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Preface

This textbook is intended mainly for students who have already studied the
basic Mathematics and need to study and practice using the methods of
Differential and Integral Calculus. All the important concepts of Calculus
are explained and there are exercises of each point to concentrate on those
methods, which students need to use but which often cause difficulty. The
mathematical language used is as simple as possible.

The textbook covers the topics to be studied in the second semester.

The Fundamental Theorems of Differential Calculus.

Investigation of Functions.

Indefinite Integrals.

Definite Integrals. Geometric Applications of Definite Integrals.
Improper Integrals. Convergence and Divergence of Improper Integrals
Functions of Several Variables.

Complex Numbers.

Ordinary Differential Equations of the First Order.
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Differential Calculus

Chapter 1

FUNDAMENTAL THEOREMS OF DIFFERENTIAL
CALCULUS

1.1. The Rolle Theorem

Theorem: Let a function f(X)

y =75 be defined and continuous on a
closed interval [a,b] and be
differentiable at each point of
the open interval (a,b).

If f(a)=f(b), then there
exists a point ce(a,b) such
that '(c)=0.

The idea of a Proof is evident
from Fig.1. By assumption, the
function f(x) is continuous on the closed interval [a,b] and
f(a)=f(b), so f(x) attains either its maximum or minimum at some
point X =c of the open interval (a,b). The tangent line of the function
y = f(X) at this point is a horizontal line. Hence, its slope is equal to zero,
that is, the derivative f'(c)=0.
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Fig. 1

Note that the Rolle Theorem does not claim where ¢ can be found on
(a,b); it claims only that there exists at least one point ¢ such that

f'(c)=0.
As for the curve in Fig. 1, there are two points satisfying the equation
f'(x)=0.

1.2. The Mean Value Theorem

Theorem: Let a function f(Xx) be defined and continuous on a closed
interval [a,b] and be differentiable on the open interval (a,b).
Then there exists a point ¢ € (a,b) such that

f(b)_ f(a) _ f,(C).
b—a
Proof: Consider the auxiliary function

o= F(0- @ -2 D),
which satisfies the conditions of the Rolle Theorem.
7
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Differential Calculus

Indeed, d(X) is the sum of the functions defined and continuous on [a,b]
and differentiable on (a,b). Moreover, ®(a) = ®(b) =0.

Therefore, by the Rolle theorem, there exists some point ¢ € (a,b) such
that

@'(c) = f'(c) - f(bk))‘ @) _y,

Hence, the theorem.
Note that the Mean Value Theorem does not claim where ¢ can be found
on (a,b).

Y y = f(x) Geometric Interpretation

L

e The difference quotient f(b)-1(a)
JE-———-- b_a

equals the slope of the secant line
through the points (a, f(a)) and
(b, f(b)).
Fla) = e The derivative f’(c) equals the slope
' of the tangent passing through the point
A CRIO)
Hence, the theorem asserts that the secant
Fig. 2 line through (a, f(a)) and (b, f(b)) is
parallel to the tangent at some point
(c, f(c)),where a<c<b. (SeeFig. 2)

Corollary 1: The Rolle Theorem is a special case of the Mean Value
Theorem:

If f(a)= f(b),then f'(c)=0 forsome c e (a,b).

Corollary 2: If f'(x) =0 for all points of some interval (a,b), then f(x)
is a constant on (a,b).
Proof: Let X and Xy be any points on (a,b).
Then by the theorem,
f(x)— f(x) = F'(©)(x~Xp).
where C is some point between Xy and X.
But f'(c)=0 and hence, f(x)= f(xg) forany Xxe(a,b).

Corollary 3: If functions f(x) and g(x) are such that f'(x)=g'(x) for

all xe (a,b), then f(x)=g(x)+C,where C is a constant.
8



Differential Calculus

(fF)-9(x)'=f'(x)-g'(x) =0,
by Corollary 2, we obtain f(x)—g(x)=C.

Proof: Noting that

Example 1: One can easily check that the functions arctanx and

arcsin have the same derivative ]7/ 1+ x2) :

1+x2

Therefore, by Corollary 3, arcsin (x/\/1+ x2) =arctanx+C.

Setting X = 0, we find the value of the constant: 0 =0+ C.
Thus,

arcsin =arctan x.

X
\/1+x2

Example 2: By the same argument, equations

[arctan X ]: L = (arcsin x)’
1-x2 1-x°

yield

arctan =arcsinx, (C=0).

X
J1-x2
1.3. The Cauchy Theorem

Let functions f(x) and g(X) be defined and continuous on a closed
interval [a,b] and be differentiable on the open interval (a,b), and
g'(x) =0 fora<x<b.

Then there exists a point ¢ € (a,b) such that

fb)-f(a) _ f'(c)
g(b)-g(@ g'c)
Proof: Note that g(b)= g(a). Otherwise, by the Rolle Theorem,

g'(x) =0 for some X = ¢, that contradicts to the assumption g'(x) # 0.
Consider the function

d(x) = f(x) - f(a)-

(2)

f(b)- f(a)
(9(x)—g(a)).

g(b)-g(a)

It satisfies the conditions of the Rolle Theorem:

9



Differential Calculus
e ®(X) is defined and continuous on [a,b];
e ®(x) has the derivative on (a,b):

' ' f (b) - f (a) '
(0= 10~ Vo'

e ®(a)=d(b)=0.
Hence, according to the Rolle Theorem, there exists a point ¢ € (a,b) such
that ®'(c) = 0, which implies the desired result:

' f(b)_f(a) ’
f — =0.
O o) —g@ ¢

1.4. The L'Hopital Rule

The definition of the derivative of a function is based on the concept of the
limit of the ratio of infinitesimal quantities. The rules of differentiation and
the derivatives of the basic functions are derived by making use of limits.
On the other hand, one of the most powerful tools for finding limits of
functions is connected with application of derivatives. The corresponding
algorithm is named the L’Hopital Rule.

: : : 0
The L’Hopital Rule for an indeterminate form 0

Let functions f(Xx) and g(x) be defined and differentiable on (a,b), and
g'(x) =0 forall a<x<b.

Assume that
1) lim f(x)=0= lim g(x), and

X—a X—a
. . f(x
2) there exists lim ,( )
x—a g (X
. . f(x) -
Then there exists lim ——= and the equality is true:
x—a g (X

lim M: im f’(x). (3)

(finite or not).

Proof: In view of assumption 1) we put
f(a)=0 and g(a)=0.
Then by the Cauchy Theorem, we have
f(x) _f(x)-f() _f'(c)
g(x) g(x)-g@ g'E)

10



Differential Calculus

where a < C < X.
Taking the limit in this equality and noting that ¢ — a as X — a, we come
to (3).

Note: If the fraction f’éx; Is again an indeterminate form % then the
g'(x
L’Hopital Rule can be applied repeatedly.
Example 1: The expression M IS the indeterminate form % as
X—0.
By the L’Hopital Rule,
lim In1+5x) _ _ lim (In(1+,5x)) _ lim 5/(1+5x) 5
Xx—0 X x—0 X x—0

X —sin X : :
Example 2: If x — 0, then 3 represents the indeterminate form

X

0

0"

In order to find the limit we need to apply the L’Hopital Rule several times:
lim X=SINX _ (x=sinx) _ lim 1-cosx _ I (1—cosXx)’
Xx—0 )(3 x—0 (x3)’ x—0 ,?,x2 3 x—0 (x )

. sinx 1, (sinx) 1 cosx 1
== lim ——==lim == lim =—.
3x>0 2X 6x=0 X 6x>0 1 6

The L’Hopital Rule for an indeterminate form f.
(0.0)

Let functions f(X) and g(x) be defined and differentiable on (a,b), and
let f(X) >0 and g(X) > as x—a.

Assume that there exists lim f,(x) (finite or not).
x—a g'(X)
: . f(x)
Then there exists also lim —— and
x—a g(x)
f(x) _ f'(x)

lim ——== lim :
x—a g(X) x—ag'(x)

11



Differential Calculus

: : . 0
Proof: An indeterminate form e can be easily reduced to the form 0 by

f(0_19(9 _, 0
900 V() 0

means of a simple transformation:

Let lim —= () = A. Then

x—a g(X)
_im JO0 e Y900 _ e @/9()
x—a g(x) x—>al/ f (X) x—>a @/ f(x))"
By the rule of differentiatio(n ;)f a quotient, we have F60
1 g'(x 1 ., "(x
90 T ™ ) T e
Then making use of the properties of Iimits we obtain
e fim @900 _ o F200 g'()
x—>a 1/ f(x)) x-ag (x) f'(x)

(“m f(x )j 9'(%) _ a2 im 9

x—>a g(x) ) x—a f'(x) x—a f'(X)

Therefore,
1=Alim g (X), and hence, A= lim f'(x).

x—a f'(X) x—a g'(X)

Example 3: In order to find lim In(x=1) one has to expand the
x—1+0 tan(zx/2)

: : 00
indeterminate form —.

(0.0]
Applying the L’Hopital Rule we obtain:

B 2
In(x-1) 2 lim yx-) 2 lim €08 (7zx/2)_

x—1+0 tan(z x/2) 7 x>140 ]7/(:052(77 X/2) 7 x>1+0 Xx—1

. . . 0 .
This is the indeterminate form 0’ and we can apply the L’Hopital Rule

once more:
2 .

2 lim S0 (7rx/2): lim 2cos(7rx/2)sm(7zx/2)=0.
7T x->1+0  X-1 X—1+0 1

12



Differential Calculus
Summary: The L’Hopital Rule vyields the same formula for both

: . 0 o0 . : .
indeterminate forms, 0 and —. This rule can also be applied for limits at
00)

infinity:
tim T _ iy T (4)

as well as for unilateral limits:
lim 1) gim EOO g |
x—+0 g(X)  x—+0 g'(X) x—>—0 g(X) x——0 g'(X)

In each case the conditions of the theorem has to be changed properly.

For instance, the condition lim f(x)=0= lim g(x) is replaced by
X—a X—a

lim f(x)=0= lim g(x), etc.

X—>0 X—>00

1.4.1. The Other Indeterminate Forms
Consider the following forms of an indeterminacy:
1) 0-0, 2) 0—oo, 3) 1°,0°, 0.

) 0
All these forms can be reduced to one of the above-considered forms: 6 or

0 0)
=
1) Let f(x) >0 and g(x) > o as x > a.
Then an indeterminate form f -g =0-c can be easily transformed to
theformgas f-g:L,ortotheformfas f-g:i.
0 00 1/ f
2) If f(X) > o0 and g(x) > o0 as x —> a, then
1 1
1 1 g f
P=9=7-1""1
f g fg

Thus, the indeterminate form oo — oo has been reduced to the form 0/0.

3) In view of the formula f9 =e9"™ T each of the forms, 1, 0° and

»?, can be transformed to the product g(x)In f(x), which is the

indeterminate form 0- oo considered above. (See Case 1.)

13



Differential Calculus

Indeed,

o Let f9=1%° that is, f(X)—>1 and g(X)—>o. Then
g(xX)In f(x) =0-0.

e Let f9=0° that is, f(X)—>0 and g(X)—>0. Then
g(xX)In f(x)=0-.

o Let f9=wC, that is, f(X) > and g(x)—>0. Then
g(xX)In f(x)=0-.

Thus, if lim g(x)In f(x) = B, then lim (f (x))9*) =¢B.

X—a X—a

Example 4: lim xInx contains the indeterminate form 0-co. However,

Xx—0
. : 0 In x
it can be easily transformed to the form —, as xInx= -
o0 X
By making use of the L’Hopital Rule we obtain
In x In x : :
lim —-= Ilm( ) = lim =—lim x=0.
x—0 x -1y (x ) Xx—0 — ]/x x—0
3
Example 5: lim (1+ 2sin x)#X contains the indeterminate form 1%
x—0

We can use the identity lim f =¢'™In T

Taking the logarithm of the expression under the sign of the limit we obtain
In(1+ 2sin x)

Ax '
By the L’Hopital Rule we evaluate the limit of this expression:
InL+2sinx) _ 3 lim (In(@+ 2sin x))’

In(L+ 2sin x)a =3

lim 3 ,
x—0 4x 4 x—0 X
2C0S X
:E lim 1+2sin X =§_
4 x—0 1 2
Finally, we obtain:
3 3
lim (L+ 2sin x)4X =e2 = /g3 |

Xx—0

14



Differential Calculus

1.5. The Taylor Formula
1.5.1. The Taylor Formula for Polynomials

Theorem 1: For any Xo a polynomial P(X) of degree n can be
represented as

P(x)=P(x,) + PIS(O) (X = Xg) + .ot P

(5)

where P'(xg), P"'(Xq), ... are the derivatives of P(X) at the point X .

Note: Formula (5) is called the Taylor Formula for polynomials.
Proof: Any polynomial of degree n can be written as follows:

P(X) = > a (x—xg)* . (6)
k=0

P (x0)
Tk
First, the equality ag = P(Xp) follows from (6) when X = Xg.

Then let us find the kth derivative of the polynomial P(x) at the point
X =Xp.
One can easily see that sum (6) contains just one term, whose kth derivative

Therefore, we have to prove that  ay for 0<k<n.

: : (k)
at the point X = X is not equal to zero: (ak (x- xo)k) =ay k!
The kth derivative of other terms of this sum either equals zero for any X or
contains the factor (x — Xg) , which vanishes as ever x = Xg.

Thus, P(k)(xo) =gy k! and hence, the theorem.

Example: Represent the polynomial P(x) in powers of X, if

P(x) =1+8(x —2) + 6(x — 2)% + (x — 2)°.
Solution: The Taylor Formula with Xg =0 gives the answer in the general
form:

P(x) = P(0) + P'(0) x + P0) 2, P';(O) X3
It remains to find P(0) and P(k)(O):
e P(X)=1+8(x-2)+6(x-2)%+(x-2)° = P(0) =1.

15



Differential Calculus

e P(X)=8+12(x-2)+3(x-2)° = P'(0) = 4.
o P'(x)=12+6(x-2) = P"(0)=0.
° Pm(x) — 6 — Pm(o) — 6
Thus, P(X) =1-4x+X>.

1.5.2. The Taylor Formula with the Remainder

Theorem 2: Let a function f(X) be n times differentiable at a point Xg.
Then f(x) can be represented by the Taylor Formula

n (k)
f00= 3 0-x) R0, )
k=0 .

where f(© (Xg) = T (Xg) by definition, and R,,(x) is a function such that

Rn(X0) = Rh (o) =Rh(x0) =.=R{M(x0)=0.  (8)
Note that R, (x) is called the remainder.

Proof: The remainder R, (x) is the difference between f(x) and the

polynomial
n

£ () (x K
P00 = Y= U0k,
k=0
By the argument used in the proof of Theorem 1, we obtain
(k)
P(0) = Fx0) and AR () =—— P ka= £ (xg).
Therefore,
R (x9) = 119 (x0) = P (x9) = 19 (x0) = 1 ®) (xg) = 0
for 0 <k < n, which implies formulas (8).
In a special case when Xy =0, the Taylor formula is named the Maclaurin
formula:

n e (k)
F09= Y1 x4 Ry (0 ©
k=0 )

Now let us come back to formula (7) and rewrite it in terms of differentials.
We need to recall the relevant definitions.

16



Differential Calculus
The difference X — Xy = AX can be considered as an increment of the
argument; then f(x)— f (xg) = Af (x) is the corresponding increment of

the function.
By definition dx = AXx, that is, the differential of the argument equals the

increment. The kth differential of the argument is defined as dx* = (dx)*.
The differential of f(x) at the point x = Xq is df (xg) = f'(Xg)dx, and

the kth differential of f (x) at this point is d* f (xg) = f ) (xq)dx*.

The Taylor Formula has the simplest form in terms of differentials:

2 3
AF (%) = df (xg) + fZ(IXO)+d ;$X0)+...+%+Rn(x). (10)

The Taylor Formula has diverse applications. Most often it is used tor
approximation of transcendental functions by polynomials. In this case the
polynomial P, (x) isan approximationto f(X), whereas R, (X) is an error

of the approximation. Such conclusion has the following background.
If f(X) is a continuous function on some interval, then so is the remainder

Ry (X). In view of the fact that R,(Xg) = R, (Xg) =0, the remainder is
small enough in some vicinity of the point Xy. Moreover, the remainder
R (X) is an infinitesimal whose order of smallness is greater than n as
X — Xp, thatis,

lim R0 =0.

X—>Xo (X — xo)n

This statement can be easily proved by applying the L’Hopital rule n times
and taking into account equalities (8):

' (n)
lim )y RalO g R0

0.
X—=%g (X — xo)n X=X N(X — xo)n_l x—X, Nl

Whenever we deal with approximations, we need to control the errors.
One of the ways is based on the Lagrange form of the remainder:

f(n+1) C

Ra = 1
(n+1)!

where € is some point between X and Xg.

If [x — Xg| <1 and f (D (x) <M, then

(x—xo)"™, (11)

17



Differential Calculus

(X . XO)I'H—].

f (D (c) nil
(=) (n+1)!

(n+1)!

Ry (x)| = <M

very quickly as n — oo.
Therefore, the more n, the better approximation to f(Xx) by the
polynomial P,(X).

The Taylor Formula with the Lagrange form of the remainder can be
written as follows:

_ < 1 99x) « F") 141
f(X)_IZ%)T(X_XO) +W(X_XO) : (12)

In a special case when n=0, this formula implies the Mean Value
Theorem over the interval [X, Xp]:

f(x)= f (%) + f'(c)(x~Xp).

1.5.3. Applications of the Taylor Formula

All the formulas below follow from the Maclaurin Formula. All we need to
find the expansion for a specific function f(X) is the general form of the

nth derivative of f(X). The remainders in all the cases are written in the
Lagrange form.
1) Let f(x)=e*. Then

fM(x)=eXand f™M©)=1 forn>0.
Therefore,

2 3 n
X _ LR x
e” =1+Xx+ 2!+3!+...+ n!+Error. (13)

c

Error =R, (X) = (nil)l x1+

where C is a point between zero and X.
If x<O, then e®<1 and

| Error | < | x|+

(n+D)!
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2) If f(x)=sinx, then
f(k)(x):sin(x+k77r) and f(k)(O)zsin%.

Differential Calculus

If k=2n-1, then
f (2n-1) (O) — (_1)n—1’
while if k =2n, then
f (2" (0)=0.
Therefore,
3 5 2n-1
SINX = X— o (~)" T + Error.
3! 5l (2n-1)!
2n
|Error|<|| for x<0,
2n+1
|Error|<|X| for x>0.
(2n+1)!

