x,y-plane. Hence, the theorem. 

5.5.1. Properties of the Vector Product 
1) The vector product is anti-commutative: 

abba ×−=× . 
2) The vector product is distributive: 

cbcacba ×+×=×+ )( . 

3) The length of the vector bac ×=  is equal to the area of the 
parallelogram with adjacent sides a and b. 

 
Corollary: The area of the triangle with adjacent sides a and b is given 
by formula 
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4) The vector product of two collinear vectors equals zero. 
Properties 1) and 2) follow from the properties of determinants.  
Indeed, 

ab
kjikji

ba ×−=−==×

zyx

zyx

zyx

zyx

aaa
bbb

bbb
aaa , 

.cbca
kjikji

kji
cba

×+×=+=

+++=×+

zyx

zyx

zyx

zyx

zyx

zzyyxx

ccc
bbb

ccc
aaa

ccc
bababa)(

 

Property 3) follows from the theorem of vector product. 
Property 4) is quite evident. 

5.5.2. Examples 
1) Let i = {1, 0, 0}, j = {0, 1, 0}, and  k = {0, 0, 1}  be three basis vectors 

of the rectangular Cartesian coordinate system. By the definition of the 
vector product, 

k
kji

ji ==×
010
001 ,     j

kji
ik ==×

001
100 ,     i

kji
kj ==×

100
010 . 

That is, 
kji =× ,  jik =× ,  ikj =× . 

2) Let  p = a + b  and  q = a – b.  Simplify the vector product of the 
vectors p and q. 

Solution: 

.2
)()(

abbb-abbaaa
babaqp

×=××+×−×=
−×+=×

 

3) Let ABC be a triangle with the vertices at the points A(1, 0, –2), B(1, 5, 
0) and C(0, 4, –1). Find the area A of the triangle. 

Solution: Consider the vectors   and  . }2,5,0{==
→

ABa }1,4,1{−==
→

ACb
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By the properties of the vector product,  

||
2
1 ba×=A . 

Find the vector product: 

kji
kji

ba 523
141
250 +−−=

−
=× . 

Therefore, 

2
385)2()3(

2
1 222 =+−+−=A . 

5.6. Scalar Triple Product 
The scalar product and the vector product may be combined into the scalar 
triple product (or mixed product): 

cbacba ⋅×= )()],,([ . 

Theorem: Given three vectors },,{ zyx aaa=a , },,{ zyx bbb=b  and 
 in some rectangular coordinate system, the scalar triple 

product is defined by the formula 
},,{ zyx ccc=c

zyx

zyx

zyx

ccc
bbb
aaa

)( =⋅× cba .    (9) 

Proof: Carrying out the scalar product of the vectors 
kjiba )()()( xyyxxxxzyzzy babababababa −+−+−=×  

and 
kjic zyx ccc ++=  

we obtain 

.

)()()()

zyx

zyx

zyx

zxyyxyxxxzxyzzy

ccc
bbb
aaa

cbabacbabacbabac(

=

−+−+−=⋅×ba

 

Geometric Interpretation. The absolute value of the number  is 
the volume of a parallelepiped formed by the vectors 

cba ⋅× )(
cba and,  as it is 

shown in the figure below. 
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Indeed, the volume of the parallelepiped is equal to the product of the area 
of the base and the height. 
By the theorem of scalar product, 

ϕcos||||)( cbacba ⋅×=⋅× . 
The quantity || ba×  equals the area of the parallelogram, and the product 

ϕcos|| c  equals the height of the parallelepiped. 

Corollary 1: If three vectors are coplanar then the scalar triple product is 
equal to zero. 
Corollary 2: Four points A, B, C, and D lie in the same plane, if the scalar 

triple product   is equal to zero. 
→→→

× ADACAB )(

5.6.1. Properties of the Scalar Triple Product 
Consider the scalar triple product )( cba ×⋅ . 
1)  By the properties of the scalar product, acbcba ⋅×=×⋅ )()( . 
2)  In view of the properties of determinants, 

zyx

zyx

zyx

zyx

zyx

zyx

aaa
ccc
bbb

ccc
bbb
aaa

= . 

Therefore, cbacba ⋅×=×⋅ )()( . 
Since the order of the dot and cross symbols is meaningless, the product 

 is simply denoted by abc. )( cba ×⋅
Using the properties of determinants it is not difficult to see that 

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

aaa
ccc
bbb

bbb
aaa
ccc

ccc
bbb
aaa

===abc . 
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Therefore, 
abc = cab = bca. 

Likewise, 

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

bbb
ccc
aaa

ccc
aaa
bbb

ccc
bbb
aaa

−=−==abc , 

and so 
abc = – bac = – acb. 

In view of the theorem of linear dependent vectors, any three linear 
dependent vectors are coplanar. Hence, 

The triple product of non-zero vectors equals zero, if and only if 
the vectors are linear dependent. 

5.6.2. Examples 
1) Determine whether the points )2,2,1(−A , )4,3,3(B , , and 

 lie on the same plane. 
)10,2,2( −C

)2,2,0(D
Solution: Join the point A with the other points to obtain the vectors 

}2,1,4{==
→

ABa ,     ,    and  . }8,4,3{==
→

ACb }0,0,1{==
→

ADc
Find the scalar triple product: 

0
84
21

001
843
214

===abc . 

Therefore, the vectors lie in a plane, that means the given points lie in the 
same plane. 
2) Find the volume V of the tetrahedron with the vertices at the points 

)2,0,1(A , )4,1,3( −B , , and . )2,5,1(C )4,4,4(D
Solution: Consider a parallelepiped whose adjacent vertices are at the 
given points.  
The volume  of the parallelepiped is equal to the absolute value of the 

triple scalar product of the vectors . 

pV
→→→

ADACAB and,,

The volume of the tetrahedron is given by the formula   pVV
6
1

= . 
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Since 

}2,1,2{ −=
→

AB ,  ,  and  , }0,5,0{=
→

AC }2,4,3{=
→

AD
we obtain 

10
43
22

5
243
050
212

==
−

=
→→→

ADACAB . 

Therefore, 

3
5

6
10

==V . 

3) The tetrahedron is given by the vertices )2,0,1(A , )4,1,3( −B , 
, and .  )2,5,1(C )4,4,4(D

Find the height from the point D to the base ABC. 

