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Preface
Every student of a technical university has to be well grounded in
mathematics to study engineering science whose mathematical tools are
based on Calculus.
The concept of the limit is essential for calculus. It is impossible to
overestimate the importance of this concept for modern science. It was a
very great advance on all former achievements of mathematics. Limits
express the concepts of infinite small and infinite large quantities in
mathematical terms. The comprehension of limits creates the necessary
prerequisites for understanding other concepts in Differential Calculus and
Integral Calculus such as derivatives, definite integrals, series, and solving
different problems: calculation of the area of a figure, the length of an arc
of a curve, and so on.
This textbook is intended for students studying methods of higher
mathematics. It covers such content areas as Limits of Sequences, Basic
Elementary Functions, and Limits of Functions.
Each part of the textbook contains basic mathematical conceptions. There
are presented different formulations of limits to demonstrate the unity of
various approaches to this concept. Intuitive arguments are combined with
rigorous proofs of propositions.
Many useful examples and exercises are explained and illustrated
graphically.
The book is useful for students specialized in different areas of expertise to
broaden and methodize a knowledge of the basic mathematical methods. It
can be also used by teachers in the classroom with a group of students.

| thank Professor Victor A. Kilin, who has made useful constructive
suggestion about the text. His careful work in checking the text helped me
to avoid many inaccuracies.

The author welcomes reader’s suggestions for improvement of future
editions of this textbook.
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Sequences

1. NUMERICAL SEQUENCES

1.1. Basic Definitions

The mathematic concept of a sequence corresponds to our ordinary notion
about a sequence of events in a sense of a certain order of events.

A numerical sequence is an infinite set of numbers enumerated
by a positive integer index in ascending order of values of the index.

In other words, a sequence is a function f(n) of a discrete variable n,
whose domain consists of the set of all natural numbers.
The elements of a sequence are called the terms. The term f(n) (that is,
the n-th term) is called the general term or variable of the sequence.
The general term is denoted by a lower case letter with the subscript n:

a,, b,, X,, etc.

The general term put into braces denotes a sequence: {a,}, {b,} {X,}, etc.
Graphically, a sequence can be represented by points on the number line:

d;  d; Qs da ) Ay Ay A2

One can also use a two-dimensional chart for presenting a sequence:

A LT)H

*

*

* s
L

2ttt arrrttan \H
I T I . — I . I : —>.

0 5 10 15 20 25 30

A sequence is completely determined by its general term. If a sequence is
given by a few first terms, then we need to find the general term.

Examples:

1. The general term a, =2n determines the sequence of even numbers:
{a.}=2, 4, 6,..., 2n,...
2. The general term b, =q"" determines an infinite geometric

progression with the common ratio Q:
{b.}=1 a, d%.... 9", ...
3. {c,.}=2,0,20, ... = ¢, =1-(-D".

4. {x,}=1, 2, 6, 24, 120, 720, ..., = X, =nl
6



Sequences

1 1 1 1+(-1)"
5. =0,1,0 =,0,=,0 =,0, ... = = :
v} 5050 Vo=
. 7m
6. {z.}=1,0,-1,0,10, -1 O, ... =  z, :sm7.

7. Let S, be the sum of the first n elements of a sequence {a,}:

n
Sn — Zak .
k=1
Thentheset S, S,,...,S,, ... is also a sequence {S,} which is called
the sequence of the partial sums of the sequence {a,}.

1.1.1. Bounded Sequences

A sequence {x,} is said to be an upper-bounded sequence, if there exists
a finite number U such that

X, <U
for all natural numbers n. The number U is said to be an upper bound of
{x,}. Any nonempty upper-bounded sequence has the least upper bound.
A sequence {x,} is called a lower-bounded sequence if there exists a
finite number L such that

X, =L
for each natural number n. The number L is called a lower bound of {x,}.

Each nonempty lower-bounded sequence has the greatest lower bound.
A sequence is called bounded, if there exist two finite numbers, L and U,
such that

L<x,<U
for all terms of the sequence. Otherwise, the sequence is unbounded.
Examples:
1. The sequence
1 1 1 1 1 1
Y :11 Ty Ty 0y ceey T oy
{nz} 4° 9 16 25 n®

i i 1
is a bounded, since 0< — <1 for all natural numbers n.
n

2. The sequence
( n’ }_1 4 9 16 n’
n+1’ 2" 3 4 5" 77 n4l
Is lower-bounded, since 1/23n2/(n +1) for all natural numbers n.

However, the sequence has no a finite upper bound.
7



Sequences
3. The sequence
{(_1)”2”}:_2’ 41 _81 161
is unbounded, since it has no finite bounds.

1.1.2. Monotone Increasing Sequences

A sequence {x,} is called a monotone increasing sequence, if
Xn+1 > Xn

for each natural number n.
A sequence {x,} is called a monotone decreasing sequence, if

Xn+1 < Xn
for each natural number n.

Examples of monotone increasing sequences:
n, 1 2 3 4 5 n
Tl™2 34 5 6 7 et
{n'}=1, 2, 6, 24, ..., nl,

Examples of monotone decreasing sequences:

1 1 1 1 1 1
. :15 ] — ] ' ey R
{n} 2 3 4 5 n
1 1 1 1 1 1
2_n = A ] PN ! ceey —n
27y 2 4 8 16 32 2"
Examples of non-monotone sequences:
5 1 1 1 1
- :15__1 N _s
{ n } 2 3 4 5
{sin%n}:l, 0,-1,0,10, -1 0, ...

Sequences can also be classified on the basis of a behavior of its terms, if n

takes on sufficiently large values. For instance, the variable 2" increases
without any bound with increasing n. In such a case, they say that the
variable is infinite large, that is, it approaches infinity as n tends to infinity.

Using a symbolical form we write: 2" — o as n— .

If a variable x, approaches zero as n tends to infinity, then x_ is said to be
an infinite small quantity. In this case we write: x, -0 as n — .

At the same time, some variables do not tend to any well-defined number
as n tends to infinity, e.g., the terms of the sequence {(-1)"} oscillate

between two values, -1 and 1.



1.1.3. lllustrations
A Bounded Sequence
? /The Least Upper Bound
]. . 4 > ‘T %] 1 T T IT
! | l I I H
0 | | : : |
| | | 1 |
| | 1 | |
-1 | | I I |
R I I | I |
le | | | I
-2_ | S - B A B
I\The Greatest Lower Bound
X
10| " )
0,8 e
. Monotone Increasing,
0,6 Sequence
¢ R
0,4 T hn+ s
0,2 "
0O 20 40 60 80 100
x?‘l
1,4-
o Monotone Decreasing
Sequence
1,2-
: n+2
1 0_ ] oo n P00 000000 0 -
O 20 40 60 80 100
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1.2. Limits of Numerical Sequences

Intuitive Definition of the Limit:

The limit of a sequence {x,} is a number a such that the terms x,
remain arbitrarily close to a when n is sufficiently large.

This statement is written symbolically in any of the following form:

lim x, =a,
N—c0
limx, =a,

X,—>a aS N—o.

In a mathematical form, the statement “n is sufficiently large” means
“starting from some number N”; the statement “the terms X, remain

arbitrarily close to a” means that the absolute value of the difference
between X, and a is getting smaller than any arbitrary small positive

number &.

Translating the above definition to the mathematical language, we obtain
the following

Formal Definition of the Limit:

Number a is called the limit of a sequence {x,}

if for any arbitrary small number 6 >0
there exists a number N such that
|x,—alo
for each n > N.

Geometrically, the inequality |x,—al<d can be interpreted as the open
interval (a—96,a+9):

[ 3
N b 7

a—o a a+o

In Calculus, the interval (a—-¢J,a+0) is usually named *“delta
neighborhood” (or “delta vicinity”) of the point a. In particular, the delta
neighborhood of zero is the open interval (-98,0):

X
—
-0 () o

As a rule, we use the term “delta (or epsilon) neighborhood”, keeping in
mind that & (or ¢) is a small positive number.

10
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In terms of & -neighborhood, the limit of a sequence can be defined by the
following wording:

Number a is the limit of a sequence {x,}

if any arbitrary small delta neighborhood of the point a
contains all terms of the sequence, starting from a suitable term.

In the figures below, the definition of the limit is illustrated by the number
line and using two-dimensional charts for some special cases.

X X3 . JCN( X+ - x]:qq_z‘. . Xy X

The variable x,

tends to a in an
arbitrary way.

¢ Xong1 Xppg X143

¢ -
a-¢& a )
y The variable x,
M .
tends to a being
less than a.
XN+3 Xprez N+, " Xy X3 X X
- F
= a+é
/l\xn .
o The variable x,

tends to a being
greater than a.

11
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If a sequence has a limit a such that a is a finite number, they say that the
sequence converges to the number a, and the sequence is called
convergent. Otherwise, the sequence is called divergent.

Examples:

1) The sequence {(-1)"} is divergent, since it has no a limit as n tends
to infinity.

2) The sequence {n’} is divergent, since it approaches infinity as
number n tends to infinity.

3) Prove that the sequence {4 n 1} converges to the number %
n+

Intuitive Proof: If n is a sufficiently large number, then number 1 is
much less than 4n and it can be neglected, that results in

n 1
—— aS N—oo,
4n+1 4
To prove this statement rigorously, we have to show that for any
arbitrary small number 6 >0 there exists a number N such that the
condition n > N implies the inequality

(LYY
m+1 4

Indeed,

n _£|<5 P |W|<§
an+l 4 4(4n+1)

f—

o & 16n+4>% —

Setting N > %(%—4) we obtain that the inequality

n>N
implies
1,1
n>—(=-4),
16(5 )
and hence,
-,
4n+1 4

no matter how small positive value of & is chosen.

12



Sequences

1.2.1. Infinitesimal Sequences
A sequence {«,} is called infinitesimal, if it converges to zero:
lime, =0.
The Formal Definition is the following.

A sequence {«,} is called an infinitesimal sequence,
if for any arbitrary small positive number &
there exists a number N such that
the inequality n>N implies |, |<0.

On the number line, the points ¢, of an infinitesimal sequence come

arbitrarily close to the zero point as n increases to infinity. It means that the
zero point is the accumulation point for any infinitesimal sequence. For
n> N (o), no matter how small positive & is chosen, all points ¢, remain

in the delta neighborhood of zero.

.
]
|-

In order to better understand the concept of infinitesimals, try to imagine
something divided into millions bits. Then, divided again an obtained bit
into millions bits. Repeating this procedure indefinitely many times, we
approach to an infinitesimal bit.

Examples:

11
2" 3
sequence, since 1/n—>0as n—» oo,

Rigorous Proof: We need to show that for any 6 >0 there exists a
number N such that the inequality n> N implies 1/n <&

1 ) e .
. ... Is an infinitesimal

1. The sequence {%}:1, o

1
7

13
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If we set N 2%, then the two-sided inequality n> N 2% implies the

desired inequality 1/n < & for any arbitrarily small § > 0.

In particular, setting o =0.01 we obtain 1 <0.01 for all n>100.

n

Thus, the given delta neighborhood of the zero point contains all terms of
the sequence {1/n} except for the first hundred terms.

If 6=0.001 then l<O.001 for all n>1000, that is, all points (with

n

n>1000) lie in the delta neighborhood of the zero point.
It does not matter how many terms are beyond a delta vicinity of zero, if
only a finite number of terms does not belong to that delta vicinity.

2. The variable — IS 2 l
n°+1 n n’ n
. .. . = = —>
infinitesimal as N — . P+l i+l 1+L
Proof: If we set N >1/5, then |0,41 2 2
inequality n>N implies 0
n>1/6, and so 1/n< ¢S for any —> — =
arbitrary small §>0. 0,2 ° 1+0
n 1 o
However, ——<—==. . as n— 0
n“+1 n° n . .
1 00 | | aouI::ulomoloaolo.-_'olgg(l,oo?oo?
Therefore, Nn>N = =<6 = | "0 20 40 60 80 100
n
n 1 :
>——<—< o0.Hence, lim——=0.
n“+1 n n°+1
3. The variable sinl IS 1,01
n
infinitesimal as n — oo. 0,8- 1 _
Proof: Given any arbitrary Sm; — sn0=0
small 6>0, n> 1 i
arcsino - as 17 —> o
1 . .1 0,4+
—<arcsing = sin—<o. .
n n :
0,21°
If we set N> ——, then o
arcsino H
1 1 1 1 0,0 T T T Dﬂloﬂolooolomolog |m| IQO?
mequallty n>N implies 0 20 40 60 80 160
sinl/n< 4.

14
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The concept of infinitesimals gives a more convenient interpretation of the
limit of a sequence.

By the definition, the statement limx,=a means that |x,—alko for
n>N, and hence the difference (x,—a) is an infinitesimal variable.
Therefore, we arrive at the following helpful rule:

Number a is the limit of a sequence {x,},
if the general term of the sequence can be expressed in the form
X, =a+a,,
where «,, is the general term of an infinitesimal sequence.

Example: Evaluate the limit of the sequence {S_nl} as n— o,
n+

Explanation: Number 1 (in the denominator) can be neglected as
3n 3n

n—>o.Then —— — — =3, which means
n+1 n
lim>" —3
n+1

To give a Formal Proof, we should express the general term of the
sequence as the sum of a constant term and an infinitesimal variable:
3n 3(n+1)—3_3 3
n+1 n+1 n+1

The expression (- i) Is an infinitesimal variable, since i—) 0 as
n+1 n+1
n — o . Therefore, the constant term 3 is the limit of the sequence,

lim——=3.

2,51
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1.2.2. Infinite Large Sequences

A sequence {x,} is called infinite large (or divergent), if x, approaches

infinity as n tends to infinity.
The formal definition is the following:

A sequence {x,} is called an infinite large sequence,

if for any arbitrary large number A>0
there exists a number N such that
| X, > A
for each n > N.

Notations:
limx, =00,
n—oo
limx, =00,

oF X,—>% as N-—>o.