3) If f(x)=cosx, then

f () (x) = cos(x + %”) and f®)(0) = cos'%”,

thatis, f "D (0)

—0 and f¢

2M(0) = (-)".

2

X4

ﬂ5X=1—27+———~ﬁ%—Dn

41

2n

(2n)!

+ Error.

| Error | <

4) Let f(x)=arctanx

| |2n+2
(2n +2)!

. Then

for any Xx.

3 5

X2n—1

arctan x = X — -+~ — .+ (<)X L Error.
3 5 2n—-1

If O<x<l1,

| Error | <
+1

19
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Differential Calculus
5) Let f(x)=In(l+Xx), Where x>-1. Then f(0)=1,

f (N (x) = (G (n D!, and M) = (-)"L(n-1)!

(1+x)
2 3 n
X“ X 1 X
INL+X)=X——+—— ...+ (=D)"* 2~ + Error.
1+ X) >t 3 ) » (17)
n+1
Error =R, (x) = (-1)" (1+c)""

where C is a point between zero and X.

1
If 0<x<1, then |Error|<——x"*1.

n+1
6) Let f(x)=(1+x)™, where m is any rational number. Then

§(n) X)=m(m-1..(m-n+DA+x)"",

£ (M) =m(m-1)...(m-n+1).
Therefore,

m(m 1)X L +m(m -1..(m-n+1) N

m _
@+x)" =1+mx+ 51 N (18)

+ Error

If m=n, then Error=0.

Example 1: Calculate approximately Je.
Solution: Formula (13) for n=1,2,3 and x =1/3 yields successively:

1) el ~1+x = %ze]/3~1+%—g~1.333;
2
2) eX a1+ X4 - 3ez1+1+li_§zl.389;
2 3 2132 18
2 U3
3) X alixt o+ =
2 6

Yonisltpt 1 11 113 o0
3 2132 31338 81

Compare the answers with the exact result 3fe =1.3956...
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Example 2: Calculate approximately sin18°.
Solution: First, it is necessary to convert degrees to radians: 18° = z/10.

Then formula (14) for n=1,2 and x = /10 yields successively:

1) sinxXx=X = Sin£z£z0.3l4;
10 10
3 3
2) sinx=x—— - sin” ~ % _ 17| <0.3089.
31 10 10 6\10

The exact result is 0.3090...

Example 3: Calculate approximately 310.
Solution: It is necessary to transform the problem for applying formula

(18):
310 =3/8+2 =3/8(1+1/4) = 23/1+1/4.
Now formula (18) for n =2 and x =1/4 yields
11 111 155
31+ Q+Y4}3 ~14+=. =422 (- —=—.
Ya=@ryay 3 4 23(3 ) 144
Therefore, 3/10 = 23/1+1/4 ~155/72 ~ 2.1528.

The exact result is 2.1544...

Example 4: Suppose we need to calculate Je, using an approximating
polynomial.
In order to estimate an error bound, we can use the Lagrange form of the

remainder. Since e is the increasing function and 0<c<0.5, so

e <2.
Therefore,
& ) e® 1 1
AT (n+1)12""
which yields
R1(0.5) <0.25, R,(0.5)<1/24~0.04, R;3(0.5)< ]/192 ~ 0.005,

etc.
Thus, the approximating polynomial of the third degree yields a value of

JJe with an error bound of at most 0.005.
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Differential Calculus
Summary: The table below contains a list of approximating formulas for
some functions in a vicinity of the point x = 0. The formulas are illustrated

by drawings.

Functions | First Approximation Close Approximation
¥2
eX 1+Xx 1+ x+—
2
3
sin x X w2
6
2 2 4
COS X 1- % 1 X X
2 2 24
3
tan x X it
3
x2
In(L+ x) X X —
2
x3
arctan x X X —
3
1 2
Tt x 1-x 1-Xx+X
X 2
V1+ X 1+ 14 2%
2 2 8
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\.?C
~1 0 1’
Fig. 3
AY L
1T .
3 ¥ =S xX
y=X——
6
1 \.x
0 T .
2
_1__
Fig. 4
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Fig. 5
A :V‘
1 4
V=X
2
X
y=Xx——
2
_1 0 1
y=In(l+ x)
Fig. 6
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A J’:
1+ )y =arctanxy
S ¥
3
1 / 1 \.x
-1 A 17
y=2Xx
Fig. 7

Fig. 8

25



Differential Calculus

1.6. Graphs of Functions
1.6.1. Symmetry of Functions

Even-Odd Symmetry: Assume that for every X in the domain of a
function f(x), (—x) also enters into the domain. A function is called an
even function if f(—x) = f(x) forall x in its domain.

The graph of an even function is symmetric with respect to Yy -axis.

A function is called an odd function if f(-x)=-f(x) for all X in its

domain.
The graph of an odd function is symmetric with respect to the origin.
Examples of even and odd functions are shown in Fig. 9.

Ajf Ay

Even Odd
X
\/’\/ “

Fig. 9

\(H

One should keep in mind the following properties of even or odd functions:

L The sum of even functions is an even function and so is the product
of any number of even functions.

L The sum of odd functions is an odd function.

L The product of two odd functions is an even function.

L The product of an even function and an odd function is an odd one.

Most functions are neither even nor odd.
Periodic Symmetry: A function is said to be periodic if there exists a
positive number T such that f(x+T) = f(x) for all x in its domain. The

smallest positive number T is the period of the function.
All trigonometric functions are periodic functions and so are their
combinations. An example of a periodic function is given in Fig. 10.

AY .32 2
¥ =8m" x+cos X

It 1N TN
N N

Fig. 10
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Differential Calculus
1.6.2. Increasing and Decreasing Functions

Intervals of increasing and decreasing of a function can be easily found by
the sign of its derivative.
Theorem: Let a function f(X) be defined and differentiable on some
interval (a,b).
If f'(x)>0 at all points of the interval, then f(X) is a monotone
increasing function on (a,b).
If f'(xX)<0 at all points of the interval, then f(x) is a monotone
decreasing function on (a,b).
Proof: Let X €(a,b), X, € (a,b) and x; < X,. Then by the Mean Value
Theorem

F(x2)— f(x) = ()% —X0),
where X; <C < Xjp.
If f'(c)>0, then f(Xx,)> f(x;) and hence, f(x) is a monotone
increasing function on (Xq, X5).
Likewise, if f'(c) <0 then f(x) is a monotone decreasing function on
(%1, X2). But x; and X, are arbitrary points on (a,b).
Hence, the theorem.

Example 1: Find the intervals of monotonicity of the function
f(x)=3x%+16X° —6x% — 48X +1.
Solution: First, we find the derivative of f(X):
f'(x) = 12x3 + 48x% —12x — 48 = 12(x3 +4x% —x— 4).
Then we solve the equation f'(x) =0 by factoring:
X3 +4x% —x—4= (x+4)(x+1)(x-1)=0.

The derivative is positive for —4<x<-1 andfor x>1.
The derivative is negative for x<—-4 andfor -1<x<1.
Therefore, the given function is monotonically increasing on each of the
intervals (—4,—1) and (1,+o0), and monotonically decreasing on (—oo,—4)

and (-11).
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Differential Calculus
1.6.3. Maxima and Minima of Functions

It is said that a function f (X) has a local or relative maximum at a certain
point in its domain, if the value of the function at this point is greater than
or equal to the values at all other points in some vicinity of the point.

A function f(x) has a local or relative minimum at a point c, if
f(c) < f(x) forall x in some vicinity of the point c.

The global maximum (minimum) is the highest (lowest) value, which a

function attains on the given domain.
An extreme point is the point where the function attains either its

maximum or minimum.

)\y )’k-}’
Relative (zlobal Maximum
Maximum d Relative
Minima
{zlobhal NMinimum
X X
> >
0 0
Fig. 11

Usually the domain of a function can be divided into a finite number of
intervals of monotonicity of the function. The derivative of the function has
the same sign for all inner points of these intervals. But the derivative
either equals zero or does not exist at the partition points. (See the figure
below.)

fe)=0
Y Max () Y onm (&) F N:: jmeme;
2 in - ()
e > T e > T

‘{) does not exist
f ( } No extiremes

L

L
>

| [N 4 | i

Fig. 12
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Differential Calculus
A point ¢ is called a critical point for a function f (x), if either f'(c) =0
or f'(c) does not exist.
Therefore, in order to find extreme values of a function f(x) we have to
determine critical points by solving the equation f'(x) =0. At these points
the tangents are horizontal. We need also to determine points, where the
derivative of f(X) does not exist.
Then we have to check whether a critical point is an extreme point,
following the rules:
e At a point of maximum the derivative changes its sign from positive to
negative.
e At a point of minimum the derivative changes its sign from negative to
positive.
o |f the derivative holds its sign, passing through a point, then the point is
not an extreme one.
There is another method to solve this problem, which is based on the

investigation of a behavior of a differentiable function by applying the
Taylor Formula:

2 3
d f(c)+d f(c)+ | d" d"f(c) FRL(X).
2! 3! n!
The first differential df (c) gives the first approximation for the increment
of the function. However, at a critical point df (c) = f'(c)dx=0, and

hence, we have to take into account the second differential. Then for small
enough dx we have

AF (X) = df (c) +

Af (x)=%d2f(c).

Since d* f (c)= f"(c)dzx and d°x >0, so Af (X) has the same sign as
f'(c).

If £”(c) >0, then Af (x) >0 regardless of the sign of Ax. Therefore, the
point C is a point of a relative minimum.

If f”(c)<0, then Af(X)<0. Therefore, the function has a relative
maximum at the point C.

If f"(c) =0, then the second derivative test does not give any answer, and

it is necessary to take into consideration the next term of the Taylor
Formula.
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1.6.4. Curvature of Curve

A curve y = f(X) is said to be concave (or concave downwards) on some
interval (a,b), if f”(x) >0 at all points of the interval.

If f"”(x)<0 on (a,b), then the curve is convex (or concave upwards).

A point of inflection is the point of changing of curvature from convex to
concave or vice versa. This point separates the concave and convex arcs of
a curve.

At a point of inflection the second derivative either equals zero or does not
exist.

In order to determine the points of inflection, we have to find the solution

of the equation "' (x) =0. We have also to determine the points, where

the second derivative of f (x) does not exist.

Then we need to check whether the obtained point is a point of inflection.

As above, one can use the following rules:

e At a point of inflection the second derivative changes its sign.

e [f it changes the sign from plus to minus, then the curvature is changing
from concave to convex.

e If it changes the sign from minus to plus, then the curvature is changing
from convex to concave.

e |f the second derivative holds its sign, then the point is not a point of
inflection.

Some examples of concave curves are shown in Fig. 12 (b), (e), (g).
Fragments of convex curves are represented by Fig. 12 (a), (f), (h).
Points of inflection are shown in Fig. 12 (c), (d).

1.6.5. Asymptotes

An asymptote is a straight line approached by a given curve as one of the
variables in the equation of the curve approaches infinity.
Asymptotes can be vertical, horizontal or inclined.

If f(X) > as x-—a, then there exists the vertical asymptote,

which is described by the equation x =a. In this case they say about the
asymptotic behavior of the curveas x — a.

If f(X)>b as Xx-—>oo, then there exists the horizontal asymptote,
whose equationis y=b.

The general equation of an inclined asymptote is the following:
y=kx+b. (19)
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Assume thata curve y = f(X) asymptotically approaches line (19) as
X — 00, thatis, f(X)=kx+Db as X — .

Therefore, Kk = % — g and we obtain by the limit process
k= lim f(x) (20)
X—o X
Likewise, b~ f(x)—kx implies
b= lim (f(x)—kx) (21)

X—>00

Thus, if there exist finite limits (20) and (21), then the curve y = f(X) has
the inclined asymptote y =kx+D.

Do not forget that the short form X — oo describes two cases: X — +o0
and X — —o0.

For instance, if f(x)=e”*, then there exists the asymptote y=0 as
X — —oo but there is not any asymptote as X — +o0.

2
Example: Find the asymptotes for the function f(x) = l?
Solution: The function f(X) > as x> 7.
Therefore, there is the vertical asymptote x =7.
One can easily get that
2
k= lim ﬂ_llm 3x ,
x—w X x—o0 (X — 7)x
2
b= lim (f(x)—kx)= lim (——3x)
X—>00 Xx—0 X— 1
_ lim 3x% —3x° +21x:21.
X—>0 X—17

Therefore, there is the inclined asymptote y =3x + 21.
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Functions of Several Variables

Chapter 2
FUNCTIONS OF SEVERAL VARIABLES

2.1. Introduction

The basic concepts of the theory of functions of several variables are the
same or can be formulated like that of a single variable. Many definitions
of a function of one variable can be easily generalized to functions of two
or more than two variables.

However, some complications arise in the computation and interpretation
of results.

Let us begin from the simplest concepts.

Distance Between Points
Any point P in the Xy —plane can be described by the ordered pair (X, Y)

of real numbers. The distance between two points P(X, y) and Py(Xg, Yo)

is p(P, Pp) = (X=%g)% + (¥ - Yo)? .

In order to describe a point in three-dimensional space, it is necessary to
operate with a triplet (X,Y,z) of numbers, so that the distance between

points P(x, Y, z) and Py(Xg, Yg,Zg) is

p(P,Py) = (X =%0)2 + (¥ — Yo)? + (2 — 29)2

In a similar way a point in multidimensional space can be represented by n
numbers Xq, X»,..., X, . The generalized formula for the distance between

points P(Xq, X5,..., Xp) and P(ay,a,,...,a,) looks like above:

p(P,Py) =% —a9)2 +(Xp ~89)2 + .ot (X — @) . ()

Definition of Functions
Let P(Xq, X5,..., X,) be a point of some set D.

If each point of D is associated with one value of a variable u, then it is
said that a function u of variables i, X5,..., X, is defined on the set D.

Recall that a function of one variable is denoted as y = f(X). A function

of several variables is denoted just in the same manner using the function
notation by the equality

u=f(X,Xo,..., Xp)
orinashortformas u= f(P).
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Functions of Several Variables

The set D is called the domain of definition, and the set of all values of u
Is called the range of a function.

In particular, a function of two independent variables is usually denoted as
z=f(X,y). The equation z= f(X,Yy) can be interpreted graphically as a
surface in three-dimensional space.

The domain of definition of a function of two variables is some set of
points in Xy —plane.

Example: The domain D of the function

z:\/x2+y2 —1+\/2—x2—y2
is the ring domain D :(x\ (x2 + y2 Zl)ﬂ(x2 + y2 <2)), that means

any values of X and y suchthat 1< X% + y2 <2.

Some examples of domains are shown in Fig. 1.

Fig. 1

2.2. Limits of Functions of Several Variables

The mathematical statement
lim f(x)=A
X—a
for a function of the single variable means that the difference between

f(x) and A vanishes as the distance between points X and a on the
number line is getting smaller and smaller.

The definition as well as the properties of limits of a function of one
variable can be easily generalized to functions of more than one variable.
Moreover, the limit of a function of several independent variables can be
defined just in the same way as in case of a function of one variable.

Let f(P) be a function of several variables, which is defined in some
vicinity of a point P.

The limit of f(P) as P tends to Py is equal to A if and only if for any
& > 0 there exists a number ¢ >0 such that f (P) obeys the inequality

f(P)-A<e,
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whenever the distance p(P,P;) between points P and P, obeys the
inequality

(P, Ry)| <6.
This statement is denoted as

lim f(P)=A. (2)
P—->F

In a particular case of a function of two variables one uses the natural
notation

lim f(x,y)=A (3)
X—a
y—b
If limit (3) exists, then
lim f(x,y)=lim lim f(x,y)= lim lim f(x,y). 4)
X—a Xx—ay—b y—bx—a

y—b
All properties of limits hold for functions of several variables:
L If there exists lim f (P) and c is any number, then

P—)PO
lim cf(P)=c I|m f(P). (5)
P—)PO PO
L If there exist both limits, lim f(P) and I|m g(P), then there
P—)PO PO

exist the limits of the sum, product and quotlent of functions such that
a The limit of the sum of functions is the sum of the limits of the
functions:
I|m (f (P)xg(P))= lim f(P)x lim g(P). (6)
—)PO P—>P 0
o The limit of the product of functions is the product of the limits of
the functions:
I|m f(P)g(P)= lim f(P) lim g(P). (7)
PO P-)PO PP 0
o The limit of the quotient of functions is the quotient of the limits

of the functions, provided lim g(P)=0:
P—)PO

f(P) _ P'L”;O fP)

P—P, g(P) Pang, g(P)
0

(8)
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Example: Find the limit of the function f(X,y)= SIN Xy
X(1+y)

(x,y) = (0,3).

Solution:

1) In view of (4) we have to hold fixed one of the variables in order to
take the limit with respect to the second variable.
Let us hold fixed y as X approaches zero:

sinxy 1 Iimsmxy_ y

Im = = :
x>0 X(1+y) (@A+Yy)x>0 X a+y)
2) Nowlet y — 3:

y 3

lim :
y—>3(1+y) 4
It does not matter whether we hold fixed X or y. By interchanging of the
order of a passage to the limit we obtain the same result as above:
. sinxy  sin3x
lim =
y—>3X(1+y)  4x
sin xy . sin3x 3
lim =

=

lim lim —.
x>0y—>3X(L+Yy) x-0 4x 4

Thus, the given function tends to 3/4 as (X, y) approaches (0,3).

Naturally, there are such functions, which have no limits at some points.

2 2
For instance, consider the limit of the function f(Xx)= X2 y2 as
X< +y
(x,¥) — (0,0).
Note that
2 2
lim lim 2= = lim1=1,
Xx—>0y—0 x2+y2 Xx—0
while
2 2
lim tim =Y — lim (-1) = -1.

y—0x—0 x2 + y2 y—0

The results differ from each other. Hence, the given function has no a limit
at the point (0,0).
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P(x ) It is appropriate to mention here that the
0-J0)  limit of a function of one variable exists if

Plxg) and only if the left-hand and right-hand
o limits equal with each other.
A So, as for the example above, there is

nothing new; the only difference is that
there is an infinite number of directions of
passages to the limit point but not just two.

2.3. Continuity of Functions of Several Variables

The concept of continuity of functions of one variable does not require any
modification with reference to functions of several variables.

A function f (P) is called continuous at a point Py if there exists the finite
limit of f(P) that equals the value of the function at the point Py,:

lim f(P)=f(Py).

PP,

A function f(P) is said to be continuous on some set D, if it is
continuous at each point of D. Otherwise, if f(P) is not continuous, e.g.,
at a point Py, it is said that the function f (P) is discontinuous at the point
P, orthat f (P) has a discontinuity at the point P,.