 
Solution: In view of the formula 

hSV ⋅=
3
1 , 

where h is the height from the point D, we need to know the volume V of 
the tetrahedron and the area S  of the base ABC to find h. 
According to Example 2, the volume of the tetrahedron equals 35 .  
The area of the triangle ABC can be found just in a similar way as in 
Example 2, section 1.5.2: 

||
2
1 →→

×= ACABA ,    

ki
kji

1010
050
212 −=−=×

→→
ACAB ,   210|| =×

→→
ACAB . 

Therefore,     

2
2

25
53

===
A
Vh . 
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5.7. Transformation of Coordinates Under Rotation of 
a Coordinate System 

Consider a rectangular Cartesian coordinate system. 
Let ,  and }0,0,1{=1e }0,1,0{=2e }1,0,0{=3e  be orthogonal unit vectors 
of that system: 

ijδ=⋅ ji ee ,     (10) 
where ijδ  is the Kronecker delta. 
By rotation of the coordinate system, we obtain a new rectangular 
coordinate system. 
Let ,  and }0,0,1{1 =′e }0,1,0{2 =′e }1,0,0{3 =′e  be orthogonal unit vectors 
of the new coordinate system, that is, 

ijji δ=′⋅′ ee .     (11) 
By the theorem of direction cosines, the coordinates of the vectors ,  
and  in the basis of vectors 

1e 2e
3e 1e′, 2e′  and 3e′  are the direction cosines. 

Denote the direction cosines of the vector  (with n = 1, 2, 3) by 
, respectively. Then 

ne
321 and, nnn uuu

3132121111 eeee ′+′+′= uuu , 

3232221212 eeee ′+′+′= uuu , 

3332321313 eeee ′+′+′= uuu , 
or a short form 

∑
=

′=
3

1k
knkn u ee   (n = 1, 2, 3).   (12) 

`Equalities (10) and (11) imply 

ij
k

kjki
k

jkik uuuu δ∑∑
==

==
3

1

3

1
 (i, j =1, 2, 3). (13) 

Rewrite equalities (12) and (13) in the matrix form. 
Let  be the matrix of the direction cosines. If we introduce the 
column matrices  and 

|||| ijuU =
|||| iE e= |||| iE e′=′ , then 

EUE ′⋅= ,    IUUUU TT =⋅=⋅ , 
where  is the transpose of matrix U, and I is the identity matrix. TU
Note that the transpose of U  is the inverse of U.  
Therefore, we can easily obtain the formula of the inverse transformation 
(from the old basis to the new one): 

EUE ′⋅=     ⇒ EUUEU ′⋅= −− 11    ⇒
EUEUE T==′ −1 . 
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This matrix equality is equivalent to the system of three vector equalities: 

∑
=

=′
3

1k
kknn u ee    (n = 1, 2, 3). 

Now consider the transformation of the coordinates of an arbitrary vector a. 
Any vector a can be expressed as the linear combination of basis vectors. If 

 are the coordinates of a in an the old basis, and 
 are the coordinates of a in the new basis, then 

321 and, aaa
321 and, aaa ′′′

∑
=

=++=
3

1
32211

i
iiz aaaa eeeea ,    (14) 

∑
=

′′=′′+′′+′′=
3

1
32211

i
iiz aaaa eeeea .   (15) 

Therefore,   . ∑∑
==

′′=
3

1

3

1 k
kk

i
ii aa ee

In view of equality (12) we obtain 

∑∑ ∑
== =

′′=′
3

1

3

1

3

1 k
kk

i k
kiki aua ee     ⇒

∑∑ ∑
== =

′′=′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 3

1

3

1

3

1 k
kk

k
k

i
iik aau ee  

that results in the formulas of transformation of the coordinates: 

332211

3

1
auauauaua kkk

i
iikk ++==′ ∑

=

.   (16a) 

Likewise, 

332211

3

1
auauauaua kkk

i
ikik ′+′+′=′= ∑

=

.   (16b) 

Until now we have interpreted the scalar product of vectors as a scalar 
quantity without a formal proof, considering this proposition as the self-
evident truth. A rigorous justification follows from the below theorem. 
Theorem: The scalar product is invariant under rotation of the coordinate 
system. 
Proof: Really, using formulas (16) we obtain 

.
3

1,,

3

1

3

1

3

1

3

1

3

1

∑∑∑ ∑

∑ ∑∑∑

==

= ===

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=′′

i
ii

ji
jiij

ji
ji

k
jkik

k j
jjk

i
iik

k
kk

baaabauu

buauba

δ
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5.7.1. Rotation of the x,y–Plane Around the z-Axis 
Consider a particular case of transformation of the rectangular coordinate 
system by rotation of the x,y–plane around the x–axis. 

 
Let θ  be the angle of the rotation, and r be the radius-vector of a point M. 
Then 

jijir ′′+′′=+= yxyx . 
By the properties of the scalar product, 

1=⋅ ii ,   0=⋅ ji ,   θcos=′⋅ ii ,   θθ sin)90cos( −=+°=′⋅ ji , 
0=⋅ ij ,   1=⋅ jj ,   θθ sin)90cos( =−°=′⋅ ij ,   θcos=′⋅ jj . 

Therefore, the scalar products ri ⋅  and rj ⋅  can be expressed, respectively, 
as 

θθ sincos yxx ′−′=    (17a) 
and 

θθ cossin yxy ′+′= .   (17b) 
Likewise, formulas of the inverse transformation follow from the scalar 
products  and : ri ⋅′ rj ⋅′

θθ sincos yxx +=′ ,   (18a) 
θθ cossin yxy +−=′ .   (18b) 

Formulas (17) – (18) are particular cases of general formulas (16). 

Example: Let °= 45θ . Express the quadratic form  in the old yx ′′
coordinate system. 
Solution: Apply formulas (18), taking into account that 

2
2cossin == θθ : 

)(
2
2 yxx +=′ ,     )(

2
2 yxy +−=′ , 

)(
2
1))((

2
2

2
2 22 xyxyxyyx −=−+=′′ . 
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ANALYTICAL GEOMETRY 
6. Straight Lines 

6.1. Equations of Lines 
A direction vector of a straight line is a vector parallel to the line. 
According to the postulates of geometry, a point  and a direction vector 

 determine the straight line L. 
0M

q
Let M  be an arbitrary point on the line. The difference 0rr rr

−  between the 
radius-vectors of the points M  and  is a vector in the line, that is, 0M

qrr ||0− . 
Two parallel vectors are proportional: 

qrr t=− 0     (1) 
This vector equality is called the vector equation of the line. An arbitrary 
number t is said to be a parameter. 

