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Preface 

Every student of a technical university has to be well grounded in 
mathematics to study engineering science whose mathematical tools are 
based on Calculus. 
The concept of the limit is essential for calculus. It is impossible to 
overestimate the importance of this concept for modern science. It was a 
very great advance on all former achievements of mathematics. Limits 
express the concepts of infinite small and infinite large quantities in 
mathematical terms. The comprehension of limits creates the necessary 
prerequisites for understanding other concepts in Differential Calculus and 
Integral Calculus such as derivatives, definite integrals, series, and solving 
different problems: calculation of the area of a figure, the length of an arc 
of a curve, and so on. 
This textbook is intended for students studying methods of higher 
mathematics. It covers such content areas as Limits of Sequences, Basic 
Elementary Functions, and Limits of Functions. 
Each part of the textbook contains basic mathematical conceptions. There 
are presented different formulations of limits to demonstrate the unity of 
various approaches to this concept. Intuitive arguments are combined with 
rigorous proofs of propositions. 
Many useful examples and exercises are explained and illustrated 
graphically. 
The book is useful for students specialized in different areas of expertise to 
broaden and methodize a knowledge of the basic mathematical methods. It 
can be also used by teachers in the classroom with a group of students. 
 
I thank Professor Victor A. Kilin, who has made useful constructive 
suggestion about the text. His careful work in checking the text helped me 
to avoid many inaccuracies. 
The author welcomes reader’s suggestions for improvement of future 
editions of this textbook. 
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1. NUMERICAL SEQUENCES 
1.1. Basic Definitions 

The mathematic concept of a sequence corresponds to our ordinary notion 
about a sequence of events in a sense of a certain order of events. 

A numerical sequence is an infinite set of numbers enumerated  
by a positive integer index in ascending order of values of the index. 

In other words, a sequence is a function )(nf  of a discrete variable n, 
whose domain consists of the set of all natural numbers. 
The elements of a sequence are called the terms. The term )(nf  (that is, 
the n-th term) is called the general term or variable of the sequence. 
The general term is denoted by a lower case letter with the subscript n: 

na ,   ,   ,   etc. nb nx
The general term put into braces denotes a sequence: ,   , etc. }{ na }{ nb }{ nx
Graphically, a sequence can be represented by points on the number line: 

 

 
One can also use a two-dimensional chart for presenting a sequence: 

 
A sequence is completely determined by its general term. If a sequence is 
given by a few first terms, then we need to find the general term. 

Examples: 
1. The general term  determines the sequence of even numbers: nan 2=

KK ,2,,6,4,2}{ nan =  
2. The general term  determines an infinite geometric 

progression with the common ratio q: 

1−= n
n qb

KK ,,,,,1}{ 12 −= n
n qqqb  

3.         . K,0,2,0,2}{ =nc ⇒ n
nc )1(1 −−=

4.    . ,,720,120,24,6,2,1}{ K=nx ⇒ !nxn =
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5. K,0,
4
1,0,

3
1,0,

2
1,0,1,0}{ =ny     ⇒

n
y

n

n
)1(1 −+

= . 

6. K,0,1,0,1,0,1,0,1}{ −−=nz      ⇒
2

sin nzn
π

= . 

7. Let  be the sum of the first n elements of a sequence : nS }{ na

∑
=

=
n

k
kn aS

1
. 

Then the set  is also a sequence  which is called 
the sequence of the partial sums of the sequence . 

KK ,,,, 21 nSSS }{ nS
}{ na

1.1.1. Bounded Sequences 
A sequence  is said to be an upper-bounded sequence, if there exists 
a finite number U such that 

}{ nx

Uxn ≤  
for all natural numbers n. The number U is said to be an upper bound of 

. Any nonempty upper-bounded sequence has the least upper bound. }{ nx
A sequence  is called a lower-bounded sequence if there exists a 
finite number L such that 

}{ nx

Lxn ≥  
for each natural number n. The number L is called a lower bound of . 
Each nonempty lower-bounded sequence has the greatest lower bound. 

}{ nx

A sequence is called bounded, if there exist two finite numbers, L and U, 
such that 

UxL n ≤≤  
for all terms of the sequence. Otherwise, the sequence is unbounded. 

Examples: 
1. The sequence 

KK ,1,,
25
1,

16
1,

9
1,

4
1,1}1{ 22 nn

=  

  is a bounded, since  110 2 ≤<
n

 for all natural numbers n. 

2. The sequence 

KK ,
1

,,
5

16,
4
9,

3
4,

2
1}

1
{

22

+
=

+ n
n

n
n  

is lower-bounded, since )1(21 2 +≤ nn  for all natural numbers n. 
However, the sequence has no a finite upper bound. 
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3. The sequence  
K,16,8,4,2}2)1{( −−=− nn  

is unbounded, since it has no finite bounds. 

1.1.2. Monotone Increasing Sequences 
A sequence  is called a monotone increasing sequence, if  }{ nx

nn xx ≥+1  
for each natural number n. 
A sequence  is called a monotone decreasing sequence, if  }{ nx

nn xx ≤+1  
for each natural number n. 

Examples of monotone increasing sequences: 

KK ,
1

,,
6
5,

5
4,

4
3,

3
2,

2
1}

1
{

+
=

+ n
n

n
n  

KK ,!,,24,6,2,1}!{ nn =  
Examples of monotone decreasing sequences: 

KK ,1,,
5
1,

4
1,

3
1,

2
1,1}1{

nn
=  

KK ,
2
1,,

32
1,

16
1,

8
1,

4
1,

2
1}2{ n

n =−  

Examples of non-monotone sequences: 

K,
5
1,

4
1,

3
1,

2
1,1})1({

1

−−=
− −

n

n

 

K,0,1,0,1,0,1,0,1}
2

{sin −−=
nπ  

Sequences can also be classified on the basis of a behavior of its terms, if n 
takes on sufficiently large values. For instance, the variable  increases 
without any bound with increasing n. In such a case, they say that the 
variable is infinite large, that is, it approaches infinity as n tends to infinity. 
Using a symbolical form we write:  

n2

∞→n2  as ∞→n . 
If a variable  approaches zero as n tends to infinity, then  is said to be 
an infinite small quantity. In this case we write:  as . 

nx nx
0→nx ∞→n

At the same time, some variables do not tend to any well-defined number 
as n tends to infinity, e.g., the terms of the sequence  oscillate 
between two values, –1 and 1. 

})1{( n−
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1.1.3. Illustrations 
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1.2. Limits of Numerical Sequences 
Intuitive Definition of the Limit: 

The limit of a sequence  is a number a such that the terms  }{ nx nx
remain arbitrarily close to a  when n is sufficiently large. 

This statement is written symbolically in any of the following form: 
axnn

=
∞→

lim , 

axn =lim , 
axn →    as   ∞→n . 

In a mathematical form, the statement “n is sufficiently large” means 
“starting from some number N”; the statement “the terms  remain 
arbitrarily close to a” means that the absolute value of the difference 
between  and  a  is getting smaller than any arbitrary small positive 
number 

nx

nx
δ . 

Translating the above definition to the mathematical language, we obtain 
the following  
Formal Definition of the Limit: 

Number a is called the limit of a sequence   }{ nx
if for any arbitrary small number 0>δ   

there exists a number N such that 
δ<− || axn  

for each n > N. 

Geometrically, the inequality δ<− || axn  can be interpreted as the open 
interval ),( δδ +− aa :  

 
In Calculus, the interval ),( δδ +− aa  is usually named “delta 
neighborhood” (or “delta vicinity”) of the point a. In particular, the delta 
neighborhood of zero is the open interval ),( δδ− : 

 
As a rule, we use the term “delta (or epsilon) neighborhood”, keeping in 
mind that δ  (or ε ) is a small positive number. 
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In terms of δ -neighborhood, the limit of a sequence can be defined by the 
following wording: 

Number a is the limit of a sequence   }{ nx
if any arbitrary small delta neighborhood of the point a  

contains all terms of the sequence, starting from a suitable term. 

In the figures below, the definition of the limit is illustrated by the number 
line and using two-dimensional charts for some special cases. 
 

 
 
The variable  
tends to a in an 
arbitrary way. 

nx

 
 
 
 
 
 
 
 
 
 
The variable  
tends to a being 
less than a. 

nx

 
 
 
 
 
 
The variable  
tends to a being 
greater than a. 

nx
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If a sequence has a limit a such that a is a finite number, they say that the 
sequence converges to the number a, and the sequence is called 
convergent. Otherwise, the sequence is called divergent. 

Examples:  
1) The sequence  is divergent, since it has no a limit as n tends 

to infinity. 
})1{( n−

2) The sequence  is divergent, since it approaches infinity as 
number n tends to infinity. 

}{ 2n

3) Prove that the sequence }
14

{
+n

n  converges to the number 
4
1 . 

Intuitive Proof: If n is a sufficiently large number, then number 1 is 
much less than  and it can be neglected, that results in n4

4
1

14
→

+n
n     as    ∞→n . 

To prove this statement rigorously, we have to show that for any 
arbitrary small number 0>δ  there exists a number N such that the 
condition n > N  implies the inequality 

δ<−
+

|
4
1

14
|

n
n . 

Indeed, 

δ<−
+

|
4
1

14
|

n
n    ⇔    δ<

+
+− |
)14(4

)14(4|
n

nn    ⇔  

δ<
+ )14(4

1
n

     ⇔      
δ
1416 >+n      ⇔      

)41(
16
1

−>
δ

n . 

Setting  )41(
16
1

−≥
δ

N  we obtain that the inequality 

n > N 
implies 

)41(
16
1

−>
δ

n , 

and hence,  

δ<−
+

|
4
1

14
|

n
n , 

no matter how small positive value of δ  is chosen. 
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1.2.1. Infinitesimal Sequences 
A sequence }{ nα  is called infinitesimal, if it converges to zero: 

0lim =nα . 
The Formal Definition is the following. 

A sequence }{ nα  is called an infinitesimal sequence,  
if for any arbitrary small positive number δ   

there exists a number N such that  
the inequality  n > N  implies   δα <|| n . 

On the number line, the points nα  of an infinitesimal sequence come 
arbitrarily close to the zero point as n increases to infinity. It means that the 
zero point is the accumulation point for any infinitesimal sequence. For 

)(δNn > , no matter how small positive δ  is chosen, all points nα   remain 
in the delta neighborhood of zero. 

 

 
In order to better understand the concept of infinitesimals, try to imagine 
something divided into millions bits. Then, divided again an obtained bit 
into millions bits. Repeating this procedure indefinitely many times, we 
approach to an infinitesimal bit. 

Examples: 

1. The sequence KK ,1,,
4
1,

3
1,

2
1,1}1{

nn
=  is an infinitesimal 

sequence, since  01 →n  as  ∞→n . 
Rigorous Proof: We need to show that for any 0>δ  there exists a 
number N such that the inequality Nn >  implies δ<n1 . 
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If we set 
δ
1

≥N , then the two-sided inequality 
δ
1

≥> Nn  implies the 

desired inequality δ<n1  for any arbitrarily small 0>δ . 

In particular, setting 01.0=δ  we obtain 01.01
<

n
 for all . 100>n

Thus, the given delta neighborhood of the zero point contains all terms of 
the sequence }1{ n  except for the first hundred terms. 

If 001.0=δ  then 001.01
<

n
 for all , that is, all points (with 

) lie in the delta neighborhood of the zero point. 

1000>n

1000>n
It does not matter how many terms are beyond a delta vicinity of zero, if 
only a finite number of terms does not belong to that delta vicinity. 

2. The variable 
12 +n

n   is  

infinitesimal as .  ∞→n
Proof: If we set δ1≥N , then 
inequality Nn >  implies 

δ1>n , and so δ<n1  for any 
arbitrary small 0>δ . 

However,  
nn

n
n

n 1
1 22 =<

+
. 

Therefore, Nn >   ⇒ δ<
n
1    ⇒

δ<<
+ nn

n 1
12 . Hence, 0

1
lim 2 =

+n
n . 

3. The variable 
n
1sin   is  

infinitesimal as .  ∞→n
Proof: Given any arbitrary 

small 0>δ , 
δarcsin

1
>n ⇒  

δarcsin1
<

n
 ⇒   δ<

n
1sin . 

If we set 
δarcsin

1
≥N , then 

inequality Nn >  implies  
δ<n1sin . 
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The concept of infinitesimals gives a more convenient interpretation of the 
limit of a sequence. 
By the definition, the statement axn =lim  means that δ<− || axn  for 

Nn > , and hence the difference )( axn −  is an infinitesimal variable. 
Therefore, we arrive at the following helpful rule: 

Number a is the limit of a sequence , }{ nx
if the general term of the sequence can be expressed in the form 

nn ax α+= , 
where nα  is the general term of an infinitesimal sequence. 

Example: Evaluate the limit of the sequence }
1

3{
+n
n  as . ∞→n

Explanation: Number 1 (in the denominator) can be neglected as 

. Then  ∞→n 33
1

3
=→

+ n
n

n
n , which means 

3
1

3lim =
+n
n . 

To give a Formal Proof, we should express the general term of the 
sequence as the sum of a constant term and an infinitesimal variable: 

1
33

1
3)1(3

1
3

+
−=

+
−+

=
+ nn

n
n

n . 

The expression )
1

3(
+

−
n

 is an infinitesimal variable, since 0
1

3
→

+n
 as 

. Therefore, the constant term 3 is the limit of the sequence, ∞→n

3
1

3lim =
+n
n . 
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1.2.2. Infinite Large Sequences 
A sequence  is called infinite large (or divergent), if  approaches 
infinity as n tends to infinity. 

}{ nx nx

The formal definition is the following: 

A sequence  is called an infinite large sequence,  }{ nx
if for any arbitrary large number 0>∆   

there exists a number N such that 
∆>|| nx  

for each n > N. 
Notations: 

∞=
∞→

nn
xlim , 

∞=nxlim , 
or    ∞→nx   as   ∞→n . 

 

If the terms of an infinite large sequence  are, respectively, positive or 
negative at least starting from a sufficiently large number N, we use the 
following notations: 

}{ nx

+∞=nxlim     or     −∞=nxlim . 
Note that a - neighborhood of an infinite point includes either one of the 
semi-infinite intervals,  and 

∆
),( ∞∆ ),( ∆−∞ , or both. Terms  belong to a 

- neighborhood of an infinite point, if their absolute values are greater 
than any arbitrary large number 

nx
∆

0>∆ . 
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Example: 

The sequence }
1

{
2

+n
n  is an infinite large sequence since  

∞=
+
∞

→
+

=
+ 01111

2

n
n

n
n  

as   . ∞→n

 

Rigorous Proof: We need to show that for any arbitrary large number 

 there exists a natural number N such that  0>∆ ∆>
+1n

n2
  whenever  

Nn > .  

Note that  
21

22 n
nn

n
n
n

=
+

>
+

. 

If we set ∆≥ 2N , then the two-sided inequality ∆≥> 2Nn  implies 

∆>
2
n , and hence 

∆>>
+ 21

2 n
n
n  

for any arbitrary large number 0>∆ . 
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1.3. Properties of Infinitesimal Sequences 
Property 1 

If }{ nα  is an infinitesimal sequence and  is a bounded sequence, }{ nb
then }{ nnbα  is an infinitesimal sequence. 

Explanation: First, according to the definition, all terms of the bounded 
sequence  are restricted by a finite number M,  }{ nb Mbn <|| . 
Second, an infinitesimal variable nα  approaches zero as . ∞→n
Hence, 

00|||||||| =⋅→⋅<⋅= MMbb nnnnn ααα    as  . ∞→n

Rigorous Proof: Since }{ nα  is an infinitesimal sequence, then for any 
arbitrary small 0>δ , the positive number Mδ  corresponds to a suitable 

number N such that 
Mn
δα <||   for each n > N.  Therefore, 

δδαα =<⋅= M
M

bb nnnn ||||||  

whenever n > N, which required to be proved. 