The points of discontinuity can form lines or surfaces.

Examples:
e The function z=tanXxy is not defined on the lines xy = (2k +1)z/2,

where K is any integer. The lines of discontinuity are the set of

hyperbolas.
2

e The function uU=—~—%
2X + Yy —3X

2X+ Yy —3z =0, which is the plane of discontinuity.

Continuous functions have the same properties, no matter how many of

variables.

L The sum of a finite number of continuous functions is a continuous
function as well as the product of a finite number of continuous
functions is a continuous function.

The quotient of two continuous functions is a continuous function
wherever the denominator is non-zero.

All elementary functions are continuous in their domains.

IS not defined in the plane

B

B
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2.4. Partial Derivatives

The derivative of a function of one variable is defined as the limit of the
quotient of the increment Af = f(x+ Ax)— f(x) of the function to an

increment AX of the argumentas AX — 0:

df (x) _ lim f(x+ Ax) — f(X)
dX  Ax—0 AX '
The partial derivatives of a function of several variables are defined in a

similar way.
For convenience sake consider a function of two independent variables.
The partial derivative of u = f (X, y) with respect to X is defined as
of (X,Y) _ lim f(x+Ax,y)— (X, y). ©)
OX AX—0 AX
The definition of the partial derivative of z = f(X,y) with respect to y
looks like above:
Gf(x, y) = lim f(X,y+Ay)— f(X! y)
oy AX—0 Ay .
In a short form partial derivatives are denoted by the symbols f,, fg, or

(10)

Uy, Uuy.
Partial derivatives have the same properties as ordinary derivative as well
as all rules of differentiation hold.

Note that when one takes the partial derivative, e.g., with respect to X, itis
necessary to hold the other variables as constants.

Example: Find the partial derivatives of f(X,Yy) with respectto X and vy,
if f(x,y)=x2y3+53inx—eﬂ.
Solution: fy = 2xy3 +5c0s X,
1
fy :3x2y2 —eﬂ—.
X 2\/?

Partial derivatives of higher orders are defined in a similar way as ordinary
higher derivatives:

o't _ o ot o't _ 9 ot
ox2  ox ox oy oy oy
o't _ 9 at, o' _ 2 at,
oxoy oy ox’ oyox  ox oy’
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1) -
They are also denoted as fX : ;/’2 , fxy » fyx correspondingly.

!

Partial derivatives like fy , fyy are called mixed partial derivatives.

There exists the theorem according to that mixed partial derivatives do not
depend on the order of differentiation provided that the partial derivatives
are continuous functions. We are going to consider only functions, which
obey such conditions.

Therefore,

nr nr nr

4] 1A

2.5. Total Differentials

Let u= f(X,Yy) be a function of two independent variables.

Increments of the argument are called the differentials of the independent
variables:

dx = Ax and dy = Ay.
The total differential of a function u = f (X, y) is defined as
du:é—udx+a—udy. (11)
OX oy

This definition of the differential can be easily generalized for a function u
of n independent variables:

n
du:za—udxk :a—udx1+a—udx2 +...+a—udxn. (12)

k=1 OXk 0Xq OXy Xn
The properties of differentials of functions of several variables differ
nothing from that of one variable:
d(u+v)=du+du,
d(u-v)=udv+vdu,
u, udv-—vdu
d(=)= —
\ v
Theorem: Let the functions A(X,Yy) and B(X,y) have continuous partial
derivatives to the second order inclusive. Then the expression of the form
A(X, y)dx + B(x, y)dy
is the total differential of some function u = f (X, y) if and only if
oA _oB
oy oOx
Proof: Let us prove the necessity of condition (13).
Assume that

(13)
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du = A(X, y)dx + B(x, y)dy.
Then from definition (11) it follows that

ou ou
A(X,y) = v and B(X,y)=—.

oy
Therefore,
OA(X,y) 02U and oB(x,y) _ ou
oy OXoy OX Oyox

However, the mixed partial derivatives u and Uy yX equal each other

because they are continuous functions.
Hence, Ay =By.

2.6. Differentials of Higher Orders

The nth differentials of arguments are the nth power of the first
differentials:

dx? = (dx)?,  dy?=(dy)?, ... , dx"=(@x)", dy" =(dy)".
The second differential of a function is the differential of the first
differential; the third differential is the differential of the second
differential, and so on:

d?u=d(du), d3u=d(d?u),..., d"u=d(d" ).
If u=f(X,Yy), then

ou ou
d2u=d(—dx +—dy) = d(—dx)+d(—dy)
oy oy

2 2 2 2

_(‘3—o|x2 a—dydx)+(—dxdy a—dy) (14)
ox2 OyOX oxoy oy?
2 2 2

_8 5 dx +28—dxdy+a—dy

oX OXoy oy’

due to equality of the mixed partial derivatives.
The nth differential of a function can be simply obtained by the following
formal rule:

d"y =(dx§+dy§)”u. (15)

In such a way the sum has to be raised to nth power. Then the parentheses
have to be removed, putting the symbol u from the right of each of the
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0 . :
symbols like = Finally, we have to interpret the exponents as the orders
X

of derivatives and differentials.
Example: Find the third differential of a function of two variables.
Solution: The first step:

0 0.3
d3u = (dx— + dy —)3u.
( ™ yay)

The second step:
o3 3 a3 53
d%u = (dx® = +3dx* dy ——+3dxdy® —— + dy> —)u.
OX OX“ 0y OXoy oy

The final step:
3 3 3 3
a—udx3+36—udx2 dy +3 ou dxdy2 +a—udy3.

d°u = 3 2 2 3
OX ox-oy oxoy oy

2.7. Derivatives of Composite Functions

Let u= f(x;,Xy,...,X,) be a composite function of the variables
X{y X9,y X, Where Xp =X (1), Xo =Xo(t), ..., X, =Xp(t) all are
functions of the variable t. Then the complete derivative is

du & ou dxy

— =y ——F (16)
If the function u is also an explicit function of t, that is,
u=f(xq,X,..., Xp,t), then
n
dt ot (0% dt
In particular, let u = f (X, y,t) with x =x(t) and y = y(t). Then
du_ou oudx  oudy )

dt ot oxdt oy dt
Example: Find (;—l: if u=e>*y® with x=sint and y=t>.
Solution:

Z—l: =56 cost - y3 +e°%3y2 2t = 5”5 cost - t8 + 625N D.
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2.8. Derivatives of Implicit Functions

e Letafunction y = y(X) be defined by an implicit function:
F(x,y)=0. (19)

Then the total differential of F is dF = o dx + oF dy=0.
OX oy

Therefore, the derivative of y with respect to X can be expressed through
the partial derivatives as follows:
dy K
dx Fy
e Letafunction z=z(X,Y) of two variables be defined by an implicit
function:

(20)

F(x,y,z)=0.
As above, the total differential of F is equal to zero:
dF:ﬁdx+ﬁdy+ﬁdz:O. (21)

OX oy 0z
In order to find, for instance, the partial derivative of z with respect to X,
we divide both sides of this equality by dx and hold the variable y as a

: .z . :
constant. In this case the ratio — has to be considered as the partial

dx
derivative @ and hence
OX
o __ F’f (22a)
OX F,

The other partial derivatives can be found in a similar way:
a_ K y_ kK oy_ K

oy F'oax Fja F
Example: Find the partial derivatives of z with respect to xand v if
xy2z3 +4/zInx—-y/z=0.
Solution: First, let us find the partial derivatives of the function
F(x,y,z) =xy?z3 +/zInx-y/z:
Fr=y°2° +/2/x, F)’,=2xyz3—1/z,
F, = 3xy222 +Inx/(2Vz) + y/z2 :
Then, we use formulas (22):

etc. (22b)
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o y223 +/7/x
ox  3xy?z? +Inx/(2Nz) +y/2%
oz _ 2xyz° —1/z

&  3xy222+Inx/(2v2)+y/22

2.9. Geometric Interpretation of Partial Derivatives

Consider a function of two variables.
The equation of a surface in three-dimension space can be written as

z=f(x,y). (23)
This equation can also be represented in the implicit form as follows:
F(xy,2)=0. (24)

Assume that there exist the partial derivatives of z at some point
Po (X0, Yo, Zg) on the surface, that is, the surface is smooth enough in the
vicinity of the point Fy.
There is an infinite number of lines that are tangents to the surface at this
point. These lines form a plane called the tangent plane to the surface at
the given point.
An equation of the tangent plane can be written in the form

A(X—Xg) +B(y - o) + C(2 - 29) =0. (25)
Here A, B and C are components of a normal vector to the surface at the
point Fy.
In order to determine this vector we consider anther way to get the equation

of the tangent plane.
Let P(X,y,z) be any point on the surface. If the point P(X,Y,2)

approaches Py (Xg, Yo, Zp), that is,
AX=X-Xg =0, Ay=y-yy—0, Az7=71-77—-0,
then the vector Ar ={AXx, Ay, Az} tends to the vector dr ={dx,dy, dz},

which is coplanar to the tangent plane.
By equation (24), the differential of F at the point Py (Xg, Yo, Zg) is equal
to zero. Hence, in view of formula (21)

oF (X0, Yo 20) iyt oF (X0 Yo Z0) dy + oF (X0, Yo Z0) d7 -
OX oy 0z

0. (26)
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This equation states the orthogonality condition of the vectors
dr ={dx,dy,dz} and N={F;(Fy),Fy(Po), F;(P)}, where the vector
dr lies in the tangent plane.
Therefore, the partial derivatives of F at the point P, are the components
of a normal vector to the tangent plane and so to the considered surface at
this point:

oF (Xq, Yo Z oF (Xq, Yo Z oF (Xp, VYo Z
A (OY0,0)’ B _ (OY0,0)’ - (OY0,0).

OX oy 0z

Then formula (25) yields the equation of the tangent plane to surface (24)
at the given point:

Fx(Po)(x—Xo) + Fy(Po)(y —Yo) + F(Po)(z—29) =0.  (27)
Now we can also write the equations of the straight line passing through the
point P, and being perpendicular to the surface F(X,y,z) =0:
X~ Xo __ Y=Y% _ 7%
Fy(X0,Y0.20)  Fy(Xo,Y0.20) F7 (X0, Yo0,20)
If the surface is defined by equation (23) in the explicit form, then
F(x,y,z2)=z-f(X,y)

(28)

and hence,
Fy =—fy, F;,:—f)’, and F; =1. (29)
Example: Find the equation of the tangent plane to the surface of the

paraboloid of revolution z = X% + y2 at the point (-4,3,25).
Solution: Using formulas (29) we find the partial derivatives of

F(X,y’z):z_)(z—yz
at the given point: Fy (Ry) =8, Fy(Fy)=-6and F;(Ry)=1.
In view of (27) the equation of the tangent plane is
8(x+4)-6(y—-3)+(z—-25)=0
or equivalently
8X—-6y+z+25=0.
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2.10. Maxima and Minima of Functions of Two Variables

The definitions of the maximum and minimum of a function of several
variables are just the same as in case of function of one variable.

For instance, a function f(P) has a relative maximum at a point P, if
f (P) < f(R,) forall points P in some vicinity of the point PB.

An extreme point is the point where the function attains either maximum
or minimum.

The problem of determining the maximum and minimum of some
differentiable function can be solved by using of the Taylor Formula.

The main idea is quite clear: if the difference Af(P,) holds its sign in
some vicinity of Ry, then By is an extreme point. Otherwise, the function
f (P) has neither maximum nor minimum at this point.

Let z=f(X,y) be a given function. We begin with the first
approximation:  Af (Fy) ~ df (Fy) = fy (Ro)dx + fy (Py)dy.

Even if one of these partial derivatives is not equal zero, then the sign of
Af (Py) depends on the signs of the increments dx and dy.

Hence, all the partial derivatives of f (P) either equal zero or do not exist

at the extreme point.
To find critical points we need to solve the following equations
simultaneously:

fe(x,y)=0 and fy(xy)=0. (30)
Note that the tangent planes at such critical points are parallel to the
Xy —plane.

Then we have to take into account the next term in the Taylor formula.
Using the form of the second differential one can prove the following rule.

Rule: Let the partial derivatives of the second order f)ilz (Fo), fyy(Po),
fyx (Po) and f{/'z (Py) be the elements of the determinant:

fo(Po)  fyy(Ro)
fyx (o) T2 (Fo)

(31)

where Py is a critical point.
o IfD>0and f(Fy)>0,then Ry is a point of a relative minimum.

e IfD>0and f(Fy) <0, then Ry is a point of a relative minimum.

e If D <O, then function f(X,y) hasasaddle pointat P,.
e If D=0, then the rule does not give any answer.
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Chapter 3
INDEFINITE INTEGRALS

3.1. Primitives

Integrals, together with Derivatives, are the basic objects of Calculus.
Indefinite integrals are defined through Primitives (or Antiderivatives).
The function F(x) is called a primitive (or antiderivative) of a function

f(x) if
F'(x)= f(x) (1)

for all x in the domain of f(X).
In other words a primitive of f(X) is a function whose derivative equals
the given function f(X).

Example 1: The function F(X) is a primitive of F'(X).

Example 2: The function In(1+ x2) is a primitive of > since

1+ X

L2y =
1+ X 1+Xx

(In(L+ x?))’ = forall xeR.

2

Primitives have the following important property:

Let F,(x) and F,(x) be primitives of f , thatis,
F{(X) = F3(x) = f (%)
for all x in the domain of f(X).
Then there exists a constant C such that
F(x)=F,(x)+C.
Indeed, F/(x)=F,(x) by definition. Therefore, the derivative of the
difference between functions F;(x) and F,(x) is equal to zero for all X on
the given interval:
(F-F,) =F/-F; =0.
Hence, the difference F;—F, equals a constant by the corollary to the
Mean Value Theorem. (See Chapter 1, page 5.)
In general, if a function has one primitive, then it has an infinite number of
primitives.
However, if we know one primitive F(X) of the function f(x), then we
know all primitives of f . The set of all primitives of f can be represented
as F(x)+C, where C is an arbitrary constant.
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Example 3: Both functions, F; = (X +1)2 and F,=x"+2x-4, are
primitives of f(x)=2(x+1) forall xeR.

One can easily check that the difference between the primitives is a
constant:

F—Fp = (x+1)% = (x? +2x - 4)
:(x2+2x+1)—(x2+2x—4):5.

3.2. The Definition and Properties of Indefinite Integrals

The set of all primitives F(X) of f(X) is called the indefinite integral of
the function f (x).

The indefinite integral of f(X) is denoted by the symbol If(x)dx,
which is read as "The integral of f (Xx) with respect to x".

[ f(x)x=F(x)+C
if and only if F'(x)= f(x).

¢ The function f(Xx) under the integral sign is called the integrand.
¢ The X is the integration variable.

¢ The symbol dx is the differential of X.

¢ An arbitrary constant C is said to be a constant of integration.
All indefinite integrals have the following properties:

Differentiation is the inverse operation to indefinite integration:
(] £ 00dx)’ = f(x), (1a)
df f(x)dx = f(x)dx. (1b)

¢ These formulas follow from the definition of indefinite integrals and
can be easily memorized using the following rule:

Symbols d and f cancel each other if they follow one after
another.
£ Integration of the derivative of f(X) yields the function f(x):
[ £/(9dx=[df ()= f(x)+C. ()

¢ This property is evident since the function f(X) is a primitive of

F(x).
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Note that integration is the inverse operation to differentiation.
However do not forget to add a constant of integration when
integration is the last operation!

The following two general formulas allow us to transform a given integral
into another integral or integrals.

L A constant factor can be taken outside the integral sign.
[ef (ydx =c[ f(x)dx. 3)

L The integral of an algebraic sum of functions equals the algebraic sum
of the integrals of each of the functions.

J(F )£ g(x))dx = [ f(x)dx+ [ g(x)dx. (4)

¢ Both these properties are based on the properties of derivatives.
Indeed,

(j cf (x)dx)" = cf (x) and (cj f (x)dx)' = c(j f (x)dx)" =cf (x).
Therefore, both sides in equality (3) represent primitives of the same

function.

Property (4) can be obtained in a similar way since the derivative of a
sum of functions equals the sum of derivatives of each of the

functions.
Let [ £(x)x=F(x)+C.
Then

[fludu=F(u)+C (5)
for any differentiable function u = u(x).

¢ This property is based on the invariance of the form of the first
differential, according to which the differential formula
dF (x) = F'(x)dx holds for any composite function F(u(x)):

dF(u) =F'(u)du.
Advice: Try to memorize and understand all these rules.

Let us consider some elementary examples to illustrate the definition and
properties of indefinite integrals before going on.

Examples:
. dij'sin33xdx:sin33x. | property (1) |
X
dx '
.« | e [(tanxydx=tanx+C. | property (2) |
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3
. 6x2dx:6jx2dx:6%+c =2x*+C. | property (3) |

. . (2x —3)dx = 2_[ xdx — 3j dx | properties (3) and (4) |

X2 2
=27—3x+C=x -3x+C.

4 5
. j_'”xde:j(lnx)4d(lnx)=me+C- | property ()|

3.3. A Table of Common Integrals

Let us recall the derivatives of elementary functions. For instance, the
power rule states that
(x¥) = kxk L.

This formula can be transformed as follows.
First, we substitute (n+1) for k :

(x"1y = (n +1)x".
Then we divide both sides of the equality by (n+1)) (provided that
n # —1) and read the formula from right to left:

" Xn+1 ,
X (n+l) '
n+1
Therefore, the function 1 is a primitive of x", so the power rule for
integration is the following:
Xn+1
[ x"dx = +C, n«-1
n+1

The derivatives of all elementary functions can be treated likewise. Then
the table of derivatives can be easily transformed into the table of common
integrals.

Thus, we have a list of common indefinite integrals.
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Table 1
Derivatives Integrals
Xn+1
M+ Jx”dx: +C (n=-1)
Xn :( 1 )’ n+l
(n+1) [dx=x+C
dx
EZ(InX)’ J.?=|n|X|+C
X (x=0)
a® —(—) jaxdx—a—+C (a>0,a=1)
Ina Ina
eX = (e*) [eXdx=e* +C

sin x = (—cos x)’

[sin xdx = —cosx+C

cos x = (sin x)’ [cosxdx =sinx+C
>— = (tan x)’ d); =tanx+C (x¢£+7zn)
COS* X ® €OS“ X 2
_12 = (—cot x)’ _d>2< =—cotx+C (x=#zn)
sin‘ x ”sin“ x
1 [(arcsinx)’ I arcsin x+C (IX£1)
1_x2 |(~arccosx)’ 4/1 w2 |—arccosx+C B
1 (arctan x)’ f dx arctanx+ C
1+x2  |(~cottx) 1+x2  |-cotlx+C

Comment on # 2:

If x>0, then In|x|=Inx and (In|x|)’=1.
X

If X <0, then In| X |=In(=X) and (In| x|}’ = (IN(=x))' = _ix(—l) -,

1

1. N :
Therefore, the function — is a primitive of In| x| in both cases.

X
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Corollary 1: Each of the functions, arcsinx and (—arccosx), is a

1
V1-x2
equal to a constant:

arcsin X — (—arccos x) = arcsin x +arccosx =C .
Setting X = 0 we find the constant C:
C =arcsin0+arccos0=0+7/2=17/2.

primitive of . Therefore, the difference between them should be

Thus,
arcsin x +arccos x = /2.