 
Assume that a rectangular Cartesian coordinate system is chosen. Then 
equation (1) can be written in the coordinate form as the system of three 
linear equations 

⎪
⎩

⎪
⎨

⎧

+=

+=
+=

tqzz

tqyy
tqxx

z

y

x

0

0

0

    (2) 

where x, y and z are running coordinates of a point on the line. Vectors 
 are represented by their coordinates: qrr and, 0

},,{ 0000 zzyyxx −−−=− rr , 
},,{ zyx qqq=q . 

Equations of a line in coordinate form (2) are called the parametric 
equations of a line. 
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Solving system (2) by elimination of the parameter t, we obtain the 
canonical equations of a line: 

zyx q
zz

q
yy

q
xx 000 −

=
−

=
−

.  (3) 

If  and  are two given points on a line then the 
vector  

),,( 0000 zyxM ),,( 1111 zyxM

},,{ 010101 zzyyxx −−−=q  
joining these points serves as a direction vector of the line. 
Therefore, we get the following equations of a line passing through two 
given points: 

01

0

01

0

01

0

zz
zz

yy
yy

xx
xx

−
−

=
−
−

=
−
−

   (4) 

Examples: 
1) Let L be a line passing through the points  and )2,0,1(1M

)2,1,3(2 −M .  
Check whether the point )10,3,7(A  lie on the line L. 

Solution: Using (4) we get the equations of L: 

4
2

12
1

−
−

==
− zyx . 

The coordinates of the point A satisfy the equation: 

4
210

1
3

2
17

−
−−

==
− , 

and so A is a point of the line L. 
2) Write down the canonical equations of the line passing through the 

point )4,3,2(A  and being parallel to the vector }1,0,5{ −=q . 
Solution: By equation (3), we obtain 

1
4

0
3

5
2

−
−

=
−

=
− zyx . 

Note that a symbolical notation 
0

3−y  means the equation . 3=y
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6.2. Lines in a Plane 
On the  x, y–plane, a line is described by the linear equation 

0=++ CByAx .    (5) 
If  is a point on the line then ),( 000 yxM

000 =++ CByAx .   (6) 
Subtracting identity (6) from equation (5) we obtain the equation of a line 
passing through the point : ),( 000 yxM

0)()( 00 =−+− yyBxxA .  (6a) 
The expression on the left hand side has a form of the scalar product of the 
vectors },{ BA=n  and },{ 000 yyxx −−=− rr : 

0)( 0 =−⋅ rrn . 
Therefore, the coefficients A and B can be interpreted geometrically as the 
coordinates of a vector in the x, y–plane, being perpendicular to the line. 

 
The canonical equation of a line in the x, y–plane has a form 

yx q
yy

q
xx 00 −

=
−

, 

where  is a direction vector of the line. },{ yx qq=q
In the x, y–plane, an equation of a line passing through two given points, 

 and , is written as follows ),( 000 yxM ),( 111 yxM

01

0

01

0

yy
yy

xx
xx

−
−

=
−
−

. 

Sometimes it is helpful to express a straight-line equation in the x, y–plane 
as 

1=+
b
y

a
x .   (7) 

In this case,   implies 0=y ax = ,  and   0=x  implies by = . 
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Therefore, the quantities a and b are, respectively, the x-intercept and the y-
intercept of a graph of the line. Equation (7) is called an equation of a line 
in the intercept form. 
A line on the x,y–plane may be also given by the equation in the slope-
intercept form 

bkxy += , 
where b is the y-intercept of a graph of the line, and k is the slope of the 
line. 
If  is a point on the line, that is, ),( 000 yxM bkxy += 00 , then the point–
slope equation of the line is 

)( 00 xxkyy −=− . 

Examples: 
1) A line on the x, y–plane is given by the equation 

02432 =+− yx . 
Find:  (i) any two points on the line; (ii) the slope of the line; (iii) 
the x– and y–intercepts. 

Solution:  
(i)   Setting x = 0 we obtain y = 8. 

If  x = 3  then y = 10. 
Therefore, the points  P(0, 8) and  Q(3, 10) lie on the line. 

(ii)   02432 =+− yx    ⇒    8
3
2

+= xy , 

Therefore, the slope of the line is 32=k . 
(iii)   The y–intercept equals 8. The x–intercept is the solution of the 

equation  , that is,   x = –12. 0=y

2) In the x, y–plane, find the equation of the line passing through the 
point  and being perpendicular to the vector )3,5(1M }1,2{ −=N . 

Solution: Using equation (6a) we obtain 
0)3()5(2 =−−− yx     ⇒ 72 −= xy . 
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3) Let  and  be the points on a line.  )4,2(1 −M )6,1(2M
Which of the following points, )1,3( −A , )3,0(B  and )6,3( −C , are 
the points on the line? 

Solution: In view of the equation of a line passing through two given 
points, we have 

46
4

21
2

−
−

=
+
+ yx     ⇒

2
4

3
2 −
=

+ yx    ⇒

01232 =+− yx . 
Substituting the coordinates of the points we obtain that 

)1,3( −A  is not a point on the line, since 
031213)3(2 ≠=+⋅−−⋅ ; 

)3,0(B  is not a point on the line, since 
021123302 ≠=+⋅+⋅ ; 

)6,3( −C  is a point on the line, since 
00126332 ≡=+⋅−⋅ . 

  
6.3. Angle Between Two Lines 

The angle between two lines is the angle between direction vectors of the 
lines. 
If  and  are direction vectors of lines, then 
the cosine of the angle between the lines is given by the following formula: 

},,{ zyx ppp=p },,{ zyx qqq=q

222222
cos

zyxzyx

zzyyxx

qqqppp

qpqpqp

++++

++
=

⋅
⋅

=
|q||p|

qpθ . 

If two lines are perpendicular to each other then their direction vectors are 
also perpendicular. This means that the scalar product of the direction 
vectors is equal to zero:  

0=++=⋅ zzyyxx qpqpqpqp . 