Property 2 
If }{ nα  and }{ nβ  are infinitesimal sequences, 
then }{ nnβα  is also an infinitesimal sequence. 

Explanation:     000|||||| =+→+≤+ nnnn βαβα   as . ∞→n
Rigorous Proof: For any 0>δ , the number 2δ  corresponds to natural 
numbers  and  such that  1N 2N

2
|| δα <n  for each   and 1Nn >

2
|| δβ <n  for each  . 2Nn >

If a number N is not less than each of the numbers  and , then 1N 2N

δδδβαβα =+<+≤+
22

|||||| nnnn  

for any arbitrary small 0>δ  whenever n > N. 

Corollary: The sum of any finite number of infinitesimal variables 
is an infinitesimal variable. 
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Explanation: The idea of a proof is shown in the drawing below. The sum 
of any two infinitesimals can be represented by one infinitesimal. Then the 
sum of two obtained infinitesimal gives also an infinitesimal, etc. 

 
Rigorous Proof: Let us apply the mathematical induction principle. Set  
(with n = 2, 3, 4, …)  be the statement “The sum of n infinitesimals is an 
infinitesimal”. 

nS

Induction basis: By property 2, the statement  is true for n = 2. nS
Induction hypothesis: Assume that the statement  holds true for some 
integer . 

nS
2≥n

Induction step: By the hypothesis, the sum of n infinitesimals is an 
infinitesimal, and so the sum of )1( +n  infinitesimals can be considered as 
the sum consisting of two infinitesimal items. However, the sum of two 
infinitesimals is an infinitesimal by Property 2. Therefore, the statement  
implies the statement , and hence  is true for any integer . 

nS
1+nS nS 2≥n

Property 3 

If }{ nα  is an infinitesimal sequence then }1{
nα

 is an infinite large sequence  

and vice versa. 

Explanation: To verify the proposition, divide number 1 by 1000, 
1000000, 1000000000, and so on. Then divide number 1 by 0.001, 
0.000001, 0.000000001, and so on. Compare the results. 
Rigorous Proof: Let }{ nα  be an infinitesimal sequence. Then for any 

 there exists a number N such that 0>∆
∆

<
1|| nα , which implies ∆>|1|

nα
 

for each n > N. Hence, }1{
nα

 is an infinite large sequence. 

Likewise, if }{ nα  is an infinite large sequence, then any 0>δ  corresponds 

to a number N such that 
δ

α 1|| >n , and so δ
α

<|1|
n

 whenever n > N. 

Hence, }1{
nα

 is an infinitesimal sequence. 
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1.4. Properties of Limits of Sequences 
Property 1 

nn xcxc lim)lim( ⋅=⋅  

Proof: Let  that means axn =lim
nn ax α+= , 

where nα  is an infinitesimal. 
Then for any number c, 

nnn cacacxc αα +=+=⋅ )( . 
Since ncα  is an infinitesimal,  

acxc n =⋅ )lim( , 
which required to be proved. 

Property 2 
If there exist finite limits of sequences  and  then }{ nx }{ ny

nnnn yxyx limlim)lim( +=+ . 

Proof: Let  and axn =lim byn =lim  that means 
nn ax α+= ,   and   nn by β+= , 

where nα  and nβ  are infinitesimals. 
Then 

)()( nnnn bayx βα +++=+ . 
By the properties of infinitesimals, the sum )( nn βα +  is an infinitesimal. 
Therefore, 

bayx nn +=+ )lim( . 

Property 3 
If there exist finite limits of sequences  and  then }{ nx }{ ny

nnnn yxyx limlim)lim( ⋅=⋅ . 

Proof: Likewise, the statements 
axn =lim   and  byn =lim  

imply 
)()()( nnnnnnnn abbabayx βαβαβα +++=+⋅+=⋅ . 

In view of the properties of infinitesimals, the variable 
)( nnnn ab βαβα ++  is an infinitesimal. Therefore, 

)lim()lim()lim( nnnn yxbayx ⋅==⋅ . 
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Property 4 
If there exist finite limits of sequences  and , and  then }{ nx }{ ny 0lim ≠ny

n

n

n

n
y
x

y
x

lim
limlim = . 

Proof: Assume that  and axn =lim 0lim ≠= byn . To prove the property, 

we have to represent the quotient 
n

n
y
x  in the form 

malInfinitesi+=
b
a

y
x

n

n . 

Using simple transformations we obtain 

.
)()(

)(

n

nn

n

nn

n

n

n

n

n

n

bb
ab

b
a

bb
ababba

b
a

b
a

b
a

b
a

b
a

y
x

β
βα

β
βα

β
α

β
α

+
−

+=
+

−−+
+=

−
+
+

+=
+
+

=

 

By the properties of infinitesimals, 

00
)( 2 =→

+
−

bbb
ab

n

nn
β
βα   as ∞→n . 

Therefore,  

n

n

n

n

y
x

b
a

y
x

lim
limlim == . 

Property 5 
If there exist finite limits of sequences  and  then }{ nx }{ p

nx
p

n
p

n xx )(limlim =  

Explanation: Let .  axn =lim
Then 

nn ax α+= , 
where nα  is an infinitesimal.  
Therefore, 

.)(lim)01(

)1()(

p
n

ppp

pnpp
n

p
n

xaa
a

aax

==+⋅

→+⋅=+=
αα
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1.5. Classification of Infinitesimal Sequences 

Let λ
β
α

=||lim
n

n , where nα  and nβ  are infinitesimal variables as . ∞→n

If  ∞<< λ0 , then nα  and nβ  are called infinitesimals of the same order 
of smallness.  

In particular, if 1lim =
n

n
β
α  then nα  and nβ  are called equivalent 

infinitesimals:    nn βα ~ . 
In that case, they say that the infinitesimals are equal asymptotically. 
If 0=λ  then nα  is called an infinitesimal of a higher order of smallness 
with respect to nβ , while nβ  is an infinitesimal of a lower order of 
smallness with respect to nα. 

If ∞=λ  then nβ  is an infinitesimal of a higher order of smallness with 
respect to nα , while nα  is an infinitesimal of a lower order of smallness 
with respect to nβ . 

If   ∞<< |
)(

lim|0 k
n

n

β
α , then nα  is called an infinitesimal of the k-th 

order of smallness with respect to nβ . 

Examples: 

1. Infinitesimals 2
1
n

 and 
25

1
2 −+ nn

 are equal asymptotically as 

, since ∞→n

100125125
)25(1

1
22

2

2

2

=−+→−+=
−+

=
−+ nnn

nn
nn

n . 

2. Infinitesimals 2
1
n

 and 
nn +23

1  have the same order as , since ∞→n

3)13lim(3lim
)3(1

1lim 2

2

2

2

=+=
+

=
+ nn

nn
nn

n  

  that is a finite number. 

3. Show that 2)1(
1
+n

 is an infinitesimal of the second order with 

respect to 
n
1   as ∞→n . 
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1.6. Comparison Between Infinitesimal Sequences 
1. Let nα  and nβ  be two equivalent infinitesimals. Then 

nnn γαβ += , 
where nγ  – is an  infinitesimal of a higher order of smallness with 
respect to both nα  and nβ . 
Proof: By the definition, if nn βα ~  then 1→nn αβ  as , and so ∞→n

0)11()1( =−→−=
−

n

n

n

nn

α
β

α
αβ . 

Therefore, the difference )( nn αβ −  is an infinitesimal of a higher order 
of smallness with respect to the given infinitesimals. 

2. If nβ  is an infinitesimal of a higher order of smallness with respect to 
nα , then 

nnn αβα ~+ . 
It means that nβ  is a negligible quantity with respect to nα  as . ∞→n
Proof: By the hypothesis, 0→nn αβ  as ∞→n . Then 

nnn
n

n
n

n

nn
nn ααα

α
βα

α
βαβα =⋅++=

+
=+ )01(~)1( . 

3. Let nα  and nβ  be two infinitesimals of the same order.  

If λ
β
α

=
n

nlim   then nα  and nβλ   are equivalent infinitesimals: 

nn βλα ~ . 
In that case, the infinitesimals are said to be proportional 
asymptotically. 

Proof:      111
=→⋅= λ

λβ
α

λλβ
α

n

n

n

n    as ∞→n . 

Example: Since 
n
1  and 

1
1
+n

 are two equivalent infinitesimals, then their 

sum is an infinitesimal of the same order of smallness: 

nnn
2~

1
11
+

+ . 

However, their difference is an infinitesimal of the second order with 

respect to the given infinitesimals:  
)1(

1
1

11
+

=
+

−
nnnn

. 
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1.7. Classification of Infinite Large Sequences 

Let λ
β
α

=||lim
n

n , where nα  and nβ  are infinite large variables as . ∞→n

If  ∞<< λ0  then nα  and nβ  are called infinite large variables of the same 
increasing order. 

In particular, if 1lim =
n

n
β
α  then nα  and nβ  are called equivalent infinite 

large variables: 
nn βα ~ . 

In that case, infinite large variables are said to be equal asymptotically. 
If  ∞=λ  then nα  is called an infinite large variable of a higher order of 
increase with respect to nβ , while nβ  is an infinite large variable of a 
lower increasing order with respect to nα . 
If  0=λ  then nα  is an infinite large variable of lower order with respect to 

nβ , while nβ  is an infinite large variable of a higher order with respect to 
nα . 

If    ∞<< |
)(

lim|0 k
n

n

β
α    then  nα   is called an infinite large variable of 

the k-th order of increase with respect to nβ . 

Examples: 

1. Two infinite large variables,  and , are equal 
asymptotically as 

2n )14( 2 ++ nn
∞→n , since 

100114114
22

2

=−+→++=
++

nnn
nn . 

2. Both infinite large variables,  and , have the same 
increasing order as 

2n )5( 2 nn +
∞→n , since 

5)15lim(5lim 2

2

=+=
+

nn
nn  

 that is a finite number. 

3. The variable  is an infinite large variable of the third 
order with respect to  since   

)15( 23 −+ nn
n

4)154lim(154lim 33

23

=−+=
−+

nnn
nn ,    

and 4 is a finite number. 
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1.8. Comparison between Infinite Large Sequences 
1. Let nα  and nβ  be two equivalent infinite large variables. Then 

nnn γαβ += , 
where nγ  – is an  infinitesimal of a lower increasing order with respect 
to both nα  and nβ . 
Proof: By the definition, if nn βα ~  then 1→nn αβ  as , and so ∞→n

0)11()1( =−→−=
−

n

n

n

nn

α
β

α
αβ . 

Therefore, the difference )( nn αβ −  is an infinite large variable of a 
lower order of increase with respect to the given variables. 

Proof:  nn βα ~    ⇒ 0111 =−→−=
−

n

n

n

nn
α
β

α
βα . 

2. If nβ  is an infinite large variable of a lower increasing order with 
respect to nα , then 

nnn αβα ~+ . 
It means that nβ  is a negligible quantity with respect to nα  as . ∞→n

Proof: By the hypothesis,  0→
n

n

α
β   as  ∞→n .  Then 

1011 =+→+=
+

n

n

n

nn
α
β

α
βα    ⇒   nnn αβα ~+ . 

3. Let  nα  and nβ  be two infinite large variables of the same order. 

If λ
β
α

=
n

nlim  then nα  and nβλ   are equivalent infinite large variables: 

nn βλα ~ . 
In that case, the infinite large variables are said to be proportional 
asymptotically. 

Proof:      111
=→⋅= λ

λβ
α

λλβ
α

n

n

n

n    as ∞→n . 

Examples: 
1. In the expression , the quantity   is 

negligible with respect to , since 
)1575( 23 +−+ nnn )1575( 2 +− nn

3n

0)1575lim(1575lim 323

2

=+−=
+−

nnnn
nn . 
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2. Two variables, 34 nn +  and , are equivalent infinite large variables 
of the second order with respect to n.  

2n

Their sum is an infinite large variable of the same increasing order: 
2234 2~ nnnn ++ . 

However, the difference between the given variables is an infinite large 
variable of the first increasing order with respect to n: 

.
22

~

))((

2

3

234

3

234

434

234

234234
234

n
n
n

nnn
n

nnn
nnn

nnn
nnnnnnnnn

=
++

=
++

−+
=

++

++−+
=−+

 

3. To find the limit of the expression 
846

392
235

45

++−+
−++
nnnn

nnn , note that each 

of the variables,  and , is 
equivalent to  as . Therefore,  

)392( 45 −++ nnn )846( 235 +−+ nnn
5n ∞→n

1lim
846

392lim 5

5

235

45
==

++−+
−++

n
n

nnnn
nnn . 

4. Likewise,  and . 
Therefore, 

323 4~)53204( nnn ++ 323 2~)1532( nnnn ++−

2
2
4lim

1532
53204lim 3

3

23

23
==

++−
++

n
n

nnn
nn . 

5. To find the limit of the expression )35( 2 nnn −−+  having an 
indeterminate form )( ∞−∞  as ∞→n , multiply and divide the 

difference )35( 2 nnn −−+  by the sum )35( 2 nnn +−+  to get the 
difference between two squares: 

.
35

35
35

35
35
)35(

35
)35)(35(35

22

22

2

222

2

22
2

nnn
n

nnn
nnn

nnn
nnn

nnn
nnnnnnnnn

+−+

−
=

+−+

−−+
=

+−+

−−+
=

+−+

+−+−−+
=−−+

 

Since  nn 5~)35( −   and  nnnnnn 2~)35( 22 =++−+ ,  we obtain 

2
5

2
5lim

35

35lim)35lim(
2

2 ==
+−+

−
=−−+

n
n

nnn

nnnn . 
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1.9. Theorems of Sequences 
Theorem 1 

Each monotone increasing upper-bounded sequence has a finite limit. 

The below drawing illustrates the theorem. 

 
Proof: Let a be the least upper bound  of the sequence .  }{ nx
It means that  

i)   all the terms of  satisfy the inequality  }{ nx axn ≤ ; 
ii) for any arbitrary small positive δ , the number )( δ−a  is not an 
 upper bound of the sequence. 

Therefore, there exists a term , which is greater than Nx )( δ−a : 
Nxa <−δ . 

However,  is a monotone increasing sequence, and so }{ nx
K≤≤≤ ++ 21 NNN xxx . 

Thus, all the successors satisfy just the same inequalities, coming arbitrary 
close to the bound a: 

axa n ≤<−δ  
for each Nn ≥ . Hence,  axn =lim . 

Theorem 2 
Each monotone decreasing lower-bounded sequence has a finite limit. 

The theorem can be proved in a similar way. 
Proof: Let a be the greatest lower bound a sequence . It means that }{ nx

i)   all the terms of  satisfy the inequality  }{ nx nxa ≤ ; 
ii) for any arbitrary small positive δ , the number )( δ+a  is not a  lower 
 bound of the sequence. 

Then there exists a term  such that  Nx δ+<≤ axa N . 
Since the sequence is monotone decreasing, all the successors remain 
between the bound a and term : Nx

δ+<≤≤ axxa Nn  
for each Nn ≥ , as it is shown in the drawing below. 

 
Hence,  . axn =lim
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Theorem 3 
A monotone increasing sequence is divergent, if it has no an upper bound. 

Proof: Let ∆  be an arbitrary large number. Since ∆  is not an upper bound 
of the sequence , there exists a term , which is greater than }{ nx Nx ∆ . 
However,  is a monotone increasing sequence, and so each successor 
is also greater than . 