Corollary 2: In a similar way one can get one more formula of elementary
mathematics:

arctan x + cot ™ x = /2.

The result for any particular integral can often be written in many different
forms.

In order to solve successfully integration problems, it is necessary to know:
o the properties of integrals;

o the table of common integrals;

e the techniques used for manipulation with integrals.

The best way to acquire enough knowledge of the integral formulas is to
use them as many times as possible. Knowledge of the formulas develops
the ability to recognize them.

3.4. Techniques of Integration

Evaluating integrals is much more difficult than evaluating derivatives. As
for derivatives, there is a systematic procedure based on the chain rule that
effectively allows any derivative to be worked out. However, there is not
any similar procedure for integrals.

One of the main problems is that it is difficult to know what kinds of
functions will be needed to evaluate a particular integral. When we work
out a derivative, we always end up with functions that are of the same kind
or simpler than the ones we started with. But when we work out integrals,
we often end up needing to use functions that are much more complicated
than the ones we started with.

Whenever the specific integration formulas do not apply, we have to
transform the problem into another problem or problems. One can try to
manipulate the integrand algebraically, separate the integrand, if possible,
put any constant factors outside of the sign of the integral by making use of
the properties of integrals, and so on.
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The basic techniques of integration are algebraic manipulation,
substitutions, integration by parts, and the method of partial fractions.

3.4.1. Integration by Substitution

The technique of substitutions helps to reduce many integrals to common
indefinite integrals, which are given in Table 1.

For convenience sake all substitutions may be subdivided into two classes:
e Uu=9(x),

o Xx=u(t).

In both cases we change the variable of integration - in one way or another.
As a rule, the substitution u = g(x) is used when a given integral has the
following structure:

[ £(g(x))g'(x)dx.
Then the substitution u = g(x) implies du = g’(x)dx, so that we obtain
J F(g00)g"0dx = [ f (u)du. (6)

Therefore, the initial integration problem is transformed into another
integration problem. However if we can not integrate the function f(u),

then another method of integration may be required.

On the other hand, the substitution X =u(t) gives another way of
transformation of a given integral.

Now let I f (X)dx be a given integral.
Then the substitution X = u(t) implies dx =u’(t)dt, and we obtain

[ £(0dx = [ f(u®)u't)dt. (7)

As above, we expect that the new integral is easier evaluated. Otherwise,
another substitution or integration method may be needed.

As a matter of fact, formulas (6) and (7) give the reverse transformation to
each other. They are called the substitution formulas.

The technique of substitution is quite general and can be used in a wide
variety of problems.

In particular, one can generalize the table of common integrals applying the
technique of substitutions. Consider, for instance, the power rule:

n+1
[ x"dx = X
n+1
Let u(t) be any differentiable function. If we use the substitution x =u,

then the power rule can be formulated as follows:

+C (n=-1).
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n+1
Judu = u
n+1
This formula is exactly the same as the original power rule. The only
difference is the interpretation of the symbol u as a function of a variable t
and so du =u'dt. Therefore, we obtain the following generalized power
rule:

+C (n=-1).

Jutyu’(t)dt = n++1(1t)+c (n=-1).

One can interpret each of the common integrals in a similar way by
considering the variable of integration as a function.

3.4.1.1. Examples of Integrating by Substitution
Example 1: Each of the following integrals

4
(arctan 2x) dx

dx
Y (arctan x)(L+ x?)’

1)
1+X

2)

3) [ o (arctanx) dx

1+x2
can be written as

j f (arctan x) = j f (arctan x)(arctan x)'dx

l+x2

= [ f (arctan x)d (arctan x).

Therefore, the substitution u = arctan x is fairly suitable for each of them:

5
I (arctan X) dx = [ (arctan x)*d (arctan x) = | uldu="+cC.
1+ x° 5
Once the solution has been found in terms of U, one needs to replace
uin it by the corresponding function of X. So the final solution is the
following:

J~(arctan x) dx — _ (arctan x) C.

1+x
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J~ dx J- d(arctan x)

2) =
arctan x

(arctan x)(L + x2)

du
= [==In|u|+C =1In]arctan x| +C.
u

3) J‘e(arctan x) dx _ J‘e(arctan X)g (arctan x)
1+ %2

= [e"du =" +C =™ +.C.

One can easily check these solutions by differentiating. Let us check,

e.g., the last integral:
arctan x
That is O.K.

(earctan X)r _ earctan X (arCtan X)r _ —.
1+ x

sin(In x) dx  and dx

Example 2: Both integrals, ,
i ! I X Ix«/l—(ln X)?

easily evaluated by using of the substitution u=Inx. They are just
common integrals:

Jsin(ln X)

X

are

dx = jsin udu =—-cosu +C =—cos(Inu) +C,
_[ dx :J‘ du
X4/1=(In x)2 V1-u?

Example 3: Each of the integrals below is reduced to the table integral

=arcsinu + C =arcsin(Inx) +C.

dx
_[ 5 =tanu+C,
cos“u

using the appropriate substitution:
. j ax Etan(3x—4)+C (u=3x—4, du=23dx).

cos’(3x—4) 3

dx dx
o =2 C = =—F).
Iﬁcosz(ﬁ) tan(+/x) + (u=+/x, du 2\/;)
4
. j#?z(z):ltan(xSHC (u=x>, du=>5x*dx).
. I*ztan(lnxhc (u:lnx,du:%).
x cos“ (In x) X
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eXdx X X X
. J'?ztane +C (u=eX, du=e*dx).
cos“(e”)
The formal substitution into the integral really is not necessary.

3.4.1.2. Some Important Integrals

Problem 1: Evaluate the following integral: j

aZ+x2
Solution: Let us make the substitution x = at Then
_[ dx J‘ adt J‘
a2+x a2+at 2 1+t ©8)
X
= 1arctant +C = 1arctan—+ C.
a a a
: . dx
Problem 2: Find the integral j—
va? - x?
Solution: By making use of the same substitution x = at we get:
J- J' adt J‘ adx
Va _a%t? ax/l—t2 )

:J' _ arcsint + C = arcsin~ + C.
/1—t2 a

Problem 3: Prove the following formula:

If—ln(wm/x +a%)+C. (10)
X +a

Proof: The formula can be verified by differentiation. We have only to

check whether the derivative of the function In(x + +/ x2 + a2) equals the
integrand.

(In(x +Vx% £a?)) = 1 Lt 2y
x+\/x2J_ra2 24/x? +a?

1 \/xzia2+x_ 1

x+vx2+a? x2+a? x2+a
That is true and hence the formula.

>
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3.4.2. Integration by Parts
The formula for integration by parts states that
Judv =uv - [vdu (11)
for any differentiable functions u(x) and v(x).
This formula allows us to transform one problem of integration into

another.
If one of the two integrals, Iudv or Ivdu, Is easily evaluated, it can be

used to find the other one. This is the main idea of the method of
integration by parts.
Formula (11) can be derived in the following way:

d(uv) =udv +vdu = udv=d(uv)-vdu =
Judv=[d(v)-|vdu = [udv=uv—vdu.
In practice, the procedure of integrating by parts consists of the following
steps:
. F|):irst, we introduce intermediary functions u(x) and v'(x) to represent
the function f(x) as the product of the factors u(x) and v'(x), so that
f (x)dx =u(x)v'(x)dx =u(x)dv and
[ f(x)dx = [udv.
For example, one can set u(x) = f (x), which implies v'(x) =1.
e Next we need to differentiate u(x) and integrate v'(X) to get the
differential du=u'(x)dx and the function Vv(x)= jv’(x)dx

respectively. Note that a constant of integration can be taken zero at this
step (C =0).
e Then we use formula (11) and try to evaluate the integral Ivdu :
FAQ (Frequently Asked Questions): Why do we prefer to deal with the
integral jvdu instead of the initial one?

Answer: It depends on the choice of u(Xx) whether the integral jvdu is

easier to evaluate in comparison with the initial one. We assume that there
exists the right choice.

The main problem one faces when dealing with the method of integration
by parts is the choice of the intermediary functions. There is no general rule
to follow it. It is a matter of experience and nothing more. At first in order
to understand better this technique, it is necessary to make any choice and
perform the calculations. If the new integral is simpler than the given one,
then the choice is a good one; otherwise, go back and make another choice.
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In such a way one can easily appreciate whether the choice of u(x) is the

best one. It is possible that you need to evaluate a few integrals before you
will start to feel the right choice.

One can apply the following criteria to make the right choice.

A:  The integral of V' should be easy for evaluation.

B:  The derivative of u(x) should be a simple function. Moreover, it is
desirable  that u’(x) would be more simple function than u(x).

The following examples illustrate the most common cases in which we
need to use the technique of integration by parts.
Example 1: Evaluate the integral j x2 In xdx .

Solution: Consider some variants of representation of the above integrand
as the product udv.

1) u=Ilnx, V=x* = du:d—;, v = [ x%dx;
2) u=x, V=xlnx = du=dx, v = [ xInxdx;
3) u=x?, V=Inx =  du=2xdx, v = [Inxdx;
4 u=xInx, V=x = du=d(xInx), v=[xdx;
5) u=x%Inx, Vv =1 = du=d(x?Inx), v:_'dx.

Let us discuss these choices in detail this time.

Both hypotheses, 2) and 3), do not satisfy criterion A, because it is not clear
how to integrate In X, while hypotheses 4) and 5) contradict to criterion B.
Similar reasons suggest that the first way only is appropriate. Indeed,

e The power function X2 is easily integrated and its primitive is
3
2 X
V=|xdx="— C =0).
| 3 (C=0)

e The derivative of the transcendental function Inx is the rational
function:

(Inx)" = XL,
Therefore, in view of formula (11) we finally get
3 3 3 3
[x?1n xdx=X—Inx—ljx?’%=X—Inx—ljx2dx=x—lnx—x—+c.
3 3 X 3 3 3 9
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Example 2: Evaluate _[arctan xdx.

Solution: Let u =arctanx and V' =1. Then du = [oy? and v = X.
+ X
We integrate by parts:
X
_[arctan xdx = xarctan X — j S ax.
1+X

To evaluate the new integral we use the substitution z =1+ x2, which

implies dz = d (1+ x?) = 2xdx, and so xdx:%dz.

ax=21% _Linizie tinasx?),
1+ x? 2° 7 2 2
Hence, the final solution is the following:

X

Therefore, j

[arctan xdx = xarctan x — | dx = xarctan x —%In(1+ x2)+C.

1+ %2

In a similar way one can integrate the product of a polynomial P(x) and

any inverse trigonometric function, as well as the product of a polynomial
P(x) and the logarithmic function.

Each of the following function
P(x)arcsinx,
P(x)arccosx,
P(x)arctanx,

P(x)cot*x and
P(x)Inx
can be integrated by parts.
The inverse trigonometric function (or In x) should be chosen as u(x)
and V'(x) = P(x).

It is not always so easy. Sometimes one has to integrate by parts more than
once to obtain the result.

Example 3: Evaluate [ xIn? xdx.

2 In xdx X2
and v=—.
X 2

Solution: Let u = In? X and dv = xdx. Then du =

The formula of integration by parts gives
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2
jxlnzxdx:%lnzx—jxlnxdx.

Now we integrate by parts a second time, setting u =Inx and dv = xdx.
2

: : : . dx X
After integration and differentiation, weget du=— and v= e
X

Therefore,

X2 2 X2

jxlnxdx:—lnx—ljxdx:x—lnx——.
2 2 2 4

The final result is the following:
2 2 2
[xIn? xdx =" In? x— (- Inx - =) +C
2 2 4

2 2 X2 X2

:X—Inzx—x—lnx+—+C:—(2In2x—2Inx+1)+C.
2 4 4

Example 4: Evaluate szexdx.
Solution: We have to make the right choice between differentiation and

integration of x2 . Note that every differentiation of a polynomial decreases
its degree, and hence, the polynomial vanishes after a few steps, while
integration of a polynomial increases its degree.

Therefore, the right choice is the following:

u=x> and dv =e*dx —  du=2xdx and v=e*.
The formula of integration by parts yields:
Ixzexdx:xzex —2Ixexdx. (12)

We need to integrate by parts once more.

Let u =X and dv =e*dx which imply du =dx and v =e*.
Therefore,

_[xexdx =xe* —_[exdx =xe* —e*.
From here and equality (12) we obtain
szexdx = x%e* —2xeX +2e*X +C.

The examples above illustrate that the single integration by parts can not be
enough to obtain the answer, and so some extra work may be needed, e.g.,
another integration by parts or using some other techniques.

The last example can be generalized:
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Each of the following integrals
[P(x)e®dx,
[ P(x)sinaxdx and
[ P(x) cos axdx

can be evaluated using the integration by parts.

In order to get the solution, it is necessary to use integration by
parts n times if the degree of the polynomial equals n.

The summary table below includes some suggested substitutions and

formulas.
Table 2
Integrals Substitutions Basic Formulas
dx
1-x?
_dx
arcsin x arcsin x 1-x°
arccos x arccosx du = dx
_ - 2
j P(x)| arctan x [dx | Y =jarctanx 1+x
-1 dx
cot~1 x cot X _ .
In X L|n X 1+Xx
dx
X
dv = P(x)dx v=[P(x)dx
u=P(X) du = P'(x)dx
eaX
ec’:lX eaX
_[P(x) sinax (dx _ 1
dv =| sinax |dx V =-—<—C0Sax
cos ax al
cosax sin ax
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By making use of integration by parts we sometimes come to an equation
for the integral but not an explicit formula. However, by solving this
equation we obtain the desired result. Let us consider a typical problem of
such a kind.

Problem 4: Find the integral | = _[eax cos(bx)dx.

Solution: Let u=e* and dv=cosbxdx, so that du=ae*dx and
v =sin bx/b. The formula of integration by parts gives

jeax cos bxdx = %eax sin bx —%feax sin bxdx .

The new integral is similar to the initial one. Let us integrate by parts the

second time. Note that we have to use again e® as u. Otherwise, we
would come back to the original integral and nothing more.

Thus, now let u=e* and dv=sinbxdx. Then du=ae*dx and
v =—coshx/b.
In this case we have

[ e sinbxdx = —%eax cosbx — (—%feax cosbxdx).

Combining both formulas yields
2

1 : a a
[ e cosbxdx = =e™ sinbx + —e®™ cosbx — = [ e™ cosbxdx).
b b b
This equality can be considered as a linear equation with respect to the
. 1 ax .. a  ax a’
given integral | : | =—e“" sinbx+—e“" cosbx——1.
b b? b?

By combining of similar terms and making use of simple algebraic
manipulations, we get

(b2 +a®)l =e®(bsinbx + acosbx) -
| — acosbx + bsin bx o X
a® +b® '

Hence, the final solution is

acoshbx +bsinbx
I e cosbxdx = e

a’ +h?
In a similar way one can obtain another formula of this kind:

jeax sinbxdx = asmbz—t;gosbx eXiC. (14)
ac +

+C. (13)
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3.5. Integration of Rational Functions

3.5.1. Main Definitions

Let us start from the definition chain:
Rational Functions —  Proper Fractions —  Partial Fractions

A rational function is a function that can be expressed as the ratio of two
polynomials:

f(x) = @
Q(x)
. . PX) .. .
A rational function m Is said to be a proper fraction if the degree of
X

the polynomial P(X) is less than that of Q(X).
For example, the following functions
x> 3x—2 1
2X+7° 53 +x -1 (x+5)*
are the rational functions. Furthermore, the last two functions are the proper
fractions.

Fractions of the following form
) Lt
(x-a)"
2) ZAX+B (n>1) (16)
(x* + px+q)"
are called the partial fractions, where the quadratic polynomial

X2 + px+(q is assumed to be irreducible, that is, the discriminant

(n>1), (15)

D= p2 —4q is negative.
The problem of integration of rational functions can be subdivided into
several separate problems such as:
1) Integration of partial fractions.
2) Decomposition of a proper fraction into a sum of partial fractions.
3) Reduction of any rational function to a proper fraction.
P(x)

Q(x)

Consider the procedure of integration of a ration function f(X) =

It comprises the following steps.

e Assume that f(X) is a proper fraction. Otherwise it is necessary first to
perform the polynomial long division in order to represent the function
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f (X) as a sum of some polynomial and the remainder term (which is a

proper fraction). Any polynomial is easily integrated, so in both cases
we can deal only with proper fractions.

Therefore, the problem of integration of rational functions can always
be reduced to the one of integration of proper fractions, keeping in mind
that any rational function either is a proper fraction or can be expressed
through a proper fraction.

e In order to decompose the given function (or the remainder term) into
the sum of partial fractions, the denominator Q(x) has to be factored
into irreducible polynomials, that is, linear and irreducible quadratic
polynomials. The corresponding method is called Decomposition of
Rational Functions into a Sum of Partial Fractions (in short form:
Partial Fraction Decomposition).

e To integrate each of the obtained partial fractions.

3.5.2. Integration of Partial Fractions

We attach importance to the partial fractions because any proper fraction
can be decomposed into a sum of partial fractions.
Partial fractions of the first type (expression (15)) are easily integrated in
view of common integrals:
dx
X—a
I dx . 1
(x-a)" (-n+D(x-a)"*
In order to integrate partial fractions of the second type (expression (16)),
one has to complete the square for the polynomial X2 + px+d, e.g.,
making use of the substitution t = x+ p/2, thatis, x=t—p/2.

Hence,

=In|x—-al|+C, (16)

+C (nz1). (@17

K+ preq= (- 2) 4 pt-2) +

2 2

P P

2
=t - -+ pt—7+q=t2+(q—p7)=t2+a2,

2

where the positive constant q _pT is denoted as a2.