If two lines are parallel then their direction vectors are proportional: 
qp c= , 

where c is a number. 
In the coordinate form, this condition looks like 

z

z

y

y

x

x

q
p

q
p

q
p

== . 
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We need direction vectors of lines to find the angle between the lines. 
Consider a few particular cases. 
1) Let a line be given by two points  and . 

Then  
),,( 1111 zyxM ),,( 2222 zyxM

},,{ 121212 zzyyxx −−−=p  
is a direction vector of the line. 

2) If a line in the x, y–plane  is given by the equation 
0=++ CByAx , 

then we can easily find two points on the line. For instance, 
),0(1 BCM −  and )0,(2 ACM −  are two points on the line. 

If two lines in the x, y–plane  are given by the equations 
0111 =++ CyBxA     and     0222 =++ CyBxA  

then the angle between the lines is equal to the angle between 
perpendicular vectors },{ 11 BA=1n  and },{ 22 BA=2n  to the lines: 

|n||n|
nn

21

21

⋅
⋅

=θcos . 

Note that a perpendicular vector to a line is also called a normal vector 
to the line. 

3) If a line in the x, y–plane  is given by the equation 

1=+
b
y

a
x , 

then  and  are two points on the line, and so 
 is a direction vector of the line. 

),0(1 bM )0,(2 aM
},{ ba −=p

4) If two lines in the x, y–plane  are given by the equations in the slope-
intercept form 

11 bxky +=   and   22 bxky += , 

and θ  is the angle between the lines, then 

21

12

1
tan

kk
kk

+
−

=θ . 

The lines are parallel, if 
21 kk = . 

The lines are perpendicular, if 
121 −=kk . 
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Examples:  
1) Find the angle θ  between two lines in the x, y–plane, if they are  

given by the following equations: 
0143 =+− yx   and  052 =−+ yx . 

Solution: Normal vectors to the  lines are, respectively,  
and . Therefore, 

}4,3{ −=1n
}1,2{=2n

.5
25
8

55
8

12)4(3
1)4(43

cos

2222
==

+−+

⋅−+⋅
=

⋅
⋅

=
|n||n|

nn

21

21θ

 

2) Find the angle θ  between two lines in the x, y–plane, if they are 
given by the equations in the slope-intercept form: 

13 +−= xy   and   5
3
3

+= xy . 

Solution: We have 31 −=k   and  332 =k . 
Since 

133321 −=−=kk , 

the lines are orthogonal:  
2
πθ = . 

3) Let A = {2, –1}, B = {4, 4} and C = {9, 7} be the vertices of a 
triangle. Find the equation of the altitude from the vertex A, and 
write down the equation in the intercept form. 

Solution: If D = {x, y} is an arbitrary point on the altitude from the 

vertex A, then the vectors  and  are 

orthogonal. Therefore, the scalar product of 

}1,2{ +−=
→

yxAD }3,5{=
→

BC
→

AD  and  is equal to 
zero, and we obtain the desired equation: 

→
BC

0)1(3)2(5 =++−=⋅
→→

yxBCAD        ⇒

0735 =−+ yx    ⇒

1
3757
=+

yx . 
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6.4. Distance From a Point to a Line 
Consider a line in the x, y–plane. 
Let  be a normal vector to the line and  be any point on the 
line. Then the distance d from a point P not on the line is equal to the 

absolute value of the projection of  on : 

n ),( 00 yxM

→
PM n

 
In particular, if the line is given by the equation 

0=++ CByAx , 
and the coordinates of the point P are  and , that is, 1x 1y

},{ BA=n   and   , },{ 0101 yyxxPM −−=
→

then the distance from the point  to the line is calculated 
according to the following formula: 

),( 11 yxP

22
0101 |)()(|

BA
yyBxxAd

+

−+−
= . 

Since  is a point on the line, ),( 00 yxM
000 =++ CByAx . 

Therefore, we obtain 

22
11 ||
BA

CByAxd
+

++
= . 

Example: Let ABC be a triangle in x, y–plane with the vertices at the 
points }1,2{ −=A , }4,4{=B  and }7,9{=C .  
Find the altitude from the vertex A. 
Solution: The altitude from the vertex A equals the distance d from the 
point A to the line passing through the points B and C. 
Find the equation of the line BC: 

5
1

2
2 +
=

− yx     ⇒ 01225 =−− yx . 

Therefore, a normal vector to the line BC  is }2,5{ −=n . 
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Since , we finally obtain }8,7{=
→

AC

29
29
19

29
19

)2(5
)2(857

|| 22
==

−+

−⋅+⋅
=

⋅
=

→

n
nACd . 

 

6.5. Relative Position of Lines 
Let two lines,  and , be given by their equations, e.g., in the canonical 
form: 

1L 2L

:1L   
zyx p
zz

p
yy

p
xx 111 −

=
−

=
− , 

:2L     
zyx q
zz

q
yy

q
xx 222 −

=
−

=
− , 

where  and p=},,{ zyx ppp q=},,{ zyx qqq  are direction vectors of the 
lines. 
In order to determine the relative position of the lines, it is necessary to 
consider the equations of both lines as a system of linear equations. Each 
lines is described by two linear equations, and so we have the following 
system of four linear equations with three unknowns x, y and z: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=−

−=−
−=−

−=−

zx

yx

zx

yx

qzzqxx

qyyqxx
pzzpxx

pyypxx

)()(

)()(
)()(

)()(

22

22

11

11

   (1) 

Let us analyze all possible cases. 
1) Assume that system (1) is inconsistent. Then the lines are either parallel 
or skew. If the coordinates of the direction vectors p  and  are 
proportional, that is, 

q

z

z

y

y

x

x

q
p

q
p

q
p

==  

then the lines are parallel; otherwise, they are skew. 
2) Suppose that system (1) is consistent, and the rank of the coefficient 
matrix equals 3. Then  and  are intersecting lines, that is, they have 
exactly one point of intersection. 

1L 2L

3) If system (1) is consistent, and the rank of the coefficient matrix equals 
2, then the lines coincide with each other. 
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7. Planes 
7.1. General Equation of a Plane 

A normal vector to a plane is a perpendicular vector to the plane. 
According to geometrical postulates, 

- A point and a vector determine a plane. 
- Three points determine a plane. 