}{ nx
∆

Thus, for any arbitrary large number ∆  there exists the corresponding 
number N such that 

∆>nx   
whenever Nn > . 

 
Hence, the theorem. 

Theorem 4 
A monotone decreasing sequence is divergent, if it has no a lower bound. 

Proof: By the arguments used in the proof of Theorem 3, we conclude that 
for any positive number  there exists the number N such that ∆

∆−<nx , 
and so    whenever ∆>|| nx Nn > . 

 
Hence, the sequence diverges. 

1.10. Number e 
Theorem:  

The sequence })11{( n

n
+  

  –  is a monotone increasing bounded sequence; 

  –  has the finite limit such that  3)11(lim2 <+<
∞→

n

n n
. 

That limit is denoted by the symbol  e: 
n

n n
e )11(lim +≡

∞→
. 

The number e is an irrational number,  e = 2.71828… 
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Proof: First, we prove that })11{(}{ n
n n

a +=  is a monotone increasing 

sequence. 
By the Binomial Theorem (see [1-3], for example): 

.
!

1)2)(1(
!3

)2)(1(
!2

)1()( 33221

n

nnnnn

y
n
nnn

yxnnnyxnnynxxyx

L

L

−−
+

+
−−

+
−

++=+ −−−

 

Setting 1=x  and 
n

y 1
=  and making simple transformations we obtain: 

.
!

1)11()21()11(
!3

1)21()11(
!2

1)11(2

!
11)2)(1(

!3
1)2)(1(

!2
1)1(2

1
!
!1

!3
)2)(1(1

!2
)1(11)11(

12

32

nn
n

nnnnn

nn
nn

n
nn

n
n

nn
n

n
nnn

n
nn

n
n

n
a

n

n
n

n

−
−−−++−−+−+=

−−
++

−−
+

−
+=

++
−−

++
−

++=+=

−

LK

L
K

K

 

Substituting  for n we get a similar expression for the next term : )1( +n 1+na

.
!)1(

1)
1

1)(
1
11()

1
21()

1
11(

!
1)

1
11()

1
21()

1
11(

!3
1)

1
21()

1
11(

!2
1)

1
11(21

++
−

+
−

−
+

−
+

−+

+
−

−
+

−
+

−+

+
+

−
+

−+
+

−+=+

nn
n

n
n

nn

nn
n

nn

nnn
an

L

L

K

 

Now let us compare the expressions for  and  term by term. na 1+na
First of all, note that in both sums (in the expressions for  and ) all 
the terms are positive, and the number of the terms increases with 
increasing n . 

na 1+na

Starting from the second term, each term of the sum  is greater than the 
corresponding term of the sum for : 

1+na
na

)
1

11()11(
+

−<−
nn

,   )
1

21)(
1

11()21)(11(
+

−
+

−<−−
nnnn

,   and so on. 

Therefore, inequality 
nn aa >+1  

proves that })11{(}{ n
n n

a +=  is a monotone increasing sequence. 
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Now let us prove that })11{(}{ n
n n

a +=  is a bounded sequence. 

The first term of a monotone increasing sequence is the greatest lower 

bound of the sequence. Since 2)
1
11( 1

1 =+=a , we get the inequality 

n

n
)11(2 +≤  

which is valid for all natural numbers n that proves the existence of a lower 
bound. 
The existence of an upper bound can be proved by the following simple 
estimations. 
First, 

!
1

!3
1

!2
12

!
1)11()21()11(

!3
1)21()11(

!2
1)11(2

n

nn
n

nnnnn
an

++++<

−
−−−++−−+−+=

K

LK

 

since 11 <−
n
k  for all natural numbers k and n. 

Second, kk 2
1

!
1
<  for all integer 2>k , and so 

nna
2
1

2
1

2
12 2 ++++< K . 

The expression on the right side of this inequality includes the sum of n 
terms of the geometric progression with the common ratio 2 that can be 
easily calculated [2]: 

1
2
11

2
11

)
2
11(

2
1

2
1

2
1

2
1

2 <−=
−

−
=+++ n

n

nK . 

Thus,  is an upper-bounded sequence, }{ na 3)11( <+= n
n n

a  for each 

natural number n. 

The sequence })11{( n

n
+  satisfies the conditions of Theorem 1, and so it 

has a finite limit denoted by the symbol e, 

e
n

n =+ )11lim( ,      32 << e . 
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Graphic Illustration 

 

Numerical illustration 
 

n n

n
)11( +  

1 2 

2 2.25 

5 2.48832 

10 2.593742460 

20 2.653297705 

50 2.691588029 

100 2.704813829 

1000 2.716923932 

10 000 2.718145927 

100 000 2.718268237 

1000 000 2.718280469 

… … 

e = 2.71828182845904523536028747135266249775724709… 
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2. FUNCTIONS 
2.1. Elementary Functions: Short Review 

2.1.1. Power Functions   nxy =

The domain of the power function  is the set of all real numbers 

except for 

nxy =

0<x , if 
k

n
2
1

=  ( K,2,1=k ), and 0≠x , if 0<n . 

The range of the power function  depends on the index of the 
power. If n is an even number then the range contains only non-negative 
real numbers. For odd numbers n, the range is the set of all real numbers. 

nxy =

If n = 1 then xy =  is a linear function, 
whose graph is a straight line passing 
through the origin. 
Domain: The set of all real numbers. 
Range: The set of all real numbers. 
Symmetry: An odd function,  

. )()( xyxy −=−
 
If n = 2 then  is a quadratic  
function, whose graph is a parabola 
with the vertex at the origin. 

2

)()(

xy =

Domain: The set of all real numbers. 
Range: The set of all non-negative real 
numbers. 
Symmetry: An even function, 

. xyxy =−
 

   
If n = 3  then  is a cubic 
function, whose graph passes through 
the origin. 

3xy =

Domain: The set of all real numbers. 
Range: The set of all real numbers. 
Symmetry: An odd function. 
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x
1

=If n = –1 then the equation y  

describes the hyperbola. 
Domain: The set of all positive and 
negative real numbers. 
Range: The set of all positive and 
negative real numbers. 
Symmetry: An odd function. 
 

If 
2
1

=n  then x=y
2x=

 is the inverse 

function of  provided 
that

y
0≥x . 

Domain: The set of all non-negative 
real numbers. 
Range: The set of all non-negative 
real numbers. 
 

 

If 
3
1

=n  then 3 xy =  is the inverse 

function of . 3xy =
Domain: The set of all real numbers. 
Range: The set of all real numbers 
Symmetry: An odd function. 
 
 

If 2−=n   then 2
1
x

y = . 

Domain: The set of all real 
numbers. 
Range: The set of all positive real 
numbers 
Symmetry: An even function. 
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2.1.2. Exponential Functions   xay =
Requirements:  and 0>a 1≠a . 
Domain: The set of all real numbers. 
Range: The set of all positive real numbers. 
Properties: 
If a > 1 then 

–  is a monotone increasing function, that is, xay =

12 xx >   ⇔   ; 12 xx aa >

– graphs of the function  tends to the x-axis asymptotically as xay =
−∞→x , and tends to infinity as +∞→x . 

If  0 < a < 1 then 
–  is a monotone decreasing function, that is, xay =

12 xx >   ⇔   12 xx aa < ; 

– graphs of the function  tends to the x-axis asymptotically as xay =
+∞→x , and tends to infinity as −∞→x . 

Graphs: 

 
Basic Formulas: 

10 =a  

x
x

a
a 1

=−  

2121 xxxx aaa +=⋅  

21
2

1 xx
x

x
a

a
a −=  

xnnx aa =)(  

The reader can find more detail discussion of the properties of elementary 
functions, for example, in [1-3]. 
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2.1.3. Logarithmic Functions  xy alog=  
Note:    and  . 0>a 1≠a
Domain: The set of all positive numbers. 
Range: The set of all real numbers. 
The logarithmic function is defined as the inverse of the exponential 
function: 

xy alog=   ⇔   yax = . 
Properties: 
If a > 1 then 

–   is a monotone increasing function, that is, xy alog=

12 xx >   ⇔   ; 12 loglog xx aa >
– −∞→xalog  and  graphs of the function xy alog=  tends to the y-

axis asymptotically as 0+→x ; 
– +∞→xalog  as +∞→x . 

If  0 < a < 1 then 
–   is a monotone decreasing function, that is, xalog

12 xx >   ⇔   12 loglog xx aa < ; 
– +∞→xalog   and graphs of the function xy alog=  tends to the y-

axis asymptotically as 0+→x ; 
– −∞→xalog   as +∞→x . 

Graphs: 

 
Since  and  are inverse functions of each other, their 
graphs look as the mirror images of each other across the bisector of the 
first and third quadrants, see the figures below. 

xay = xy alog=
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Basic Formulas: 

01log =a  
1log =aa  

)(logloglog 2121 xxxx aaa ⋅=+  

2

1
21 log

logloglog
x
xxx

a

a
aa =−  

n
aa xxn loglog =  

a
xx

c

c
a log

loglog =  

The function  is referred to as x10log xlog  ( xlg  in Russian books). 
The function  is denoted by xelog xln  and it is called the natural 
logarithm. 
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2.1.4. Trigonometric Functions 

Sine Function  xy sin=  
Cosine Function  xy cos=  

The reader can find more detail discussion of the properties of 
trigonometric functions, for example, in [1-3]. 
Domains: The set of all real numbers. 
Ranges: 1|sin| ≤x ,    1|cos| ≤x . 
Properties:   

– xsin   and  xcos  are periodic functions with period π2 : 
xx sin)2sin( =+ π ,   xx cos)2cos( =+ π ; 

– xsin   is an odd function: 
xx sin)sin( −=− ; 

– xcos   is an even function: 
xx cos)cos( =− . 

Graphs: 
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Basic Formulas: 

Addition Formulas for Sines and Cosines 
αββαβα cossincossin)sin( ±=±  
βαβαβα sinsincoscos)cos( m=±  

 

Double-Angle Formulas for Sines and Cosines 
ααα cossin22sin =  
ααα 22 sincos2cos −=  

 

Half-Angle Formulas for Sines and Cosines 

αα cos1
2

sin2 2 −=  

αα cos1
2

cos2 2 +=  

 

Relationships between Sines and Cosines 

1sincos 22 =+ αα  

)
2

cos()
2

cos(sin αππαα −=−=  

)
2

sin()
2

sin(cos αππαα −=+=  

 

Other Formulas 

2
cos

2
sin2sinsin βαβαβα m±

=±  

2
cos

2
cos2coscos βαβαβα −+

=+  

2
sin

2
sin2coscos βαβαβα −+

−=−  

))cos()(cos(
2
1sinsin βαβαβα +−−=  

))cos()(cos(
2
1coscos βαβαβα ++−=  

))sin()(sin(
2
1cossin βαβαβα ++−=  
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Tangent Function  xy tan=  

Domain: The set of all real numbers except for nx ππ
+=

2
, where n is any 

integer. 
Range: The set of all real numbers. 
Properties: 

– xtan  is a periodic function with period π : 
xx tan)tan( =+π ; 

– xtan  is an odd function: 
xx tan)tan( −=− . 

Cotangent Function  
xy cot=  

Domain: The set of real numbers except for nx π= , where n is any 
integer. 
Range: The set of all real numbers. 
Properties: 

– xcot  is a periodic function with period π : 
xx cot)cot( =+π ; 

– xcot  is an odd function: 
xx cot)cot( −=− . 

Graphs: 
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Relationships between Trigonometric Functions 

x
xx

cos
sintan =  

x
xx

sin
coscot =  

x
x

cot
1tan =  

x
x 2

2

cos
1tan1 =+  

x
x 2

2

sin
1cot1 =+  

)
2

cot(tan xx −=
π  

)
2

tan(cot xx −=
π  

 

Addition Formulas for Tangents and Cotangents 

βα
βαβα

tantan1
tantan)tan(

m

±
=±  

βα
βαβα

tco±
=±

cot
1cotcot)cot( m  

 

Double-Angle Formulas for Tangents and Cotangents 

α
αα 2tan1

tan22tan
−

=
 

α
αα

cot2
1cot2cot

2 −
=

 
 

Half-Angle Formulas for Tangents and Cotangents 

α
α

α
αα

cos1
sin

sin
cos1

2
tan

+
=

−
=  

α
α

α
αα

cos1
sin

sin
cos1

2
cot

−
=

+
=  
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Other Formulas 

βα
βαβα

coscos
)sin(tantan ±

=±  

βα
αββα

sinsin
)sin(cotcot ±

=±  

2
tan1

2
tan2

sin
2 x

x

x
+

=  

2
tan1

2
tan1

cos
2

2

x

x

x
+

−
=  

2
tan1

2
tan2

tan
2 x

x

x
−

=  

 
Values of Trigonometric Functions for Special Angles: 

Angle x 
Degrees Radians 

sin x cos x tan x cot x 

0 0 0 1 0 undefined 

30 6
π  

2
1  

2
3  

3
3  3  

45 4
π  

2
2  

2
2  1 1 

60 3
π  

2
3  2

1  3  
3
3  

90 
2
π  1 0 undefined 0 
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2.1.5. Inverse Trigonometric Functions 
Inverse Sine Function is referred as 

xy arcsin=    or as    xy 1sin−= . 

Domain:  11 ≤≤− x .    Range:   
2

arcsin
2

ππ
≤≤− x . 

Properties: 
– xarcsin  is a monotone increasing function; 
– ; xx =− )(sinsin 1

– . xx =− )sin(sin 1

The solution set of the equation ax =sin : 
nax n π+−= arcsin)1( ,    ),2,1,0( K±±=n . 

Inverse Cosine Function is referred as 
xy arccos=    or as   xy 1cos−= . 

Domain:  11 ≤≤− x .    Range:   π≤≤ xarccos0 . 
Properties: 

– xarccos  is a monotone decreasing function; 
– ; xx =− )(coscos 1

– . xx =− )cos(cos 1

The solution set of the equation ax =cos : 
nax π2arccos +±= ,    ),2,1,0( K±±=n . 

Graphs: 
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Inverse Tangent Function  xy arctan=    (or  ). xy 1tan−=

Domain: The set of all real numbers.    Range:  
2

arctan
2

ππ
<<− x . 

Properties: 
– xarctan  is a monotone increasing function; 
– ; xx =− )(tantan 1

– . xx =− )tan(tan 1

The solution set of the equation ax =tan : 
nax π+= arctan ,    ),2,1,0( K±±=n . 

Inverse Cotangent Function  . xy 1cot−=
Domain: The set of all real numbers.    Range:  . π<< − x1cot0
Properties: 

– x1cot−  is a monotone decreasing function; 
– ; xx =− )(cotcot 1

– . xx =− )cot(cot 1

The solution set of the equation ax =cot : 
nax π+= −1cot ,    ),2,1,0( K±±=n . 

 
Graphs: 
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2.1.6. Hyperbolic Functions 
1. The hyperbolic sine xsinh  is defined by the following formula: 

2
sinh

xx eex
−−

= . 

Domain: The set of all real numbers. 
Range: The set of all real numbers. 
The hyperbolic sine is an odd function because 

xeeeex
xxxx

sinh
22

)sinh( −=
−

−=
−

=−
−−

. 

 
2. The hyperbolic cosine xcosh  is defined as 

2
cosh

xx eex
−+

= . 

Domain: The set of all real numbers. 
Range: The set of all non-negative real numbers. 
The hyperbolic cosine is an even function, since 

xeex
xx

cosh
2

)cosh( =
+

=−
−

. 
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3. The hyperbolic tangent xtanh  is defined as the ratio between xsinh  
and xcosh : 

xx

xx

ee
ee

x
xx −

−

+
−

==
cosh
sintanh . 