Thereto, dx=dt and Ax+B=At+(B— Ag) — At+B,, where
B,=B-p/2.
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Then we apply the properties of integrals to obtain

Ax+B At + B,
[ e[ A a
(X“+ px+Q) (t +a)

(18)
=A
J.(t +a ) J.(t +a )
The first integral on the right-hand side is easily evaluated:
I tdt _EI d(t?)
(t? +a%)" (t% +a%)"
., |Fim@2+a?)+c, it n=1
_lcd(“+a”) |2
T ol 2 2\n T
27 (t*+a%)" 12 > +C, if n>L
2(-n+D)(t° +a)""
Now let us apply the technique of integration by parts to find integrals
dt
l,=|——+— (n>1). (19)
n J.(tz +a2)n
Let u=% and dv=dt.
t°+a)"
Then du:Z_Z;tZdt1 and v=t.
(t°+a”)""
Therefore,
dt t t?
= —(-2n)|—————dt
J.(t2+a2)n (t2+a2)n ( )J.(t2+a2)n+l
t (t*+a%)—a’
T2 . _2\n I
(t°+a°) (t°+a°)

~ 2 : 2 n+2nj 2 tz n_zna2j 2 dtz el
(t°+a) (t°+a) t°+a”)™
Then we combine the similar terms and express the integral |, through
the integral |,:

| a _ 12((2n—1)j(t2+d;2) t ). (20)

+
(t* +a*>)" 2na " (t? +a%)
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This recurrence formula allows us:

e tofind integral I, if integral 1, is known (setting n=1),

¢ to find integral I3 if integral 1, is known (setting n = 2), and so on.
Note that integral |, can be found by using of simple methods. (See

equality (8).)

= d _acanlic,

t?+a’ a a
Then setting N =1 we have by recurrence formula (20)
1 1
P =J‘ 5 dt2 =" (—arctan£+%)+c, etc.
(t“+a%)° 2a° a a t°+a

Thus, the problem of integration of partial fractions is completely solved.

3.5.3. Partial Fraction Decomposition
3.5.3.1. The Main Idea of the Method

In simple cases the decomposition of proper fractions into a sum of partial
fractions can be easily obtained by means of algebraic manipulations.
Here are typical examples:

1 B b-a
(x—a)(x—b) (b-a)(x—a)(x—h)
. (x=a)—-(x-b) 1 ( 1 1)
“(b-a)(x-a)(x—b) b-a'x-b x-a’
. 1 1 _tol 1
(x2—49) (x-7)(x+7) 14 'x-7 x+7"
. 1 1 4 1(x*+4)-x°
X(x2+4) Ax(x>+4) 4 x(x*+4)
1, (x*+4)  x* 11 X

A2 r4) x(x2+4) Ax x2i4

In more complicated cases one has to use the Method of Partial Fractions
Decomposition.

The main idea of this method can be illustrated by the following simple
example.
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Example 1:

1) The sum of partial fractions, i and i can be combined into a
x—1 X+4

more complicated fraction:
2 N 5  2(x+4)+5(x-1)  7x+3
x-1 x+4 (x—1)(x +4) (x=1)(x+4)
When we read this formula from left to right, we say about reduction of

fractions to the common denominator.
We can also read the same formula from right to left:

X+3 2 5
(x=1(x+4) x-1 x+4

In this case we say about decomposition of the compound fraction into the
sum of partial fractions.

7X+3

2) Let us assume that we need to decompose the fraction
(x=D(x+4)

into partial fractions. It looks in a general form as follows:
x+3 A N B
(x-1)(x+4) x-1 x+4’
where A and B are undetermined constants.
If we multiply across by (x —1)(x +4), then we get
7X+3=A(x+4)+B(x-1).

This equality is the equation for constants A and B but at the same time it
Is the identity with respect to X. So one can substitute any value for X to
find the constants.
Setting X =1 we get the equality 10 =5A which implies A= 2.
Setting X = —4, we obtain (-25) =-5B = B =5.

7x+3 2 3)

(x—D(x+4) x—1 x+4

Therefore,

as it was desired.

The Method of Partial Fractions Decomposition proceeds in the opposite
direction in comparison with the reduction to a common denominator, that
IS, it transforms a compound fraction into a sum of partial fractions.

Partial Fractions Decomposition is the reverse procedure to reduction to the
common denominator.
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3.5.3.2. Partial Fraction Decomposition: The Main Rules

There are a few rules to decompose any proper fraction into a sum of
partial fractions.
P(x) :
Rule 1: Let m be a proper fraction and let Q(x) = (x —a) Q;(x).
X
P (x)
Q1(x)
such that the given proper fraction can be represented in the form
PO __A _ R(X)
Q(x) x-a Q(x)
Note that the degree of a polynomial Q;(x) is less than the degree of the
given polynomial Q(x): degree(Q,) = degree(Q) —1.
Then one can apply this rule to the proper fraction P (x)/Qq(X), if the

denominator Q;(x) includes a linear factor, that is, Q; (x) = (X —b) Q,(x).
Therefore,

Then there exists a unique proper fraction and a unique constant A,

P(x) A N B P, (X)

= + :
(x—-a)(x-0b)Qa2(x) x-a x-b Q,(x)
Each such transformation decreases the degree of the denominator of the
proper fraction.
P(x)

Corollary: If the denominator Q(x) of the proper fraction m consists
X

of n different linear factors, that is, Q(X)=(X—a;)(x—a,)...(x—a,),
then

P(x) _ P(x) A A A
QM) (x—a))(x—ay)...(x-a,) x—-a Xx-a X—ay
One can say that each linear factor (X—a,) in the denominator of the

A
X —ay
The structure of decomposition of any proper fraction depends only on the

factors, which the denominator consists of. For instance, both fractions
below have the same structure of decomposition into partial fractions:

L :ﬁ+ Ao + A , (21)
X(x=3)(x+2) x x-3 x+2

proper fraction yields the partial fraction , Where A, is a constant.
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-1 ALK A (22)
X(X=3)(Xx+2) X X—-3 X+2
The numerator determines numerical values of the constants A, A,, As.
Let us find, e.g., numerical values of the constants in decomposition (21).
First, we multiply both sides by x(x —3)(x+ 2):
1=A(X=3)(X+2)+ AX(Xx+2)+ Agx(x—3).
One can see that all fractions have disappeared.
Then we take for X such values that make some of the terms vanish:

x=0 = 1=A(-3)2=-6A - A =-16,
x=3 = 1=15A, = Ay =115,
x=-2 = 1=10A =  Ag=1/10.

Finally, it remains to put the constants back into the original partial
fractions:
1 1 1 1

X(x —3)(x+ 2) 6x 15(x—3) 10(x+2)
If the denominator of a proper fraction includes nth power of the factor
(x—a), then one can use the following rule of decomposition into a sum
of partial fractions:
P
Rule 2: Let % be a proper fraction and let Q(x) = (x—a)" Q,(x).
X
Then there exists a unique proper fraction Pj(x)/Qu(x) and unique
constants A, Ay, ..., A, such that the given rational function can be
represented in the form
PO _ A A A R
(x—a)"Q(x) Xx-a (x-a) (x-a)" Qix)
RO it the
Qu(X)
denominator Q;(x) includes a linear factor (repeated or not).

Then one can apply the above rules to the proper fraction

P(x)

Example 2: The decomposition of any proper fraction m with
X

denominator Q(x) = (x —a)(x —b)* has the following form:
P(X) - _ A + Bl + 82 . 4 83 ..
(x—a)(x—b)> X-a X-b (x-b)* (x-b)
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Example 3: Decompose the fraction into partial fractions.

(x +1)(x—4)°
Solution: By applying the above rules we have:
1 AL A A
2~ 2"
(x+D)(x-4) x+1 x—-4 (x-4)
Then we multiply both sides by (x +1)(x — 4)?:
1= A (Xx—4)% + Ay (X +1)(x — 4) + Ag(x +1).
To solve this equation with respect to A, A, and Ag, we take for X a few
values:

x=-1 = 1=25A = A =1/25;
X=4 = 1=5A, = A3 =1/5;
X=0 = 1=16A —4A, + A3 =16/25—4A, +1/5 = A, =—1/25.

Thus,
1 1, 1 1 5
2~ ¢ B * 2/
(X+1)(x—4) 25 x+1 x-4 (x-4)
Consider now the case when the denominator of a proper fraction includes
the irreducible factor (x2 + px+q).

P
Rule 3: Let ﬂ be a proper fraction and let
Q(x)

Q(X) = (x* + px+0) Qu(x).
P (x)
Qu(X)
and B such that the given rational function can be represented in the form
P(x) _ Ax+b N P.(x)
C+px+Q() X+ px+q Q%)

Note that degree(Q,) = degree(Q) — 2.

Then there exists a unique proper fraction and unique constants A

Then one can apply the above rules to the proper fraction QPl((x))’ if its
1 (X

denominator includes either linear or irreducible factors.
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1
(x=3)(x* =X+ 2)

Example 4: The proper fraction Is decomposed into

partial fractions as follows:
1 _ A N A X+ B,
(x=3)(x>-x+2) (x-3) (x2-x+2)
As above we get the equality
1= A (X2 = x+2)+(AX+By)(x—3)
and solve it with respectto A;, A, and B,:

X=3 = 1=8A = A =18;
1 1 1
Thus, 1 1 1 X+ 2

(x=3)(x2—x+2) 8 (x-3) (x2—-x+2)
At last, we need only to consider the case when the denominator of a

proper fraction includes n times repeated irreducible factor (x2 + px+q).

P(x :
Rule 4: Let L be a proper fraction and let
X

Q) = (x* + px+)" Q(x).
R(x)
Q1 (x)
A, A, ..., A, and By, By, ..., B, such that the given rational function can

be represented in the form
P(X) . A]_X-l- Bl + A2X+ 82

(< +px+ )" Q) X+ px+g (X +px+0)°
Ax+By  R(X)
(X% + px+q)"  QuX)
Here degree(Q;) = degree(Q) — 2n.
Example 5: The partial decomposition technique gives
1 Ax+ B, A X+ B, Aq
2 2 = 2 T2 2 T '
(Xx=3)(x“—x+2)° x°—x+2 (X*—-x+2)° x-3

Then there exists a unique proper fraction and unique constants

+
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3.5.3.3. Factoring

One of the steps of decomposition of a proper fraction into a sum of partial
fractions consists of factoring of the denominator Q(X).
It is appropriate to mention here the fundamental theorem of algebra:

Every polynomial can be factored into linear factors (polynomials of
degree 1) and irreducible polynomials of degree 2.

Some Examples of Factoring:

e The polynomial x3 —5x% —x—15 can be factored into a linear factor
and an irreducible factor of degree 2:

x3 —5x% —x—15= (x—3)(x2 —2X+5).

e The polynomial X% +6X+9 has a twice repeated linear factor (of

degree 1):

X2 +6X+9=(x+3)%.

e The polynomial x* +2x% +1 has a twice repeated irreducible factor

of degree 2:

x*+2x% +1= (x2 +1)2.
e Both factors of the polynomial x* +1 are irreducible ones of degree 2:
x*+1= (x4 +2x2 +1) —2x? = (x2 +1)2 —2x?
= (X% +1-v2X)(x% +1+~/2X).

FAQ: How can we know whether a quadratic polynomial is irreducible or
it can be factored further into two linear factors?
Answer: A reducible quadratic polynomial has two zeros or one repeated
zero; an irreducible quadratic polynomial has no zeros. So if the quadratic

formula results in a negative expression under the radical (the
discriminant), the associated polynomial is irreducible.

e The quadratic polynomial x> —5X+4  has two zeros: X, =1 and
X, = 4. Therefore, it can be factored into two linear factors as follows:

x2 —5x+4=(x-1)(x—4).
e The quadratic polynomial (x2 — 4%+ 4) has one repeated zero:
X, =X, =2. Therefore, ~ x* —4x+4=(x—-2)°.
e Using the quadratic formula for the polynomial (x2 —2X+4) yields:
X, p =1t+1-4=1++-3.
Since the discriminant is negative, the polynomial is irreducible.
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3.5.4. Polynomial Long Division

P(x)
Q(x)

be greater than or equal to the degree of the polynomial Q(X). Then there
exist the uniquely determined polynomials S(x) and R(X), such that the

Let ——= be a rational function, and let the degree of the polynomial P(X)

rational function PX) can be represented in the form
Q(x)
P(x) _ S(x) + R(x)
Qx) Q(x)’

where Is a proper fraction.

R(x)
(x
The polynomial S(x) is called the quotient; the term Q(X) is the divisor

and the expression R(x) is called the remainder. In the special case when
the remainder equals zero, it is said that Q(X) divides evenly into P(X).

Let us consider the division algorithm in detail for particular examples.
Example 6: Perform polynomial long division if

5x3 — x? +4x+7

f(x) =
x? +3x-1
First, we write the expression in a form of long division:

5x3 —x% +4x+7 ‘x2+3x—1
|

Next we divide the leading term 5x3 in the numerator of the given

polynomial by the leading term x? of the divisor, and write the answer 5x
under the line:

5x3 —x% +4x+7 ‘x2+3x—1
| 5x

Now we multiply the term 5X to the divisor x2 +3x —1, and write the
answer

5X(x2 +3x —1) = 5x° +15%% — 5x
under the numerator polynomial, lining up the terms of equal degree:
5x3  — X% +4x+7 ‘x2+3x—1
5x3 +15x2 —5x | 5X
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Then subtract the last line from the line above it:

5x°  — X2 +4x+7 ‘x2+3x—1
5x3 +15%2 —5x | 5X
—16xX% +9x+7

Now we have to repeat the procedure: to divide the leading term (—16x2)

of the polynomial in the last line by the leading term x? of the divisor to
obtain (—16), and add this term to the 5x under the line on the right-hand

side:

_5x3 — X2 +4x+7 ‘x2+3x—1
5x3 +15x2 — 5x 5x-16
—16X% +9x+7

Then multiply the term (—16) by the divisor x? +3x—1, and write the
answer

—16(x% +3x—1) =—16x> — 48x +16

under the last line polynomial, lining up terms of equal degree:

_5x3 — X2 4 AX+7T ‘x2+3x—1
5x° +15x2 — 5x 5x-16
~16X% +9x+7

—16x° — 48x +16
Subtract the last line from the line above it:

5% —x% +4x+7 ‘x2+3x—1
5x3 +15x2 — 5y | 5x-16
B ~16X% +9x+7
—16x2 — 48x +16
57x-9

At the next step we would divide the term 57X by the leading term x? of
the divisor, not yielding a polynomial expression.

Therefore, the division procedure is terminated. The remainder is in the last
line: 57x—9, and the quotient is 5Xx —16. One can see that the remainder
(57x—9) has degree 1, which is less than the degree of the divisor.
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Thus, we finally get:
3,2
oX 2x +4x+7_(5 X—16)+ 57x 9
X“+3x-1 X2 +3x—1

The easiest way to check the answer algebraically is to multiply both sides
by the divisor:

5x3 —x% +4x+7 = (5x—16)(x? +3x—1) + (57x - 9).
Then we multiply out and simplify the right side:
5X5 — X2 +4X+7 = (65X —16)(x% + 3x —1) + (57X —9)

—5x3 +15x% —5x —16x2% — 48X +16+57Xx -9

=5x% — X% +4x+7.
Thus, we have the identity and so the answer is correct.

x> —4x%> —x—6

Example 7: Perform polynomial long division if f(X) =

X2 — X+ 2
In a similar way as above we get:
X2 —4x2—x—6 ‘xz—x+2
X2 —x? + 2 ‘X_3
_ -3x*+3x-6
—3x%+3x-6

0
In this case, the remainder equals zero, so (X —3) divides evenly into
(x2 —X+2).

3 4w o
Therefore, X 24X X=6 =Xx-3.
X“=X+2

Multiplying both sides by the divisor yields:

X3 —4x?—x—6=(x>—x+2)(x-3).
By polynomial long division, the polynomial x> —4x% —x—6 is factored,
that is, it is written as the product of polynomials with Iower degrees.

Summary example: Evaluate the integral I4dx using the

technique of integrating rational functions.
Solution: Since the degree of the numerator is greater than that of the
denominator, we have to perform the polynomial long division to get
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x* +1 Ox% +1
3 =X+
X° —9x x5 —9x
Next we factor the denominator:
X3 —9x = x(x2 —9) =x(x-=3)(x+3).

x2 +1

X2 —9x

Then we use the method of partial fractions to split the fraction

into easily integrable ones:
9x> +1 9x2 +1 A B C

x3—0x X(X—3)(x+3) X TX=3 x+3’
Now we simplify this equality to get

9x2 +1= A(X—3)(x+3) + Bx(x +3) + Cx(x —3).
To solve this equation with respect to the constants we take for xa few
values:

x=0 = 1=-9A = A=-1/9;

X=3 = 82=18B = B=41/9,

X=-3 = 82=18c = C=41/9.
Therefore,

ox°+1 1. 1 41 41
=—(——+ + ),

x3-9x 9 X x-3 x+3

which implies
x*+1 Ox*+1 1,1 41 41
=X+ =X+=(——+ + ).
x> —9x x> —0x 9" x x-3 x+3
Finally, we get
x +1 41
I 3 I(X__ Jax
—0x ox 9(x 3) 9(x+3)

_.[ «dx __Idx 41_[ J-X+3

2
:X——Eln|x|+4—(ln|x—3|+ln|x+3|)+C
2 9 9
2
X Lk k2 — 94,
2 9 9
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3.6. Integration of Trigonometric Functions

3.6.1. Integrals of the Form jsinmx cos"x dx
We consider here two cases: either both exponents, m and n, are even
numbers or at least one of them is odd.
Case 1: Let m and n be even numbers, that is, m =2k and n=2I.

Then the powers of sines and cosines can be reduced step by step, using the
following trigonometric identities:

2sin® x =1—cos 2X, (23a)
2¢0s° X =1+ Cos 2X (23b)
2SIN XCOoS X =Sin 2X. (24)

Indeed,
jsinZk xcos2! xdx = j(sin2 x)k(cos2 x)I dx

= %j(l—cos 2x)¥ (1+ cos 2x)' dx.
By removing parentheses, we obtain the sum of simpler integrals, some of
which have to be further simplified in a similar way as above.

Case 2: Let n be an odd number: n =2k +1.
Then for any number m we get:

2k+1 2k

J'sinm X COS Xdx = J'sinm X C0S<X X cos xdx
= _fsinm x(1—sin? x)¥ cos xdx.

This form suggests the substitution t = sin x, which implies dt = cos xdx,
and so

[sin™ xcos™* xdx = [t™ (1—t?) .

If m is an odd number, then by making use of the substitution t = cos X,
we obtain

[sin®*** xcos” xdx = [ (1-t*)*t"dt.