JCH _
lim X, = o0
n=N=|x, |>A
Al o ___
ooooo oo
SC0opgn 0o

If the terms of an infinite large sequence {x,} are, respectively, positive or

negative at least starting from a sufficiently large number N, we use the
following notations:

limx, =+ or limx, =—w.
Note that a A - neighborhood of an infinite point includes either one of the
semi-infinite intervals, (A,) and (—«,A), or both. Terms x,, belong to a

A - neighborhood of an infinite point, if their absolute values are greater
than any arbitrary large number A >0,

16
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X Xy X3 X4 . X+ X143
\
A X1+2

X133 Xapen X+t . Xy X3 X; X
7

—A

Example:
2

n° . . . :
The sequence {—1} Is an infinite large sequence since
n

2

n n o0
= —> = 00
n+l 1+1n 1+0
as n— .
10001
ﬂ'
@ |
o .
500 20 Tim 2 =w
- | n+1
250 Lo° |
0 o : n

250 500 N 1000

Rigorous Proof: We need to show that for any arbitrary large number
2

A >0 there exists a natural number N such that n—1>A whenever
n+

n>N.
2 n> n
> =—,
n+l1 n+n 2

If we set N >2A, then the two-sided inequalityn> N >2A implies

Note that

g> A, and hence

n> n

>—>A
n+l 2

for any arbitrary large number A >0.

17
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1.3. Properties of Infinitesimal Sequences

Property 1
If {,} i1s an infinitesimal sequence and {b,} is a bounded sequence,

then {&,b,} is an infinitesimal sequence.

Explanation: First, according to the definition, all terms of the bounded
sequence {b,} are restricted by a finite number M, |b, <M.

Second, an infinitesimal variable ¢, approaches zeroas n — oo,

Hence,
e, b, | = e, |-|b, | < |, |'M —>0-M=0 as n—oo.

Rigorous Proof: Since {¢,} is an infinitesimal sequence, then for any
arbitrary small & >0, the positive number §/M corresponds to a suitable

number N such that | ¢, |< % for each n > N. Therefore,

o
|anby [= ey || by |<MM =0

whenever n > N, which required to be proved.

Property 2
If {,} and {B,} are infinitesimal sequences,

then {¢, 5,} is also an infinitesimal sequence.

Explanation: |a,+ 8, |<|e, |+]16,|>0+0=0 as n—> .

Rigorous Proof: For any & >0, the number &/2 corresponds to natural
numbers N; and N, such that

|, |<% foreach n>N; and

| B, |<g foreach n>N,.

If a number N is not less than each of the numbers N, and N,, then

oy + B, | <lay |+ 5, |<§+§ P

for any arbitrary small 6 >0 whenever n > N.

Corollary: The sum of any finite number of infinitesimal variables
Is an infinitesimal variable.

18
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Explanation: The idea of a proof is shown in the drawing below. The sum
of any two infinitesimals can be represented by one infinitesimal. Then the
sum of two obtained infinitesimal gives also an infinitesimal, etc.
infinitesimal + infinitesimal + infinitesimal + infinitesimal +...=

= infinitesimel + infinifesimal +--=

= infinitesimal + .-

Rigorous Proof: Let us apply the mathematical induction principle. Set S,
(withn =2, 3, 4, ...) be the statement “The sum of n infinitesimals is an
infinitesimal”.
Induction basis: By property 2, the statement S, is true for n = 2.
Induction hypothesis: Assume that the statement S, holds true for some
integer n>2.

Induction step: By the hypothesis, the sum of n infinitesimals is an
infinitesimal, and so the sum of (n+1) infinitesimals can be considered as

the sum consisting of two infinitesimal items. However, the sum of two
infinitesimals is an infinitesimal by Property 2. Therefore, the statement S,

implies the statement S, 1, and hence S,, is true for any integer n>2.

Property 3

If {&,} is an infinitesimal sequence then {—} is an infinite large sequence
n

and vice versa.

Explanation: To verify the proposition, divide number 1 by 1000,
1000000, 1000000000, and so on. Then divide number 1 by 0.001,
0.000001, 0.000000001, and so on. Compare the results.

Rigorous Proof: Let {¢,} be an infinitesimal sequence. Then for any

A >0 there exists a number N such that |«

ol

<%, which implies |-=[> A

n

for each n > N. Hence, {i} Is an infinite large sequence.

n

Likewise, if {¢,} is an infinite large sequence, then any & >0 corresponds

to a number N such that | ¢, |>%, and so |i|< o whenever n > N.

n

1. . e
Hence, {—} is an infinitesimal sequence.

n

19
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1.4. Properties of Limits of Sequences

Property 1
lim(c-x,)=c-limx,

Proof: Let limx, =a that means
X, =a+a,,
where ¢, is an infinitesimal.
Then for any number c,
C-X,=cCc(a+a,)=ca+ca,.
Since ca,, is an infinitesimal,
lim(c-x,)=ca,
which required to be proved.

Property 2
If there exist finite limits of sequences {x,} and {y,} then

lim(x, +y,)=limx, +limy,.

Proof: Let limx, =a and limy, =b that means
X, =a+a,, and y,=b+/,,
where «,, and A, are infinitesimals.
Then
Xn +Yn =(@+b)+(an + 5y)-
By the properties of infinitesimals, the sum (&, + £,) is an infinitesimal.

Therefore,
lim(x, +vy,)=a+b.

Property 3
If there exist finite limits of sequences {x,} and {y,} then

lim(x, - y,)=limx, -limy,.

Proof: Likewise, the statements
limx,=a and limy,=Db
imply
Xn-Yn = (a+an)'(b+ﬂn) :ab"'(ban +a:Bn Ty :Bn)
In  view of the properties of infinitesimals, the variable
(b, +ap, +a, f,) is an infinitesimal. Therefore,

lim(x, - y,)=ab=1lim(x,)-lim(y,).
20
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Property 4
If there exist finite limits of sequences {x,} and {y,}, and limy, =0 then

. X lim x
||m—n :_—n.
Yo limy,

Proof: Assume that limx, =a and limy, =b=0. To prove the property,

we have to represent the quotient % in the form
Yn

%o _2 + Infinitesimal .
Yo D
Using simple transformations we obtain

% _ata, _a, ata, a

Yo b+B, b b+p, b
_a ab+ban—ab—aﬂn_3+ban—aﬂn

+ = .
b b(b+4,) b b(b+4,)
By the properties of infinitesimals,
ba, —af, - %:0 as nN— .
b(b+5,) b
Therefore,
. X, a limx,
lim—" = —=— .
Yo b limy,
Property 5

If there exist finite limits of sequences {x,} and {x,"} then

limx,” = (limx,)"

Explanation: Let limx, =a.
Then
Xp =a+a,,
where ¢, is an infinitesimal.
Therefore,

a
X," =(@+a,)’ =aP -(1+?”)ID >

aP-(1+0)° =af =(limx,)".

21
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1.5. Classification of Infinitesimal Sequences

. o . g - . .
Let lim|—"|= A, where «, and g, are infinitesimal variables as n — .

n

If 0<A<o,then «, and g, are called infinitesimals of the same order
of smallness.

In particular, if limZn =1 then a, and g, are called equivalent
n

infinitesimals:  «, ~ 5,.

In that case, they say that the infinitesimals are equal asymptotically.

If 1=0 then ¢, is called an infinitesimal of a higher order of smallness
with respect to fg,, while g, is an infinitesimal of a lower order of
smallness with respect to ».

If A =00 then f, is an infinitesimal of a higher order of smallness with
respect to «,, while ¢, is an infinitesimal of a lower order of smallness
with respect to £, .

If 0<|Iim(a” - |<oo, then «a, is called an infinitesimal of the k-th
n
order of smallness with respect to £, .
Examples:
1. Infinitesimals iz and 2; are equal asymptotically as
n n®+5n-2
n — oo, since
2 2
ZV” SN2 g3 2, 140-0-=1.
1/(n* +5n-2) n n n
2. Infinitesimals iz and —; have the same order as n — o, since
n 3n°+n
2 2
im— X i3 gyl g
1/(3n% +n) n n

that is a finite number.

3. Show that iIs an infinitesimal of the second order with

(n+1)?

1
respectto — as n—oo.
n
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1.6. Comparison Between Infinitesimal Sequences
1. Let ¢, and g, be two equivalent infinitesimals. Then
Br=ay+7n,
where y, — is an infinitesimal of a higher order of smallness with
respect to both «, and S, .
Proof: By the definition, if a, ~ g, then S, /a, =1 as n— oo, and so

M:(&—l) —(1-1)=0.
a, a

n

Therefore, the difference (5, —¢,,) is an infinitesimal of a higher order
of smallness with respect to the given infinitesimals.

2. If B is an infinitesimal of a higher order of smallness with respect to
o, , then
a,+ 5, ~a,.
It means that £, is a negligible quantity with respect to ¢, as n — .
Proof: By the hypothesis, 5,/a, =0 as n— . Then

a, + B, =%ﬂ”an =(1+%)0{n ~1+0)e, =0, .

n n

3. Let ¢, and g, be two infinitesimals of the same order.

If im0 =4 then a, and A S, are equivalent infinitesimals:

n
oy~ A,
In that case, the infinitesimals are said to be proportional
asymptotically.

Proof: % :—-—”—>£l:1 as n— oo,
A A

Example: Since 1 and il are two equivalent infinitesimals, then their
n n+

sum is an infinitesimal of the same order of smallness:
1 1 2

~

n n+l n
However, their difference is an infinitesimal of the second order with

respect to the given infinitesimals: 11 :
n n+l n(n+1)
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1.7. Classification of Infinite Large Sequences

. o . g - "
Let lim|—|= A, where ¢, and S, are infinite large variables as n — .

n

If 0<A <o then ¢, and g, are called infinite large variables of the same
increasing order.
In particular, if limZn =1 then a, and g, are called equivalent infinite

n
large variables:

ey ~ .
In that case, infinite large variables are said to be equal asymptotically.

If A=o0 then «, is called an infinite large variable of a higher order of
increase with respect to g, while g, is an infinite large variable of a
lower increasing order with respect to «,.

If 1 =0 then ¢, is an infinite large variable of lower order with respect to
B, while £, is an infinite large variable of a higher order with respect to
.
an

|<oo then «, is called an infinite large variable of

n
the k-th order of increase with respect to £, .

If O<|Iim(

Examples:

1. Two infinite large variables, n® and (n®>+4n+1), are equal

asymptotically as n — oo, since
2
”jﬁ?iizl+f+i% > 1+0-0=1.
n n n
2. Both infinite large variables, n® and (5n?+n), have the same
increasing order as n — oo, since

5n% +n

lim
n2

=lim(5+ E) =5
n
that is a finite number.

3. The variable (n®+5n?—1) is an infinite large variable of the third
order with respect to n since

. 4n®+5n%-1 . 5 1
lim 3 =lim(4+—--—)=4,
n N n

and 4 is a finite number.
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1.8. Comparison between Infinite Large Sequences

1. Let ¢, and g, be two equivalent infinite large variables. Then
Bo=0y+7n,

where y, —is an infinitesimal of a lower increasing order with respect

to both ¢, and S, .

Proof: By the definition, if a, ~ g, then S, /a, =1 as n— oo, and so

Pozan _ Py S a-1)=0.
a, a,

Therefore, the difference (S, —¢,) is an infinite large variable of a

lower order of increase with respect to the given variables.

Proof. ay~fp, = g P g go0.

an an

2. If B, is an infinite large variable of a lower increasing order with

respect to ¢, then

a,+p, ~«a,.
It means that £, is a negligible quantity with respect to ¢, as n — .
Proof: By the hypothesis, &—>0 as Nn—oo. Then
an
M=1+& - 1+0=1 = o,+8,~«q,.
an an

3. Let ¢, and g, be two infinite large variables of the same order.

If lim<o = 4 then a, and A B, are equivalent infinite large variables:

n
a, ~AB,.
In that case, the infinite large variables are said to be proportional
asymptotically.

Proof: % :l-ﬂal/’tzl as N — oo,
A A B, A

n

Examples:
1. In the expression (n®+5n?—7n+15), the quantity (5n*—-7n+15) is
negligible with respect to n®, since

_ 5n2—-7n+15 .. 5 7 15
||m 3 :||m(———2+—3)20.
n n n n
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2.

Two variables, ¥n* +n*® and n?, are equivalent infinite large variables
of the second order with respect to n.
Their sum is an infinite large variable of the same increasing order:

vn*+n® +n?~2n?.
However, the difference between the given variables is an infinite large
variable of the first increasing order with respect to n:

m_nz:(\/n4+n3—n2)(\/n4+n3+n2)
Jn* +n? +n?

o n*+n®-n* n® _n n
n°+2n*+9n-3
n°+6n®-4n?+n+8
of the variables, (n°+2n*+9n-3) and (n°+6n®-4n%2+8), is

equivalent to n> as n — oo . Therefore,
lim 5”5+§”4+2”‘3 =Iimn—z=1.
n>+6n”—-4n°+n+8 n

Likewise, (4n®+20n*+53)~4n® and (2n°-n?+3n+15)~2n°.
Therefore,

To find the limit of the expression , note that each

an® +20n%>+53 . 4n°
T :Ilm—3:
2n°—-n“+3n+15 2n

To find the limit of the expression (vn?+5n—3—n) having an
indeterminate form (co—o) as n—oo, multiply and divide the

difference (vn?+5n—-3-n) by the sum (vn?+5n—3+n) to get the

difference between two squares:
m_n:(\/n2+5n—3—n)(\/n2+5n—3+n)
Jn?+5n-3+n
_ (Wn*+5n-3)*-n®* n*+5n-3-n*  5n-3
~ Un?+5n-3+n  Yn?+5n-3+n n?+5n-3+n

Since (5n-3) ~5n and (\/n2+5n—3+n)~\/F+n=2n, we obtain

lim(n2 +5n—3—n) = lim——20"3  _jim>2_2
Vn?+5n-3+n 2n 2

lim 2.
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1.9. Theorems of Sequences

Theorem 1
Each monotone increasing upper-bounded sequence has a finite limit,

The below drawing illustrates the theorem.
X Xy X3 X4, Xy Xy X+

\
a-5 a

Proof: Let a be the least upper bound of the sequence {x,}.
It means that
i) all the terms of {x,} satisfy the inequality x,<a;
i) for any arbitrary small positive &, the number (a—o) is not an

upper bound of the sequence.
Therefore, there exists a term X, which is greater than (a-9):

However, {x,} is a monotone increasing sequence, and so
XN SXN+1SXN+2 S----

Thus, all the successors satisfy just the same inequalities, coming arbitrary
close to the bound a:

a-o0<Xx,<a
for each n> N . Hence, limx, =a.