Domain: The set of all real numbers. 
Range: The set of real numbers 1|| <x . 
The hyperbolic tangent is an odd function due to the symmetry properties 
of xsinh  and xcosh . 
 

 
4. The hyperbolic cotangent xcoth  is the ratio of xcosh  to xsinh : 

xx

xx

ee
ee

xx
xx −

−

−
+

===
tanh

1
sinh
coscoth . 

Domain: The set of all real numbers except for 0=x . 
Range: The set of all real numbers. 
The hyperbolic cotangent is an odd function due to the symmetry properties 
of xsinh  and xcosh . 
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Basic Formulas: 

Addition Formulas for xsinh  and xcosh  
αββαβα coshsinhcoshsinh)sinh( ±=±  
βαβαβα sinhsinhcoshcosh)cosh( ±=±  

 

Double-Angle Formulas for xsinh  and xcosh  
ααα coshsinh22sinh =  
ααα 22 sinhcosh2cosh +=  

 

Half-Angle Formulas for xsinh  and xcosh  

1cosh
2

sinh2 2 −= αα  

αα cosh1
2

cosh2 2 +=  

 

Other Formulas 

2
cosh

2
sinh2sinhsinh βαβαβα m±

=±  

2
cosh

2
cosh2coshcosh βαβαβα −+

=+  

2
sinh

2
sinh2coshcosh βαβαβα −+

=−  

))cosh()(cosh(
2
1sinhsinh βαβαβα −−+=  

))cosh()(cosh(
2
1coshcosh βαβαβα −++=  

))sinh()(sinh(
2
1coshsinh βαβαβα −++=  

 

Relationships between Hyperbolic Functions 
1sinhcosh 22 =− αα , 

x
xx

cosh
sinhtanh = ,     

x
xx

sinh
coshcoth = ,    

x
x

coth
1tanh = , 

x
x 2

2

cosh
1tanh1 =− ,    

x
x 2

2

sinh
11coth =− . 
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2.2. Limits of Functions 
2.2.1. Preliminary Discussion 

Let  and the values of the variable x belong to a small vicinity of 
the point 

2)( xxf =
2=x . Then it looks like evident that the values of the function 

)(xf  lie in a small vicinity of 4, that is,    as  42 →x 2→x . In this 
example we can directly substitute 2=x  to get the limit value of  
as 

2)( xxf =
2→x .  

However, if a function is not defined at some point ax = , we need to use 
another way of looking to find the limit value of )(xf  as ax → .  
Sometimes, similar problems can be solved algebraically, for instance, 

aax
ax

axax
ax
axxf 2))(()(

22

→+=
−

+−
=

−
−

= ,     as ax → . 

We see that f (x) approaches  as x tends to a. Therefore, by the 
supplementary condition 

a2

⎪⎩

⎪
⎨
⎧

=

≠
−
−

=
ax

ax
ax
ax

xf
if,2

if,)(

22

 

the domain of 
ax
axxf

−
−

=
22

)(  can be extended to include the point ax = . 

Practically, we have found the limit of the given function as ax → . In 
many other cases the evaluation of the limits is more complicated. 
The above example shows that it is possible to operate with expressions of 

the form 
0
0  by the limit process. Some other indeterminate forms can be 

reduced to the form 
0
0  by algebraic transformations. For example, if 

∞→)(xf  and ∞→)(xg  as ax → , then the fraction 
g
f  is an 

indeterminate form 
∞
∞ , which can be reduced to the form 

0
0  by dividing 

both the numerator and denominator by the product )( gf ⋅ :  
f
g

g
f

1
1

= , 

where 01 →g  and 01 →f  as ax → . 
Using limits one can also investigate the asymptotic behavior of functions 
at infinity. The comprehension of limits creates the necessary prerequisites 
for understanding all other concepts in Calculus. 
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2.2.2. Basic Conceptions and Definitions 
Here we will give different formulations of limits in order to demonstrate 
the unity of various approaches to this concept. Intuitive arguments will be 
combined with rigorous proofs of propositions. 
Intuitive Definition: 

The limit  of a function )(xf   is a number A such that  
the values of )(xf  remain arbitrarily close to A when 

the independent variable x is sufficiently close to a specified point a: 
Axf

ax
=

→
)(lim . 

One can also say that the values of the function f (x) approach the number A 
as the variable x tends to the point a. 
Other Notation:   Axf →)(    as ax → . 
The above definition gives the general idea of limits. It can be easily 
translated into the rigorous mathematical language. 
The words “the values of a given function )(xf  remains arbitrarily close to 
A” mean that | f (x) – A | is less than any number 0>ε , no matter how 
small ε  is chosen. The only thing that matters is how the function is 
defined in a small neighborhood of the limit point. 
By a value of ε  we set an acceptable deviation of )(xf  from the limit 
value A, that is, ε  means a variation of )(xf  from A, which can be 
disregarded. The bound values ε−A  and ε+A  determine the 
corresponding interval ),( 21 δδ +− aa  of the values of the independent 
variable x around its limit point ax = . 
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The above drawing illustrates that for any points x  in the interval 
21 δδ +<<− axa ,   (1) 

the corresponding values of )(xf  lie in the epsilon vicinity of the point A, 
εε +<<− AxfA )( .   (2) 

Setting },min{ 21 δδδ = , we can change inequality (1) by the inequality 
δδ +<<− axa .    (3) 

If condition (1) implies inequality (2), then inequality (3) implies inequality 
(2) even more. It is more convenient to operate with a symmetric delta 
neighborhood of the point a, and nothing more in this change. 
Formally, the limit of a function is defined as follows: 

Let a function )(xf  be defined in some neighborhood of a point a, 
including or excluding ax = . 

A number A is called the limit of )(xf  as x tends to a, 
if for any arbitrary small number 0>ε   

there exists the corresponding number 0)( >= εδδ  such that  
the inequality  δ<− ax   implies 

ε<− Axf )( . 

The inequality δ<− ax  expresses the condition that values of the variable 
x are in an immediate vicinity of the limit point a. 
If a is an infinite point then any neighborhood of a consists of sufficiently 
large values of x, and so it is necessary to modify the above definition for 
case of ∞→x . 
If ∞→x , the limit of a function is defined by the following wording: 

Number A is called the limit of )(xf  as ∞→x , 
if for any arbitrary small number 0>ε  

there exists the corresponding number 0)( >∆=∆ ε  
such that the inequality ∆>x  implies 

ε<− Axf )( . 

There are two special cases of great importance: 
1.       0)( →xf    as   ax → ,  and 
2.       ∞→)(xf    as   ax → . 

In the first case, the limit of the function equals zero, 
0)(lim =

→
xf

ax
, 

and )(xf  is called an infinitesimal function. 
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If Axf →)(  as x tends to a, then the difference between )(xf  and its limit 
value A approaches zero as ax → . 
It means that )()( xAxf α=−  is an infinitesimal function as ax → . 
Therefore, if a number A is the limit of a function )(xf  as ax → , then 

)(xf  can be expressed as 
)()( xAxf α+= , 

where )(xα  is an infinitesimal function as x tends to a. 
Thus, we have obtained the following helpful rule of finding the limit of a 
function: 

malinfinitesi)( += Axf   as ax →  
⇔  

Axf
ax

=
→

)(lim  

Examples of infinitesimal functions: 

02 →x        as 0→x  83 −x            as 2→x  
0sin →x     as 0→x  0sin →x       as π→x  
01→−xe   as 0→x  01 →x          as ∞→x  

0ln →x      as 1→x  0)1ln( →+ x  as 0→x  
     

In the second case, the statement “ ∞→)(xf  as ax → ” has the following 
mathematical wording: 

If for any arbitrary large number 0>E  there exists the 
corresponding number 0)( >= Eδδ  such that the inequality 

δ<− ax   implies  Exf >)( ,  then 
the function )(xf  has an infinite limit as x tends to the point a. 

If ∞→)(xf  as ax → , the function is called an infinite large function 
that is written symbolically as 

∞=
→

)(lim xf
ax

 

or  
∞→)(xf    as ax → . 

The symbolical notations 
+∞=

→
)(lim xf

ax
     and     −∞=

→
)(lim xf

ax
 

mean that infinite function )(xf  is positive defined or negative defined, 
respectively, at least in some sufficiently small vicinity of the point ax = . 
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Examples of infinite large functions: 

+∞→21 x     as 0→x  +∞→2x        as +∞→x  
+∞→xe        as +∞→x  +∞→−xe       as −∞→x  
±∞→xtan   as 2π→x  +∞→x2cot   as 0→x  
−∞→xln      as 0→x  +∞→xln      as +∞→x  

   

2.2.2.1. Illustrations 
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 52



Functions 

2.2.2.2. One-Sided Limits 
Now suppose that  as 1)( Axf → ax →  provided that x belongs to a right-
sided neighborhood of the point a ( ax > ). Then the number  is called 
the right-sided limit of 

1A
)(xf , 

)(lim
01 xfA

ax +→
= . 

One can also use the following symbolic form to express this statement: 
1)( Axf →   as  0+→ ax   or simply  )0( +af . 

The left-sided limit has a similar meaning. If  as 2)( Axf → 0−→ ax  (that 
is, ax < ), then  is the left-sided limit of 2A )(xf : 

)0()(lim
02 −==

−→
afxfA

ax
. 

If x tends to zero being less than zero, we white 0−→x , while  the 
direction of approaching  x to zero from the side of positive values is 
denoted by the symbolical form  0+→x . 
In terms of δε − , one-sided limits are defined as follows: 
The number  is called the right-sided limit of 1A )(xf  as x tends to a, if 
for any arbitrary small 0>ε  there exists a positive number )(εδδ =  such 
that the inequality  δ+<< axa   implies 

ε<− |)(| 1Axf . 
Likewise, if  ε<− |)(| 2Axf   whenever  axa <<−δ , then  is the left-
sided limit of 

2A
)(xf  as x tends to a. 

By the definition of the limit, Axf →)(  as ax → , no matter what 
sequence of values of x, converging to a, is chosen. Therefore, the 
following theorem holds true: 

)(xf  has the limit at the point a if and only if 
there exist one-sided limits as ax → , which are equal to each other: 

Axfxf
axax

==
+→−→

)(lim)(lim
00

  ⇔   Axf
ax

=
→

)(lim . 

Example: Find the limit of the function 
2

1

51

1)(
−+

=
x

xf  at the point x = 2. 

Solution: Consider one-sided limits of )(xf  as 02 ±→x : 

1
01

1
51
1)(lim

02
=

+
=

+
= ∞−−→

xf
x

  and  0
1

1
51
1)(lim

02
=

∞+
=

+
= ∞++→

xf
x

. 

They differ from each other, and so )(xf  has no a limit at x = 2. 
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2.2.3. Properties of Infinitesimal Functions 
Property 1: 

Let )(xf  be a function bounded at least in some neighborhood of a point a 
and )(xα  be an infinitesimal function as x tends to a. 

Then the product )()( xxf α  is an infinitesimal function. 

Explanation: The absolute values of the bounded function )(xf  are 
restricted by a finite positive number M, | f (x)| < M,  for any x in some 
neighborhood of the point a. 
Since )(xα  is an infinitesimal function as x tends to a, then 

00|)(||)()(| =⋅→< MxMxxf αα  
Rigorous Proof: Since f (x) is a function bounded in some neighborhood of 
the point a, then there exists a finite positive number M such that 

Mxf <|)(|      (4) 
whenever 

1δ<− ax .     (5) 
Since )(xα  an infinitesimal function in the same neighborhood of the point 
a, any positive number Mε  corresponds to a positive number 2δ  such 
that the inequality 

2δ<− ax      (6) 
implies 

M
x εα <)( .     (7) 

Let us set },min{ 21 δδδ = . Then condition δ<− ax  implies inequalities 
(5) and (6), that results in inequalities (4) and (7). 
Therefore, for any arbitrary small number ε , we obtain that 

εεαα =<⋅=⋅ M
M

xfxxfx )(||)()()(  

whenever the values of  x  are in the delta neighborhood of the point  a. 
This proves that )()( xfxα  is an infinitesimal function. 

Property 2: 

The sum of two infinitesimal functions is an infinitesimal function. 

Explanation: If  0)( →xα   and  0)( →xβ   as ax → , then 
000)()( =+→+ xx βα   as ax → . 

Rigorous Proof: Let )(xα  and )(xβ  be infinitesimal functions as ax → . 
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Then for any arbitrary small positive number 2ε  there exist the 
corresponding numbers 01 >δ  and 02 >δ  such that 

1|| δ<− ax   ⇒   
2

|)(| εα <x  

and  

2|| δ<− ax   ⇒   
2

|)(| εβ <x . 

If },min{ 21 δδδ =  then inequality δ<− || ax  implies both 1|| δ<− ax  and 
2|| δ<− ax , and hence 

εεεβαβα =+<+≤+
22

|)(||)(||)()(| xxxx  

for any arbitrary small number ε . 
Corollary: 

The sum of any finite number of infinitesimal functions is  
an infinitesimal function. 

Explanation: The sum of two infinitesimals is an infinitesimal, the sum of 
which with a third infinitesimal is also an infinitesimal, and so on. 
The statement can be proved rigorously by the mathematical induction 
principle just in the same manner that was used in a case of sequences. (See 
Chapter 1, p. 18-19.) 

Example: )1ln(3tan4sin25 xxxxx +−++  is an infinitesimal function 
as 0→x , since each term of the sum is an infinitesimal function. 

2.2.4. Properties of Limits of Functions 
Property 1: 

A constant factor can be taken out the sign of the limit, 
)(lim)(lim xfcxfc

axax →→
= . 

Proof: By the rule formulated on page 47, 
Axf

ax
=

→
)(lim     ⇒ )()( xAxf α+= , 

where )(xα  is an infinitesimal function as ax → . 
Therefore,       )()( xcAcxfc α+=     ⇒ Acxfc

ax
=

→
)(lim . 

Properties 2-4: 
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If there exist both limits,  and , )(lim xf
ax→

)(lim xg
ax→

then there exist the limits of the sum, product and quotient of the functions: 

  2.  )(lim)(lim))()((lim xgxfxgxf
axaxax →→→

±=± . 

  3.  )(lim)(lim))()((lim xgxfxgxf
axaxax →→→

⋅=⋅ . 

  4.  
)(lim

)(lim

)(
)(lim

xg

xf

xg
xf

ax

ax
ax

→

→

→
=   (if 0)(lim ≠

→
xg

ax
). 

Let us prove, for example, Property 3. 
The statements 

Axf
ax

=
→

)(lim     and    Bxg
ax

=
→

)(lim  

mean that 
)()( xAxf α+=     and    )()( xBxg β+= , 

where )(xα  and )(xβ  are infinitesimal functions as ax → . 
Therefore, 

)).()()()((
))(())(()()(

xxxBxAAB
xBxAxgxf

βααβ
βα

+++=
++=

 

Since  )()()()( xxxBxA βααβ ++   is also an infinitesimal function as 
ax → , then 

)(lim)(lim)()(lim xgxfBAxgxf
axaxax →→→

⋅== . 

2.2.5. Examples 

1. Evaluate  
x
x

x sin
tanlim

0→
. 

Solution: In order to evaluate an indeterminate form 00 , we need to select 
and cancel common infinitesimal factors in the numerator and denominator 
of the given expression: 

xxx
x

x
x

cos
1

cossin
sin

sin
tan

== . 

By the properties of limits, 

1
1
1

coslim
1

cos
1lim

0
0

===
→

→ xx
x

x
. 
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2. Evaluate ⎟
⎠
⎞

⎜
⎝
⎛

+−
−

−+→ 34
1

2
1lim 221 xxxxx

. 