Thus, the problem of integration is reduced to a simple procedure of term-
by-term integration of a linear combination of power functions.

75



Indefinite Integral
Examples:

e Joos? xdx=%j(1+c032x)dx=%(x+%sin 2x) +C.

o jsin2 3x cos® 3xdx = %_fsin2 6xdx | by formula (24) |

1 1 1 .
=—1(1-cosl2x)dx ==(x—-—sin12x) +C.
8-[( ) 8( 12 )

. [cos® xdx = [(L-sin? x)? cos xdx | by substitution t=sinx |
=[(1-2t? +t4)dt:t—§t3+%t5+c

_ciny_ 2cin3y .y Lains
=SIn X 3sm x+5sm X+ C.

sin® X gy f(l c0s? X)?
COS X COS X

j(1 t2)2

4
=In|t|—t?2+-—+C
] 1

|

sin xdx | by substitution t = cosx |

dt :j(%—2t+t3)dt

cos? x
4

=In|cosx|—cos? x+ +C.

3.6.2. Integration of Powers of Trigonometric Functions
dx

and I

sin"x cos"x

The power n is assumed to be a natural number. So there are two possible
cases.

Case 1: Let n be an odd number, thatis, n = 2k 1

3.6.2.1. Integrals of the Form _[

In this case, both problems of integration, J , can be

and j

sin" x cos" x
solved by wusing of the substitutions cosx=t or sinx=t,
correspondingly:

i dx :Jsinxdx:I sin xdx . d(cosx) . dt
sin?1x  “sin?x * (1-cos? x)k (1-cos? x)¥ 1-t2)k’
i dx - Cos xdx - dt
cos®x 7 (l-sin?x)k T(@-t2)k
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Hence, the given integrals are transformed to integrals of proper fractions.

Case 2: Let n be an even number, that is, n = 2K .

The integral j can be transformed by using of the trigonometric

sin” x
identities:
1 sin® x + cos? X 2
— = — =1+cot” x =
sin“ X sin“ X
1 1 4 1 1 1
— = () =@+ cot? )T
sin“" x  sin“ x sin“ x sin“ X
—
k-1 dx

dx
‘[sm _j(1+cot ) sin® x

where t = cot X.

=—[@+t%)dt,

As above, the integral j can be evaluated by the substitution

cos" x
t=tan x:

| dX _j(1+tan x)-1
cos2k cos? x
Thus, we have the mtegral of a polynomial.

_j(l +t2) gt

Examples:
. J- dx —ICOSXdX—I d(sinx) =Elnl+5!nX+C.

COSX Y cos?x “1—sin®x 2 1l-sinx

dx 2 X

o = | (1+tan” x)

Icos4x '[ cos? X

5 3 tan® x
:_[(1+t )dt:t+§+C:tanx+ +C.
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3.6.2.2. Integrals of the Form Itannxdx and jcot”xdx

As usual, the power n is assumed to be natural unless otherwise is
stipulated.

Note that the given integrals are easily evaluated for n=1 and n=2. For
instance,

2 1—cos? x o dx
J'tan xdx—j—coszx dx_jcoszx jdx

=tanx—jdx=tanx—x+C.
Hence, the problem of integration consists in lowering of the power n of

tangents and cotangents, that can be easily carried out by using of
trigonometric identities:

Itan” xdx = _[tan”_2 X(———Ddx= J'tan”_2 X d>2< —_[tan”_2 xdXx.
COS” X COS” X
Taking into account that
_ dx _ tan" 1 x
[ tan" ?x— = [ tan" Zxd(tanx) = ———+C,
COS” X n-1
we obtain the following reduction formula:
n-1
J'tann xdx:tan—X—J'tan”_2 xdXx . (25)
n-1

Therefore, the problem of integration of tan" X is reduced to that of

integration of tan"? x. In this way one can lower any natural power n to
1 or zero.

Similarly, one can also get the reduction formula for the cotangent
function:

cot” x = cot""% xcot? x = cot" X(—%——1) =
sin“ x
_ dx _
J'cotn xdx:J'cotn 2 x— > —_|'cotn 2 xdx =
sin“ x
cot" 1 x _
jcotn xdx = ———jcotn 2 xdx . (26)
n-1
2 2
. X X .
In particular, [ cot® xdx = — cot — [ cot xdx = — COUX 1 |sinx|+C.
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3.6.3. Integration of Products of Sines and Cosines

Each of the following integrals

[ sin axcosbxdx, [sinaxsinbxdx and | cosaxcosbxdx
can be easily evaluated with the help of trigonometric identities:
sinacosﬂ=%(sin(a—ﬂ)+sin(a+,8)), (27)
sinasin g =%(cos(a—,b’) —cos(a + ), (28)
COSa COS 3 = % (cos(a — B) +cos(a + f)), (29)

Examples:

. Isin 2x cos xdx =%j(sin 3x + sin x)dx = —%cosSx—%cosanC.

e [sin5xsin3xdx =lj(cos 2X — c0s8X)dx = Lsinox—Lsinsx+cC.
2 4 16

Sometimes it is necessary to apply identities (27) — (29) more than once to

obtain the final result.

Example: In order to evaluate jsin 2XC0S3x cos4xdx it is necessary to

transform the product of trigonometric function into their linear
combination.
By identity (29) we have

C0S3XC0S4X = %(cos X+ COS7X).
Then we use identity (27):

sin 2xc0s3xcos4x = %sin 2X(C0S X + COS 7X)
= %(sin 2X COS X + Sin 2X C0S 7X)

= %(sin X + sin 3x + sin(=5x) + sin 9x).
Hence,

Isin 2X C0S3X Cos4xdx = —% (cosx +%c033x —%cosSx +30059x) +C.
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3.6.4. Rational Expressions of Trigonometric Functions

3.6.4.1. General Substitution t:tang

Let P(X,y) and Q(X,Yy) be polynomials with respect to variables x and
y.
The quotient R(Xx,y) = P(x.y)

Q(x,Y)

of two polynomials is a rational

expression of x and .

Likewise, the quotient

P(sin x,cos x)
Q(sin x,cos x)

Is called a rational expression of sine and cosine.

Note that all the other trigonometric functions are rational functions of sine
and cosine.

Example 1: Such expressions as

R(sin x,cos x) =

2 —3sin X 1 COS X
7 —4c0s? x + 2sin x 1++/3cos° x 2 +5¢0s° Xsin X
: : : : 1 :
are rational ones of sine and cosine, but the expression ———— is not
1++/cos x

that.

Theorem: Let R(sin X,cos X) be a rational expression of sine and cosine.
Then there exists a rational function f (t) such that

[R(sinx,cos x)dx = [ f (t)dt.

Note: Any integral of a rational function can be evaluated. Therefore, the
theorem states that any integral of a rational expression R(Sin X, C0s X) can

be transformed into the integral of a rational function and hence, can also
be evaluated.

X :
Proof: Let t=tan5. Then sinXx and coSX can be expressed through

rational functions with respect to t by using of double-angle formulas:

Zs,infcosi 2tan§
2 2 2 2t

2, X . 2,X - 2,X :l+t
cos“(—)+sin“(-) 1+tan“(—
(2) (2) (2)

sinx = (30)

2 ]
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cos()sm()ltan()lt
COS X = 2 (31)
cos? (= )+sm = ) 1+tan? (> ) 1+t?

2dt

Moreover, from X =2arctant it followsthat dx= 5
1+t

Therefore,
2t 1- t

1+t2’1+t l+t

jR(sm X,C0S X)dXx = J'R( _[ f(t)dt,

2t 1-t? . . .
where f(t) = R( 5 2) > is some rational function.
1+t° 1+t° 1+t

This completes the proof.

Example 2: By applying the substitution t = tang we get

ot 8 ac —injan X 4C
sin x 2t (1+t) t 2
1+1t2
Note that
T
d(x+>)
J' ax__ ax :I 2" _njtanC + 5y |+C.
COS X 2 4

. T . T
sin(x+_) sin(x+_
(x+) (x+)

dx

Example 3: Find -[2+cosx—sin y

Solution: Let t = tan > Using simple algebraic manipulations we obtain:

J‘ dx _I 1 _ 2dt
2 +COS X —Sin X 1-t2 2t 14t2

2+ —
1+t2 1+t2

dt
2 —2 .
J2(1+t 2y +1-t2 IZ _2t+3 I(t+1)(t—?>)

The technique of partial fraction decomposition gives
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dt 1 dt dt
2[——— == -
J‘(t+1)(t—3) Z(It—S J‘t+1)

“Lnptos—mt+1pec =2 =34
2 2 t+1

) i X
It remains to substitute tanE for t:

dx 1, ,tanx/2-3
| == |n|—E2|4C.
2+cosx—sinx 2 tanx/2+1

3.6.4.2. Other Substitutions
oL X :
General substitution t = tanE enables us to evaluate integrals of the form

j R(sin x,cos x)dx but very often in a complicated way.

However, there are a few specific cases when a rational expression
R(sinx,cosx) has even-odd symmetry. In these cases, integrals

IR(sin X,C0S X)dx can be transformed into integrals of rational functions

by another trigonometric substitutions, which turn out often to be more
preferable for integration of rational functions.
Let us consider these cases.

Case 1: If
R(-sin x,cos x) = —R(sin x, cos x),
then one can apply the substitution t = cos X.
Case 2: If
R(sin x,—cos x) = —R(sin x, cos X),
then the suitable substitution is t =sin X.
Case 3: If
R(—sin x,—cos x) = R(sin x,cos x),
then both substitutions, t=tanxXx and t=cotXx, are suitable.
As an example, let us give reasoning for Case 1.
Proof: The expression R(Sin x,cosX) is an odd rational function with
respect to Sin X. Hence, we have
“ R(sin X, cos X)

R(sin x,cos x) =sin _
sin x

=sin X - R;(sin x,Cos X) .
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Here Ry (sin x,cos x) is some even rational function with respect to sin x

containing only even powers of sine.
Hence,

Ry (sin x,cos X) = R, (sin2 X,C0s X) = Ry (1—C0s“ x,C0S X).
However, the last rational expression is some rational function f with
respect to COS X:

2

Ro(1- cos? X, COS X) = f(cosx).
Therefore, by making use of the substitution cos X =t, we obtain
[R(sinx,cosx)dx = | f (cos x)sin xdx = [ f (t)dt

Hence, the desired result.
Other cases can be treated similarly.

.3

: in® X

Example 1: Find IS—de.
4 —cos” X

Solution: This is Case 1, that is R(—sin X, cos X) = —R(sin X, C0s X).

Indeed,

(—sin x)3 B sin® x
4—(:052 X 4—cos2 X

Then for the substitution t = cos X we have dt = —sin xdx and

sin® xdx = sin? xsin xdx = (1— cos? x)sin xdx = —(1—t?)dt.
Therefore,
jﬂdx— [ t dt = [ (~1+—)dt =t + 3j
4 —cos? X 412 4— t2 4—t?
3 Y2 he = —cosx+ SIn | 895X H 2 e
4 t-2 4 " CcosSx—2
Example 2: Find IMdX.
3sinx+1

Solution: Here we have Case 2 due to the identity
sinX(=cosx) _ sin Xcosx

3sinx+1  3sinx+1
So we make the substitution

t=sinx,
which gives cosxdx = dt.
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Therefore,
sin xcosx

3sinx+1 BI( _3t 1

= (——In|3t+1|)+C

1
3
1(sm x——In|3S|nx+1|)+C

dx
2sin Xcos X —4sin? X +5
Solution: This is Case 3 since:
1 B 1
2(—sin x)(—cos x) —4(-sin x)2 +5  2sinxcosx—4sin?x+5
that is, R(—sin x,—cos x) = R(sin X, c0s X).

Example 3: Find j

First, we transform the integrand:
1 1

2sin XCosX —4sin® X+5  2sin xcos X — 4sin? x+5(sin2 X + C0S° X)
1 1

sin? X + 2sin Xxcos X +5c0s% X cos? x(tan2 X+ 2tan x +5)

Therefore, the rational expression of sine and cosine has been transformed
into the rational function of t by the above formula. So we have reduced
the initial problem to integration of the rational function:

j dx _J~ dt
25iN XCOSX —4sin°X+5 " t2+2t+5
=[-—=7 at+) 1, ctan%+c—% arctan 21X L ¢

t+)°+4 2
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For convenience sake, let us summarize the main results. The table gives
substitutions and basic formulas for all the cases.

Table 3
Properties Substitutions Basic Formulas
R(—sin x,cos X) = —sin xdx = dt
= —R(sin x,cos X) cosx =t sin? x = 1—t2
R(sin X,—cos x) = _ cos xdx = dt
dx
5= dt
COS” X
tanx =t 2
.2 t
sin“ x = 5
1+t
: 2., _
R(—sin x,—cos x) = COoS X—l 2
_ +
= R(sin x, cos x)
dx
— = —dt
sin“ X
sin? x = -
cotx =t -
1+t2
2
t
cos? X = 5
1+t
2dt
dx = 5
1+t
Any rational expression X .
Y _ P tan - =t sin X = t
R(sin X, cos x) 2 14 t2
1-t2
COSX = 5
1+t
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3.7. Integrals Involving Rational Exponents
1
1. Integrals with rational exponents X" can be transformed to integrals of
rational functions by making use the substitution x =u", which implies
x =u and dx = nu"du.

Example 1: Let j be a given integral.

dx
\/;+3

The substitution X =u? yields vx =u and dx = 2udu, so that

udu ,p(u+3-3)du
J-\/_+3_2J.u+3_2I u+3
=2[du —6j——2u 6In|u+3|+C

=2/x—6In|~/x +3]|+C.

2. Integrals with a few rational exponents can be evaluated by the

substitution X =u", where n is the least common multiple of the
denominators of the exponents.

Example 2: Consider the mtegralj
Jx +\/_

The substitution x =u® allows us to get rid of both square and cube
radical signs without getting new fractional exponents. Then Jx =
3/x =u? and dx = 6u5du so that
u°du usdu
=06 =06

I Jx +§/_ I ud +u? I u+l
This integral of the rational function can be easily evaluated by
employing a polynomial long division:

u’du —j(u +1)%du —3[ (u+1)du +3[ du -

du
u+1

_(u +1) ~3(u +1)
-3

6 3 6 2
= (&;l) —3(\/;;1) +3¢x —In|¥x +1]+C.

+3u-Inju+1|+C
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Therefore,

dx  E@x+1)® 3@¥x+1? 6
= - +3Xx—=In|¥x+1|+C.
J?’ U+4/X 3 2 | |

: : : lax+b
3. Integrals involving expressions of the form n q can be evaluated
CX +

" which eliminates the radical sign and

X
by the substitution ax +b —
cx+d

ud —b
a—-u"c

3.8. Integrals Involving Radicals Va? + x? or Vx?—a?

Consider integrals that involve the following radicals:

vaZ—x?, vaZ+x? or  Wx%?-a?.

In order to eliminate the radical sign, one needs to use appropriate
substitutions, e.g., trigonometric substitutions.

yields x as a rational function of u: X =

Problem 1: Eliminate the radical sing for Va? —x2.

Solution: The trigonometric identity 1—sin? x = cos? x suggests the
substitution X = asinu. Indeed,

\/8.2— \/a a sm u

:Jaz(l—sinz u) — /a2 cos2u = acosu.

Note: The same idea works for the cosine-substitution: X =acosu. In this

case va? —x% =asinu.

Problem 2: Eliminate the radical sign for va“ + x
Solution: The trigonometric identity

1+tan’u =

cos? u

hints at the substitution X =atanu. Then

a®  a

cosu Cosu’

JaZ +x2 =va2 +a%tan?u =Ja2(1+tan2u) _
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Note: One can also use the substitution x=cotu, which gives

Jat+x?P =2

sinu

Problem 3: Eliminate the radical sign for Vx> —a? .
Solution: Since the difference

1 1-sin®u  cos®u 2
— —l=———=—>—=cot"u
sin“u sin“u sin“u

Is the perfect square, the substitution X =—— is suitable for eliminating
sinu

—1) =+va’cot?u =acotu.

s a
5 —1=tanu suggests the substitution X = ——,
cos“ u cosu

which is also suitable for eliminating of the radical v x> —a? .

In this case \/x2 —a2 =atanu.

The following examples illustrate applications of the above trigonometric
substitutions for elimination of radical signs.

\/3—x2

Example 1: Find J'de
X

of the radical:

Vx?—a? =

Note: The identity

2
a“(
sin?u sin?u

Solution: Let X =+/3sinu. Then

2
j4d3_zx jSBCOSUx/_cosudu
X sinu

= [cot? udu_j( ~Ddu=-cotu—u+C

Sln u

The solution is found in terms of U, and we have to express it in terms of
X:

. X
X =+/3sinu —  U=arcsin——,
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2
. 2 . X X
) 1-sin“arcsin— -
2 2
cosu +v1-sin“u \/ 3-X
sinu sinu . . X
sinarcsin—— —
J3 V3
Therefore, the final solution is
/ 2 2
Iﬁdx:— 3-X —arcsini+C.
x° X 3
) V9 + X
Example 2: Find jg;d
Solution: Let x=3tanu. Then dx = 3du
cos? u
J9+x J9+9tan u_J9(1+tan u) = |
COS u COSU
Therefore
X2
J- 9—|— J- dU
81tan® ucosd u
cosudu dt o )
=—j =—j | substitution t=sinu|
sinu
= 1 +C=- %+C.
27t 27sIn°u
It remains to express the answer in terms of X:
X
X =3tanu = u = arctan —,
) sinu tanu
sinu = =
Jeos2u+sin?u v1+tan2u
X X
tan(arctan — -
( 3) _ 3 _ X

a a 2
\/1+tan2(arctan§) \/1+(;()2 V9 +x
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Finally we have

J- 9+x _(9+x2)\/9+x2+c

27x3
Example 3: Find IL
x?\/x% -5
Solution: Let X :_ﬂ. Then dx :—@Ssudu,
sinu sin“ u
x2 - _/ 5= \/5(1 sin” u) = J/5cotu
sin®u sin®u

Therefore,
J5cosusin 2 udu

J «/x _ J5\/§cotusm u

Now we have to return to the initial variable X:

——an du—%+c.

JE J5
X=— smu_—
smu
cosu =+1-sin®u=,/1- (— = 1- I -
Therefore,
2
j dx _ X 5+C.
2./y2 5x

Problem 4: Eliminate the radical sign for \/J_r X2 + pPX+q.

Solution: In order to evaluate an integral of expression involving the
radical of this type, one has to complete the square of the quadratic
trinomial. Then the previous methods can be used to solve the integrals.