The general equation of a plane in a rectangular Cartesian coordinate 
system has the following form: 

0=+++ DCzByAx ,   (1) 
where x, y and z are running coordinates of a point in the plane. 
Let  be a point in the plane, that is, ),,( 1111 zyxM

0111 =+++ DCzByAx .   (2) 
Subtracting identity (2) from equation (1) we obtain another form of the 
general equation of a plane: 

0)()()( 111 =−+−+− zzCyyBxxA .  (3) 
Assume that A, B and C are the coordinates of some vector .  n
Then the left hand side of equation (3) is the scalar product of the vectors 

 and n },,{ 1111 zzyyxx −−−=− rr : 
0)1 =⋅− nr(r .   (3a) 

By the properties of the scalar product this equality implies that the vector 
 is perpendicular to the vector n 1rr − . Since 1rr −  is an arbitrary vector in 

the plane P,  is a normal vector to the plane P. n

 
Thus, equation (3) describes a plane that passes through the point 

. The coefficients A, B and C can be interpreted as the 
coordinates of a normal vector to the plane. 

),,( 1111 zyxM

Consider a few particular cases of equation (1). 
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1) If D = 0  then the plane 
0=++ CzByAx  

passes through the origin. 
2) If C = 0  then the plane 

0=++ DByAx  
is parallel to the z–axis, that is, it extends along the x-axis. 

3) If B = 0  then the plane 
0=++ DCzAx  

is parallel to the y–axis. 
4) If A = 0  then the plane 

0=++ DCzBy  
is parallel to the x–axis. 

5) If  A = B = 0  then the plane 
0=+ DCz  

is parallel to the x, y–plane, that is, the plane is perpendicular to the 
z–axis. 

Examples:  
1) Let  be a point in a plane, and )3,2,1(1 −M }6,5,4{ −=n  be a 

normal vector to the plane. Then the plane is described by the 
following equation 

0)3(6)2(5)1(4 =−−++− zyx        ⇒ 024654 =+−+ zyx . 

2) A plane is given by the equation 
0632 =−+− zyx . 

Find a unit normal vector u to the plane and find any two points in 
the plane. 

Solution: Since n = {1, –2, 3} and 143)2(1|| 222 =+−+=n , then 

)32(
14
1

||
kji

n
nu +−== . 

Setting  x = y = 0, we obtain z = 2. 
Likewise, if x = z = 0, then y = –3. 
Therefore,   and )2,0,0(1M )0,3,0(2 −M  are the points in the given 
plane. 
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7.2. Equation of a Plane Passing Through 
Three Points 

Let ,  and  be three given points 
in a plane P, and 

),,( 1111 zyxM ),,( 2222 zyxM ),,( 3333 zyxM
),,( zyxM  be an arbitrary point in P. 

Consider three vectors, 

},,{ 11111 zzyyxxMM −−−=−=
→

rr , 

},,{ 1212121221 zzyyxxMM −−−=−=
→

rr  
and  

},,{ 1313131331 zzyyxxMM −−−=−=
→

rr . 
They all lie in the plane P, and so their scalar triple product is equal to zero: 

0))()(( 13121 =−−− rrrrrr   ⇒

0

131313

121212

111

=
−−−
−−−
−−−

zzyyxx
zzyyxx
zzyyxx

   (4) 

Equation (4) describes a plane passing through three given points. 

Example: Let , )1,5,2(1 −M )3,3,2(2 −M  and  be points in )0,5,4(3M
a plane.  
Find an equation of that plane. 
Solution: By equation (4), we have 

0
102
480

152
=−

+−− zyx
    ⇒

0
102
120
152
=−

+−− zyx
  ⇒  

0)1(4)5(2)2(2 =+−−−− zyx    ⇒

02422 =+−− zyx    ⇒

012 =+−− zyx . 
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7.3. Other Forms of Equations of a Plane 
1)   Let  and },,{ zyx ppp=p },,{ zyx qqq=q  be two vectors that are 
parallel to a plane P, and  be a point in P.  ),,( 1111 zyxM
If },,{ zyx=r  is the radius-vector of an arbitrary point in the plane P, then 
three vectors, },,{ 1111 zzyyxx −−−=− rr , p and q, are coplanar, and so 
the scalar triple product is equal to zero: 

0)( 1 =− qprr . 
This equality expresses an equation of a plane in the vector form. It can 
also be written in the coordinate form as follows: 

0
111

=
−−−

zyx

zyx

qqq
ppp

zzyyxx
.  (5) 

2)  Assume that the general equation of a plane is expressed in the form of 
the following equality: 

1=++
c
z

b
y

a
x .    (6) 

Then 
0== zy     ⇒ ax = , 
0== zx     ⇒ by = , 
0== yx     ⇒ cz = . 

Therefore, the quantities a, b and c are, respectively, the x-intercept, y-
intercept and z-intercept of the plane. 

 
Equation (6) is called the equation of a plane in the intercept form. 
For instance, the equation 

1
452
=+

−
+

zyx  

describes the plane with the x–, y–, z–intercepts equal 2, –5 and 4, 
respectively. 
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7.4. Angle Between Two Planes 
The angle θ  between two planes equals the angle between their normal 
vectors n  and : m

|m||n|
mn
⋅
⋅

=θcos . 

If the planes are given by equations in the general form 
01111 =+++ DCyBxA , 
02222 =+++ DCyBxA , 

then 

2
2

2
2

2
2

2
1

2
1

2
1

212121cos
CBACBA

CCBBAA
++++

++
=θ .  (7) 

If two planes are perpendicular to each other then their normal vectors are 
also perpendicular: 

0212121 =++=⋅ CCBBAAmn . 

If two planes are parallel then the normal vectors are proportional: 

2

1

2

1

2

1

C
C

B
B

A
A

== . 

Note that the vector product of two non-parallel vectors in a plane gives a 
normal vector to the plane. In particular, if a plane is given by three points 

,  and , then a normal vector to 
the plane is 

),,( 1111 zyxM ),,( 2222 zyxM ),,( 3332 zyxM

131313

1212123121

zzyyxx
zzyyxxMMMM

−−−
−−−=×=

→→
kji

n .  (8) 

Example: Find the angle between two planes  and , if  passes 1P 2P 1P
through the points ,  and )2,2,2(1 −M )3,5,0(2M )4,3,2(3 −M , and  
is given by the equation 

2P

0543 =++− zyx , 
Solution: A normal vector to the plane  is determined by 2P

kji
kji

m 245
210
132 +−== . 