Solution: Here we deal with an indeterminate form ∞−∞ .  
Transform the expression under the sign of the limit: 

.
)3)(1)(2(

15
)1)(3)(1)(2(

15

)34)(2(
55

34
1

2
1

2222

−−+
−=

−−−+
−

−=

+−−+
+−

=
+−

−
−+

xxxxxxx
x

xxxx
x

xxxx
 

We have obtained the expression of the form  
0

constant ,  and so 

∞=⎟
⎠
⎞

⎜
⎝
⎛

+
−

→ xxxx 5
11lim 220

. 

3. Find  
2

1lim 2

2

1 −+
−

→ xx
x

x
      (an indeterminate form 

0
0 ). 

Solution: Present the fraction in factored form; then cancel the common 
infinitesimal factors: 

3
2

2
1lim

)2)(1(
)1)(1(lim

2
1lim

112

2

1
=

+
+

=
+−
+−

=
−+

−
→→→ x

x
xx
xx

xx
x

xxx
. 

4. Evaluate  
62

34lim 23

2

3 −−−
+−

→ xxx
xx

x
     (an indeterminate form 

0
0 ). 

Solution: Using the idea of reducing the common factors, we obtain 

7
1

2
1lim

)2)(3(
)1)(3(lim

62
34lim 232323

2

3
=

++
−

=
++−

−−
=

−−−
+−

→→→ xx
x

xxx
xx

xxx
xx

xxx
. 

5. Find 
xx

xx
x −

++
∞→ 2

2

3
154lim      (an indeterminate form 

∞
∞ ). 

Solution: In order to evaluate the indeterminate form 
∞
∞ , divide the 

numerator and denominator 2x  and then apply the properties of limits: 

.
3
4

1lim3

1lim1lim54

)13(lim

)154(lim

13
154lim

)3(
)154(lim

3
154lim

22

2

22

22

2

2

=
−

++
=

−

++
=

−
++

=
−
++

=
−
++

∞→

∞→∞→

∞→

∞→

∞→∞→∞→

x

xx

x

xx

x
xx

xxx
xxx

xx
xx

x

xx

x

x

xxx
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6. Evaluate 
2

37lim
2 −

−+
→ x

x
x

     (an indeterminate form 
0
0 ). 

Solution: Multiply the numerator and denominator by the sum )37( ++ x  
to complete the difference between two squares. Then cancel the like 
infinitesimal factors: 

.
6
1

37
1lim

)37)(2(
2lim

)37)(2(
97lim

)37)(2(
9)7(lim

)37)(2(
)37)(37(lim

2
37lim

22

2

2

2

22

=
++

=
++−

−
=

++−
−+

=
++−

−+
=

++−
++−+

=
−

−+

→→

→→

→→

xxx
x

xx
x

xx
x

xx
xx

x
x

xx

xx

xx

 

7. Evaluate  
12
23lim

1 −−
−+

→ x
x

x
      (an indeterminate form 

0
0 ). 

Solution: Likewise, complete the difference between squares to select and 
cancel the common infinitesimal factors. Note that 

23
1

23
43

23
)23)(23(23

++
−

=
++
−+

=
++

++−+
=−+

x
x

x
x

x
xxx  

and 

12
1

12
12

12
)12)(12(12

+−
−

−=
+−
−−

=
+−

+−−−
=−−

x
x

x
x

x
xxx . 

Therefore,  

2
1

4
2

23
12lim

12
23lim

11
−=−=

++
+−

−=
−−
−+

→→ x
x

x
x

xx
. 

8. Evaluate 
2
8lim

3

2 −
−

→ x
x

x
      (an indeterminate form 

0
0 ). 

Solution: In view of the formula of the difference between two cubes, 

12)42(lim
2

)42)(2(lim
2
8lim 2

2

2

2

3

2
=++=

−
++−

=
−
−

→→→
xx

x
xxx

x
x

xxx
. 

9.   1
01
01

)
5
3(1

)
5
3(1

lim
35
35lim =

+
−

=
+

−
=

+
−

∞+→∞+→ x

x

xxx

xx

x
. 

10.    1
10
10

1)35(
1)35(lim

35
35lim −=

+
−

=
+
−

=
+
−

∞−→∞−→ x

x

xxx

xx

x
. 
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.
2
1

1
1lim

)1)(1(
1lim

1
1lim

1
21lim

1
2

1
1lim.11

11

212121

=
+

=
+−

−
=

−
−

=
−
−+

=⎟
⎠
⎞

⎜
⎝
⎛

−
−

−

→→

→→→

xxx
x

x
x

x
x

xx

xx

xxx
 

.1
5
5lim

5
55lim

)75(
)35()45(lim

)75(
)35()45(lim.12

100

100

100

3070

100

3070

100

3070

===

+
−+

=
+

−+

∞→∞→

∞→∞→

xx

xx x
xx

x
xx

 

.1
)5(
)5(lim

)5(
)5()5(lim

)5(
)5()5(lim

)75(
)35()45(lim.13

100

100

100

3070

100

3070

100

3070

===

=
+

−+

∞→∞→

∞→∞→

x
x

x
xx

x
xx

x
xx

xx

xx
 

14.  
2
1

3
lim

)3)(3(
)3(lim

3
3lim

333
−=

+
−=

+−
−

=
−
−

→→→ x
x

xx
xx

x
xx

xxx
. 

.3)1(lim
1

)1)(1(lim

1
1)(lim

1
1lim.15

33 2

13

33 23

1

3

333

131

=++=
−

++−
=

−
−

=
−
−

→→

→→

xx
x

xxx

x
x

x
x

xx

xx
 

2.2.6. Classification of Infinitesimal Functions 
Infinitesimal functions can be classified in the same manner that was used 
in the corresponding section devoted to the sequences. 
Two infinitesimal functions, )(xα  and )(xβ , are called the infinitesimal 
functions of the same order of smallness as x tends to a, if their ratio has 
a finite non-zero limit: 

∞<<
→

|
)(
)(lim|0

x
x

ax β
α . 

In that case, infinitesimal functions )(xα  and )(xβ  are said to be 
proportional to each other in some vicinity of the point  a. 

In particular, if 1
)(
)(lim =

→ x
x

ax β
α , infinitesimal functions )(xα  and )(xβ  are 

called equivalent as x tends to a that is denoted symbolically as 
)(~)( xx βα . 
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An infinitesimal function )(xα  has a higher order of smallness with 
respect to )(xβ  as x tends to a, if 

0
)(
)(lim =

→ x
x

ax β
α . 

In this case, )(xβ  is called an infinitesimal function of a lower order of 
smallness with respect to )(xα . 

An infinitesimal function )(xα  is called an infinitesimal of the n-th order 
with respect to )(xβ  as x tends to a, if )(xα  and  are infinitesimal 
functions of the same order: 

nx))((β

∞<<
→

|
))((
)(lim|0 nax x

x
β
α . 

Examples 
1. Infinitesimal functions    and  4)( 2 −= xxα 2)( −= xxβ  as 2→x  

have the same order, since 

4)2(lim
2

)2)(2(lim
2
4lim

)(
)(lim

22

2

22
=+=

−
+−

=
−
−

=
→→→→

x
x

xx
x
x

x
x

xxxx β
α , 

and 4 is a finite non-zero number. 

2. If ∞→x  then 
834

1)( 2 ++
=

xx
xα  and 

20
1)( 2 +−

=
xx

xβ  are 

infinitesimal functions of the same order, since their ratio tends to a 
finite non-zero number: 

.
4
1

004
001

834

2011

834

20

834
20

)20(1
)834(1

)(
)(

2

2

2

2

2

2

2

2

2

2

=
++
+−

→
++

+−
=

++

+−

=

++
+−

=
+−
++

=

xx

xx

x
xx

x
xx

xx
xx

xx
xx

x
x

β
α

 

3. The limit of the ratio of the infinitesimal functions xxx sin)( =α    
and   xx tan)( =β  as 0→x  equals zero: 

0coslimcos
sin
sinlim

tan
sinlim

)(
)(lim

0000
====

→→→→
xxx

x
xx

x
xx

x
x

xxxx β
α . 

Therefore,  )(xα   is  an infinitesimal function of a higher order of 
smallness with respect to )(xβ . 
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4. Let xx =)(α  and 3)( xx =β . Since 

1lim
)(

limlim
033030

===
→→→ x

x
x
x

xxx β
α , 

that is, the limit is a finite number, then  )(xα   is an infinitesimal 
function of the third order with respect to )(xβ   as  0→x . 

5. Given two infinitesimal functions 
2

1)(
+

=
x

xα  and 
5

1)(
+

=
x

xβ  as 

∞→x , 

121

51
lim2

5

lim
2
5lim

5
1

2
1

limlim =
+

+
=

+

+

=
+
+

=

+

+=
∞→∞→∞→∞→∞→

x

x

x
x

x
x

x
x

x

x
xxxxx β

α . 

Therefore, )(xα   and  )(xβ   are equivalent infinitesimal functions as 
∞→x . 

6. Expressions 
73

1)( 2 +−
=

xx
xα  and 

102
1)( 2 ++

=
xx

xβ  determine  

equivalent infinitesimal functions as ∞→x , since the limit of their 
ratio equals unity: 

1731

1021
lim

73
102lim

)(
)(lim

2

2

2

2

=
+−

++
=

+−
++

=
∞→∞→∞→

xx

xx
xx
xx

x
x

xxx β
α . 

2.2.7. Comparison Between Infinitesimal Functions 
Rule 1: Let )(xα  and )(xβ  be two equivalent infinitesimal functions as 

ax → . Then 
)()()( xxx γαβ += , 

where )(xγ  is an  infinitesimal function of a higher order of smallness as 
ax → . 

Proof: By the definition, if )(~)( xx βα  then 1
)(
)(
→

x
x

α
β  as ax → , and so 

0111
)(
)(

)(
)()(

=−→−=
−

x
x

x
xx

α
β

α
αβ . 

Therefore, the difference ))()(( xx αβ −  is an infinitesimal function of a 
higher order of smallness with respect to the given infinitesimals as ax → . 
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Rule 2: If )(xβ  is an infinitesimal function of a higher order of smallness 
with respect to )(xα  as  ax → , then 

)(~)()( xxx αβα + . 
It means that )(xβ  is a negligible quantity with respect to )(xα  as 

ax → . 

Proof: By the hypothesis, 0
)(
)(
→

x
x

α
β  as ax → . Then 

)()()01(~)()
)(
)(1()(

)(
)()()()( xxx

x
xx

x
xxxx ααα

α
βα

α
βαβα =⋅++=

+
=+ . 

Rule 3: If )(xα  and )(xβ  are infinitesimal functions of the same order and  

∞<=< λ
β
α

)(
)(lim0

x
x , 

then )(xα  and )(xβλ   are equivalent infinitesimal functions, 
)(~)( xx βλα . 

Examples: 

1. Since 22 7
1

47
1 ~ xxx

x ∞→

+−
  and  22 8

1
168

1 ~ xxx

x ∞→

++
,  

then      
7
8

7
8lim

)8(1
)7(1lim

)168(1
)47(1lim 2

2

2

2

2

2
===

++
+−

∞→∞→∞→ x
x

x
x

xx
xx

xxx
. 

2. Infinitesimal functions 2x  and 3x  have higher orders of smallness 
with respect to x as 0→x . Therefore, xxxx ~32 ++ , that is, 

 is a negligible quantity with respect to x as x  tends to zero. )( 32 xx +

3. Since xtan  and xsin  are equivalent infinitesimal functions as 
0→x , the difference between them is an infinitesimal function of a 

higher order of smallness with respect to each of them. Really, 

x
xx

x
xx
xx

xx
xxx

x
xx

x
xx

x
xxx

3
32

sinconst
)cos1(cos

sin
)cos1(cos
)cos1(sin

)cos1(cos
)cos1)(cos1(sin

cos
cos1sin

)1
cos

1(sinsin
cos
sinsintan

⋅→
+

=
+
−

=

+
+−

=
−

=

−=−=−

 

as 0→x .  
Thus, xx sintan −   is an infinitesimal function of the third order of 
smallness with respect to both functions, xsin  and xtan , as 0→x . 
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2.2.8. Classification of Infinite Large Functions 
Two infinite large functions, )(xα  and )(xβ , have the same increasing 
order as ax → , if their ratio has a finite nonzero limit, 

∞<<
→

|
)(
)(lim|0

x
x

ax β
α . 

In particular, if 

1
)(
)(lim =

→ x
x

ax β
α  

then )(xα  and )(xβ  are called equivalent infinite large functions as 
ax →  that is denoted symbolically as 

)(~)( xx βα . 
An infinite large function )(xα  has a higher increasing order with respect 
to )(xβ  as x tends to a, if 

∞=
→ )(

)(lim
x
x

ax β
α . 

Correspondingly, )(xβ  is an infinite large function of a lower increasing 
order with respect to )(xα . 

Let )(xα  and  be two infinite large functions of the same order, nx))((β

∞<<
→

|
))((
)(lim|0 nax x

x
β
α . 

Then )(xα  is called an infinite large function of the n-th order with 
respect to )(xβ  as x tends to a. 

2.2.9. Comparison Between Infinite Large Functions 
Rule 1: Let )(xα  and )(xβ  be two infinite large functions as ax → . Then 

)()()( xxx γαβ += , 
where )(xγ  is an infinite large function of a lower increasing order as 

ax → . 
Rule 2: The difference between two equivalent infinite large functions is a 
quantity of a lower increasing order: 

)(~)( xx βα       ⇒ 011
)(
)(1

)(
)()(

=−→−=
−

x
x

x
xx

α
β

α
βα . 

Rule 3: If )(xα  is an infinite large function of a higher increasing order 
with respect to )(xβ  as ax →  then the sum )()( xx βα +  is an infinite 
large function equivalent to )(xα : 
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101
)(
)(1

)(
)()(

=+→+=
+

x
x

x
xx

α
β

α
βα    ⇒    )(~)()( xxx αβα + . 

In this case, )(xβ   is said to be a negligible quantity with respect to )(xα  
as ax → . 
If )(xα  and )(xβ  are infinite large functions of the same increasing order 

as ax →  and ∞<=<
→

λ
β
α

)(
)(lim0

x
x

ax
, then )(xα  and )(xβλ   are equivalent 

infinite large functions, 
)(~)( xx βλα . 

In this case, they say that infinite large functions are proportional 
asymptotically as ax → . 

Examples 
1. Infinite large functions  and  as 2)( xxf = xxxg 5)( 2 += ∞→x  

have the same increasing order, since gf
x ∞→
lim  is a finite number: 

1)51(lim5lim
)(
)(lim 2

2

=+=
+

=
∞→∞→∞→ xx

xx
xf
xg

xxx
. 

Moreover, the limit equals 1, and so )(xf  and )(xg  are equivalent 
infinite large functions as ∞→x . 
One can see that 5x (in the numerator) is a negligible quantity with 
respect to 2x  as ∞→x .  
Generally, if  k < n  and a is a finite number, then any power 
function  is a negligible quantity with respect to kxa nx  as ∞→x .  
For instance, 

55 4~5074 xxx ++      and       . 55 6~836 xxx +−
Hence, 

3
2

6
4lim

836
5074lim 5

5

5

5

==
+−
++

∞→∞→ x
x

xx
xx

xx
. 