Example 4: Consider the radical JXZ —-6x+10.
Let us transform the quadratic polynomial under the radical sign to get a
perfect square:

X2 —6X+25= (X% —6X+9) +16 = (x — 3)% + 42,

Then we can use the tangent-substitution  x—3=4tanu to solve the
problem.
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3.9. Integrals of the Form jxm(a+bx”)pdx

Chebyshev proved the following theorem:
Let m, n and p be rational numbers.

Then the following integral
jxm(a+¢m”)pdx
Is evaluated in terms of elementary functions if and only if there is an

_ m+1 m+1
integer among the numbers p, —— and ——+p

n n
Proof: Consider three cases.
1) Let the number p Dbe an integer, and let S be the least common

multiple of the denominators of the exponents m and n. Then by

substitution x =t°, the given integral can be transformed to the
integral of a rational function. Therefore, it can be evaluated in terms of
elementary functions.

m+1
2) Let the number
n

x" =7 thatis, x = z¥" we get

be an integer. By making the substitution

m 1 m+1_l

m nyp n pl ot Ll n p
Ix (a+bx™) dx=jzn(a+bz) Hz” dz=ﬁ_[z N (a+bz)"dz.

If s is the denominator of the rational number p, then by substitution

a+bz =t° we obtain the integral of a rational function.

3) Let the number m+1

+ P be an integer. The last integral can be

written as:

m+1
+Pp-1 g+ bz

m+l m+2
jzr1 (a+bnpdz=jz n ( )Pdz.

. a+bz . :
Therefore, by substitution =t° it is transformed to the integral

A
of a rational function (s is the denominator of the rational number p).

Thus, all the cases are investigated.
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In conclusion, we give the table of substitutions for all these cases.

Table 4
Integer Substitutions
X=u®
P S is the least common multiple of the denominators of the
rational exponents m and n
m+1 a+bx" =t°
n S is the denominator of the rational exponent p
a S
m+1 — b=t
—+p X
n

S is the denominator of the rational exponent p

Example: Consider _[4 1+ x2dx.

m+1 O0+1 1 m+1 3
= =—and ——+ p=—, are not
n 2 2 n 4

integer. Hence, the given integral cannot be expressed through a finite
number of elementary functions.

Here all numbers, p =1/4,

3.10. Some Irreducible Integrals

Integrals of rational functions are evaluated straightforward, and the answer
Is expressed in terms of rational functions, logarithms, and inverse
trigonometric functions.

But it is still possible to find even fairly simple looking integrals that just
cannot be done in terms of elementary functions such as exponentials,
logarithms, trigonometric functions and so on.

Liouville showed that the integrals given below cannot be expressed in
terms of a finite number of elementary functions:

2 X in
J'e‘x dx, je—dx, J—SI X dx, j—COSde, ﬂ
X X X In x
Each of the following integrals is also irreducible:
rctan In
'[xxdx, I_acta Xdx, I—X dx .
X X+1
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3.11. Extended List of Common Indefinite Integrals
The table below gives the list of the most important indefinite integrals.
Table 5
Xn+1 dx
x"dx = +C n=-1 ——=In|x-a[+C
j n+1 ( ) X—a
a-X
[e¥dx=e"+C [a*dx=——+C
Ina
jsin(ax+b)dx=—1cos(ax+b)+c
a
[ cos(ax+b)dx = 1sin(ax +b)+C
a
| d)é =tanx+C | _d>2< =—cotx+C
COS“ X sin“ X
arcsin§+C 1arctan§+C
J- dx B a J- dx | a a
[2 .2 2 . y2
a®—x" | _arccos X +C a”+x® | _loiXic
a a a
o dx :In(x+\/m)+c . _1x=23, ¢
“Jx2+3?2 x> —a%? 2a x+a
[ tan xdx =—In|cosx|+C [cotxdx=In|sinx|+C
X injtand)4C X njtanC+ 5y +C
° sin X 2 ° COS X 2 4
[ e sin bxdx = asin b>2<—b§osbx eX 4 C
a“+b
[e® cosbxdx = acosb;<+bzs|nbx eX 1 C
a+b
J- dx 1 (J- dx N X
(X2+a2)n+l 2a2 (X2+a2)n (X2+a2)n
n-1
jtan” xdx = B X —jtan”‘2 xdx
n-1
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Chapter 4

DEFINITE INTEGRALS

4.1. The Geometric Definition of Definite Integrals
The mathematical concept of definite integrals can be understood better by

considering the following problem.
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Fig. 1

Problem: Let a function y = f (x) be
positive defined on a closed interval

Find the area of the region

under the curve y= f(x) bounded
by the X-axis and the lines x =a and
Xx=Db. (See Fig.1.)
Solution: The main idea is very
v simple: parts form a whole.
e First, we partition the interval
[a,b] into n subintervals [Xg, %],

[X1'X2]1---a [Xn—lixn] by
arbitrary points X, X,, ..., X,_1 of the partition, as it is shown in Fig. 2.

Ax)  Ax

!

{I:XD .xl .x2

Fig. 2

S
Il
-

e Next, we draw vertical lines at the partition points to approximate the
region by n rectangles. The area of each rectangle equals the product of

q y=75(x)

A —
..}F = T

Flxy)
J )
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its base and height, and
it can be easily found.
The base of each
rectangle IS the
difference between one
value of X and the
previous value of Xx:

AX]_ = Xl - Xo,

AXZ = X2 _Xl’ aany

AXpy = Xy — Xp_1-

The heights of the
rectangles are equal to
Y = F(X), where
index k varies from 1 to
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e Then, we sum up the areas of all rectangles to find approximately the
total area A of the region bounded by the graph of y = f(X), the x-

axis and the lines x=a and x=Db.

n
A=z Z f (X )AX - (1)
k=1
The above sum is known as the Riemann Sum.
e By comparing Fig. 3 and Fig. 4 one can easily see that approximation
(1) is getting better when the number of approximating rectangles
Increases.

)\:}-’

y=7x)

If the number of the
rectangles tends to
infinity, so that all the
bases of the rectangles
tend to zero, then sum
(1) gives the area under
the curve exactly.

\I
a b
Fig. 4
Note that the last condition can be written for a short as "maximum
AX — 0" because in this case all bases Ax, -0 (k=1,2,...,n) and the

number of the rectangles n — .

Therefore,
n

A= lim > (% )Ax . )

max AX—0 | —1

If this limit exists, no matter how the partition points X, are chosen, then it
is called a definite integral of f (x) over the interval [a,b].

A definite integral is denoted as an indefinite integral but with upper and

lower limits:
b

j f(x)dx=lim i f (X )AXy - (3)

3 max AX—0 k=1

The numbers a and b are said to be lower and upper limits
correspondingly.
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4.2. The Algebraic Definition of Definite Integrals
Let f(X) be a function defined on a closed interval [a,b]. Consider a
partition of the interval [a, b] taking points X, X,, ..., X,_; such that
a=Xy <X <X <..<X,_1<X,=Db.

The sum of the products f (x,)Ax, is called the Riemann Sum, where
AX denotes the difference between two successive partition points, that is,
AX, =X — X1, KeN.

Let n — oo and all Ax, — 0. If the limit of the Riemann Sums exists and
does not depend on a choice of the points X, of the partition, then it is
called a definite integral of the function f (x) over the interval [a,b]:

b n
[f0oodx=1im > f(x)Ax. (4)

max AX—0 21

The process of computing an integral is called integration and the
approximate computation of an integral is called numerical integration.

4.3. Properties of Definite Integrals

The following properties are based on the definition of definite integrals.

1. The variable of integration is a dummy variable, that is, an integral is
independent of the choice of a symbol denoting the variable of
integration:

b b
[ f(x)dx = [ f(t)dt.
a a
2. For any constant ¢ and any function f(Xx) we have:
b b
Jef ()dx =c| f (x)dx.
a a

3. The integral of a sum of integrable functions over the interval [a,b] is
equal to the sum of the integrals of the addends over [a,b]:

b b b
[(F)+g0)dx = [ f(x)dx + [ g(x)dx.
4. By definition T f (x)dx =0.

b a
5. [ f(x)dx =~ f(x)dx.
a b
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6.

b
[ £ (x)dx

b
<[[f()dx,  (a<b).

b c b
7. [ £0gdx = [ f()dx+ [ f(x)dx.

This formula is quite evident if ¢ €[a,b] (see Fig. 5), but it holds true
when ¢ ¢ [a,b] provided that all the above integrals exist.

b
8. [f(x)dx=f(x)(b-a), (a<x<b). (See Fig. 6.)

y ™ 47

J &)
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4.4. The Fundamental Theorems of Calculus

X
1. If the function f(X) is continuous on (a,b), then the function j f(t)dt
a

is a primitive of f(x) forany x € (a,b):
d X
— | f(t)dt = (x). 5
o j (tdt = () (5)

2. If the function f(X) is continuous on a closed interval [a,b] and F(X)
is a primitive of f(X) on the interval [a,b], then

b b
[fmdt=F(x)| =F(b)-F(@a). (6)

Proof: Let us recall the definition of the derivative:
dp(X) _ |im 2+ A%) —o(X)
dX  Ax—0 AX '
Therefore, by Property 7,

X+AX X
. [ fdt—[ ft)dt
— | f()dt= lim —2 a
dx£ ® Ax—0 AX
X X+AX X X+AX
j f(t)dt + j f (t)dt — j f (t)dt j f (t)dt
= lim & X a = lim *——.
AX—0 AX AX—0 AX

Applying Property 8 to the interval [X, X + AX] we find that

X+ AX

[ f(t)dt = f(x)Ax,

where Xe(X,X+AX) and X—> X as AXx—0.
By combining these results, we get

f (X)AX
AX

X
ijf(t)dt: lim — f(x).
an AXx—0
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Therefore, the function
X
F(x) = f(t)dt+C 7)
a

is a primitive of f(X).
This is the first fundamental theorem of calculus.
Setting X = a, we find the constant C:

a
F@=[f(tydt+C = C=F(a).
a
Hence,
X
[ f(t)ydt=F(x)—-F(a).
a
Setting X =b, we get the second fundamental theorem of calculus:

b
[ f(t)dt=F(b)-F(a).

Therefore, both fundamental theorems of calculus are proved.
The Fundamental Theorems of Calculus bind a definite integral of f(x)

over the interval [a,b] with an indefinite integral of f(x). All we need
only is to evaluate F(X) at b and to subtract F(x) evaluated at a from it.
Examples: Evaluate each of the following integrals:
7/12 5 7
1) [cos2xdx, 2) [(3x° —;)dx.
0 2

Solution:
7/12
1) [ cos2xdx ==sin 2x
9 2

7/12

:l(sinz—sinO):l.
0 2 6 4

5 7 5 5 dx 5
2) (3x2——)dx=3 x2dx — 7 —=(x3—7lnx)
X X 2
2 2 2

:(53—7In5)—(23—7ln2)=117—7Ing.
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4.5. Techniques of Integration
This section contains a review of the major techniques of integration
including substitution method and integration by parts.
4.5.1. Substitution Method

Theorem: Let f(X) be a continuous function on the interval [a,b].
Assume that a function X = @(t) has a continuous derivative on the interval

[, B].
If () =a and @(f) =D, then
b B
[ f00dx= [ f(p(t)e' )t (8)

Proof: Let F(x) be a primitive of f(X) on the interval [a, b].

Applying the fundamental theorem of calculus and the properties of
primitives we have

b B
[ f(0dx=F(b)-F(a) = F(p(B)) - F(p(a)) = [ dF (o(t))

B p B
= [Fp)de(®) = [ T (p®)de(t) = [ f (p)e' ()t

Formula (8) allows us to change the variables of integration in definite
integrals just as in the case of indefinite integrals, but in addition we have
to replace the limits of integration.

Note that it is not necessary to return to the initial variable X.

(S
In x
Example 1: Evaluate j —dx.
X
1

_ . x=1 . t=In1=0
Solution: Let t = In x. Then the equalities imply (o] 1
=Ilne=1.

Therefore, the interval of integration from 1 to e is replaced by the interval
[0, 1]:
e 1

1
jﬂdx:jtdtzitz‘ - =
1 X 9 2 o 2
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3
. 2_x3
Example 2: Evaluate _[x e” dx.
2

Solution: By applying the substitution t = x>, we have dt = 3x°dx.
Then we find the lower and upper limits of integration:

{x:z t=2%=-8
=
X=3 t=3%=27.

3 27

27
J.xzeXde:EJ.etdt:Eet‘ :1(e27—e8):1e8(e19—1).
> 33 3 8 3 3

Therefore,

4.5.2. Integration by Parts
The formula for integration by parts for definite integrals states that

b b p
judv =uv —Ivdu 9)
a a a

for any differentiable functions u(x) and v(x).

The following example refers to the case when we need to use the method
of integration by parts and the substitution technique.

1
Example: Evaluate jarcsin Xdx.
0
) ) dx
Solution: Let u =arcsin X and dv =dx. Then du = > and v = X.
1-x
Therefore,
1 1 1
jarcsin xdx = xarcsin x| — j xdx .
2 2 12V1-x°
In view of the fact that arcsinl= /2 and arcsin (1/2) = z/6, we obtain
) 1 i 1 .1 7 n b5x
xarcsinx] =arcsinl—=arcsin==———=—,
12 2 2 2 12 6

The integral on the right-hand side can be evaluated by substitution of the
variable. One natural substitution is the following. We introduce a new
variable t in order to eliminate the radical sign of the integrand.
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Let t2 =1—x2.

Then V1— x2 =t and tdt = —xdx.

The new limits of integration are as follows:

The lower limit equals +/1- (1/2)% = J3/4=3/2.

The upper limit equals 1-1% =0.

S )

21— X2 (/2 0 0 Z

By combining these results, we finally obtain

Thus, we get J

1
jarcsin xdx:s—ﬁ—ﬁ.
A 6 2

4.6. Geometric Applications of Definite Integrals
4.6.1. The Area of a Region
One of the problems of such a kind has been considered in section 4.1,

Let us recall the main idea: The given region is represented by an infinite
number of rectangles, whose altitudes depend on Xx-coordinate, and the
definite integral of the altitude gives the area of this region.

Problem 1: Given a functions y= f(X)
™ defined over a closed interval [a,b], find the

area A of the region bounded by the graph of
this function, the X-axis and the vertical lines
Height , X=aand x=b.
' > Solution: The altitude of the rectangle with
“ _ b base in the vicinity of the point X is equal to
Fig. 7 the absolute value of f(X) - it does not matter

whether the curve y= f(x) lies above or

below the Xx-axis.
Therefore, we have the following formula for the area of the given region:

b
A=j“(mmx
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Note: If the graph lies below the x-axis, then f(x)<0 and
b
j f (x)dx = —A.
a
Problem 2: Given two functions, y = f(x)
My = f(x) and y = g(x), defined over a closed interval
[a,b], find the area A of the region bounded

by their graphs and the vertical lines X =a
Altitu%/x and X=D.

4 > Solution: This region can be represented by

J\J/ an infinite number of rectangles whose

altitudes are equal to the absolute value of the

y=2(%)  (gifference between f(x) and g(x).
Therefore,

b
A= j [£(x) — g(x)|dx. (10)

L

Fig. 8

Problem 3: Let a function be specified in the polar system of coordinates
as r =r(¢); find the area A of the region bounded by the graph r =r(¢)

and therays p =« and ¢ = .
Solution: This region can be represented by an infinite number of sectors.
(See Fig.9).

AF AF

1 2
F= r(?g) il = E F Cl'r@
"/ dA
F
i &8 2¢ X
Fig. 9
) ) 1l -

The area of an arbitrary sector is dA = > rede.
Therefore, the area of the whole region is
1 A 2

A=3 i r’de. (11)
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Example: Find the area of the region bounded by the graphs of the

functions y=3x and y= X,

Solution: First, let us make a sketch of this region.

aF Then we find the points of intersection, solving
the equation 3Xx = X2, This equation has two
roots: X =0 and X, =3, which give the limits
of integration.

Finally, we obtain

3
. 2 3
511, L A= j(sx x?)dx = (———) =5—9—%

4.6.2. The Arc Length of a Curve

Problem 1: Given a curve y = f(X) in the xy —plane, find the arc length

of the curve between the given values of X.

Solution: The given arc can be subdivided by partition points into an
infinite number of portions of the curve, and each of the portions can be
represented by a line segment.

Look at the Fig. 6, where some partition of the arc is shown. There is also
an arbitrary portion with the approximating line segment in expanded scale.

Fig. 11

Let dx and dy be Cartesian coordinates of an arbitrary segment. Then its
length  dL can be found by the Pythagorean Theorem:

dL =/ (dx)? + (dy)? . Therefore,

dL—1/1+( ) dx—w/1+(y) dx,

where y' is the derivative of the functlon y = f(X) with respect to X.
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The total length of the arc equals the sum of all lengths of the portions, and

hence, the definite integral of \/1+ (y’)2 with respect to X.

Therefore, the arc length of the curve between points a and b of the x-
axis is given by the following formula:

b
L= [1+(y)? dx (12)
a

Another solution: The length of an arbitrary portion of the arc can be
written by the Pythagorean Theorem as dL:\/(dx)2+(dy)2 which

implies
L= 1+ (%)2 dx =1+ (y")2 dx,
X

where Yy’ is the derivative of the function y = f (X) with respect to X.
Therefore, L(X) is a primitive of /1+ (y’)2 ;
L(x) = [1+ (y)?dx+C.
b
Since L(a) =0 and L(b) = L, s0 L =[1+(y) dx.

Problem 2: Let a given curve be defined parametrically in three-

X = X(t),
dimensional space: < y = y(t),
z=1().

Find the arc length of the curve between the given values of t.
Solution: As above by the Pythagorean Theorem, we have

dL = /(dx)% + (dy)2 + (dz)? = sz\/(dX) +((‘;3t’)) +(@)° 4

dL = \/( dy) ( )dt =
dL=J(x) +(y)2 +(2)? dt,

where X', ¥y’ and z' are derivatives of the functions Xx(t), y(t) and z(t)
correspondingly with respect to t.
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If the end-points of arc are determined by the values t; and t, of the
parameter t, then the arc length of the curve is given as

t
L= [0 +(y)? + @) dt. (13)
i}

This formula gives the general solution of finding the arc length of a curve.
In a particular case when the curve lies in the Xy —plane and the X-

coordinate is considered as the parameter t, we have x = x, y = y(X) and

z=0.
Hence, we return to formula (12).