Theorem 2
Each monotone decreasing lower-bounded sequence has a finite limit.

The theorem can be proved in a similar way.
Proof: Let a be the greatest lower bound a sequence {x,}. It means that

i) all the terms of {x,} satisfy the inequality a<x,;
i) for any arbitrary small positive &, the number (a+ ) isnota lower

bound of the sequence.
Then there exists a term X such that a<xy <a+9J.

Since the sequence is monotone decreasing, all the successors remain
between the bound a and term X :

asx,<xy<a+o
for each n> N, as it is shown in the drawing below.

X+2 Xy Xn, X4 X3 Xp; X
7
a+o

L
[/

Hence, limx, =a.
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Theorem 3
A monotone increasing sequence is divergent, if it has no an upper bound.

Proof: Let A be an arbitrary large number. Since A is not an upper bound
of the sequence {x,}, there exists a term X, which is greater than A.
However, {x,} is a monotone increasing sequence, and so each successor

Is also greater than A .
Thus, for any arbitrary large number A there exists the corresponding
number N such that

X, > A
whenever n> N .
X X X3 Xy Xyn XN+3
LY
A X+2
Hence, the theorem.
Theorem 4

A monotone decreasing sequence is divergent, if it has no a lower bound.

Proof: By the arguments used in the proof of Theorem 3, we conclude that
for any positive number A there exists the number N such that

X, <—A,
andso |x,|>A whenever n>N .

X3 Xyeo X1, X4 X3 X Xy
s
-A
Hence, the sequence diverges.
1.10. Number e

Theorem:

The sequence {(1+%)”}

— is a monotone increasing bounded sequence;

— has the finite limit such that 2 < Iim(1+£)n <3.
n

n—oo

That limit is denoted by the symbol e:
e = lim(1+ )"
n—oo n

The number e is an irrational number, e = 2.71828...
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Proof: First, we prove that {an}:{(1+1)“} IS a monotone increasing
n

sequence.
By the Binomial Theorem (see [1-3], for example):

(X+y)" = X" +nx" Ly + (n2| 1) X"2y2 4 n(n_]-;(n_z) X"y 4.
+n(n—1)(n—2)---1yn.

n!

Setting x=1and y= 1 and making simple transformations we obtain:
n

nin-1) 1 ++n(n_1)(n_2)i+ +n_'i

2= () =102 102D AL L
_2+(n—1)1+(n—1)(2n—2)£ _,(n-D(n-2)-11
n 2! n 3! n"t n!

24 (-0 2+ 1D - D) L4+ - D D) -

Substituting (n+1) for n we get a similar expression for the next term a, ., :

An1 = 2+(1——1)§ (1——)(—n)§

n-1,1
+(1——)(1—m) (—m)m
T T L YO

n+1 n+1 n+1" n+1 (n+1!
Now let us compare the expressions for a, and a, ., term by term.

First of all, note that in both sums (in the expressions for a, and a,,,) all

the terms are positive, and the number of the terms increases with
increasing n.
Starting from the second term, each term of the sum a, ., is greater than the

corresponding term of the sum for a,:
a-YH<a-—y, a-YHa-4<a-—Hya-—2), andsoon.
n n+1 n n n+1 n+1

Therefore, inequality
a‘n+1 > an

proves that {an}:{(1+1)”} IS @ monotone increasing sequence.
n
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Now let us prove that {an}z{(1+1)”} IS a bounded sequence.
n

The first term of a monotone increasing sequence is the greatest lower

bound of the sequence. Since a, = (1+%)1 =2, we get the inequality

2< 1+l
n

which is valid for all natural numbers n that proves the existence of a lower
bound.

The existence of an upper bound can be proved by the following simple
estimations.

First,
1.1 1 2.1 1 2 n-1.1
a,=2+1--)=—+1——9H)1——)=+..+1-9HQ—)--1—)=
n- 2! n n- 3l n n n “nl!

1 1 1
<24+ —+—+...+—
21 3l n!

since 1—K <1 for all natural numbers k and n.
n

Second, %< Zi" for all integer k > 2, and so

1

9 1 1
a, < +—+?+...+2—n.

2
The expression on the right side of this inequality includes the sum of n
terms of the geometric progression with the common ratio 2 that can be
easily calculated [2]:

1
11 1 1@ g
Sttt =2 =1-—<1.
272 2, 1 2

2

Thus, {a,} is an upper-bounded sequence, an:(1+£)”<3 for each
n
natural number n.
The sequence {(1+£)”} satisfies the conditions of Theorem 1, and so it
n

has a finite limit denoted by the symbol e,

Iim(1+£)”:e, 2<e<3.
n
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Graphic Ilustration

A Yz
297" QDDDDDDDDDDDDDD&E

DDDDD

2,6 T =

2,5--0 y” = [1+l]
] n
2,4 -

2,3+

WV ox

2,2 +———— —— ——t————t
2040 60 80 100

Numerical illustration

n (1+ E)n
n
1 2
2 2.25
5 2.48832
10 2.593742460
20 2.653297705
50 2.691588029
100 2.704813829
1000 2.716923932
10 000 2.718145927
100 000 2.718268237
1000 000 2.718280469

e = 2.71828182845904523536028747135266249775724709...
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2.1.

2. FUNCTIONS
Elementary Functions: Short Review

2.1.1. Power Functions Yy =Xx"

The domain of the power function Yy = X" is the set of all real numbers

except for x <0, if n:i (k=12,...),and x#0,if n<O.

The range of the power function y = X" depends on the index of the

power. If n is an even number then the range contains only non-negative
real numbers. For odd numbers n, the range is the set of all real numbers.

)\y y:_x
n=1
X
AV y:x2
n="2
o
0 ~
AV
y =x°
n=3
0 ¥

If n=1then Y = X is a linear function,

whose graph is a straight line passing
through the origin.

Domain: The set of all real numbers.
Range: The set of all real numbers.
Symmetry: An odd function,

y(=x)=-Yy(x).

If n = 2 then y=x2 IS a quadratic
function, whose graph is a parabola
with the vertex at the origin.

Domain: The set of all real numbers.
Range: The set of all non-negative real
numbers.

Symmetry: An even function,

y(=x) =Yy(x).

If n = 3 then y=x3 IS a cubic
function, whose graph passes through
the origin.

Domain: The set of all real numbers.
Range: The set of all real numbers.
Symmetry: An odd function.
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X
X
3

Functions

1
If n = -1 then the equation y=;

describes the hyperbola.

Domain: The set of all positive and
negative real numbers.

Range: The set of all positive and
negative real numbers.

Symmetry: An odd function.

If n :% then y =X is the inverse

function  of y=x2 provided

thatx>0.

Domain: The set of all non-negative
real numbers.

Range: The set of all non-negative
real numbers.

If n:% then y:§/§ IS the inverse

function of y = X3,

Domain: The set of all real numbers.
Range: The set of all real numbers
Symmetry: An odd function.

1
If n=-2 then y=?.

Domain: The set of all real
numbers.

Range: The set of all positive real
numbers

Symmetry: An even function.
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2.1.2. Exponential Functions y=a’

Requirements: a>0 and a =1.

Domain: The set of all real numbers.
Range: The set of all positive real numbers.
Properties:

If a> 1 then

— y=a” is amonotone increasing function, that is,
Xo > Xy o a?>a;

— graphs of the function y =a* tends to the x-axis asymptotically as

X — —oo, and tends to infinity as X — +o.
If 0<a<1then

— y=a" is a monotone decreasing function, that is,
Xo > Xy & a%<al;

— graphs of the function y =a* tends to the x-axis asymptotically as
X — +o0, and tends to infinity as X — —o.

Graphs:
J\y
X
y=a" y=a
O<cax<l a>1
1
e
0 ~
Basic Formulas:
a’=1
1
_X _
a’ ==
a
aXl . aX2 — aXl+X2
X
ﬁ — qX17X2
a2
(ax)n — anx

The reader can find more detail discussion of the properties of elementary
functions, for example, in [1-3].
34



Functions

2.1.3. Logarithmic Functions Y =109, X

Note: a>0 and a=1.
Domain: The set of all positive numbers.
Range: The set of all real numbers.

The logarithmic function is defined as the inverse of the exponential
function:

y=log,x < x=a’.
Properties:

If a> 1 then
- y=log, x isamonotone increasing function, that is,

Xy > Xy < log, X, >log, X ;
— log, X > —co and graphs of the function y =log, x tends to the y-

axis asymptotically as x — +0;
- log, X =+ as X — +o.

If 0<a<1then
— log, x is a monotone decreasing function, that is,
Xy > Xq < log, X, <log, X ;
— log, x —> +oo and graphs of the function y =1log, x tends to the y-
axis asymptotically as x — +0;
- log, X > —c0 as X — 4.

Graphs:

AY y:lggax

a =1

\fH

D<a<l

Since y=a* and y=log, x are inverse functions of each other, their

graphs look as the mirror images of each other across the bisector of the
first and third quadrants, see the figures below.
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e
I
B

a1

y=a a1

y=log, x

Basic Formulas:

log,1=0

log,a=1
log, X; +10g, X, =109, (X; - X,)

log, x
Ioga X — Ioga Xy = Ja Xy
109, X,

nlog, x = log, x"

log,. x

log, x=
" log.a

The function log, x is referred to as log x (lgx in Russian books).
The function log, x is denoted by Inx and it is called the natural
logarithm.
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2.1.4. Trigonometric Functions

Sine Function y =sinx
Cosine Function y =cosX

The reader can find more detail discussion of the properties of
trigonometric functions, for example, in [1-3].

Domains: The set of all real numbers.

Ranges: [sinx|<1, |cosx|<L1.

Properties:

— sinx and cosx are periodic functions with period 27 :
sin(x+2x)=sinx, cos(X+2x)=C0SX;
— sinx isan odd function:
sin(—x) =-sinx;
— cosx isan even function:
C0S(—X) =COoS X.
Graphs:

Y

y =Sin x

Y y=Cosx

b=
vl
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Basic Formulas:

Addition Formulas for Sines and Cosines
sin(a = ) =sina cos S +sin fcosa
cos(a £ ) =cosacos B Fsinasin S

Double-Angle Formulas for Sines and Cosines
sin2a =2sina cosa

c0S2c = C0S% a —sin a

Half-Angle Formulas for Sines and Cosines

Zsinzgzl— coS o

o
2c052E = 1+CoSc

Relationships between Sines and Cosines

cos® o +sin“a =1
. T T
sina = cos(«x _E) = cos(E— a)

. T . T
cosa =sin(a + ) =sin(= —
a=sin(a+-) =sin(> - a)

Other Formulas

N _
sinaisin,b’:Zsina_'Bcosa;ﬂ
cosa+cosﬂ=2003a;ﬂcosa;ﬁ
cosa—cosﬂz—ZSina;'Bsina;'B

sina sin = %(cos(og — pB)—cos(a+ )
COSa COS 3 = %(cos(a — ) +cos(a + f3))

sina cos 3 :%(Sin(a—,b’) +sin(a + f))
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Tangent Function y=tanx

. T .
Domain: The set of all real numbers except for x = E+7rn, where n is any

integer.
Range: The set of all real numbers.

Properties:
— tanx is a periodic function with period 7 :
tan(x + ) =tanx;
— tanx is an odd function:
tan(—x) = —tan x.

Cotangent Function
y =Ccot X

Domain: The set of real numbers except for x=zn, where n is any

integer.
Range: The set of all real numbers.

Properties:
— cotx is a periodic function with period 7 :
cot(x+ ) =cotx,;
— cotx is an odd function:
cot(—x) =—cot x.

Graphs:
Es =T

| Y ¥ ian X | | £Y  y=Cotx

4, | | 4- |

| | |

[ ' | | | |

I I I I

| [ | : | |

I l | | | |

: 0 : : \.x : _ﬂ’-| 0 ﬂ'-| \x
au : /T i \ : I
|
[ : : | | |
| [ l | :
I -4 : | L4 !
! ! | | | |
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Relationships between Trigonometric Functions

sin x

tanx ="

COS X

COS X
COtX:_—

sin x

1

tanx=——

cot x

1

1+tan” x =—>;
cos? x

1

1+cot® x=—
sin? x

tanx = cot(g —X)

cotx = tan(% —X)

Addition Formulas for Tangents and Cotangents

tan o + tan
tan(a = f) =— @ P

1F¥tanatan j
cot(ar £ ) = cotacot fF1

cota tcotp

Double-Angle Formulas for Tangents and Cotangents

2tan
tan 2« =a—2a
l1-tan“ o
2 —
C0t20£ :Lal
2cota

Half-Angle Formulas for Tangents and Cotangents
a _l-cosa _ sina

tan - =
2 SINx 1+ cosa

a 1+cosa sina
cot—=—"— =
2 SInx 1-cosa
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Other Formulas

sin(a = f)
COS« COS 3

sin(f + a)

cotatcotff=——"—""-—=
sina sin

tanattan g =

2tan§
sinx = 2x
1+tan® >

1-tan? X
2

COS X = x
1+tan’® =
2

2tani
tan x = 2x
1—tan® =

Values of Trigonometric Functions for Special Angles:

Angle x .
_ sin x COS X tan x cot x
Degrees Radians

0 0 0 1 0 undefined
il 1 V3 V3

% 5 2 2 3 V3
4 2 2
z V3 1 e

%0 3 2 2 v3 3
T .

90 5 1 0 undefined 0
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2.1.5. Inverse Trigonometric Functions
Inverse Sine Function is referred as
y=arcsinx oras y=sin"'x.

Domain: -1<x<1. Range: —%Sarcsinxs%.