A normal vector to the plane  is 1P }1,4,3{ −=n .  
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Therefore, the cosine of the angle between the given planes is 

130
11

2)4(51)4(3
21)4()4(53cos

222222
=

+−++−+

⋅+−⋅−+⋅
=θ . 

 
7.5. Distance From a Point To a Plane 

Assume that a plane P is determined by the equation in the general form: 
0=+++ DCzByAx .   (9) 

Let  be a given point not in the plane, and ),,( 111 zyxQ ),,( zyxM  be an 
arbitrary point in P. Then the distance d between the point Q  and the plane 

P is equal to the absolute value of the projection of  on 
→

QM },,{ CBA=n . 

 
Therefore, 

222
111 )()()(

CBA
zzCyyBxxAd

++

−+−+−
= . 

By equality (9), 
DCzByAx −=++ , 

and so the distance between point  and plane (9) is given by 
the following formula: 

),,( 111 zyxQ

222
111

CBA
DCzByAxd

++

+++
= .   (9) 

Example: Let the plane be given by the equation 
05432 =+−+ zyx . 

The distance from the point )1,7,8( −Q  to the plane is 

29
29
4

29
4

)4(32
514)7(382

222
==

−++

+⋅−−⋅+⋅
=d .  
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7.6. Relative Position of Planes 
Let two planes,  and , be given by their general equations 1P 2P

:1P   01111 =+++ DzCyBxA , 
:1P   02222 =+++ DzCyBxA . 

Consider the system of two linear equations 

      (10) 
⎩
⎨
⎧

=+++
=+++

.0
,0

2222

1111

DzCyBxA
DzCyBxA

1) If system (10) is inconsistent, then the planes are parallel, and so the 
coordinates of the normal vectors },,{ 111 CBA=1n  and },,{ 222 CBA=2n  are 
proportional: 

2

1

2

1

2

1

2

1

D
D

C
C

B
B

A
A

≠== . 

2) If system (10) is consistent and the equations are proportional to each 
other, then  is  just the same plane as : 1P 2P

2

1

2

1

2

1

2

1

D
D

C
C

B
B

A
A

=== . 

3) If system (10) is consistent, and the rank of the coefficient matrix equals 
2, then  and  are intersecting  planes. The locus of these distinct 
intersecting planes is exactly one line L. The vector product of normal 
vectors to the planes  and  is the vector, which is perpendicular to the 
normal vectors, and so it lies in both planes. Therefore,  is a 
direction vector l of the intersection line L: 

1P 2P

1P 2P
21 nn ×

 
In a similar way we can consider the relative position of any number of 
planes. The only difference is the number of possible cases. 
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7.7. Relative Position of a Plane and a Line 
Let a plane P be given by the equation in the general form 

0=+++ DCzByAx , 
and a line L be determined by the system of two linear equations 

⎩
⎨
⎧

=+++
=+++

.0
,0

2222

1111

DzCyBxA
DzCyBxA

 

To investigate the relative positions of the line and the plane, consider the 
integrated system of equations: 

   
⎪⎩

⎪
⎨

⎧

=+++
=+++

=+++

.0
,0

,0

2222

1111

DzCyBxA
DzCyBxA

DCzByAx
   (11) 

There are three possible cases. 
1) If the rank of the coefficient matrix equals 3, then the system is 

consistent and has a unique solution . It means that 
 is the point of intersection of the plane and the line. 

},,{ 000 zyx
),,( 0000 zyxM

2) If system (11) is consistent, and the rank of the coefficient matrix 
equals 2, then the line L lies in the plane P.  

3) If system (11) is inconsistent then the line L is parallel to the plane P. 

7.8. The Angle Between a Plane and a Line 
Let α  be the angle between a normal vectors n to a plane and a direction 
vector l of a line, and β  be the angle between the plane and the line. 
Then α  and β  are complementary angles shown in the figure below. 

 
Therefore,  

||||
cossin

ln
ln
⋅
⋅

== αβ . 
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8. Quadratic Curves 
8.1. Circles 

A circle is a set of points in a plane that are equidistant from a fixed point.  
The fixed point is called the center. A line segment that joins the center 
with any point of the circle is called the radius. 
In the x,y–plane, the distance between two points ),( yxM  and  
equals 

),( 000 yxM

2
0

2
0 )()( yyxx −+− , 

and so the circle is described by the equation 
22

0
2

0 )()( Ryyxx =−+− ,   (1) 
where  and  are the coordinates of the center, and R is the radius. 0x 0y

 
 
Equation of a circle centered at the origin 

222 Ryx =+     (2) 
is known as the canonical equation of the circle. 
If t is a real parameter, then 

⎩
⎨
⎧

=
=

tRy
tRx

sin
cos

 

are the parametric equations of the circle centered at the origin with radius 
R. 

 
By elimination of the parameter t, we return to canonical equation (2): 
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222
222

222

sin

cos
Ryx

tRy

tRx
=+⇒

⎪⎩

⎪
⎨
⎧

=

=
. 

Likewise, 

⎩
⎨
⎧

+=
+=

tRyy
tRxx

sin
cos

0

0  

are the parametric equations of the circle centered at the point  
with radius R. 

),( 000 yxM

Examples:  
1) The circle is given by the equation 

1264 22 =++− yyxx . 
Find the radius and the coordinates of the center. 

Solution: Transform the quadratic polynomial on the left-hand side of 
the equation by adding and subtracting the corresponding constants to 
complete the perfect squares: 

4)2(4)44(4 222 −−=−+−=− xxxxx  
9)3(9)96(6 222 −+=−++=+ yyyyy . 

Then the given equation is reduced to the form 
222 5)3()2( =++− yx , 

which describes the circle centered at the point )3,2(0 −M  with radius 5. 

2) Let  
01782 22 =+−++ yyxx . 

 Find the canonical equation of the circle. 
Solution:  

01782 22 =+−++ yyxx        ⇒ 0)168()12( 22 =+−+++ yyxx ⇒
0)4()1( 22 =−++ yx . 