2. The infinite large function 734 2 ++ xx  is equal asymptotically to 
x2  as ∞→x , since 73 +x  is a negligible quantity with respect to 

24x .  
Likewise, xxxx ~2853 23 +−+ , since 285 2 +− xx  is a negligible 
quantity with respect to 3x . Therefore, 

 22lim
285

734lim
3 23

2

==
+−+

++
∞→∞→ x

x
xxx

xx
xx

. 
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3. Evaluate  
27916

153lim
234

2

++−+

++
∞→ xxxx

xx
x

. 

Solution: Since 
22 3~153 xxx ++  

and 
24234 416~27916 xxxxxx =++−+ , 

as ∞→x , then 

4
3

4
3lim

27916
153lim 2

2

234

2

==
++−+

++
∞→∞→ x

x
xxxx

xx
xx

. 

4. Both functions, 34)( xxxf +=  and , are infinite 
large functions as 

xxxg += 2)(
∞→x .  

Prove that: 
1) )(~)( xgxf ; 
2) both functions, )(xf  and )(xg , are infinite large functions of 

the second increasing order with respect to x as ∞→x ; 
3) the difference )()( xgxf −  is a quantity of a lower increasing 

order with respect to the given functions )(xf  and )(xg . 
Solution:  

1) .1
11
11

lim
)(

limlim
)(
)(lim 22

234

2

34

=
+
+

=
+
+

=
+
+

=
∞→∞→∞→∞→ x

x
xxx
xxx

xx
xx

xg
xf

xxxx
 

2) 111limlim 2

34

=+=
+

∞→∞→
x

x
xx

xx
 and 1)11(limlim 22

2

=+=
+

∞→∞→ xx
xx

xx
. 

3)  By the formula of difference between two squares, 

.2

)()())((

234

23

234

23434

234

2223422

xxxx
xx

xxxx
xxxxx

xxxx
xxxx

gf
gf

gf
gfgfgf

+++

−−
=

+++

−−−+
=

+++

+−+
=

+
−

=
+

+−
=−

 

If ∞→x  then 
323 ~ xxx +   

and       
224234 2~ xxxxxxx =++++ . 

Hence, 2~ xgf −− , that is, the difference is an infinite large 
function of the first increasing order with respect to x. 
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 66

2.3. The Most Important Limits 
2.3.1. Theorem 1 

1sinlim
0

=
→ x

x
x

 

This statement can be also expressed as 
xx ~sin      as  0→x . 

Proof: Note that 
x

xsin  is an even function. Therefore, we may consider 

only the case of positive values of variable x in a vicinity of zero. 
Let x be a central angle (in radians) of the unit circle. Compare the areas of 
the figures shown in the drawings below. 

 

 
The area of the triangle OAB is 

xS OAB sin
2
1

=∆ . 

The area of the circular sector OAB is 

xSOAB 2
1

= . 

The area of the triangle OAC is 

xS OAC tan
2
1

=∆ . 

Evidently, 
xxx tansin <<  

for any 20 π<< x . 
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Recall that 
x
xx

cos
sintan =  and perform simple algebraic transformations: 

xxx tansin <<         ⇒
xx

x
cos

1
sin

1 <<      ⇒

x
x

x cossin1 >> . 

If 0→x  then 1cos →x , and hence  1sin
→

x
x . 

Graphic Illustrations: 

       

Note: If )(xα  is an infinitesimal function as ax → , then 
)(~)(sin xx αα     (as ax → ), 

1
)(

)(sinlim =
→ x

x
ax α

α , 

independently of a type of the function )(xα  and value of a. The only thing 
that matters is a smallness of )(xα  as x tends to a.  
For instance, 

)8(~)8sin( 33 −− xx   as  2→x , 

xx
1~1sin    as  ∞→x . 

Examples: 

1.  
3
7

3
7lim

3sin
7sinlim

00
==

→→ x
x

x
x

xx
. 

Another Solution:    
3
7

3sin
3

7
7sinlim

3
7

3sin
7sinlim

00
==

→→ x
x

x
x

x
x

xx
. 
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2.  1
cos

1limsinlim
cos

sinlimtanlim
0000

=⋅==
→→→→ xx

x
xx

x
x

x
xxxx

. 

Therefore, 

xx ~tan     as 0→x . 

3. Evaluate 
x

x
x

arcsinlim
0→

. 

Solution: By changing the variable tx sin=  we obtain xt arcsin=  and 
0→t  as 0→x . Therefore, 

1
sin

limarcsinlim
00

==
→→ t

t
x

x
tx

. 

Thus, infinitesimal function xarcsin  is equivalent to x as 0→x , 

xx ~arcsin    as 0→x  

4. Evaluate 
x

x
x

arctanlim
0→

. 

Solution: Likewise, substitution xt arctan=  implies tx tan=  and 
0→t  as 0→x . Therefore, 

1
tan

limarctanlim
00

==
→→ x

x
x

x
xx

, 

xx ~arctan   as 0→x . 

5. Evaluate 20

cos1lim
x

x
x

−
→

. 

Solution: By making use of the half-angle identity the numerator can be 
expressed through a sine function: 

2
sin2cos1 2 xx =− . 

In view of Theorem 1, 2~2sin xx .  Therefore, 

2
1

2
lim

)
2

(2
lim2

sin2
limcos1lim 2

2

02

2

02

2

020
====

−
→→→→ x

x
x

x

x

x

x
x

xxxx
. 

It means that  
2

~cos1
2xx− , or 

2
1~cos

2xx −    as 0→x . 
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6. Evaluate 
1tan

cossinlim
4

−
−

→ x
xx

x π
. 

Solution: Using the identity 
x

xx
x
xx

cos
cossin1

cos
sin1tan −

=−=−  we get 

.
2
2coslimcos

cossin
cossinlim

1tan
cossinlim

444

==
−
−

=
−

−

→→→

xx
xx
xx

x
xx

xxx πππ
 

7. Evaluate  
x
x

x 2cos1
8cos1lim

0 −
−

→
. 

Solution: By the trigonometric identity   
2

sin2cos1 2 tt =− , 

16)4(lim
sin2

4sin2lim
2cos1
8cos1lim 2

2

02

2

00
===

−
−

→→→ x
x

x
x

x
x

xxx
. 

8. Evaluate  2

2

0

cos1lim
x

x
x

−
→

. 

Solution: Since tt 22 sincos1 =−   and   tt ~sin ,  then 

1limsinlimcos1lim 2

2

02

2

02

2

0
===

−
→→→ x

x
x

x
x

x
xxx

. 

9.  Evaluate  
x
x

x 3tan4
2sin5lim

0→
. 

Solution: If 0→x  then xx 2~2sin  and  xx 3~3tan . Therefore, 

6
5

3
2lim

4
5

3tan4
2sin5lim

00
==

→→ x
x

x
x

xx
. 

10.  Evaluate  2
2 1sinlim

x
x

x ∞→
. 

Solution: Since 21 x  is an infinitesimal function as ∞→x , then 
22 1~1sin xx , and so 

11lim1sinlim 2
2

2
2 ==

∞→∞→ x
x

x
x

xx
. 

11.  Evaluate 
x
x

x 3tan
7tanlim

2
π

→
. 

Solution: In order to evaluate an indeterminate form 
∞
∞ , set 

2
π

−= xt : 
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t
tttx

7tan
17cot)

2
77tan()

2
(7tan7tan −=−=+=+=

ππ  

and 

t
tx

3tan
1)

2
(3tan3tan −=+=

π . 

Since  
2
π

→x ,   then  0
2
→−=

πxt . Therefore, 

7
3

7
3lim

7tan
3tanlim

3tan
7tanlim

00
2

===
→→→ t

t
t
t

x
x

ttx π
. 

12.  Evaluate 
x
x

x cos1
cos1lim

0 −
−

→
. 

Solution: Transform the numerator: 

.
411

)
2

(2

cos1
2

sin2

cos1
cos1

cos1
)cos(1

cos1
)cos1)(cos1(cos1

2
22

2

~
0 x

x

x

x

x
x

x
x

x
xxx

x
=

++
=

+
−

=

+
−

=
+

+−
=−

→
 

Now transform the denominator: 

22
2

2
sin2cos1

2
2 ~

0 xxxx
x

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

→
. 

Then we get  

0
2

lim
2
4lim

cos1
cos1lim

0

2

00
===

−
−

→→→

x
x
x

x
x

xxx
. 

13.  Evaluate 
1

)tan(lim
1 −→ x

x
x

π . 

Solution: Substitution 1−= xt  implies 
ttx ππππ tan)tan()tan( =+= . 

Since  1→x ,   then  01→−= xt . 
Therefore, tt ππ ~tan  that results in 

ππππ
===

− →→→ t
t

t
t

x
x

ttx 001
lim)tan(lim

1
)tan(lim . 
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2.3.1.1. Calculus of Approximations 
Here and below we use the radian measure of angles unless the contrary is 
allowed. 
Theorem 1 states the approximation formula 

xx ≈sin , 
which is valid for any x  in some small vicinity of zero. 
Other trigonometric functions can be expressed through the sine function. 
For instance, 

2
22

2
1)

2
(21

2
sin21cos xxxx −=⋅−≈−= , 

x
x
x

x
xx ≈

−
≈=

21cos
sintan 2 . 

The below drawings illustrate the error range of the above approximation 

formulas. A measure of inaccuracy  100
cos

)21(cos 2

⋅
−−
x

xx %  is shown in the 

additional window. 
We can hardly ever see any differences between graphs of functions 

xy cos=  and 
2

2
1 xy −=    for   °≈< 45rad8.0|| x . 

 

 

Fig. 1.  Graphs of functions xy cos=  (upper curve) and  

21 2xy −=   (lower curve).  
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The ratio of the cosine function to its polynomial approximation is shown 

in Fig.2. One can see that the quadratic polynomial 
2

1
2x

−  fits well the 

cosine function in a wide range of values of x. 

 
In Fig. 2, the graphs of the functions xy tan=  and xy =  are presented. A 

measure of inaccuracy   100
tan

tan
⋅

−
x

xx %   is shown in the additional 

window. 
 
 

 
Fig. 2.  The graph of the functions xy tan=  and  xy = . 
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Consider a few numerical examples. 
Approximation 

formulas for )(xf  Approximate values of )(xf  Exact values 
of )(xf  

1745.0
1818

sin10sin ≈≈=°
ππ  0.1736… 

xx ≈sin  
52.0

66
sin30sin ≈≈=°

ππ  5.0  

9391.0)
9

(
2
11

9
cos20cos 2 ≈−≈=°

ππ 0.9397… 2

2
1cos xx −≈  

8629.0
72

1
6

cos30cos
2

≈−≈=°
ππ  ...8660.0

2
3
=

1745.0
1818

tan10tan ≈≈=°
ππ  0.1763… 

xx ≈tan  
3491.0

99
tan20tan ≈≈=°

ππ  0.36397… 

 
2.3.2. Theorem 2 

ex x
x

=+
→

1

0
)1(lim  

(e = 2.71828…) 

Using substitution 
x

t 1
=  and then returning to the symbol x, we can express  

Theorem 2 in the other form: 

e
x

x

x
=+

∞→
)11(lim . 

(See detailed discussion of the theorem in Chapter 1, pp. 28-31). 
Note: If )(xα  is an infinitesimal function as ax → , then 

ex x
ax

=+
→

)(
1

))(1(lim αα . 

For instance, 
( ) ex x

x
=+

→

sin1

0
sin1lim , 

e
x

x

x
=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→

5

5
11lim . 
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The well-known logarithmic identity 
abb ea ln=  

can be generalized by the limit process that results in the following 
Important Rule: 

If  )(xα  and )(xβ  are infinitesimal functions as ax → , then 

 
)(

))(1ln(lim
)(

1

))(1(lim x
x

x
ax

axex β
α

βα
+

→

→=+ .  (8) 

Let 1)( →xf  and ∞→)(xg  as ax → .  

Then  is an indeterminate form ( ) )()( xgxf ∞1  as ax → .  

To apply Theorem 2, it is necessary to reduce ( ) )()( xgxf  to the standard 

form )(
1

))(1( xx αα+ , where )(xα  is an infinitesimal function as x tends 
to infinity. 
The general procedure of the reducing is the following: 

( )

( ) ,]1[)1(1

)1(1]1[
)11 1()1(

1
−⋅−⋅ ⋅⋅

∞

+=−+=

−+==

−
fgfg

ff

ff gg

αα
 

where 1−= fα . Thus, 

( ) ( )

,

)1)((1lim)(lim

)1)(()(lim

)1)(()()(
1)(

1

−⋅

−⋅

→

⋅

→→

=

−+= −

xfxg

xfxgxg

ax

axax

e

xfxf xf
 (9) 

that is the given problem is reduced to evaluation of . )1)()((lim −
→

xfxg
ax

Examples: 

1. Evaluate  
x

x x
x

⎟
⎠
⎞

⎜
⎝
⎛ +

∞→

4lim . 

Solution: Since ( ) ex
x
→+ 441   as ∞→x , then 

4

4

4

4

4 41lim41lim41lim4lim e
xxxx

x
x

x

x

x

x

x

x

x
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→∞→∞→∞→
. 



Functions 

 75

2. Evaluate  
23lim

+

∞→
⎟
⎠
⎞

⎜
⎝
⎛ + x

x x
x

. 

Solution: Note that 
22 31313
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ + +

xxx
x xx

, where 
x

x ⎟⎠
⎞

⎜
⎝
⎛ +

31  is an 

indeterminate form  as ∞1 ∞→x , while the expression ( 231 x+ )   tends 
to 1 as ∞→x . 
Therefore, 

3

3

3
22 31lim3131lim3lim e

xxxx
x

x

x

x

x

x

x
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→∞→

+

∞→
. 

3. Evaluate  
x

x x
x

⎟
⎠
⎞

⎜
⎝
⎛ −

∞→

4lim . 

Solution: 

4
4

)4()
4

( 141lim41lim4lim
e

e
xxx

x
x

x

x

x

x

x
==⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ − −

−⋅−

∞→∞→∞→
. 

4. Evaluate  
x

x x
x

⎟
⎠
⎞

⎜
⎝
⎛

+
+

∞→ 5
3lim . 

Solution: 

.1

)51(lim

)31(lim

)51(lim

)31(lim

51
31lim

)5(
)3(lim

5
3lim

25

3

5
5

3
3

ee
e

x

x

x

x

x
x

xx
xx

x
x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

==

+

+
=

+

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

⋅

∞→

⋅

∞→

∞→

∞→

∞→∞→∞→

 

5. Evaluate 1
4

1
)12(lim −

→
− x

x

x
x . 

Solution: 

( )

( ) .lim)1(21lim

)1(21lim)12(lim

88

1

8

)1(2
1

1

)1(2
8

1
1

4

1

eex

xx

x

x

x

x
x

x
x

x
x

x

x

==⎟
⎠
⎞

⎜
⎝
⎛ −+=

−+=−

→
−

→

−
→

−
→
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2.3.3. Theorem 3 

1)1ln(lim
0

=
+

→ x
x

x
 

This statement can also be expressed in the form 
xx ~)1ln( +      as  0→x . 

Proof: By the properties of logarithms, 

xxx
x

1

)1ln()1ln(1
+=+ . 

Recall that ex x →+
1

)1(  as 0→x . However, if the quantity xx
1

)1( +  
approaches number e, then its natural logarithm tends to , eln

1ln)1ln(
1

=→+ ex x   as 0→x . 

Graphic Illustrations: 
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Note: If )(xα  is an infinitesimal function as ax → , then 
)(~))(1ln( xx αα+   as ax → , 

1
)(

))(1ln(lim =
+

→ x
x

ax α
α

. 

For instance, 
33 2~)21ln( xx −−+      as  2→x , 

xx 22 sin~)sin1ln( −−      as  0→x , 

1
52

)521ln(lim 4

4

0
=

−
−+

→ xx
xx

x
. 