Properties:
— arcsin x is a monotone increasing function;

— sin"}(sinx) = x;
— sin(sint x) =x.
The solution set of the equation sinx=a:
x=(-1)"arcsina+zn, (n=0,%1%2,..).

Inverse Cosine Function is referred as
y =arccosx oras y=CO0S \X.
Domain: -1<x<1. Range: O<arccosx<r.

Properties:
— arccosx is a monotone decreasing function;

— c0s}(cosx) = X;
— cos(costx)=x.
The solution set of the equation cosx=a:
X =xarccosa+2zn, (n=0,£1+2,..).
Graphs:
Y
m

Y=arccos x
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Inverse Tangent Function y=arctanx (or y:tan‘lx).

Domain: The set of all real numbers.

Properties:

Functions

Range: - 7 <arctanx < 2.
2 2

— arctan x is a monotone increasing function;
— tan'(tanx) = x;
— tan(tan™'x) = X.

The solution set of the equation tanx =a:

X=arctana+zn,

(n=0,£1,%2,...).

Inverse Cotangent Function y= cot™x.
Domain: The set of all real numbers.

Properties:

Range: O<cot™*x< 7.

— cot™ x is a monotone decreasing function:
— cot™(cotx) = x;
— cot(cot™ x) =X.

The solution set of the equation cotx =a:

Graphs:

x=cotta+zn,

(n=0,£1,%2,..).

vt P A ¥
hi an x T
\.?C
_— | _T
2
AY
—_— — — —
—\ y =cot x
\x
0 F
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2.1.6. Hyperbolic Functions
1. The hyperbolic sine sinh x is defined by the following formula:

X_e—X

sinhx =

Domain: The set of all real numbers.

Range: The set of all real numbers.

The hyperbolic sine is an odd function because
—X _ eX eX _ e—X

sinh(=x) =< == sinh.

sinhx
[]

2. The hyperbolic cosine coshx is defined as

e¥+e™”
coshx =

Domain: The set of all real numbers.
Range: The set of all non-negative real numbers.
The hyperbolic cosine is an even function, since

44



Functions
3. The hyperbolic tangent tanh x is defined as the ratio between sinh x
and coshx:
sinx _e"—e™”
coshx e*+e ™
Domain: The set of all real numbers.
Range: The set of real numbers | x |<1.

The hyperbolic tangent is an odd function due to the symmetry properties
of sinhx and coshx.

tanh x =

1.0

05 4

0.0

tanhx

-1.0

4. The hyperbolic cotangent coth x is the ratio of coshx to sinhx:
cosx 1 e‘+e”

sinhx  tanhx e*—e*’

Domain: The set of all real numbers except for x=0.

Range: The set of all real numbers.

The hyperbolic cotangent is an odd function due to the symmetry properties
of sinhx and coshx.

cothx =

=20 -1.5 -1.0 -05
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Basic Formulas:

Addition Formulas for sinh x and cosh x
sinh(a = ) =sinha cosh g £ sinh g cosh «
cosh(a + f) = coshacosh S + sinh asinh

Double-Angle Formulas for sinh x and cosh x
sinh2a = 2sinha cosha

cosh2a = cosh? a + sinh? &

Half-Angle Formulas for sinhx and cosh x

Zsinhzgz cosha —1

2cosh2% = 1+cosha

Other Formulas

sinh « £sinh B = 2sinh aizrﬂcosh aiﬂ

B g &P
2

cosh

cosh a +cosh = 2cosh a;

cosh a —cosh 8 = 2sinh a;’b’ sinh a;’g
sinha sinh 8 = %(cosh(a + f3) —cosh(a — B))
cosh « cosh g = %(cosh(a + ) +cosh(a — f))

sinh « cosh :%(Sinh(a + B) +sinh(a — f))

Relationships between Hyperbolic Functions
cosh’ & —sinh? o =1,

tanhx:smhx, cothx:CF)ShX, tanh x = L ,

cosh x sinh x coth x
1-tanh®x=———, coth’®x—1=— 12 .
cosh” x sinh” X
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2.2. Limits of Functions
2.2.1. Preliminary Discussion

Let f(x)=x? and the values of the variable x belong to a small vicinity of
the point x=2. Then it looks like evident that the values of the function

f(x) lie in a small vicinity of 4, that is, x* —>4 as x—2. In this

example we can directly substitute x =2 to get the limit value of f (x) = x?
as Xx— 2.
However, if a function is not defined at some point x =a, we need to use
another way of looking to find the limit value of f(x) as x> a.
Sometimes, similar problems can be solved algebraically, for instance,

f(x) = x*-a® _(x-a)(x+a)

X—a X—a

We see that f (x) approaches 2a as x tends to a. Therefore, by the
supplementary condition

=X+a—>2a, asx—oa.

x% —a?
f(X)=9 x-a
2, iIf x=a

, If x=#a

x? —a?

the domain of f(x)= can be extended to include the point x=a.

Practically, we have found the limit of the given function as x—a. In
many other cases the evaluation of the limits is more complicated.

The above example shows that it is possible to operate with expressions of

the form % by the limit process. Some other indeterminate forms can be

reduced to the form % by algebraic transformations. For example, if

f(x) >0 and g(x) >« as x—a, then the fraction é iIs an
indeterminate form f, which can be reduced to the form g by dividing
o0

both the numerator and denominator by the product (f-g): 1:5—3
g

where 1/g >0 and I/ f -0 as x> a.

Using limits one can also investigate the asymptotic behavior of functions

at infinity. The comprehension of limits creates the necessary prerequisites

for understanding all other concepts in Calculus.
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2.2.2. Basic Conceptions and Definitions

Here we will give different formulations of limits in order to demonstrate
the unity of various approaches to this concept. Intuitive arguments will be
combined with rigorous proofs of propositions.

Intuitive Definition:

The limit of a function f(x) isanumber A such that
the values of f (x) remain arbitrarily close to A when
the independent variable X is sufficiently close to a specified point a:
lim f(x)=A.

X—a

One can also say that the values of the function f (x) approach the number A
as the variable x tends to the point a.

Other Notation: fx) >A a x—a.

The above definition gives the general idea of limits. It can be easily
translated into the rigorous mathematical language.

The words “the values of a given function f(x) remains arbitrarily close to
A” mean that | f (X) — A | is less than any number ¢ >0, no matter how
small & is chosen. The only thing that matters is how the function is
defined in a small neighborhood of the limit point.

By a value of & we set an acceptable deviation of f(x) from the limit
value A, that is, ¢ means a variation of f(x) from A, which can be

disregarded. The bound values A-g¢ and A+¢& determine the
corresponding interval (a—d;,a+0,) of the values of the independent

variable x around its limit point x =a.

-~y
A +& o
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The above drawing illustrates that for any points x in the interval
a—-90,<Xx<a+od,, (1)

the corresponding values of f (x) lie in the epsilon vicinity of the point A,
A-e<f(X)<A+e. 2

Setting o =min{d,, 6,}, we can change inequality (1) by the inequality
a—-o<x<a+o. 3)

If condition (1) implies inequality (2), then inequality (3) implies inequality

(2) even more. It is more convenient to operate with a symmetric delta

neighborhood of the point a, and nothing more in this change.

Formally, the limit of a function is defined as follows:

Let a function f(x) be defined in some neighborhood of a point a,
including or excluding x=a.
A number A is called the limit of f(x) as x tends to a,

if for any arbitrary small number ¢ >0
there exists the corresponding number 6 = 6(¢) > 0 such that

the inequality |x—aj<& implies

‘f(x)—A‘<g.

The inequality \x — a\ <o expresses the condition that values of the variable

X are in an immediate vicinity of the limit point a.
If a is an infinite point then any neighborhood of a consists of sufficiently

large values of x, and so it is necessary to modify the above definition for
case of X —> .

If X — oo, the limit of a function is defined by the following wording:

Number A is called the limit of f(x) as x —» «,

if for any arbitrary small number &£ >0
there exists the corresponding number A =A(g) >0

such that the inequality [X| > A implies

\ f(x)— N <Eg.
There are two special cases of great importance:
1. f(x) >0 as x—a, and
2. f(X) >0 as x—a.
In the first case, the limit of the function equals zero,
lim f(x)=0,
X—a

and f(x) is called an infinitesimal function.
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If f(x)— A asxtends to a, then the difference between f(x) and its limit

value A approaches zeroas x —a.
It means that f(x)—A=a(x) is an infinitesimal function as x —a.

Therefore, if a number A is the limit of a function f(x) as x—a, then
f (x) can be expressed as

f(x)=A+a(x),
where a(x) is an infinitesimal function as x tends to a.
Thus, we have obtained the following helpful rule of finding the limit of a
function:

f (x) = A+ infinitesimal as x —a
S

limf(x)=A

X—a

Examples of infinitesimal functions:

x> >0 as x—0 x> -8 as X — 2
sinx—>0 as x—0 sinx—>0 asXxX—rx
150 as x>0 1/x—>0 as X — oo
Inx >0 asx—>1 Inl+x) >0as x—0

In the second case, the statement “ f (x) — o0 as X —a” has the following
mathematical wording:

If for any arbitrary large number E > 0 there exists the
corresponding number ¢ = 6(E) > 0 such that the inequality

x—a|<s implies | f(x)|>E, then
the function f(x) has an infinite limit as x tends to the point a.

If f(x)—>o as Xx—a, the function is called an infinite large function

that is written symbolically as
lim f (x) =0

X—a
or
f(X) >0 as x—a.
The symbolical notations
limf(x)=+w and lirr;f(x) = —00

X—a

mean that infinite function f(x) is positive defined or negative defined,
respectively, at least in some sufficiently small vicinity of the point x=a.
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Examples of infinite large functions:

/x> >+ as x—0 X2 > 400 aS X —> +o0
e > +w as X — +oo e ¥ 3> +00  as X —> —oo
tan X — too0 as X — 7/2 cot’ X — +o as x—0
INnx > -0 asx—0 INnXx > +0 as X —> 4w
2.2.2.1. lllustrations
¥ lim x* =9 2
x—3 y=x
x-3ké6 o> [x°-9ke
9+&

2 3-8 3 340 4
|
3-8,
Y limlnx =0
04k x—1

x-1<é = |lnx-0ke¢

y=Inx
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I
3

x=2x—2

y  lm f(x)=o
E
lx=A =
FACHIES
A
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2.2.2.2. One-Sided Limits

Now suppose that f(x) —> A as X —a provided that x belongs to a right-
sided neighborhood of the point a (x>a). Then the number A is called
the right-sided limit of f(x),

A= lim f(x).

x—a+0

One can also use the following symbolic form to express this statement:
f(x)>A as x—a+0 orsimply f(a+0).

The left-sided limit has a similar meaning. If f(x) > A, as x > a—0 (that

IS, x<a), then A, is the left-sided limit of f (x):

A= lim (x)=f(a=0).

If x tends to zero being less than zero, we white x — -0, while the
direction of approaching x to zero from the side of positive values is
denoted by the symbolical form x — +0.

In terms of £— &, one-sided limits are defined as follows:
The number A is called the right-sided limit of f(x) as x tends to a, if
for any arbitrary small & >0 there exists a positive number 6 = 5(g) such
that the inequality a<x<a+¢ implies

[ f)-AKe.
Likewise, if | f(x)—A,[<e whenever a—o <x<a, then A, is the left-
sided limit of f(x) as xtends to a.
By the definition of the limit, f(x) > A as x—a, no matter what

sequence of values of x, converging to a, is chosen. Therefore, the
following theorem holds true:

f (x) has the limit at the point a if and only if
there exist one-sided limits as X — a, which are equal to each other:

Iimof(x): im f(x)=A < 1in;f(x):A.

X—>a— x—a+0

Example: Find the limit of the function f(x)=

— atthe point x = 2.

1+5%2
Solution: Consider one-sided limits of f(x) as x > 2+0:
lim f)=—> = _1and lim f(x)e—— =2 _0
x—>2-0 1+5 1+0 X240 1+5" 1+

They differ from each other, and so f(x) hasno a limitat x = 2.
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2.2.3. Properties of Infinitesimal Functions
Property 1:

Let f(x) be a function bounded at least in some neighborhood of a point a
and «a(x) be an infinitesimal function as x tends to a.
Then the product f (x)a(x) is an infinitesimal function.

Explanation: The absolute values of the bounded function f(x) are

restricted by a finite positive number M, | f (x)] < M, for any x in some
neighborhood of the point a.
Since a(x) is an infinitesimal function as x tends to a, then

[T (X) a(X)|<M |a(X)] > M-0=0

Rigorous Proof: Since f (x) is a function bounded in some neighborhood of
the point a, then there exists a finite positive number M such that

[ f(x) <M (4)
whenever

x—a|<d;. (5)
Since a(x) an infinitesimal function in the same neighborhood of the point
a, any positive number ¢ /M corresponds to a positive number &, such
that the inequality

x—a|< &, (6)
implies

&
‘a(x)‘ < IVE (7)

Let us set 5 =min{s,,5,}. Then condition |x —a| <& implies inequalities

(5) and (6), that results in inequalities (4) and (7).
Therefore, for any arbitrary small number &, we obtain that

la(x)- f(X)|=| ()] f(x)\<ﬁ|\/| —¢

whenever the values of x are in the delta neighborhood of the point a.
This proves that a(x) f (x) is an infinitesimal function.

Property 2:

The sum of two infinitesimal functions is an infinitesimal function.

Explanation: If a(x) >0 and g(x) >0 as x—a, then
a(X)+p(x) >0+0=0 as x—>a.
Rigorous Proof: Let a(x) and S(x) be infinitesimal functions as x —» a.
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Then for any arbitrary small positive number & /2 there exist the
corresponding numbers 8, >0 and ¢, >0 such that

|x—-al<d, = |a(x)|<§
and

x-al<d = |k
If 6 =min{o,, 0,} then inequality |x —a|< o implies both |[x—a|<J; and
|x—-a|<d,, and hence

la(X)+ A <la()]+] BX) <+ =¢

for any arbitrary small number &.
Corollary:

The sum of any finite number of infinitesimal functions is
an infinitesimal function.