The radius of the circle equals zero, that means the given equation 
corresponds to a null point circle. 
3)  The equation 

052 22 =+++ yxx  
can be reduced to the form 

4)1( 22 −=++ yx , 
which has no solutions. In this case they say that the equation 
describes an imaginary circle. 
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8.2. Ellipses 
An ellipse is a plane curve, which is represented by the equation 

12

2

2

2

=+
b
y

a
x     (3) 

in some Cartesian coordinate system. 
Equation (3) is called the canonical equation of an ellipse, or the equation 
of an ellipse in the canonical system of coordinates. The positive quantities 
2a and 2b are called the axes of the ellipse. One of them is said to be the 
major axis, while the other is the minor axis. 
In the canonical system, the coordinate axes are the axes of symmetry, that 
means if a point ),( yx  belongs to the ellipse, then the points ),( yx− , 

),( yx −  and ),( yx −−  also belong to the ellipse. 
The intersection points of the ellipse with the axes of symmetry are called 
the vertices of the ellipse. Hence, the points )0,( a±  and  are the 
vertices of ellipse (3). 

),0( b±

 
If a = b = R then equation (3) is reduced to equation (2) of a circle. Thus, 
one can consider a circle as a specific ellipse. 
The parametric equations of the ellipse have the following form: 

⎩
⎨
⎧

=
=

tby
tax

sin
cos

 

One can easily eliminate the parameter t to obtain the canonical equation of 
the ellipse: 

1
sin

cos

2

2

2

2

2
2

2

2
2

2

=+⇒

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

b
y

a
x

t
b
y

t
a
x

. 

The equation   

1)()(
2

2
2

2

2
0 =

−
+

−
b

yy
a

xx  
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corresponds to the ellipse with the center at the point . The axes 
of symmetry of this ellipse pass through  , being parallel to the 
coordinate axes. 

),( 000 yxM
0M

8.2.1. Properties of Ellipses 
Consider an ellipse, which is given by equation (3) with the major axis 2a. 
Two fixed points,  and , are called the focuses of the 
ellipse, if equality  is satisfied. 

)0,(1 cF − )0,(2 cF
222 bac −=

Correspondingly, the distances  and  from any point 1r 2r ),( yxM  of the 
ellipse to the points  and  are called the focal distances. 1F 2F

The ratio ε=
a
c  is called the eccentricity of ellipse.  

Note that 10 << ε . 

 
1) Let x be the abscissa of a point of ellipse (3). Then the focal distances 

of the point can be expressed as follows: 
εxar +=1 ,    (4a) 
εxar −=2 .    (4b) 

Proof: By the definition, the distance between two points, ),( yxM  and 
, is )0,(1 cF −

22
1 )( ycxr ++= . 

Consider the expression under the sign of the radical. 
By substituting 

2

2
222 )(

a
bxay −= , 

εac =    and    )1( 22222 ε−=−= acab
in , we obtain 2

1r

),1)((2

2)(
222222

222222
1

εxaεaaxεx

yccxxycxr

−−+++=

+++=++=
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which results in 
22222

1 )(2 εxaεxεxaar +=++= . 
Likewise, 

22
2 )( ycxr +−=       . ⇒ 22222

2 )(2 εxaεxεxaar −=+−=
Since 0>± εxa , the above formulas give the desired statement. 

2) For any point of ellipse (3), the sum of the focal distances is the 
constant quantity 2a: 

arr 221 =+ .    (5) 
This property follows from formulas (4a) and (4b). 

Two symmetric lines passing at the distance 
ε
a  from the center of an ellipse 

and being perpendicular to the major axis are called the directrices. 

 
3) For any point of ellipse (3), the ratio of the focal distance to the 

distance from the corresponding directrix is equal to the eccentricity of 
the ellipse: 

ε==
2

2

1

1

d
r

d
r     (6) 

 
Proof: By Property 1 and in view of the fact that 
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xad +=
ε1    and    xad −=

ε1 , 

we obtain the desired results. 
4) Assume that the curve of an ellipse has the mirror reflection property. 

If a point light source is located at a focus of the ellipse, then rays of 
light meet at the other focus after being reflected. 

 
In other words, at any point of an ellipse, the tangent line forms equal 
angles with the focal radiuses. 

5) The orbital path of a planet around the sun is an ellipse such that the 
sun is located at a focus. 

Example: Reduce the equation 
112342 22 =−++ yyxx  

to the canonical form. Give the detailed description of the curve. 
Solution: Complete the perfect squares. 

112342 22 =−++ yyxx      ⇒  
15)44(3)12(2 22 =+−+++ yyxx      ⇒  

15)2(3)1(2 22 =−++ yx       ⇒

1
5

)2(
215
)1( 22

=
−

+
+ yx . 

Thus, the given equation describes the ellipse with the center at the 
point (–1, 2).  
The major semi-axis equals 215 , and the minor semi-axis is 5 . The 
focuses are located on the horizontal line y = 2. The distance between 
each focus and the center is 

2
10

2
55

2
1522 ==−=−= bac . 

The eccentricity equals 

3
3

3
1

15
5

====
a
cε . 
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8.3. Hyperbolas 
A hyperbola is a plane curve, which can be represented in some Cartesian 
coordinate system by one of the below equations 

 
Equations (7) are called the canonical equations of a hyperbola. The 
corresponding coordinate system is said to be the canonical system. In this 
coordinate system, the coordinate axes are axes of symmetry, that is, if a 
point ),( yx  belongs to the hyperbola then the points ),( yx− , ),( yx −  and 

),( yx −−  also belong to the hyperbola. 
The intersection points of the hyperbola with the axis of symmetry are 
called the vertices of the hyperbola. Any hyperbola has two vertices. 
If  a = b then the hyperbola is called an equilateral hyperbola. 
The equations   

1)()(
2

2
2

2

2
0 ±=

−
−

−
b

yy
a

xx  

describe hyperbolas with the center at the point . The axes of 
symmetry of the hyperbolas pass through , being parallel to the 
coordinate axes. 

),( 000 yxM
0M

Consider a hyperbola, which is given by the equation 

12

2

2

2

=−
b
y

a
x .    (8) 

Two fixed points,  and , are called the focuses of the 
hyperbola, if the equality 

)0,(1 cF − )0,(2 cF
222 bac +=  is satisfied. 