Examples: 

1. Evaluate 
x

x
x 7

)21ln(lim
0

−
→

. 

Solution: In view of the above note, 

7
2

2
)21ln(lim

7
2

7
)21ln(lim

00
−=

−
−

−=
−

→→ x
x

x
x

xx
. 

2. Evaluate 
x

x
x 2tan

)4sin1ln(lim
0

+
→

. 

Solution:  By Theorem 1,  xx 4~4sin   and  xx 2~2tan   as 0→x .  
In addition,  xxx 4~4sin~)4sin1ln( +   as  0→x . 
Therefore, 

2
2
4lim

2tan
)4sin1ln(lim

00
==

+
→→ x

x
x

x
xx

. 

3. Evaluate 
x

xx
x 3tan

)arcsin91ln(lim
2

0

−+
→

. 

Solution: First,  is infinitesimal function as )arcsin9( 2 xx − 0→x , and 
so 

)arcsin9(~)arcsin91ln( 22 xxxx −−+ . 

Second,   is a negligible quantity with respect to 9x as 22 ~arcsin xx
0→x , and so  

xxx 9~)arcsin9( 2− . 
Third,  xx 3~3tan   as 0→x .  
Finally, 

3
3
9lim

3tan
)arcsin91ln(lim

0

2

0
==

−+
→→ x

x
x

xx
xx

. 
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4. Evaluate )ln)2(ln(lim xxx
x

−+⋅
∞→

. 

Solution: In view of the logarithm properties, 

)21ln(2lnln)2ln(
xx

xxx +=
+

=−+ . 

Since x2  is an infinitesimal function as ∞→x ,  then  
xx
2~)21ln( + . 

Therefore, 

.21

2

lim1

)21ln(
lim)ln)2(ln(lim ==

+
=−+⋅

∞→∞→∞→

x

x

x

xxxx
xxx

 

5. Find )
1
1ln(lim

−
+

⋅
∞→ x

xx
x

. 

Solution: In a similar way, 

.1
1
2lim

2
1

1
)1(1lim

2
1

1
)11ln()11ln(lim

2
1

11
11lnlim

2
1

1
1lnlim

2
1

1
1lnlim

==
−−

=
−−+

=

−
+

⋅=
−
+

⋅=
−
+

⋅

∞→∞→∞→

∞→∞→∞→

x
x

x
xx

x
xx

x
xx

x
xx

x
xx

xxx

xxx
 

6. Evaluate 2
1

0
)(coslim x

x
x

→
. 

Solution: By Rule (8) (see Theorem 2, p. 74),  Ax
x

ex =
→

2
1

0
)(coslim , 

where  20

1

0

)ln(coslim)ln(coslim 2

x
xxA

x
x

x →→
== . 

Using the fundamental trigonometric identity 
xx 22 sin1cos −=  

and in view of the properties of logarithms, we obtain 

2

2

02

2

020 2
)sin1ln(limsin1lnlim)ln(coslim

x
x

x
x

x
xA

xxx

−
=

−
==

→→→
. 

However, , and so  222 ~sin~)sin1ln( xxx −−−
2
1

2
lim 2

2

0
−=

−
=

→ x
xA

x
. 

Therefore,  eex x

x
1)(coslim 211

0

2
== −

→
. 
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2.3.4. Theorem 4 

11lim
0

=
−

→ x
ex

x
 

The statement can be also expressed in the form 

xex ~1−      as  0→x . 
Proof: By the substitution 1−= xet , we obtain 

tex +=1     ⇒ )1ln( tx += . 
Therefore, 

)1ln(
1

t
t

x
ex

+
=

− . 

If 0→x  then , and so 011 0 =−→−= eet x

1
)1ln(

lim1lim
00

=
+

=
−

→→ t
t

x
e

t

x

x
. 

Graphic Illustrations: 
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Note: If )(xα  is an infinitesimal function as ax → , then 
)(~1)( xe x αα −      as ax → , 

1
)(

1lim
)(

=
−

→ x
e x

ax α

α
. 

For instance,  xe x 5~15 −   as  0→x . 
Examples: 

1. Evaluate  
x

e x

x

1lim
2

0

−
→

. 

Solution: 

2
2

1lim21lim
2

0

2

0
=

−
=

−
→→ x

e
x

e x

x

x

x
. 

2. Evaluate 
x

e x

x 4
1lim

sin

0

−
→

. 

Solution: Since   as  xe x sin~)1( sin − 0→x , then 

4
1sinlim

4
1

4
1lim

0

sin

0
==

−
→→ x

x
x

e
x

x

x
. 

3. Evaluate 
x

xe x

x tan
1lim

0

+−
→

. 

Solution: First,  xe x ~)1( −   and   xx ~tan    as  0→x . 
Second,  x  is an infinitesimal function of a higher order of smallness 
with respect to x , and hence 

xxx ~+    as  0→x . 
Finally, 

∞===
+−

→→→ xx
x

x
xe

xx

x

x

1limlim
tan

1lim
000

. 

4. Evaluate  
1

lim 21 −
−

→ x
eex

x
. 

Solution: Setting  1−= xt  and noting that 0→t  as 1→x  we obtain 

.
22

11
2

1lim1lim

)2(
1lim

)2(
lim

1
lim

00

0

1

021

ee
tt

ee

tt
ee

tt
ee

x
ee

t

t

t

t

t

t

t

x

x

=⋅⋅=
+

⋅
−

=

+
−

=
+
−

=
−
−

→→

→

+

→→
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5. Evaluate 20

2coslim
2

x
xex

x

−
→

. 

Solution: Since 2
2

21
2

)2(1~2cos xxx −=−   and   as 2~1
2

xex − 0→x , 

we get 

32lim21lim2coslim 2

22

02

2

020

22

=
+

=
+−

=
−

→→→ x
xx

x
xe

x
xe

x

x

x

x

x
. 

6. Evaluate  2

4

0 tan)1ln(
42coslim
xxx
xxe x

x ++
+−−

→
. 

Solution: By making use of the following relations of equivalence 
221~2cos xx − , 

xe x 4~14 −−− , 
xx ~)1ln( + , 
22 ~tan xx  

as 0→x  we obtain 

1
2
2lim424lim

tan)1ln(
42coslim 2

2

02

2

02

4

0
==

+⋅
++−

=
++

+−
→→

−

→ x
x

xxx
xxx

xxx
xxe

xx

x

x
. 

7. Evaluate  
12arcsin27

5arctan4)21ln(3sinlim 60 −+−
+−+

→ xx exx
xxx . 

Solution: Likewise, in view of the relations of equivalence: 
xx 3~3sin , 

xx 2~)21ln( −− , 

xx 5~5arctan , 
xx 2~2arcsin , 

xe x 6~16 − , 
it is not difficult to evaluate the given indeterminate form: 

.
3
7

9
21lim

6227
54)2(3lim

12arcsin27
5arctan4)21ln(3sinlim

00

60

==
+⋅−
⋅+−+

=

−+−
+−+

→→

→

x
x

xxx
xxx

exx
xxx

xx

xx
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2.3.5. Theorem 5 
For any number n 

n
x

x n

x
=

−+
→

1)1(lim
0

. 

This statement can be also written in the form 

nxx n ~1)1( −+      as  0→x . 

Proof: Let . Then 1)1( −+= nxt
tx n +=+ 1)1(    ⇒    )1ln()1ln( txn +=+ . 

Therefore, 

.)1ln(
)1ln(

)1ln(
)1ln(

)1ln(
)1ln(1)1(

x
x

t
tn

x
x

xn
tn

x
x

x
t

x
t

x
x n

+
⋅

+
=

+
⋅

+
=

+
+

⋅==
−+

 

Note that  as 01)1( →−+= nxt 0→x . 
By Theorem 3, 

1)1ln(
→

+
x

x   as  0→x     and     1
)1ln(

1
→

+ t
   as 0→t . 

Hence, 

n
x

x
t

tn
x
x n

→
+

⋅
+

=
−+ )1ln(

)1ln(
1)1(    as 0→x . 

Graphic Illustrations: 
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Note: If )(xα  is an infinitesimal function as ax → , then 

)(~1))(1( xnx n αα ⋅−+       (as ax → ), 

n
x
x n

ax
=

−+
→ )(

1))(1(lim
α
α

. 

For instance, 

xx cos
4
1~1cos14 −+    as  

2
π

→x , 

5
3sin

1)3sin1(lim 2

52

0
=

−+
→ x

x
x

. 

Examples: 

1. Evaluate 
x

x
x

131lim
0

−+
→

. 

Solution: By Theorem 5 (case 
2
1

=n ), 

2
3

2
13

3
131lim3131lim

00
=⋅=

−+
=

−+
→→ x

x
x

x
xx

. 

2. Evaluate 
x
x

x sin
121lim

5

0

−−
→

. 

Solution: By Theorem 5 (case 51=n ) and in view of the relation of 
equivalence xx ~sin   (as 0→x ), we obtain 

5
2

5
12

2
121lim2

sin
121lim

5

0

5

0
−=⋅−=

−
−−

−=
−−

→→ x
x

x
x

xx
. 
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3. Evaluate  
171
141lim

3

0 −−
−+

→ x
x

x
. 

Solution: By Theorem 5 (cases 31=n  and 21=n ),  

3
1

4
1413
→

−+
x
x   and   2

171
7

→
−−

−
x
x

   as  0→x . 

Therefore, 

21
82

3
1

7
4

171
7

4
141

7
4

171
141 33

−=⋅⋅−→
−−

−
⋅

−+
⋅−=

−−
−+

x
x

x
x

x
x

. 

4. Evaluate 
1)31(
1)61(lim 2002

2002

0 −−
−+

→ x
x

x
. 

Solution: 

.2
2002

120022

1)31(
3lim

6
1)61(lim2

1)31(
3

6
1)61(lim

3
6

1)31(
1)61(lim

20020

2002

0

2002

2002

02002

2002

0

−=⋅⋅−=

−−
−

⋅
−+

−=

−−
−

⋅
−+

−=
−−
−+

→→

→→

x
x

x
x

x
x

x
x

x
x

xx

xx

 

5. Evaluate 
1201
1)21(lim 5

100

0 −+
−+

→ x
x

x
. 

Solution: Since  0→x , 
xxx 2001002~1)21( 100 =⋅−+    and 

xxx 4
5
120~12015 =⋅−+ . 

Therefore,  

50
4

200lim
1201
1)21(lim

05

100

0
==

−+
−+

→→ x
x

x
x

xx
. 

6. Evaluate 2

3

0

4cos31lim
x

xxx
x

−−+
→

. 

Solution: Apply the relations of equivalence to evaluate the limit: 

xxx +=++ 1
3

31~313    (as  0→x ), 
22 812)4(1~4cos xxx −=−    (as  0→x ), 

8lim88lim4cos31lim 2

2

02

2

02

3

0
−=−=

−−
=

−−+
→→→ x

x
x

xxx
x

xxx
xxx

. 
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2.3.5.1. Calculus of Approximations 

Theorem 5 for 
3
1,

2
1,1−=n   yields the following approximation formulas: 

x
x

−≈
+

1
1

1 , 

2
11 xx +≈+ . 

The graphic illustrations below give a pictorial presentation about a range 
of accuracy of the approximations. We see that each of the above formulas 
can be considered as the first approximation which is valid only in an 
immediate neighborhood of the zero point. Note that the straight lines 

xy −=1  and 
2

1 xy +=  are the tangents to the curves 
x

y
+

=
1

1  and 

xy += 1 , correspondingly, both at the point 0=x . 
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Other Approximations in an immediate neighborhood of the point 0=x : 

x
x

+≈
−

1
1

1 , 

3
113 xx +≈+ , 

n
xxn +≈+ 11 . 

Numerical Examples: 

Approximation 
formulas for 

)(xf  
Approximate values of )(xf  Exact values 

of )(xf  

x
x

−≈
+

1
1

1  9.01.01
1.01

1
1.1

1
=−≈

+
=  0.90909… 

x
x

+≈
−

1
1

1  05.105.01
05.01

1
95.0
1

=+≈
−

=  1.09545… 

1.1
2
2.012.012.1 =+≈+=  0.9397… 

2
11 xx +≈+  

95.0
2
1.011.019.0 =−≈−=  0.94868… 

3
113 xx +≈+  05.1

3
15.0115.0115.1 33 =+≈+=  1.04769… 

In order to calculate an approximate value of 3 120 , it is necessary to 
represent the given number in the form 

333 04.015)
125

51(1255125 −=−=− , 

and then to apply the corresponding approximation formula. 

...9333.4
3
2.05)

3
04.01(504.015120 33 =−=−≈−=  

The exact value of 3 120  is 4.93242… 
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2.4. Summary: Infinitesimal Analysis 
Infinitesimal functions are notions of fundamental importance, because 
many concepts in the theory of limits can be expressed in terms of 
infinitesimals. In particular, an infinite large function is the reciprocal 
quantity of an infinitesimal one. The limit of a function can also be defined 
by making use of the concept of infinitesimal quantities. 
Due to the concept of equivalent infinitesimal functions, evaluation of 
indeterminate forms involving, for example, logarithmic or trigonometric 
functions, can be reduced to operations with simple power functions. 
The main purpose of the limit process is evaluation of indeterminate forms. 
The underlying cause of arising difficulties consists in a variety of 
indeterminate forms: 

00 0and,,1,,0,,
0
0

∞∞−∞∞⋅
∞
∞ ∞ . 

The indeterminate form 
0
0  represents the ratio of two infinitesimal 

quantities. The others can be algebraically transformed to the indeterminate 

forms 
0
0 . 

Really, if f and g are infinite large quantity then 

]
0
0[

1
1

==
f
g

g
f . 

In a similar way, 

]
0
0[

0
100 =⋅=∞⋅       and     ]

0
0[11

11

1
1

1
1

=
⋅

−
=−=−=∞−∞

gf

fg

gf

gf . 

By making use of the formula , expressions  , and  are 
reduced to the indeterminate form 

fgg ef ln= ∞1 , 0∞ 00
∞⋅0  considered above, and hence, each 

of them can be presented in the form of  
0
0

: 

if 1)( →xf  and ∞→)(xg , then ]
0
0[

1
00ln =
∞

=⋅∞=fg ; 

if ∞→)(xf  and , then 0)( →xg ]
0
0[

1
00ln =
∞

=∞⋅=fg ; 

if 0)( →xf  and , then 0)( →xg ]
0
0[

1
00ln =
∞

=∞⋅=fg . 
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2.5. Table of Often Used 

Equivalent Infinitesimal Functions 

Relations of Equivalency 
as  0→x  

xx ~sin  

2
~cos1

2xx−  

xx ~tan  

xx ~arcsin  

xx ~arctan  

xx ~)1ln( +  

xex ~1−  

xnx n ~1)1( −+  

x
x

~
1

11
+

−  

x
x

~1
1

1
−

−
 

2
~11 xx −+  

3
~113 xx −+  

n
xxn ~11 −+  
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2.5.1. Review Exercises 
In Problems 1 through 30 evaluate indeterminate forms: 

1. 
x

x
x −

−
→ 3

)9sin(lim
2

3
 

 
2. 32 8

)2sin(lim
x

x
x +

+
−→

 

3. 
1

tanlim
1 −→ x

x
x

π  
 

4.
1

tanlim
1 −→ x

x
x

π  

5. 
1

)1tan(lim
1 −

−
→ x

x
x

 
 

6. 2
2 1tanlim

x
x

x ∞→
 

7. x
x

x 7tan
2tanlim

2
π

→
  

8.
x
x

x π
π

3sin
cos1lim

1

+
→

 

9. 
xx
x

x 3sin
8cos1lim

0

−
→

 
 

10.
x
x

x 2cos1
4cos1lim

0 −
−

→
 

11. 
x

x
x −

−
→ 1

)1arcsin(lim
2

1
 

 
12.