Explanation: The sum of two infinitesimals is an infinitesimal, the sum of
which with a third infinitesimal is also an infinitesimal, and so on.

The statement can be proved rigorously by the mathematical induction
principle just in the same manner that was used in a case of sequences. (See
Chapter 1, p. 18-19.)

Example: 5x+2sinx +4xtan x —3In(1+ x) is an infinitesimal function
as X — 0, since each term of the sum is an infinitesimal function.

2.2.4. Properties of Limits of Functions
Property 1:

A constant factor can be taken out the sign of the limit,
limc f(x)=clim f(x).
X—a

X—a

Proof: By the rule formulated on page 47,
limf(x)=A = f(X)=A+a(x),

X—a

where «(x) is an infinitesimal functionas x > a.
Therefore, cf(x)=cA+ca(x) = limcf(x)=cA.
X—a

Properties 2-4:
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If there exist both limits, lim f (x) and limg(x),
then there exist the limits of the sum, product and quotient of the functions:
2. lim(f(xX)£g(x))=Ilim f(x)* lim g(x).
X—a X—a X—a
3. lim(f(x)-g(x))=lim f(x)-lim g(x).
X—a X—a X—a

f(x) _fmfeo
S99 timgey (MO0

Let us prove, for example, Property 3.

The statements

limf(x)=A and Ilimg(x)=B
X—>a

mean that

f(x)=A+a(x) and g(x)=B+4(x),
where a(x) and £(x) are infinitesimal functions as x —> a.
Therefore,

f(x)9(x) = (A+a(x)) (B+ £(x))
= AB + (AL(X) + B a(x) + a(x) S(X)).

Since ApB(x)+Ba(x)+a(x)£(x) isalsoan infinitesimal function as
X — a, then

lim f (x)g(x) = AB = lim f (x) - lim g(x).

2.2.5. Examples

1. Evaluate Iimm .

x—0 SiN X
Solution: In order to evaluate an indeterminate form 0/0, we need to select

and cancel common infinitesimal factors in the numerator and denominator
of the given expression:
tanx  sinx 1

sinX SiNXcosX COSX
By the properties of limits,

) 1 1 1
lim =— =-=1.
x=>0Cc0SX limcosx 1

x—0
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2. Evaluate Ilm( 5 1 L ]
ol X2 +X—2 X2 —4X+3

Solution: Here we deal with an indeterminate form oo —co.
Transform the expression under the sign of the limit:

1 B 1 B —5x+5
X2 +X—2 X2—4x+3 (X2+Xx-2)(X?—4x+3)
_ x—-1 5 1
(x+2)(x D(x-3)(x— 1) (x+2)(x=1)(x-3)
constant

We have obtained the expression of the form , and so

3. Find lim

(an indeterminate form 9).
x—1 X 0

21x=2

Solution: Present the fraction in factored form; then cancel the common
infinitesimal factors:

x? -1 (x-D(x+1) ,. x+1 2
lim———=1im =lim——===.
x—>1x2 +X—2 x—>1(X 1(x+2) x->1x+2 3
2
4. Evaluate lim 3X gx+3 (an indeterminate form 9).
x>3X° —2X° —X—6 0
Solution: Using the idea of reducing the common factors, we obtain
2_ p— p— p—
lim— X X3 gy XDy =1 L
x>3x3—2X2 = Xx—6 >3(X=3)(X2+x+2) x>3x°+x+2 7
2
5. Find Iimw (an indeterminate form S).
x> 33X —X 00
Solution: In order to evaluate the indeterminate form —, divide the

OO
numerator and denominator x* and then apply the properties of limits:

2 2 2 2
lim 2% +25x+1:“m (4x +25x+1)/2x :“m4+5/x+1/x
xon 3x2—x  xow (3x2-X)/x x»o  3-1/x

IIm(4+5/x+1/x ) 4+5I|m]/x+llm1/x 4
3

X—0

XI|m(3 1/x) —Ilml/x

X—>®©
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6. Evaluate lim >/ "*=3
X—2 X—
Solution: Multiply the numerator and denominator by the sum (77 + x +3)

to complete the difference between two squares. Then cancel the like
infinitesimal factors:

Iim«/7+x—3 («/7+ -3)(V7T+Xx+3)
x—>2  X—2 x—>2 (X=2)(N7+x+3)

W7+x)?-9 im 7+x-9

:lm(x_g)(4/7+x+3) x2(X=2)(WT+X +3)

(an indeterminate form 9).
0

] X—2 . 1 1
= lim = lim —==.
x>2(X—2)(N7+%x+3) x>27+x+3 6
. A3+Xx-2 ) ) 0
7. Evaluate lim———— an indeterminate form —).
x>142-x -1 ( 0)

Solution: Likewise, complete the difference between squares to select and
cancel the common infinitesimal factors. Note that

JFix—oo (B+X-2)(3+x+2) _ 3+x-4 x—1

V3+X+2 «/3+ +2 «/3+x+2
and

— . (W2-x-1)(w2-x+1) 2-x-1 = x-1
PXETT T kel Vaexed

«/3+ -2 «/ X+1 2 1

x—>14/ ]_ x—>1«/3+ +2 h E
3

. X7 =
8. Evaluate lim
X—2 X—

Solution: In view of the formula of the difference between two cubes,
x*-8 lim (x—2)(x* +2x+4)

Therefore,

(an indeterminate form 9).
0

lim2—° = lim(x? +2x+4)=12.
Xx—2 X—2 o2 X—2 Xx—2
3\x
BT Ll v
x—+o0 5% 4 3% x—>+ool+(§)x 1+0
5
X _2X X _
10. lim > =3 _ lim (69 -1_0-1__

x>-05  +3° x>0 (5/3) +1 0+1
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11. Iim( _— j:nm“zl‘2 lim %1
x>\ x—-1 x°-1 x—>1 x° =1 x—>1x2% -1
~ x-1 .1 1
x>L(X=1)(X+1) x>1x+1 2
2 Iim (5x +4)"°(5x - 3)%® _lim (5+4/x)"°(5-3/x)%
Coom Bx+N o (5470
] 7030 5100
:)!'_[E]O 5100 )!'_) 5100 =1
70 30 70 30
Bl OGO (60760"
X—0 (5X + 7) X—>00 (5X)
70 30 100
(5X) (i30>;) . (5><)100 1
X—>oo (5)() X—>00 (5)()
14, Gim X iy VXOEBV) VX 1
x>3 X—3 Hs(\/_ \/5)(\/_+\/_) x>3/X ++/3 2
3
15 lim==1 lim Gx)°~1

x—>1\/_ 1 x»1 3/x—1

:Iiml(& 1)3/_7I§/_+1)—Iqu(§/7+\/_+1) 3,

2.2.6. Classification of Infinitesimal Functions

Infinitesimal functions can be classified in the same manner that was used
in the corresponding section devoted to the sequences.
Two infinitesimal functions, a(x) and A(x), are called the infinitesimal

functions of the same order of smallness as x tends to a, if their ratio has
a finite non-zero limit;
0 </ lim 2

x—a (X
In that case, infinitesimal functions «(x) and p(x) are said to be
proportional to each other in some vicinity of the point a.

< 0.

In particular, if lim—== a(x) =1, infinitesimal functions «(x) and £(x) are
x—a f(X
called equivalent as x tends to a that is denoted symbolically as

a(x) ~ B(X).
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An infinitesimal function «(x) has a higher order of smallness with
respectto £(x) as x tends to a, if
lim—= a(x)
x—a (X)
In this case, F(x) is called an infinitesimal function of a lower order of
smallness with respect to «(x).

=0.

An infinitesimal function «(x) is called an infinitesimal of the n-th order
with respect to B(x) as x tends to a, if a(x) and (B(x))" are infinitesimal
functions of the same order:

0<|lim———— a(X) < 00
=a (B(X))"

Examples
1. Infinitesimal functions a(x)=x*-4 and A(x)=Xx—-2 as X — 2
have the same order, since

2_ —
lim 2 _im X222 i $22D0%2) i x4 2) 24,
x—2 B(X) x>2 X—2  x-2 X—2 X—>2
and 4 is a finite non-zero number.
1 1
2. If xX>o then a(X)=———— and X)=———— are
() 4%% +3x+8 ) x> —X+20

infinitesimal functions of the same order, since their ratio tends to a
finite non-zero number:

a(x) 1/(4x%+3x+8) x2—x+20
B(X)  U(x®—x+20) 4x>+3x+8

X*-x+20 1 20
X2 _ X X2 N 1—O+O:£.
T 4x2+3x+8 4+3 8 A+0+0 4
X2 X x*

3. The limit of the ratio of the infinitesimal functions «a(x) = xsinx
and p(x)=tanx as x — 0 equals zero:
a(X) . Xsinx .. Xsinx

Im ——"—"~=Ilim——=1lim cosx = lim xcosx=0.
x—0 #(X) x—-0 tanx  x—0 SinX x—0

Therefore, «(x) is an infinitesimal function of a higher order of
smallness with respect to £(x).
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4. Let a(x)=x and ﬂ(x):i/_ Since

) X
I|m— = lim - =1,
x—>0ﬂ Xx—0 \/_) x—0 X

that is, the limit is a finite number, then «(x) is an infinitesimal
function of the third order with respectto S(x) as x — 0.

5. Given two infinitesimal functions «(x) b and f£(x) b as
X+2 X+5

X — 00,
1 X+5 14°
lim & = 12_I|mx—+5_llm X+2_I|m )2( =1.
x—>ooﬂ X—>00 x>0 X+2 x> X—)ool+7
X+5 X X
Therefore, a(x) and S(x) are equivalent infinitesimal functions as
X —> 00,
6. Expressions a(X) .t and f(x) 1 determine
' X2 —3x+7 X% +2x+10

equivalent infinitesimal functions as x — oo, since the limit of their
ratio equals unity:

1+2+10

a(X) X2 +2x+10 . X %2
lim—%=Ilim——=Ilim—42—%2-=1.

X—>00 ﬁ(x) x>0 X2 —3X+7 X—>ool_§ l

X x°

2.2.7. Comparison Between Infinitesimal Functions

Rule 1: Let a(x) and f£(x) be two equivalent infinitesimal functions as
X —a. Then

B(x)=a(x)+y(x),
where »(x) is an infinitesimal function of a higher order of smallness as
X—>a.

Proof: By the definition, if a(x) ~ #(x) then %—)1 as x—a, and so
a(x

pR-a(X)_BX) | | 1 4_¢

a(X) a(X)
Therefore, the difference (S(x)—a(x)) is an infinitesimal function of a
higher order of smallness with respect to the given infinitesimals as x — a.
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Rule 2: If £(x) is an infinitesimal function of a higher order of smallness
with respect to a(x) as x —a, then
a(X)+ B(x) ~ a(x).
It means that £(x) is a negligible quantity with respect to «(x) as
X—a.
B(x)
(

Proof: By the hypothesis, ) —0as x—a. Then
04

a() + px) = LB 5 - (1+ﬂ§ ;)a(x) - (140)-a(x) = a(X).

a(X)
Rule 3: If a(x) and £(x) are infinitesimal functions of the same order and
0<lim——= a(x) =A<,
B(x)
then a(x) and A S(x) are equivalent infinitesimal functions,
a(x) ~ 2 B(X).
Examples:
X—>00 X—>00
Lsice L 20 Loy L 2L
X —x+4 X 8X° +6x+1 8X
then  lim V(X ~x+4) 1/(7X ) _im & B’ _8

x—01/(8x% +6x +1) X—>ool/(8x) x>0 7x2 T

2. Infinitesimal functions x® and x* have higher orders of smallness
with respect to x as x— 0. Therefore, x+x*+ x>~ x, that is,
(x? +x*) is a negligible quantity with respect to x as x tends to zero.

3. Since tanx and sinx are equivalent infinitesimal functions as

x — 0, the difference between them is an infinitesimal function of a
higher order of smallness with respect to each of them. Really,

. sinx . . 1
tan X —sinx =———sinx =sin x(——-1)

COS X COS X
. 1-cosx . (L—cosx)(1+cosx)
=sin X =sinx
COS X cos X(1+ cosx)
_sinx(l-cos®x)  sin®x

= = —» const-sin® x
cosx(l+cosx) cosx(l+cosx)

as x—0.

Thus, tan x —sinx is an infinitesimal function of the third order of

smallness with respect to both functions, sinx and tan x, as x —» 0.
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2.2.8. Classification of Infinite Large Functions

Two infinite large functions, «(x) and f(x), have the same increasing
order as X — a, if their ratio has a finite nonzero limit,

0 </ lim &)
x—a B(X

< o0

In particular, if
lim———= a(x)
x>a B(X)
then «a(x) and g(x) are called equivalent infinite large functions as
X — a that is denoted symbolically as
a(x) ~ p(x).
An infinite large function «(x) has a higher increasing order with respect
to F(x) as xtendsto a, if

=1

lim——= a(x) _

x—a ﬂ(X)
Correspondingly, £(x) is an infinite large function of a lower increasing
order with respect to a(x).

Let a(x) and (B(x))" be two infinite large functions of the same order,

0</lim——— a(X)
=2 (B(x))"

Then «a(x) is called an infinite large function of the n-th order with
respect to £(x) as x tends to a.

|<oo

2.2.9. Comparison Between Infinite Large Functions
Rule 1: Let a(x) and gB(x) be two infinite large functionsas x —a. Then

B(x)=a(x)+y(x),
where y(x) is an infinite large function of a lower increasing order as
X—>a.

Rule 2: The difference between two equivalent infinite large functions is a
quantity of a lower increasing order:

a(x)~pl) = “XNZBX_y POy g
a(X) a(X)
Rule 3: If a(x) is an infinite large function of a higher increasing order
with respect to B(x) as x —a then the sum «a(x)+ A(x) is an infinite
large function equivalent to a(x):
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a)+B(X) _1, A 1021 = a(x)+ B(X) ~ a(x).
a(X) a(X)

In this case, B(x) is said to be a negligible quantity with respect to «(x)

as x—a.
If (x) and B(x) are infinite large functions of the same increasing order

as Xx—a and 0< lim—=—-+% a(X)
x—>aﬂ(x)

infinite large functions,

=A<, then a(x) and 4 S(x) are equivalent

a(x) ~ A B(x).
In this case, they say that infinite large functions are proportional
asymptotically as x »>a.