Correspondingly, the distances  and  from any point 1r 2r ),( yxM  of the 
hyperbola to the points  and  are called the focal distances. 1F 2F
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The ratio ε=

a
c  is called the eccentricity of hyperbola.  

Note that 1>ε . 

8.3.1. Properties of Hyperbolas 
1) Let x be the abscissa of a point of hyperbola (8). Then the focal 

distances of the point are the following: 
)(1 aεxr +±= ,   (9a) 
)(2 aεxr −±= .   (9b) 

In the above formulas we have to apply the sign ‘+’ for the points on 
the right half-hyperbola, while the sign ‘–‘ is used for the points on the 
left half-hyperbola. 

This property is similar to the corresponding one of ellipses. 
The distance between two points ),( yxM  and )0,(1 cF −  is 

22
1 )( ycxr ++= , 

where 

2

2
222 )(

a
baxy −= , 

εac =    and   . )1( 22222 −=−= εaacb
Therefore, 

.)(2

)1)((2

2)(

2222

222222

222222
1

axεaaxεεx

εaxεaaxεx

yccxxycxr

+=++=

−−+++=

+++=++=

 

Likewise, 
22

2 )( ycxr +−=       . ⇒ 22
2 )( aεxr −=

Since 0>± aεx  for the points of the right half-hyperbola, and 0<± aεx  
for points of the left half-hyperbola, we have got the desired results. 
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2) For any point of hyperbola (8), the difference between the focal 
distances is the constant quantity )2( a± : 

arr 221 ±=− .    (10) 
The sign depends on whether the point lies on the right or left half-
hyperbola. 

The proof is straightforward. We only need to apply Property 1. 

The directrices of hyperbola (8) are two vertical lines 
ε
ax ±= . 

 
3) For any point of hyperbola (8) the ratio of the focal distance to the 

distance from the corresponding directrix is equal to the eccentricity of 
the hyperbola. 

ε==
2

2

1

1

d
r

d
r     (11) 

4) Two straight lines 
a
by ±=  are the asymptotes of hyperbola (8). 

 
Proof: Express the variable y from equality (8) in the explicit form. 

12

2

2

2

=−
b
y

a
x       ⇒ )( 22

2

2
2 ax

a
by −=     ⇒



Quadratic Curves 

 108

22 ax
a
by −±= . 

If x approaches infinity, then constant  is a negligible quantity, that is,   2a

x
a
by ±→ . 

Hence, the property. 
5) Assume that the curve of a hyperbola has the mirror reflection 

property. If a point light source is located at a focus of the hyperbola, 
then the other focus is the image source of rays that being reflected. 

 
The drawing illustrates that reflected rays form a divergent beam.  

Example: Reduce the equation 
0826 22 =++− yyxx  

to the canonical form. Give the detailed description of the curve. 
Solution: Complete the perfect squares. 

7826 22 =−−− yyxx      ⇒  
8)44(2)96( 22 =++−+− yyxx       ⇒

8)2(2)3( 22 =+−− yx . 
Dividing both sides by 8 we obtain the equation 

1
4

)2(
8

)3( 22

=
+

−
− yx , 

which describes the hyperbola with the center at the point (3, –2). The 
focuses are located on the horizontal line y = –2. The distance between 
each focus and the center of the hyperbola is 

23124822 ==+=+= bac . 
The eccentricity of the hyperbola equals 

.
2
3

8
23
===

a
cε  
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8.4. Parabolas 
A parabola is the locus of points, which are equidistant from a given point 
F and line L. The point F is called the focus. The line L is called the 
directrix of the parabola. 
Let the focus be on the x-axis and the directrix be parallel to the y-axis at 
the distance p from the focus as it is shown in the figure below. 

 
Then the focal distance of a point ),( yxM  is 

22)2( ypxr +−=  
and the distance from M to the directrix is 

2pxd += . 
Therefore, due to the transformations 

dr =      ⇒      2)2( 22 pxypx +=+−      ⇒  
222 )2()2( pxypx +=+− , 

we obtain the following equation of a parabola: . pxy 22 =

 
If the focus is located on the left of the directrix, then we obtain 

 
Some more cases are shown in the drawings below. 
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Parabola properties: 

1) Any parabola has the axis of symmetry, which passes through the 
vertex of the parabola, being perpendicular to the directrix. 

2) Let an ellipse be the mirror reflection curve. If a point light source is 
located at a focus of the ellipse, then rays of light are parallel after 
being reflected. 

 
 
The equations   

)(2)( 0
2

0 xxpyy −±=− , 
)(2)( 0

2
0 yypxx −±=−  

describe parabolas with the vertex at the point .  ),( 000 yxM

Example: Reduce the equation 
5342 −=−+ yxx . 

to the canonical form. Give the detailed description of the curve. 
Solution: 

5342 −=−+ yxx       ⇒

)
3
5(3)2( 2 −=+ yx . 

This equation describes the parabola with the vertex at the point 
)35,2(0 −M . The axis of symmetry is a line 2−=x  which is parallel to 

the y–axis. 
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8.5. Summary 
Let F be a point (focus) and L be a line (directrix) of a quadric curve.  
Consider the locus of points such that the ratio of the distances to the focus 
and to the directrix is a constant quantity (eccentricity), 

ε=
d
r .    (12) 

If 10 << ε  then equation (12) describes an ellipse. 
If 1=ε  then equation (12) describes a parabola. 
If 1>ε  then (12) is the equation of a hyperbola. 
Thus, the curves of the second order can be classified by the value of the 
eccentricity. 
From the algebraic point of view, the equation 

032
2

21
2

1 =+++++ cxyaybyaxbxa  
describes a curve of the second order in the x,y–plane, provided that at least 
one of the leading coefficients is non-zero. 
The presence of the term xy  means that the axes of symmetry of the curve 
are rotated with respect to the coordinate axes. 
The linear term x (or y) means that the center (or vertex) of the curve is 
shifted along the corresponding axis. 

Examples: 
1) The equation 

const=xy  
describes a hyperbola, whose axes of symmetry are rotated on the angle 

 with respect to the coordinate axes. °45
2) If , then a hyperbola 0→c

cyx =− 22  
collapses to the pair of the lines xy ±= . 

3) The equation 
12 22 −=+ yx  

has no solutions and corresponds to an imaginary ellipse. 
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