2
)23arctan(lim 2

2

2 −−
+−

→ xx
xx

x
 

13. )
12

13
1

13(lim
22

+
+−

−
+

−+
∞→ x

xx
x

xx
x

 
 

14. )
5

13
1

13(lim
22

−
+−

−
+

−+
∞→ x

xx
x

xx
x

15. 
253lim

+

∞→
⎟
⎠
⎞

⎜
⎝
⎛ − x

x x
x  

 
16.

x

x x
x 3

7
2lim ⎟
⎠
⎞

⎜
⎝
⎛

+
−

∞→
 

17. x
x

x
x −

→
− 3

2

3
)145(lim  

 
18. x

x
x 3sin

1

0

2)4(coslim
→

 

19. 
xx

x
x 5sin

)41ln(lim 2

3

0

−
→

 
 

20.
x

x
x 3tan

)arcsin1ln(lim
0

+
→

 

21. )2ln)52(ln(lim xxx
x

−−⋅
∞→

  
22. )

3
4ln(lim 3

+
−

⋅
∞→ x

xx
x

 

23. 
4
1lim 2

2

2 −
−−

→ x
ex

x
 

 
24.

x
e x

x 5sin
1lim

4tan

0

−
→

 

25. 
xx
xxe x

x 3

3

0 tan)71ln(
54coslim

+−
+−

→
 

 
26.

xxx
xe x

x sin24arcsin5
13arctan2lim

0 +
−−−

→
 

27. 
x

x
x 2tan

141lim
0

−−
→

 
 

28.
)31ln(
161lim

4 2

0 xx
x

x −
−−

→
 

29. 
141
1101lim

5

0 −+
−−

→ x
x

x
 

 
30.

1)81(
1)41(lim 1000

1000

0 −+
−−

→ x
x

x
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The limit of the form 

x
xfxxf

x ∆
−∆+

→∆

)()(lim
0

 

is named the instantaneous rate of change of )(xf  at the point x . 

In Problems 31 through 42 find the instantaneous rate of change of the 
given functions. 

N 
x

xfxxf
x ∆

−∆+
→∆

)()(lim
0

 

31. 
x

xxx nn

x ∆
−∆+

→∆

)(lim
0

 

32. 
x

ee xxx

x ∆
−∆+

→∆ 0
lim  

33. 
x

xxx
x ∆

−∆+
→∆

ln)ln(lim
0

 

34. 
x

xxx
x ∆

−∆+
→∆

sin)sin(lim
0

 

35. 
x

xxx
x ∆

−∆+
→∆

cos)cos(lim
0

 

36. 
x

xxx
x ∆

−∆+
→∆

tan)tan(lim
0

 

37. 
x

xxx
x ∆

−∆+
→∆

cot)cot(lim
0

 

38. 
x

xxx
x ∆

−∆+
→∆

arcsin)arcsin(lim
0

 

39. 
x

xxx
x ∆

−∆+
→∆

arccos)arccos(lim
0

 

40. 
x

xxx
x ∆

−∆+ −−

→∆

11

0

tan)(tanlim  

41. 
x

xxx
x ∆

−∆+ −−

→∆

11

0

cot)(cotlim  
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2.6. Continuity of Functions 
2.6.1. Basic Definitions 

A function )(xf  is called continuous at a point a, if there exists a finite 
limit of )(xf  as ax → , which is equal to the value of the function at the 
point a, 

)()(lim afxf
ax

=
→

. 

A function )(xf  is said to be continuous on some set D, if )(xf  is 
continuous at each point of D. Otherwise, if )(xf  is not continuous, e.g., at 
a point b, they say that the function )(xf  is discontinuous at the point b, 
or that )(xf  has a discontinuity at the point b. 
Points of discontinuity are classified by the difference between one-sided 
limits, 

|)(lim)(lim|
00

xfxf
axax +→−→

− . 

This difference is called the jump of the function at the point a. 
If the jump is a finite number, then  f (x)  has an ordinary discontinuity at 

ax = . The point a is said to be a point of the function discontinuity of the 
first kind. 
If the one-sided limits  and  are finite and equal to 

each other but not equal to the value of the function at the point a, then a  is 
called a point of removable discontinuity. To remove discontinuity at a 
point of removable discontinuity it is necessary to redefine the function at 
that point or to extend the domain of 

)(lim
0

xf
ax −→

)(lim
0

xf
ax +→

)(xf  to include that point by the 
supplementary condition: 

)(lim)(lim)(
00

xfxfaf
axax +→−→

=≡ . 

If the jump | takes an infinite value, or at least one 

of the one-sided limits does not exists, then the point a is a point of non-
removable discontinuity, or a point of discontinuity of the second kind. 

)(lim)(lim|
00

xfxf
axax +→−→

−

Examples 
1. In the figure below, there is shown the graph of the function 

x
xxf sin)( = , which is not defined at the point x = 0, and so it has an 

discontinuity at that point. However, there exists the limit of )(xf  as 

0→x  (see Theorem 1, p. 66):  1sinlim
0

=
→ x

x
x

. 
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Therefore, the discontinuity at x = 0 can be removed by including 
0=x  in the domain of the function and redefining 1)0( =f , 

⎪⎩

⎪
⎨
⎧

=

≠
=

0if,1

0if,sin
)(

x

x
x

x
xf  

 

2. Consider the function  
13

1)(
2

1

+

=
−x

xf  defined at all points except 

for 2=x . It means that 2=x  is a point of discontinuity of the 
function.  

 
Find the one-sided limits at this point. 

If  02 −→x  then  02 <−x   and  −∞→
− 2
1

x
, which implies 

1
1
1

13
1

13
1)( )2(1 ==

+
→

+
= ∞−−xxf . 
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If  02 +→x  then  02 >−x   and  +∞→
− 2
1

x
, which implies 

01
13

1
13

1)( )2(1 =
∞

=
+

→
+

= ∞+−xxf . 

Thus, the left-sided limit is not equal to the right-sided limit at the 
point 2=x ; however, the jump has a finite value (number 1). 
Hence, )(xf  has an ordinary discontinuity at the point 2=x . 

3. Let )(xf  be defined as  
⎪
⎩

⎪
⎨

⎧

≥−
<≤

<

=
1if,1

10if,

0if,

)( 2

xx
xx

xx

xf

Since  and ,, 2xx 1−x  are continuous functions at all points, 
discontinuities of the given function )(xf  could arise at the linking 
points, 0=x   and  1=x , only. 
Find one-sided limits at the point  x = 0: 

0lim)(lim
00

==
−→−→

xxf
xx

, 

0lim)(lim 2

00
==

−→+→
xxf

xx
. 

By the above definition, 0)0( =f , so that 
0)0()(lim)(lim

00
===

+→−→
fxfxf

xx
, 

which means that )(xf  is a continuous function at the point 0=x . 

 
Find one-sided limits at the point  x = 1: 

1lim)(lim 2

0101
==

−→−→
xxf

xx
, 
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0)1(lim)(lim
0101

=−=
+→+→

xxf
xx

. 

The limits are not equal to each other but they both have finite values 
(the jump equals 1). Therefore, the function )(xf  has an ordinary 
discontinuity at the point 1=x . 

4. Consider the function 3
1

5)( −= xxf , which is continuous at all points 
except for  3=x , where the function is not defined. 
Find one-sided limits at the point  x = 3. 

If  03−→x  then ∞−→
− 3
1

x
, and so 055)( 3

1

=→= ∞−−xxf . 

If  03+→x  then ∞+→
− 3
1

x
, and so +∞=→= ∞+− 55)( 3

1
xxf . 

Therefore,  x = 3  is a point of discontinuity of the second kind. 

2.6.2. Properties of Continuous Functions 

The sum of a finite number of continuous functions is a continuous 
function. 

The product of a finite number of continuous functions is a continuous 
function. 

The quotient of two continuous functions is a continuous function 
except for the points where the denominator is equal to zero. 

Let us prove, for example, the product property. 
If )(xf  and )(xg  are continuous functions at a point a, then 

)()(lim afxf
ax

=
→

  and  )()(lim agxg
ax

=
→

. 

By the properties of limits of functions, 
)()()(lim)(lim)()(lim agafxgxfxgxf

axaxax
⋅=⋅=⋅

→→→
, 

which required to be proved. 

Theorem: All elementary functions are continuous in their domains. 

To prove this statement it is necessary to show that each elementary 
function )()( afxf →  for any number a  in the domain of  f. Below we 
give  a few examples to demonstrate the validity of the theorem. 
Proof: 

1. The power function nx  is a continuous function at each point in the 
domain of nx . Indeed, 
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.    as    ))((

)(
12221 axaaaaxaxxax

aaxx
nnnnnn

nnnn

→→+++++−=

+−=
−−−− K

 

2. The exponential function  is a continuous function at each point a, 
since 

xe

.   as    )(~

)1()(

axeeaxe

eeeeeee
aaa

aaxaaaxx

→→+−

+−=+−= −

 

3. The logarithmic function xln  is a continuous function at each point 
0>= ax : 

.   as    lnln~

ln)1ln(lnlnln)ln(lnln

axaa
a

ax

a
a

axa
a
xaaxx

→→+
−

+
−

+=+=+−=
 

4. The sine function xsin  is a continuous function at each point a, 
since 

.assinsincos
2

2~

sin
2

cos
2

sin2sin)sin(sinsin

axaaaax

aaxaxaaxx

→→+⋅
−

⋅

+
+−

=+−=
 

5. The cosine function xcos  is a continuous function at each point a, 
since 

.ascoscossin
2

2~

sin
2

sin
2

sin2cos)cos(coscos

axaaaax

aaxaxaaxx

→→+⋅
−

⋅−

+
+−

−=+−=
 

6. The tangent function xtan  is a continuous function at each point a 

in the domain of xtan , since 
x
xx

cos
sintan =  is the ratio of two 

continuous functions (provided that 0cos ≠x ). 
7. Likewise, xcot  is a continuous function at each point a in the 

domain of xcot  as the ratio of two continuous functions (by the 

quotient property):  
x
xx

sin
coscot = . 

8. To prove the property of continuity for a trigonometric function, one 
can apply the corresponding substitutions such as 

xt arcsin= ,  xt arccos= ,   and so on. 
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2.7. Selected Solutions 

Problem 2.  

12
1

)42)(2(
2lim

8
2lim

8
)2sin(lim 223232

=
+−+

+
=

+
+

=
+
+

−→−→−→ xxx
x

x
x

x
x

xxx
. 

Problem 3. 

ππππππ
===

+
=

− →→→→ t
t

t
t

t
t

x
x

tttx 0001
limtanlim)tan(lim

1
tanlim . 

Problem 6. 

1tanlim1tanlim
02

2 ==
→∞→ t

t
x

x
tx

. 

Problem 8. 

.0lim
63

2
)(

lim

3sin
cos1lim

)33sin(
)cos(1lim

3sin
cos1lim

2

0

2

0

001

=−=−=

−
−

=
+
++

=
+

→→

→→→

t
t

t

t

t
t

t
t

x
x

tt

ttx

π
π

π

π
π

ππ
ππ

π
π

 

Problem 11. 

.4)1)(1(lim
1

)1)(1)(1(lim

1
)1)(1(lim

1
1lim

1
)1arcsin(lim

11

1

2

1

2

1

=++=
−

++−
=

−
+−

=
−
−

=
−

−

→→

→→→

xx
x

xxx
x

xx
x

x
x

x

xx

xxx
 

Problem 12. 

.
3
1

1
1lim

)1)(2(
)1)(2(lim

2
23lim

2
)23arctan(lim

22

2

2

22

2

2

=
+
−

=
+−
−−

=

−−
+−

=
−−

+−

→→

→→

x
x

xx
xx

xx
xx

xx
xx

xx

xx
 

Problem 14. 

.0
)5)(1(

414lim
)5)(1(

)1)(13()5)(13(lim

)
5

13
1

13(lim

22

22

=
−+
+−

=
−+

++−−−−+
=

=
−

+−
−

+
−+

∞→∞→

∞→

xx
x

xx
xxxxxx

x
xx

x
xx

xx

x
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Problem 17. 

.)51(lim)51(lim

)51(lim)51(lim)145(lim

302

0

)30(
5
1

0

2)30(
5
1

0

62

0
3
2

3

−−

→

−

→

−−

→
−
+

→
−

→

=++=

+=+=−

ett

ttx

t
t

t

t
t

t
t

t
x

x

x  

Problem 18. 

( )
( ) ( ) .1161lim4sin1lim

4sin1lim)4(coslim

98
18
16

18
1

2

0
3sin

1
2
1

2

0

3sin
1

2

0
3sin

1

0

22

22

e
exx

xx

x
x

x
x

x
x

x
x

==−=−=

−=

−

→

⋅

→

→→  

Problem 19. 

5
4

5
4lim

5sin
)41ln(lim 2

3

02

3

0
−=

⋅
−

=
−

→→ xx
x

xx
x

xx
. 

Problem 21. 

.
2
5)

2
5(lim)

2
51ln(lim

)
2

52lnlim)2ln)52(ln(lim

−=−=−=

−
⋅=−−⋅

∞→∞→

∞→∞→

x
x

x
x

x
xxxxx

xx

xx  

Problem 22. 

.
3
7)7(1lim

3
1))31ln()41(ln(1lim

3
1)

31
41ln1(lim

3
1

)
31
41ln(lim

3
1)

3
4ln(lim

3
1)

3
4ln(lim

000

3

−=−=+−−=
+
−

⋅=

+
−

⋅=
+
−

⋅=
+
−

⋅

→→→

∞→∞→∞→

t
t

tt
tt

t
t

x
xx

x
xx

x
xx

ttt

xxx
 

Problem 23. 

4
1

)2)(2(
2lim

4
1lim

22

2

2
=

+−
−

=
−
−

→

−

→ xx
x

x
e

x

x

x
. 

Problem 28. 

2
1

3
4

6

lim
)31ln(
161lim 2

2

0

4 2

0
=

−

−
=

−
−−

→→ x

x

xx
x

xx
. 

Problem 30. 

2
1

8000
4000lim

1)81(
1)41(lim

01000

1000

0
−=

−
=

−+
−−

→→ x
x

x
x

xx
. 
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2.8. Selected Answers 

31. 1

0

)(lim −

→∆
=

∆
−∆+ n

nn

x
nx

x
xxx  

32. x
xxx

x
e

x
ee

=
∆
−∆+

→∆ 0
lim  

33. 
xx

xxx
x

1ln)ln(lim
0

=
∆

−∆+
→∆

,  0>x  

34. x
x

xxx
x

cossin)sin(lim
0

=
∆

−∆+
→∆

 

35. x
x

xxx
x

sincos)cos(lim
0

−=
∆

−∆+
→∆

 

36. 
xx

xxx
x 20 cos

1tan)tan(lim =
∆

−∆+
→∆

 

37. 
xx

xxx
x 20 sin

1cot)cot(lim −=
∆

−∆+
→∆

 

38. 20 1
1arcsin)arcsin(lim

xx
xxx

x −
=

∆
−∆+

→∆
 

39. 20 1
1arccos)arccos(lim

xx
xxx

x −
−=

∆
−∆+

→∆
 

40. 2

11

0 1
1tan)(tanlim
xx

xxx
x +

=
∆

−∆+ −−

→∆
 

41. 2

11

0 1
1cot)(cotlim
xx

xxx
x +

−=
∆

−∆+ −−

→∆
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