Examples
1. Infinite large functions f(x)=x? and g(x)=X>+5X as X — o
have the same increasing order, since lim f /g is a finite number:

X—>0
2
lim=—-= 9(x) — lim 2 +25X
xoo f(X) xow X x
Moreover, the limit equals 1, and so f (x) and g(x) are equivalent
infinite large functions as x — «.
One can see that 5x (in the numerator) is a negligible quantity with

respect to X as X —» .
Generally, if k < n and a is a finite number, then any power

function ax® is a negligible quantity with respect to x" as x — 0.
For instance,
4x° +7x+50~4x> and  6x°—3x+8~6X".

(1+)1

Hence,

. AX°+7x+50 . 4x> 2
lim 5 =lim—==.
x>o 6X° —3X+8 x-o=6X> 3

2. The infinite large function v4x? +3x+7 is equal asymptotically to
2X as X —> oo, since 3x+ 7 is a negligible quantity with respect to

4x?
Likewise, 3/x%+5x2 —8x+2 ~ X, since 5x2—8x+2 is a negligible
quantity with respect to x®. Therefore,

VAX? +3x+7 2x

lim = lim—=2.
X*"Ox/x +5%* —8x+2 7= X
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2
3. Evaluate lim 3" +5x+1
HooJlGx +x3—9x? +7x+2

Solution: Since

3x2 +5x+1~3x2
and

V16X* + X3 —9x2 +7x +2 ~/16x* =4x2,

as X — oo, then

3x2 +5x+1 3x 3
lim = lim =—.

o 16x4 + X2 —9xZ 4+ Tx+2 o= 4x’ 4
4. Both functions, f(x)=+vx*+x® and g(x)=x*+x, are infinite
large functions as x — o,
Prove that:

1) £(x)~9(x);

2) both functions, f(x) and g(x), are infinite large functions of
the second increasing order with respect to x as X — oo;

3) the difference f(x)—g(x) isa quantity of a lower increasing
order with respect to the given functions f(x) and g(x).

Solution:

1 lim f(x) im\/x4+x3 lim Vx*+x3/x? IimJl+]/x_
x—o g(X) x> X% + X X—>00 (X +X)/X X—>00 1+1/X

2) Iim—“ 1+1/x = X _ lim (1+—) 1.

X—>o0 X—>00 X—>o0 X—>0

3) By the formula of difference between two squares,

i g (F-9)(f+9)  f2-g° (x'+x*)’—(x*+x)°

] f+g f+g X+ X2+ x
Cxtexdext -2 -x2 . —x3-x
X+ +x2 +x I+ +x2+x
If X — oo then
X3+ x%~x*
and

X+ 3+ x2 +x~ VX +x% =2%2.
Hence, f —g~-x/2, that is, the difference is an infinite large
function of the first increasing order with respect to x.
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2.3. The Most Important Limits
2.3.1. Theorem 1

. sinx
lim——=1

x—>0 X

This statement can be also expressed as
sinx~Xx as x—0.

Proof: Note that 2% is an even function. Therefore, we may consider
X

only the case of positive values of variable x in a vicinity of zero.
Let x be a central angle (in radians) of the unit circle. Compare the areas of
the figures shown in the drawings below.

The area of the triangle OAB is
1 .
S 08B =Esm X.
The area of the circular sector OAB is
SOAB - E X.
The area of the triangle OAC is
Sonc =%tan X.

Evidently,
sinx < X < tan x
forany 0<x<7/2.
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X : : :

Recall that tan x =—— and perform simple algebraic transformations:
COS X

) X 1
sSinX<x<tanx = 1<——«<

. =
sinXx CoSX
X
1>——>cCosxX.
X
sin X
If x>0 then cosx — 1, and hence —— —>1.
X

Graphic Illustrations:

A ¥ y=x

1.._

A ¥ .
y=sinx ' y:.‘:‘]ll.l

=
b3 | N

}.1
>

_I__

X
-1 0 '

Note: If «(x) is an infinitesimal function as x — a, then

sina(x) ~ a(x)
lim sin a(x) 1
x—a a(x) ’

independently of a type of the function «(x) and value of a. The only thing

that matters is a smallness of «(x) as x tends to a.
For instance,

(as x—>a),

sin(x®*-8) ~ (x*-8)

as x—2,
.1 1
sin—~ = as X — o,
X X
Examples:
L. lim S!n7X:Iim7—X:7_
x—>08in3x x-03x 3
Another Solution: Iims"_n7x—7 imSIn7x_3x 7
x—0 SN 3X

T 3x50 7X sin3x 3

67



Functions

. tanx . sinx . sinx .. 1
2. lim——=Ilim = lim - lim =1.
x—=0 X Xx—0 X COS X x—=0 X Xx—0 COS X

Therefore,

tanx~x as x—0.

. arcsin x
3. Evaluate lim .
x—0 X

Solution: By changing the variable x =sint we obtain t =arcsin x and
t >0 as x— 0. Therefore,

.__arcsinx t

lim

= ||m— :1.
Xx—0 X t—>0SInt

Thus, infinitesimal function arcsin x is equivalentto xas x — 0,

arcsinx~x as x—0

. arctan x
4. Evaluate lim——.
x—0 X

Solution: Likewise, substitution t=arctanx implies x=tant and
t >0 as x > 0. Therefore,

lim arctan x _ lim X _1

Xx—0 X x—0tan X

arctanx~ x as x —0.

1-cosx

5. Evaluate lim 5

x—0 X

Solution: By making use of the half-angle identity the numerator can be
expressed through a sine function:

1—-CcoSX = Zsinzg.

In view of Theorem 1, sinx/2 ~ x/2. Therefore,

., X X2
_1-cosx . 2SI : 2(2) - oxt 1
x—0 X x—»0 X x—0 X x—02X 2

2
X
It means that 1—cosx ~ 7, or

X2
cosx~1—7 as x—>0.
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. SINX—CO0S X
6. Evaluate lim ——M.
s tanx-1
4

) ) ) ) sin X Sin X — COS X
Solution: Using the identity tanx —-1=——-1=———— we get
COS X COS X
. siNX—COSX .  SiNX—COSX . V2
lim——=Ilim—————cosx=limcosx =—.
w7’ tanx-1 x> SIN X —COS X s 2
4 4 4
. 1-cos8x
7. Evaluate lim———.
x—=>01—C0S2X

Solution: By the trigonometric identity 1—cost = 2sin? %

_ 1-cos8x .. 2sin®4x .. (4x)?
I|m—=I|m_—2=I|m%:16.
x—>01—C0S2X x—0 2s5in°x x—0 X
. 1-cos® X
8. Evaluate |Im—2.
Xx—0 X
Solution: Since 1—cos?t =sin’t and sint~t, then
. 1-cos®x .. sin®°x .. Xx°
lim =% X _jim 3 X jjim X1
x—0 X x—>0 X x—0 X
5sin2x

9. Evaluate lim .
x—04 tan 3x

Solution: If x = 0 then sin2x ~2x and tan3x ~ 3x. Therefore,
5sin2x 5 lim 2X 5

i =—lim=—==.
x>04tan3x 4x->03x 6

10. Evaluate lim xzsiniz.

X—00 X
Solution: Since 1/x2 Is an infinitesimal function as X— oo, then
sin1/x? ~1/x*, and so

) .1 )
lim x?sin— = lim x?

1
—=1.
X—>00 X2 X—>00 XZ
11. Evaluate lim tan7x.
7 tan 3x

X—

Solution: In order to evaluate an indeterminate form f, sett=x —% :
o0
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1

tan7x =tan7(t +£) = tan(7t +7—”) =—cot7t=—
2 2 tan 7t

and
1

tan3t

tan 3x = tan 3(t +£) =—
2

Since x—>%, then t=x—%—>0.Therefore,

. tan7x .. tan3t 3t 3

lim = lim =lim—=—.

7 tan3x t-otan7t t—0 7t 7
12. Evaluate I|m1 YOS X
x—>01—CoS/X

Solution: Transform the numerator:

\/—_(1 Jeosx)(1++/cosx) 1-(+cosx)?

cos _
1++/cOS X 1++/cOS X

., X
l—COSX 23|n E X—0 2( ) X2

:1+«/cosx_1+«/cosx - 1+1 4

Now transform the denominator:

x—0 2
1—cos~/x = 2sin? \/_ ZQ X
2 2
Then we get
mimeOsX _ i X4 X
x—>0]_ COS\/_ x—0 X/2 x—0 2
13. Evaluate lim tan(z X).
x—>1 X-1

Solution: Substitution t =x—1 implies
tan(z x) =tan(zt+ ) =tanrt.

Since x—>1, then t=x-1-0.
Therefore, tanzt ~ 7t that results in

lim tan(zx) _lim tan(zt) _lim
x—»1 X-1 t—0 t t—>0 t

7t _
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2.3.1.1. Calculus of Approximations

Here and below we use the radian measure of angles unless the contrary is
allowed.
Theorem 1 states the approximation formula
SinX = X,
which is valid for any x in some small vicinity of zero.

Other trigonometric functions can be expressed through the sine function.

For instance,

2

cosx=1-2sin? 2 ~1-2.(3)2=1-2 |
2 2 2
sinx X
cosx 1—x2/2
The below drawings illustrate the error range of the above approximation
cosx — (1—x?/2)
COS X

tan x =

~X.

formulas. A measure of inaccuracy .100% is shown in the

additional window.

We can hardly ever see any differences between graphs of functions
2

y =cosx and yzl—g for [x|<0.8rad ~45°.

A y 25
2o /
1,0" y = COSX 31-5 " cnsx=1—§z /
} 510 /
| 3°° )
0.84 | EOD ______/
60 02 04 08 08
| x (radian)
|
|
0,6- |
| X
. | . . >

Fig. 1. Graphs of functions y =cosX (upper curve) and
y=1- X2/2 (lower curve).
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The ratio of the cosine function to its polynomial approximation is shown
2

in Fig.2. One can see that the quadratic polynomial 1—% fits well the
cosine function in a wide range of values of x.

AV

1,1+
COSX

Yy=—""72
] X
)
1,0+
X

I 1 1 ] b
T T T T F

-1,0 -0,5 0,0 0,5 1,0

In Fig. 2, the graphs of the functions y=tanx and y = x are presented. A

measure of inaccuracy ta?x_x.loo% iIs shown in the additional
an x
window.
AY 1D
1} g ,,
y=tan x g /
T— g B tanx = x e
£ 4 //
‘G
g 2 e
0 g o ______,,.f""
01 02 03 04 Q5
y\=x x (radiams)
-1 ; ! . } ; ! . } =

10 05 00 05 10

Fig. 2. The graph of the functions y =tanx and y =X.
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Consider a few numerical examples.

Approximation : Exact values
formulas for f (x) Approximate values of f (x) of f(x)
sin10° =sin-—— ~ 2 ~0.1745 0.1736...
sinX = X 18 18
sin30°=sin- ~ =~ ~ 0.52 0.5
6 6

, cosZOO:COS%zl—%(%)Zz0.9391 0.9397...

X
cosXx~1—— 5
2

c0530° =cos - ~1— 7 ~0.8629 V3 _ 0.8660...
72 2
tan10° = tan%z%z0.1745 0.1763...
tan X = X 1 1
tan 20° = tan% ~ % ~0.3491 0.36397...

2.3.2. Theorem 2

1
lim(L+X)* =e
x—0
(e = 2.71828...)

Using substitution t = 1 and then returning to the symbol x, we can express
X

Theorem 2 in the other form:

lim(1+1) e

X—>0 X

(See detailed discussion of the theorem in Chapter 1, pp. 28-31).

Note: If «(x) is an infinitesimal function as x — a, then
1

lim (1+ a(x))* =

X—>a
For instance,
lim(+sinx)"""* =e,
Xx—0

5x
Iim(l+iJ =e.
X—>00 5)(
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The well-known logarithmic identity
a’ =e

can be generalized by the limit process that results in the following

Important Rule:

blna

If «(x) and B(x) are infinitesimal functions as x — a, then
1 lim In(1+a(x))
lim 1+ a(x))™) =g AO ®)

X—>a

Let f(x)—>1and g(x) > as x—a.

Then (f(x))°™ is an indeterminate form 1° as x —a.

To apply Theorem 2, it is necessary to reduce ( f (x))g(x) to the standard

1

form (1+ a(x))“™ , where a(x) is an infinitesimal function as x tends

to infinity.

The general procedure of the reducing is the following:
fo=["1=@Q+(f-1)°

1 L g(f-1
@4 (F -0 e ¥

where o = f —1. Thus,

1
lim(f (x))7% = lim(@L+ ( (x) =1) ) 192 90T D

Jim g(x)-(f(x)-1) )

that is the given problem is reduced to evaluation of lim g(x)(f(x)—-1).

Examples:

. (x+4)
1. Evaluate lim|——| .

X—>00 X

X
Solution: Since (1+4/x)s —e as x — oo, then
X 4 X 4

X X — —
Iim(x—+4j :|im(1+fj _ lim (1+fj4 _ |im(1+fj4 et
X—>00 )( X—>00 X X—>00 X X—00 )(
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_(x+3)"?
2. Evaluate lim| —— .

X—>00 X
X+2 X 2 X
Solution: Note that (x_+3j =(1+§] (1+§j . where (1+§) IS an
X X X X

indeterminate form 1* as x — oo, while the expression (1+3/x) tends

tolas X —> .
Therefore,

X+2 X 2 hal
|nn(5i§j :lnn(1+§j(@+§) :Hn1(1+§)3 — e
X—>0 X X—>0 X X X—>0 X

. (x—4\*
3. Evaluate lim| ——|.

X—>© X

Solution:

X
A . (X))
nm(f—fj :lnn(l—fj :lnn(l_ﬂj Coseto
X—>00 X X—>00 X X—>00 X e

X
4. Evaluate Iim(ﬂj .
x—o\ X+ 5

Solution:
nm(x+3j _lim| 3HX) gy (143X
x>0\ X+5) x> (X+5)/X x—o| 1+ 5/X
X3
lim(@+3/x)*  lim@+3/x)®* o 4

Clim(1+5/x)*

lim (1 5/%05°

X—>00
4x

5. Evaluate lim(2x -1 X1,
x—1

Solution:
4% 8x

Hm@x—D;E:an+ﬂx—Dﬁ&5
X—>

Xx—1

Xx—1 x—1

1 8x
= Iim((1+ 2(x —1))2(x—1)j = lime® =¢®,
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2.3.3. Theorem 3

lim In(1+ x) _

Xx—0 X

1

This statement can also be expressed in the form
INnl+x)~x as x—0.

Proof: By the properties of logarithms,
1

%In(1+ X) = In(1+ X)X .

1 1
Recall that (1+x)* —>e as x—0. However, if the quantity (1+x)*

approaches number e, then its natural logarithm tends to Ine,
1

InL+X)* > Ine=1 as x —>0.
Graphic Illustrations:
+ ¥
[ yox

v =In(1+ x)

&
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Note: If «(x) is an infinitesimal function as x — a, then

In(L+ a(x)) ~a(x) as x—>a,

lim N +a(x)
x—>a  a(X)

For instance,

IN1+32-x)~3Y2-x as x—2,

In(1—sin’x) ~—sin’x as x—0,
In(1+2x* —5x)

lim 7 1.
x—0 2X" —5x
Examples:
1. Evaluate IimM.
x—0 X

Solution: In view of the above note,
lim In(1-2x) :_g lim In(1-2x) :_3_
Xx—0 X 7 x>0 —=2X 7

2. Evaluate lim In(L+sin4x) .
x—>0  tan2x

Solution: By Theorem 1, sin4x~4x and tan2x ~2x as x —>0.
In addition, In(1+sin4x)~sindx~4x as x—0.

Therefore,

. In(L+sindx) . 4x
lim =lim—
x—>0  tan2Xx x—0 2X

=2.

_In(1+9x —arcsin? x
3. Evaluate lim (1+9x —arcs ).
x—0 tan 3x

Solution: First, (9x —arcsin? x) is infinitesimal function as x — 0, and
SO

In(1+ 9x —arcsin? x) ~ (9x —arcsin? x) .
Second, arcsin®x ~x? is a negligible quantity with respect to 9x as
x — 0, and so
(9x —arcsin® x) ~ 9x.
Third, tan3x~3x as x— 0.
Finally,
. In(L+9x—arcsin®x) . 9x
lim =lim—=
x—0 tan 3x x—0 3X

3.
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4. Evaluate lim x-(In(x+2)—Inx).

X—>o0
Solution: In view of the logarithm properties,

In(x+2)—Inx = In**2 Zinw+2).
X X

Since 2/x is an infinitesimal function as x — oo, then In(1+g) ~g.
X

X
Therefore,
In(1+g) 2
lim x-(In(x+2)—Inx) = lim———2X- = lim X =2
X—»0 X—>00 E X—>001
X X
i . x+1
5. Find lim(x-In,[—>).
X—>0 Xx—-1

Solution: In a similar way,

: x+1 1. x+1 1. 1+1/x
Iimx-In,[—===limx-In—===1lim x-In

X—>00 X—1 2x>w X—1 2x>w 1_1/)(
_1 lim InA+1/x)-In(1-1/x) 1 Iimwzllimﬂzl.

2 x> ]_/)( 2 x> ]_/)( 2 x> 1/X

1

. 2
6. Evaluate lim(cosx)*" .
x—0

1
Solution: By Rule (8) (see Theorem 2, p. 74), Iimo(cos x)x2 —e”,
X—>

In(cos x)

: 2
where A= lim In(cosx)*" = lim 5

Xx— 0 x—>0 X
Using the fundamental trigonometric identity
cos® x =1—sin® x
and in view of the properties of logarithms, we obtain

. In(cosx) . Invi-sin®x .. In(l-sin®x)
A= lim —————==lim 5 = lim 5 :
x—0 X x—0 X x—0 2X
— x? 1
However, In(1—sin®x) ~—sin®x~-x*,andso A= lim —-=-=.
x—0 2X 2

Therefore, - lim(cos x)¥x* = gt2 =1/e.
X—
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. et -1
lim
x—>0 X

=1

The statement can be also expressed in the form
e*-1~x as x—0.
Proof: By the substitution t =e* —1, we obtain

e“=1+t = x=In(1+1).

Therefore,
e*-1  t
X In1+t)
If Xx—>0thent=e*-1—e°-1=0, and so
et -1 . t
lim =lim =
x>0 X t—0 |n(]_+t)

Graphic lllustrations:

04 02 00 02
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Note: If «(x) is an infinitesimal function as x — a, then

e®®_1~¢g(x) asx—a,

a(x)
lim &1 g
X—a a(X)

For instance, € —1~5X as x —0.

Examples:
2X
1. Evaluate Iime 1.
x—>0 X
Solution:
eZX_l e2X_1
lim =21lim =2.
x—0 X x>0 2X

sin x

2. Evaluate Iim
Xx—0 4x

Solution: Since (e"* —1) ~sinx as X — 0, then
e -1 1. sinx 1

x>0 4X 4x->0 X 4

Jx _
3. Evaluate lim & —1tX
Xx—0 tan x

Solution: First, (e¥* —1)~+/x and tanx~x as x—0.
Second, x is an infinitesimal function of a higher order of smallness
with respect to +/x , and hence

\/;+X~\/; as x—0.

Finally,
Ix _
fim & X i VX i L
x—»0 tanx x—0 X x—>0\/;
X
4. Evaluate Iime2 e.
x—>1x° -1
Solution: Setting t=x-1 and noting that t — 0 as x —1 we obtain
_ef—e .. e'l_e . el-1
lim 5 =lim =elim
x>1x°—=1 0t(t+2) t0t(t+2)
et-1 . 1 1 e
=elim -lim =e-1.=—=—,
t—0 t t>0t+2 2 2
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X2

. e" —cos2x
5. Evaluate |Im—2.
Xx—0 X
. . 2x)? 2
Solution: Since cost~1—( ) =1-2x% and e¥ —1~x%as x>0,
we get
2 2
_e¥ —cos2x .. e¥ —1+2x% .. x%+2x?
lim—————=Ilim—%——=Ilim———=3.
x—0 X x—0 X x—0 X

—4x
. e —cos2X +4x
6. Evaluate lim 5
x=0 xIn(1+ x) + tan x

Solution: By making use of the following relations of equivalence
CoS2xX ~1—2x°,

e —1~—4x,
In(L+ x) ~ X,
tan x? ~ x°
as x — 0 we obtain
e _cos2X+4X .. —A4X+2X>+4x .. 2X°
> = lim 5 =lim—=1.
x>0 XIn(1+ X) +tan x® x-0  X-X+X x—02X

. sin3x +In(1—2x) + 4arctan 5x
7. Evaluate lim _ 5 .
x>0  7x—2arcsin2x+e>* -1
Solution: Likewise, in view of the relations of equivalence:
sin3x ~ 3x,

In(1—-2x) ~—2x,

arctanb5x ~5x,
arcsin2x ~ 2x,

e® ~1~6x,
it is not difficult to evaluate the given indeterminate form:
lim sin3x + In(1—2x) + 4arctan 5x

x>0  7x—2arcsin2x+e®* -1

. 3X+(=2x)+4-5x . 2Ix 7
=lim =lim—=—.
x>0 TX—2-2X+6x x->09x 3
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2.3.5. Theorem 5

For any number n

n
||mM: n
x—0 X

This statement can be also written in the form
(1+x)"-1~nx as x—0.

Proof: Let t=(1+x)" —1. Then
A+x)"=1+t = nIn(l+x)=In1+1).

Therefore,
L+x)"-1_t t In(l+x)
x  x x Inl+x)
ot et In@ex)
nin(1+ x) X In(1+1t) X

Note that t = (1+x)"-1—0 as x = 0.
By Theorem 3,

M—ﬂ as x—>0 and
X In(1+1t)

-1 ast—0.

Hence,

(1+x)”—l_n t  In+x)
X  In(l+t)

—->n as x—0.

Graphic Illustrations:

¥y )
1+x) -1
(R ES)
X
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y

0,52 _(1+x)" -1

1 X
0,514

] 1
0,504 - - - -

] |
0,49 ;
0,48 i >

02 01 00 01
Note: If «(x) is an infinitesimal function as x — a, then
A+a(xX)"-1~n-a(x) (@ x—a),

o Qra(x)" -1
x—a a(X)

n.

For instance,
1 T
4«/1+cosx—1~zcosx as X_)E'

lim (L+sin®3x)° -1 _

— 5.
x—0 sin“ 3x

Examples:

1. Evaluate Iim—'l+3x_1.
x—0 X

Solution: By Theorem 5 (case n = %),

lim V1+3x -1 _3lim VJ1+3x -1

x—0 X X—0 3X

5," — —
2. Evaluate Iimw.

x=>0  SinX
Solution: By Theorem 5 (case n=1/5) and in view of the relation of

equivalence sinx ~ x (as x — 0), we obtain

2 2

51 oy 51 oy
|imw:_2 |imﬂ:_2.1:_g.
x>0  SinX x—>0 —2X 5 5
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1+4x -1

3. Evaluate lim————

x>0+1—7X =1
Solution: By Theorem 5 (cases n =1/3 and n=1/2),
V1+4x-1 1 ~7x

- and —————>2 as x—0.
4x 3 J1-7x -1
Therefore,

M+ax-1 g«/1+4 -1 -7x 41, 8
JI-7x-1 4x  1-7x-1 73 21

2002
4. Evaluate lim (1+6X)2002 =
x—0 (1—3X) -1

Solution:
fim @+ 6x)%% -1 jim (L 6x)% -1 —3x
x-0 (1—-3x)%% —1 3 X—0 6X (1_ 3x)202 _1
2002 _
__2lim &80T =L X
x—0 6X x>0(1-3x)"" -1
—2.2002 -1 -
2002
(1+2x)10 - 1

5. Evaluate Iim

x—0 1+20x -1

Solution: Since x —0,
1+2x)1%° -1~ 2x-100=200x and

1+20x -1~ 20x-%=4x.

Therefore,

100
i (L+2%) _ }igm 200X

x—0 /1+20x -1 x>0 4x

34' — J—
6. Evaluate lim 1+3x - X COS4X.

x—0 x2
Solution: Apply the relations of equivalence to evaluate the limit:

m~1+3—;:1+x @ x—0),

=50.

cos4x ~1—(4x)%/2=1-8x*> (as x—0),

«3/1+3 x cosdx .. X—X-—8x> %

= lim=————=-8lim = =-8.
x—>0 x x—0 X x—0 X
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2.3.5.1. Calculus of Approximations

Theorem 5 for n=-1, % % yields the following approximation formulas:

Lzl—X,
1+X
V14X zl+§.

The graphic illustrations below give a pictorial presentation about a range
of accuracy of the approximations. We see that each of the above formulas
can be considered as the first approximation which is valid only in an
immediate neighborhood of the zero point. Note that the straight lines

y=1-x and y=1+§ are the tangents to the curves yzli and
+ X

y =+/1+ X, correspondingly, both at the point x=0.

AV
1,2

1,04

1,04

0,8+
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Other Approximations in an immediate neighborhood of the point x=0:

Lzl+ X,
1-x
1+ x z1+§,
N1+ x z1+5.
n
Numerical Examples:
Approximation
formulas for Approximate values of f (x) Exact values
of (x)
f(x)
1o 11 1 01-09 0.90909...
1+ X 11 1+0.1
11y ! o 1 1.005-105 1.09545. ..
—X 0.95 1-0.05
J1.2=+41+0.2 z1+%=1.1 0.9397...
V1+X z1+§
J0.9=41-0.1 z1—%:0.95 0.94868...
31+ x z1+§ %.15:%+0.15z1+0'—f:1.05 1.04769...

In order to calculate an approximate value of 3/120, it is necessary to
represent the given number in the form

3125-5=3 /125(1—%) ~53/1-0.04,

and then to apply the corresponding approximation formula.

3120 =53/1-0.04 z5(1—0'—§4) . 5—%: 4.9333...

The exact value of /120 is 4.93242...
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2.4. Summary: Infinitesimal Analysis

Infinitesimal functions are notions of fundamental importance, because
many concepts in the theory of limits can be expressed in terms of
infinitesimals. In particular, an infinite large function is the reciprocal
quantity of an infinitesimal one. The limit of a function can also be defined
by making use of the concept of infinitesimal quantities.
Due to the concept of equivalent infinitesimal functions, evaluation of
indeterminate forms involving, for example, logarithmic or trigonometric
functions, can be reduced to operations with simple power functions.
The main purpose of the limit process is evaluation of indeterminate forms.
The underlying cause of arising difficulties consists in a variety of
indeterminate forms:
0 o
0

The indeterminate form g represents the ratio of two infinitesimal

0-00, ow—o0, 17, »° and 0°.

quantities. The others can be algebraically transformed to the indeterminate

forms 9.
0
Really, if f and g are infinite Iarge quantity then
_Yg |0
[ 1.
g Uf
In a similar way,
1.1
_o.L_0 oifg ol 1 g f_0
0-00—0-6—[6] and ow-—oo=f g—i l_ii [0]
fg fg
By making use of the formula f9=¢%"", expressions 1, «°, and 0° are

reduced to the indeterminate form 0-o0 considered above, and hence, each
of them can be presented in the form of %:

0

if f(x)—>1and g(x)— o, then glnfzoo-O:lz[ 1
Yoo 70
: 0 0
if £(x) > and g(x) -0, then glIn f =0-c0=—=[1;
o0
: 0 0
if f(x)—>0 and g(x) —>0,then glin f :O-oo=—=[6].
o0
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2.5. Table of Often Used
Equivalent Infinitesimal Functions

Relations of Equivalency
as x—>0

sinx ~ x

2
X
1-cosx~—
2

tan X ~ x

arcsin X ~ x

arctan x ~ x

In(1+x) ~ x

e¥—1~x

(A+x)"-1~nx

1- 1 ~ X
1+X
L—1~x

1-x
«/1+x—1~§
%/1+x—1~§
Ylrx-1~>

n

88



Functions

2.5.1. Review Exercises
In Problems 1 through 30 evaluate indeterminate forms:

- 2
1. "mw 2. lim M
x—>3 3—X x>-2 84 X°
. tanxrx . tanxrx
lim
3 !(I_I’pl X—1 4. x>1x —1
. tan(x-1) 1
| _
5. m \/— 1 6. lex tanx
. tan 2x o fim L+ COS7X
' x-2 tan7x ' x>1 sin3zx
9. ljm 26058 10. lim L=YC0s4x
x—0 XSin3x x—>01—c0s+/2
. 2
11 Iimarcsm(l X“) 12, lim arctan(x? —3x+2)
x>l 1—A/X X—>2 X2 —x—-2
2 2 2 2
13. Iim(x + 3X l_x 3x+1) 14. Iim(x +3X 1_x 3x+1)
X—>0 X+1 2X+1 X—>00 Xx+1 X—5
_3 5x+2 X—2 3x
15. Ilm( ) 16. Iim( j
x—ao\ X x—o\ X + 7
2X 1
17. lim(5x —14)3-x 18. lim (cos 4x)sin” 3x
X—3 x—0
3
10. lim In(l A7) 20 lim In(1+arcsin~/x)
x-0 x2sin5x x—0 tan 3./x
21.|  limx-(In(2x -5) - In2x) 22, lim(x-In3 ‘)
X—>0 X+3
X—2 tan4x
23, lim = -1 24, lim&___—1
x>2 X° —4 x—0 SIn5X
e3* — cos4x + 5x —2arctan3x -1
25. 26.| lim
x-0 In(1—7x) + tan® x xe05arcsm4x+2\/_sm\/_
27 m«/l—4x—1 28, im Y1-6%% -1
x—>0 tan2Xx x—0 xln(1—3x)
29 5«/1 10x -1 20 (1 4x)10%° _1
' Hoa/il+4 1 ' x—>0(1+8x)1°°° 1
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The limit of the form

lim f(x+Ax)— f(x)
Ax—0 AX
is named the instantaneous rate of change of f(x) at the point x.

In Problems 31 through 42 find the instantaneous rate of change of the
given functions.

N lim f(x+Ax)— f(x)
AX—0 AX
n n
31, jjm (XFAX) =X
Ax—0 AX
X+ AX X
32. lim S —°
Ax—0 AX
33, lim In(x+ Ax) —In X
AX—0 AX
34, lim sin(x + Ax) —sin x
AX—0 AX
35, lim COoS(X + AX) — COS X
AX—0 AX
36, lim tan(x + Ax) —tan x
AX—0 AX
37, lim cot(x + Ax) —cot x
Ax—0 AX
38, lim arcsin(x + Ax) —arcsin x
Ax—0 AX
39, lim arccos(X + Ax) —arccos x
AX—0 AX
-1 -1
0 lim tan (X + Ax) —tan"" x
Ax—0 AX
-1 -1
a1 lim cot™(x+ Ax)—cot " x
AX—0 AX
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2.6. Continuity of Functions

2.6.1. Basic Definitions

A function f(x) is called continuous at a point a, if there exists a finite
limit of f(x) as x —a, which is equal to the value of the function at the
point a,

lim f(x)=f(a).

X—a

A function f(x) is said to be continuous on some set D, if f(x) is
continuous at each point of D. Otherwise, if f(x) is not continuous, e.g., at
a point b, they say that the function f (x) is discontinuous at the point b,
or that f (x) has a discontinuity at the point b.

Points of discontinuity are classified by the difference between one-sided
limits,
| Iimof(x)— Iimof(x)|.

This difference is called the jump of the function at the point a.

If the jump is a finite number, then f (x) has an ordinary discontinuity at
X =a. The point a is said to be a point of the function discontinuity of the
first kind.

If the one-sided limits lim f(x) and lim f(x) are finite and equal to

x—a-0 x—a+0

each other but not equal to the value of the function at the point a, then a is
called a point of removable discontinuity. To remove discontinuity at a
point of removable discontinuity it is necessary to redefine the function at
that point or to extend the domain of f(x) to include that point by the
supplementary condition:
f(a)= lim f(x)= lim f(x).
x—a-0

x—a+0

If the jump | lim f(x)— lim f(x)| takes an infinite value, or at least one
x—>a-0 x—>a+0

of the one-sided limits does not exists, then the point a is a point of non-
removable discontinuity, or a point of discontinuity of the second kind.

Examples

1. In the figure below, there is shown the graph of the function
f(x) :w, which is not defined at the point x = 0, and so it has an
X
discontinuity at that point. However, there exists the limit of f(x) as
sin x

X — 0 (see Theorem 1, p. 66): Iirré—:l.
X—> X
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Therefore, the discontinuity at x = 0 can be removed by including
X =0 in the domain of the function and redefining f (0) =1,

sinx .
—, ifx=0
f(X)=9 x
1, ifx=0
AY
1,0
i
. / \ SN x
0,4 Y=
ik ”
TENEVAY /\ / \ /\ /N A
B AVERVE
0,2 ' o x
-20 -10 0 10 20 4
2. Consider the function f(x)= 11 defined at all points except
3241
for x=2. It means that x=2 is a point of discontinuity of the
function.
AV
1,0 /
- 1
0.8 Ve Y=
] 32 4]
0,6 :
0,4 : /_‘______
y /
00—+ +2 >

0 1 2 3 4 5
Find the one-sided limits at this point.

If x—>2-0then x—2<0 and %—)—oo,which implies
X_
1 1 1

f(X)=— > —-=1.
(x) 392 11 3741 1
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If x—>2+0then x-2>0 and iz—woo,which implies
X_
1 1 1
f(X)==7%— =—=0.
M =g6a,1 > 37311 o

Thus, the left-sided limit is not equal to the right-sided limit at the
point x =2 ; however, the jump has a finite value (number 1).
Hence, f(x) has an ordinary discontinuity at the point x=2.

X, if x<0
Let f(x) bedefinedas f(x)=4x*, if 0<x<1
x-=1 if x>1

Since x, x?, and x—1 are continuous functions at all points,

discontinuities of the given function f(x) could arise at the linking
points, x=0 and x=1, only.
Find one-sided limits at the point x = 0:

lim f(x)= lim x=0,

x—-0 Xx—-0

lim ()= lim x* =0

x—>+0 X—>—
By the above definition, f(0) =0, so that
Iimof(x)z Iimof(x)z f(0)=0,

which means that f (x) is a continuous function at the point x=0.

Al
T ] |
| | | | |
] x, 1if x<0

o L f@) =%, if 0gx<l
| | | | | x—1,1f x>1

| |

|
I N N
A I >

-1,0 -0.5 0.0 0.5 1,0 1,5 2.0

Find one-sided limits at the point x = 1:
lim f(x)= lim x*=1,

x—>1-0 x—>1-0
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lim ()= lim (x-12)=0.

x—1+0

The limits are not equal to each other but they both have finite values
(the jump equals 1). Therefore, the function f(x) has an ordinary

discontinuity at the point x=1.
1

4. Consider the function f(x) =5%-3 which is continuous at all points

except for x =3, where the function is not defined.
Find one-sided limits at the point x = 3.
1
If x—>3-0 then %—)—oo, andso f(x)=5*3—->5"=0.
X —
1

If x—>3+0 then Ls—woo,and SO f(x):5§—>5+°°:+oo.
X_

Therefore, x =3 is a point of discontinuity of the second kind.

2.6.2. Properties of Continuous Functions

The sum of a finite number of continuous functions is a continuous
function.

The product of a finite number of continuous functions is a continuous
function.

The quotient of two continuous functions is a continuous function
except for the points where the denominator is equal to zero.

Let us prove, for example, the product property.
If f(x) and g(x) are continuous functions at a point a, then

limf(x)="f(a) and Ilimg(x)=g(a).
Xx—a X—a
By the properties of limits of functions,
lim f(x)-g(x)=1lim f(x)-limg(x)=f(a)-g(a),
which required to be proved.

Theorem: All elementary functions are continuous in their domains.

To prove this statement it is necessary to show that each elementary
function f(x) — f(a) for any number a in the domain of f. Below we
give a few examples to demonstrate the validity of the theorem.

Proof:
1. The power function x" is a continuous function at each point in the
domain of x". Indeed,
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x"=(x"-a")+a"

2

=(x—a)(x"t+x"Ya+x"%a’+...+a"H+a">a" as x—a

The exponential function e* is a continuous function at each point a,
since

e“=(e"-e?)+e® =e?(e"? -1 +¢e°
~ e?(x—a)+e? > e* as x—a.

The logarithmic function In x is a continuous function at each point
Xx=a>0:

X X—a
Inx=(Inx-Ina)+Ina=In=+Ina=Inl+—)+Ina
a a

X—a
a

~

+Ilna—>Ina as x—a.

The sine function sinx is a continuous function at each point a,
since

: : : : . X—a __x+a .
sinx =(sinx—sina) +sina = 2sin 5 COS 5 +sina

X—a . .
~ Z-T-cosa+sma —> Sina as X—a.

The cosine function cosx is a continuous function at each point a,
since

. X—a . X+a .
Cos X = (Cosx —cosa) +cosa =—2sin 5 sin 5 +sina

X—a .
~ —2-T~S|na+cosa — Cco0sa as X —a.

The tangent function tan x is a continuous function at each point a

in the domain of tanx, since tanx:M is the ratio of two
COS X

continuous functions (provided that cosx =0).

Likewise, cotx is a continuous function at each point a in the
domain of cotx as the ratio of two continuous functions (by the

guotient property): cotx = C(_)ﬂ.

sin x
To prove the property of continuity for a trigonometric function, one
can apply the corresponding substitutions such as

t =arcsinx, t=arccosx, and so on.
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2.7. Selected Solutions

Problem 2.
lim sin(x+2) _ lim X+2 _ lim X+2 1
x>-2 8+x°  x>28+x° H2(x+2)(x “ox+4) 12
Problem 3.
. tanxz . tan(tz+7) . tantrz
lim =lim =lim———=Ilim—=r.
x-»>1 X—=1 t—0 t t-0 t t—0 t
Problem 6.
lim x? tan%_llmmzl.
X—>00 X t>0 t
Problem 8.
. 1+cosax . l+cos(tr+x) ,. 1l-—costr
lim—————=1Iim = lim—
x>1 sin3zx  t-0 sin(3tzr+37) t-0—sin3txr
(tr)?
2
—lim—2 - FimY o,
t—-0 3tr 6t—0t
Problem 11.
- _ 2 _
Iimarcsm(l x)_lml X Iim(1 X)(1+ X)

x—1 1—\/; x—11— \/_ x->1 11— \/_
(1 VX)A+/x)1+X)

_|Ximl(1+&)(1+ X) =4.

x—>1 1-— \/_
Problem 12.
__arctan(x* —3x+2) . X*—3x+2
)I(I_)ﬁ; X>—x-2 :>I<I—>mZ X>—x—2
(x 2)(x-1) Iimx—l_l
H2(x 2)(x+1) x>2x+1 3
Problem 14.
Iim(x2+3x—1_x2—3x+1)_
x—o X +1 X—5
_lim (X* +3x=1)(x=5) = (X* =3x +1)(x+1) lim_—14x+4
X o0 (x+1)(x-5) x> (X +1)(X—5)
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Problem 17.

2X 2t+6

lim(5x —14)3-x —I|m(1+5t) -t —I|m(1+5'[)5t

X—3

(— 0)-2
- 550 2 _ -0
=lim(1+5t)% lim(l+5t)“ =e™™.
t—0 t—0

Problem 18.
1

- 1
Iirrg)(cos4x)5i”23X = Iim(\/l—sin24x)‘ﬁ
X—>

1 1 16

1
—)|(I_I)T(I)(l sin 4X)2 sin? 3x —)l(l_r)Tg)(l 16x )'18x —p 18 _W'
Problem 19.
lim In(l ) _pim 4x3__ﬂ
x>0 x2sin5x X—>0X -5x 5
Problem 21.
lim - (In(2x —5) — In2x) = lim x - In2X=2)
X—»00 X—>00 X
lim xIn(l——) lim x(——) E
_X—>oo x>0 2X B 2
Problem 22.
: 1—4/x
. 3 [ Y=
ey )= g imocni =3 imeein H
1-4t 7
:—Im—l S ——Im In(1-4t) —In(1+ 3t ——I|m 7t) =——.
3H0(t1) (In(1-40) - In(L+3) =S lim (-7 =
Problem 23.
- X —2 1
lim 5 = lim =—,
x=>2 X“—4 x->2(x=2)(x+2) 4
Problem 28.
e _6x*
. T S
x»o XIn(1-3x) x-0-3x? 2
Problem 30.
L (1-4x)1° -1 . -4000x _ 1
lim m —

=i .
x—0 (1+8x)1000 —1 x—0 8000x 2
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2.8. Selected Answers

n n
31. fim XA =XT e
Ax—0 AX
X+ AX X
32. limS— —% ¢
AX—0 AX
33, fim MOEA)—Inx 1y
AX—0 AX X
34, lim sin(x + AX) —sin x _ cosX
Ax—0 AX
35, lim COS(X + AX) — COS X _ _sinx
Ax—0 AX
36, lim tan(x + Ax) —tan x _ 12
AX—>0 AX COS” X
37 lim cot(x + Ax) —cot x _ _12
AX—0 AX sin“ x
. arcsin(x + Ax) —arcsin x 1
38. lim =
Ax—0 AX 1— X2
. arccos(x + Ax) —arccos x 1
39. lim =—
-1 -1
40 lim tan (X + Ax) —tan—" X _ 1 :
AX—0 AX 1+ x
-1 -1
a1 lim cot (X + Ax) —cot ™ x _ 1 :
AX—0 AX 1+Xx
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