4.6.3. Volumes of Solids

Problem 1: Given a solid, find the volume of the solid. (See Fig. 12.)
Solution: Assume that the solid is of such a nature that whenever we
intersect the solid with a plane perpendicular to the X-axis, the cross-
sectional area A is known.

This area A is a function of a point x, which we make the cross-section
through. Let A(X) be the cross-sectional area at the point X, and let
A(x) =0 forany x ¢[a,b].

By intersecting the solid with planes perpendicular to the x-axis, it can be
subdivided into an infinite number of layers. Each of the layers can be

represented by a cylinder. The volume of an arbitrary cylinder is
dv = A(x)dx.

In a similar way as above we can conclude that the volume of the solid
between points a and b is given by the following formula:

b
V = [ A(X)dx (14)
a
Note: In order to determine the values of the limits of integration, a and b,

one can use the following rules:
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The lower limit a of integration is the smallest number such that A(x) =0

forall x<a.
The upper limit b of integration is the largest number such that A(x) =0

forall x>b.

Problem 2: Let a curve y = f(x) be defined over a closed interval [a,b];
find the volume of the resultant solid of revolution by rotating of the curve
about the x-axis.

Solution: If we intersect the solid with a plane perpendicular to the Xx-axis,
then the cross-section of the solid is a circular disk. The radius of this
circular disk is | f(Xx)|. By the formula for the area of a circle, the cross-

sectional area of the solid at x equals A(X)=rx f 2(x), provided that

a<x<b.
Thus, in view of formula (14), the volume of the solid of revolution is
given by

b b
V = [A)dx =z £%(x)dx. (15)
a a
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Chapter 5
IMPROPER INTEGRALS

5.1. Basic Definitions

Improper integrals are either integrals with at least one infinite limit of
integration or integrals of functions that are unbounded on the interval of
integration. For instance, the following integrals are improper:

+00 b +00 1dX 2 dx 5 dx
é[lf(x)dx, _J;Of(x)dx, _joof(x)dx, {ﬁ 1ﬂ, i(x—s)z'

All improper integrals are defined as limits of the definite integrals. In
particular,

400 C
jf(x)dx: lim J'f(x)dx, (1)
3 C—)+ooa
b b
jf(x)dx:clim [ f(0dx. ()
o .

Note that integrals with both infinite limits do not require a special
consideration because of

Tf (X)dx = ]i f (x)dx + Tf (x)dx. (3)

Note also that the integral with the lower infinite limit can be transformed
into the integral with the upper infinite limit by substitution X = —t:

b +00
j f (x)dx = j f (—t)dt. (4)
—0 -b

Integrals of unbounded functions are defined in a similar way:
Let f(X) > o0 as X — a. Then

C—a

b b
[ £00dx = lim [ f(x)dx. (5)

An improper integral is said to be convergent, if there exists the limit of
the corresponding definite integral. Otherwise, if the limit does not exist or
it is infinite, then the improper integral is called divergent.
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Examples of convergent integrals:

. %— lim de = lim (——) = lim (1——) 1.
1x C—ey X C—0 1 Cow®
C
je Sx = lim je Six = lim (~=e ) = lim (L-e %) =1
C—>+0 0 C—>+00 0 C—+0
. j 5 Ilmj :—IlmlnX L
3X°—1 cow X ~1 2co [X+1] |4

In2
=—I|m (|n—1—| —)_—(In1+ln2)— 5

2 c—m C+

Examples of divergent integrals:

0 C

dx .

e [= j— lim In|c|| = limIn|c|=o0

X c—> C—w C—o

1 1
c C
_[cosxdx— lim _[cosxdx_ lim sinx] = lim sinc,
C—0 C—00 C—o0

0 0
which does not exist.

0

5.2. Convergence and Divergence of Improper
Integrals

If f(x) is a positive defined function on some interval (a,b), then
b
I f (x)dx represents the area of the region bounded by the graph of the

a
function y = f (x), the x-axis and the vertical lines X =a and x=D.

In order to determine whether or not some integral is convergent we can

either evaluate it by the definition or use the comparison tests.

The idea of the simplest comparison test is based on the property of

integrals: If a curve goes down as a whole, then the area under the curve

decreases, and vice versa. This means that:

e |If some integral converges, then the integral of a smaller positive
function also has to converge.
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e |If some integral of a positive function diverges, then the integral of a
greater function also has to be divergent.

Direct Comparison Test

Let f(Xx) and g(x) be two functions defined on (a,b) such that
0< f(x)<g(x)

forany a<x<b.

b b
e If |g(x)dXx converges, then I f (X)dx also converges.
a a
b. b
o If | f(X)dX diverges, then Ig(X)dX also diverges.
a a

Here a and b are finite or infinite numbers, and the function f (x) has the

improper behavior at a or b.

According to this test we have to find an integral that is similar to but
always less than the original one. If it diverges by any tests, then the
original integral also diverges. On the contrary, we can try to find an
integral similar to but always greater than the original one. If it converges,
then the given integral also converges.

5.2.1. Convergence and Divergence of Integrals with
Infinite limits

+00
The integral _[| f(x)|dx equals the area of the region under the curve

a
y =| f(X)| bounded by the x-axis and the vertical line X =a. It is evident

that this area is infinite, if the function f (x) is not decreasing one.

Divergence Test
If lim f(x)=0,

X—>+00

+00
then the integral j f (x)dx  diverges.
a
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Note that the implication goes only one way: if lim f(x) =0, it does not
X—>+00

mean that the integral of f (X) is convergent.

o0
: : . dx . .
For instance, lim 1/x =0, but the integral j— Is divergent. (See the
X—>+00 1 X

example above.)
One can also compare the rates of decreasing of functions to determine
whether some integral converges.

f(x)

) = A. There are three possible cases: 0< A <o, A =0 or
g(x

Let lim
X—>+00

A =00,
e If A isa finite non-zero number, then the integral

+00 +0
'f f (x)dx converges if and only if Jg(x)dx converges;
a a

+0o0 +o00
'f f (x)dx diverges if and only if Jg(x)dx diverges.
a a
It follows from the fact that the area under the asymptotic part of a

curve being multiplied by a finite non-zero number A holds its
finiteness or infinity.

+00
e If A =0, then the convergence of the integral Jg(x)dx implies the
a
+00
convergence of the integral _[ f(x)dx.
a

However, we can say nothing if the integral of g(X) is divergent.
+00

e If 1 =00, then the divergence of the integral Jg(x)dx implies the
a
+00
divergence of the integral _[f(x)dx.
a

However, we can say nothing if the integral of g(X) is convergent.
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Limit Comparison Test
Let f(x) and g(x) be two functions defined on [a,+ o) such that

f (x)
g(x)

O0< lim
X—>+00

<0

+00 +00
Then both integrals, _[ f (x)dx and jg(x)dx, converge or diverge

a a
simultaneously.

To use this test for a given integral we have to find a second integral such
that the limit of the ratio of integrands is evaluable.

If the second integral converges (diverges) by any tests, then the original
integral also converges (diverges).

+00
Example: Determine whether the integral j In x3dx converges.
1 X
+00 dX
Let us compare the given integral with the convergent integral _[ 5 (See
1 X
the example above.)
To apply  the limit  comparison test  we calculate:

Inx_o.

. In x/ x> :
lim = lim
X—>+0 ]/X X—>+40o X
Therefore, the given integral is also convergent.

+00
: dx .
Note that there are useful integrals of the general form j o which are
X

a
called p-integrals. They are helpful in comparison tests because of the

following theorem:

Theorem

converges,if p>1

+00
The p-integral J. % ) .
" xP diverges, if p<1

Proof: If p#1, then
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+Jgo dx X |0+1‘Jroo _ {convergence, if (-p+1)<0,

o xP _—p+1‘6l divergence, if (-p+1)>0.

+00
If p =1, then the integral j d—); Is divergent. (See the example above.)
X

+0o0 \/;

Example: Determinate whether or not the integral J
2x* +5

dx

converges.
Solution: We use the comparison test, comparing with the p-integral:

+00 +00

J \f dx < I —d j 2

12X +9
The p-integral with p >1 converges. Hence, the glven integral also
converges.

5.2.2. Convergence and Divergence of Integrals of
Unbounded Functions

The limit comparison test can be easily adapted for unbounded function.
For instance, assume f(X) is unbounded at the point a.

Limit Comparison Test
Let f(x) and g(x) be two functions defined on (a,b) such that

0< lim ) )
Xx—a g(x)

b b
Then both integrals, _[ f (x)dx and jg(x)dx, converge or diverge

a a
simultaneously.

If the function f(X) is unbounded at x = Db, then we have to operate with

lim instead of lim , changing nothing more. For instance, let f(X) and
Xx—b X—a

g(x) be two functions defined on (a,b) such that

F(x) < 00
g(x)
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b b
Then both integrals, jf(x)dx and jg(x)dx, converge or diverge
a a

simultaneously.
We need also to modify the p-integrals.

Theorem
b b
The p-integrals L and ax
P b Y
a (X - a) a ( - X)

converge,if p<1
diverge, if p>1

Proof: If p#1, then

b
j’- dx _(x—a)‘p”‘ . convergence,if (-p+1) >0,
a(x_a)p_ - p+1 ‘a divergence, if (-p+1)<0.
5 dx
If p=1, then [——=(In[b—a|— lim |x—al). Since this limit does
aX— X—a

not exist so the given integral diverges.
Similar arguments can be used to prove the second part of the theorem.

5
Example: Consider the integral IZ—
5> X(X* —4)
: 1 : i
The function —— I8 unbounded at X =2. Compare the original
X(x° —4)
5
. : : : dx
integral with the divergent p-integral: j—
X_
2
The limit of the ratio of the integrands is a finite number:
: X—2 : 1 1
lim ———— = lim —

X—>2 x(x2 —4)  x—>2 X(X+ 2) 8’
Thus, we conclude that the given integral diverges by the limit comparison
test.
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Chapter 6
COMPLEX NUMBERS

A complex number is an expression of the form x+1y, where X and y

are real numbers, and i is the imaginary number such that i =-1.
Usually a complex number is denoted by a single letter, e.g., z=Xx+1y.

The numbers x and Yy are called the real and imaginary parts of z. They
are symbolizedas x=Rez, y=Imz.

Thus,

z=Rez+ilmz. (1)
Note that both numbers, Rez and Imz, are real numbers.
The set of all complex numbers is denoted by the symbol C. Any real
number X can be considered as a complex number whose imaginary part
equals zero. Therefore, the set of complex numbers includes the set of all
real numbers as a subset.
The set of real numbers is a proper subset of the set of complex numbers:
RcC.
If Rez =0, then anumber z =1y is said to be purely imaginary.

6.1. Algebraic Operations

1. Two complex numbers, z; = X +1y; and z, = X, +1y,, are equal to
each other if and only if x; = X, and y; = y,:
X1 = Xp,

=1 & (2)
Lo {Y1ZY2-

2. Complex numbers are added (or subtracted) by adding (or subtracting)
the real and imaginary parts correspondingly:

(X +iy) £ (Xo +iy2) = (X3 £ X2) +i(y1 £ y2).
Complex numbers have the same addition properties as real numbers:
ZliZZ :ZZJ_er,
(Zl+22)+23 = Zl+(22 +23),
z+0=12,
z+(-2)=0.
3. In order to multiply complex numbers one has to expand the product
and substitute (—1) for i2:

(xq +1y1)(Xg +1y2) = XXo +1(Xq Y2 +X2¥1) +i°Y1Y2
= (X X2 = Y1Y2) +i(X1Y2 + X2 Y1)
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Multiplication properties for complex numbers are the same as for real
ones:

L1Zp =131,
(2127)23 = 71(2523),
21(23 + 23) = 1175 + 1y 23,

z-1=1,

z-0=0.
4. The number z*=Xx—1y is said to be complex conjugate of a number

Z=X+l1y.

For any complex number z

1 * _l _ 7%
Rez—z(z+z), Imz—2i(z Z*). (3)

e For any complex number z the product zz* is a nonnegative real
number:
2-7° = (X +iy)(x—1y) = x? —(iy)2 =x% + y2.
Therefore, the sum of squares of any real numbers can be factored
into linear complex factors: a’+b® = (a+ib)(a—ib).

e The absolute value of z is denoted by the symbol | z | and defined as

|z|:\/z-z*:\/x2+y2. 4)

e The complex conjugate is associative and distributive:
(n+12) =7 +1,

* * *
(1125) =7125.
Indeed,

(z1+22)" = Oq +iY1+ % +1Y2)" = (O + %) +i(y1+Y2))
= (X +Xp) —i(y1 + Y2) = (% —iyp) + (Xo —iy2) = 73 + 25,
(2122)" = (% +iy1)(Xp +iy2))”
= (XX = Y1Y2 +i(xqY2 + Xo¥1))”

= XX — V1Yo —1(XY2 + Xo¥1) = (X —iy1) (%o —iy2) = 21 25
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5. In order to divide any number w by a nonzero complex number z one
can multiply w by the complex conjugate number z* and divide by the

real number | z |2:

1 z* z*
» .

z-7* | z)
Examples:
o i*=(%%=(-1?=1.
o iP=i%i=i.
e (2-3i)(4+i)=8+2i-12i-3i* =11-10i.
1 i

1+2i  (1+2i)(3+4i) _3+6i+4i+8i2 _ —5+10i ——1+zi
3—-4i (3-4i)(3+4i) 32 1 42 25 '

6.2. The Complex Plane

Properly speaking, a complex number z = X + 1y is the ordered pair (X, Y)
of real numbers. The pair (X,Yy) can be considered as the Cartesian
coordinates of a point in the Xy — plane.

Imaginary Line Therefore, any  complex
Ay number can be graphically

represented by an unique

z=x+iy point of the coordinate plane

Yr-———"7 of the  two-dimensional
Cartesian coordinate system.

J~ There is one-to-one

" correspondence between the

Real Line

I

|

I

: set of complex numbers and
—y - — 4 points in the Xy— plane:
every point in this complex
plane corresponds to a unique
complex number, and vice
Vversa.
All real numbers are represented by the points of the X-axis, while all
purely imaginary numbers are represented by the points of the Yy -axis.

These axes are known as the Real and Imaginary Lines correspondingly.

Fig. 1
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Complex numbers are added and subtracted in the same way as vectors:

A z,+ 2,

Fig. 2

From the geometrical point of view the absolute value | z| is the distance

from the point z to zero-point in the complex plane.
The absolute value | z; —z, | is the distance between points z; and z, in

the complex plane.
The point P can also be
N described by the polar coordinates
r and &, where r is the distance
P from the origin O to the point P,
- | y=rsin8 and 6 is the angle that the ray
| OP makes with the positive
& ! }.x direction of X-axis. There exist
0 x simple relationships  between
x=rcosf Cartesian and polar coordinates:
X =1rCosd, y=rsind,

Fig. 3
s r=yx2+y2, tano=7,

X
X : y
C0SH = ——, SINf=——"7r—.
/Xz + y2 /Xz 4 y2
Therefore, a complex number z = X +1y can be written in the polar form as
z=r(cos@+ising). (5)
In this case, r = z| is said to be the modulus and & =arg(z) is known as

the argument (or phase) of the complex number z.
Note: One has to apply the following rules in order to find arg(z).

A

1) If x>0, then 6 = arctan(y/x),
2) If x<0 while y>0, then 6 = —arctan | y/x|,
3) If x<0 and y<O0, then 0 = —r +arctan(y/x).
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All these cases are illustrated by simple examples in Fig. 4.

ALY ALY
Z=+3+1
1 .
v |
6 L
L 3
AN '\/g .
& 7
|
_]_ - - — — —
z=-/3-i
Fig. 4
6.3. The Euler Formula
The Euler Formula states:
e'? =cosp +ising. (6)

Due to the Euler Formula the definition of the exponential e* of a real
number X can be generalized to the exponential e of a complex number
Z=X+I1y:

XtV = eXel =eX(cosy +isiny). (7)

In a special case, where z is a real number (that is y =0), this formula
gives the desired result:

e*"10 = eX(cos0+isin0) =e”.

One can easily prove that the exponential of complex numbers have the
same properties as the exponential of real numbers. For instance,
e21+22 _ ezlez2 .

The Euler Formula gives the following representation of a complex number
in the polar form:

2 =r(cosd +isin@) =re'?. (8)
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6.3.1. Applications for the Euler Formula

6.3.1.1. Trigonometric Applications

All trigonometric identities can be easily derived by making use of the
Euler Formula. The following examples illustrate typical techniques.

1. The identities
cos@=%(ei9+e_i‘9)=Re(e“9), 9)

sinﬁzé(em—e‘m)z Im(e'?) (10)

follow from the Euler Formula by adding and subtracting of the
equalities

e'? =cos +ising, (11a)
e'? =cos@—ising (11b)
2. Let us square both sides of equality (11a):
2% = (cos@ +isin0)? = (cos® @ —sin? §) + 2isinHcosH.

Since €'Y = cos20 +isin 20 so by property (2), we get double-angle
identities:
cos 260 = cos% 0 —sin? @, (12a)
sin 26 = 2singcosé . (12b)
3. Consider the product

e'%e' = (cosa +isina)(cos B +isin )

The expression on the left-hand side can be transformed as:

e'“e' =e'@*F) = cos(a + p) +isin(a + f). (13a)
On the other hand
(cosa +isina)(cos g +isin f) = (13b)
= (cosa cos S —sinasin B) +i(sina cos S +sin S cos a).
Comparing (13a) with (13b) we conclude that
cos(a + ) =cosa cos S —sinasin 3, (14a)
sin(a + ) =sina cos S +sin fcosa. (14b)
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6.3.1.2. Algebraic Applications

(0,40

1. Let z=27,. Since 2,2, =1e're'?? = e
|zH 21112, ], arg(z) =arg(z) +arg(zy). (15)

2. Likewise a complex number z; = rle'el is divided by z, = rze”g2 ;

4 @, arg(“L) = arg(z;) —arg(z,). (16)
Zy Zy | Z

3. The integer power n of a complex number z can be written in closed
form as follows:

2" = z|" (cosn@ +isinn@) = z|" e"?. (17)

This formula is known as the DeMoivre Identity.
Examples:
1) Derive the fundamental trigonometric identity:

sin? 0 +cos? 0 =1.
Solution:
Let z=¢'Y then z-z*=¢'? .e7'0 =1,
However, from the Euler Formula it follows that

e'? .67 = (cos@ +isin O)(cosd —isin O) = cos® & +sin? 6.

Hence, the desired result.

2) Transform to the polar form the number z; =3+ i3,
Solution:

12, |=/3% + (\/3)> =12 =243, arg(z) = arctan? = %
Therefore,
Zl = 2\/§elﬂ/3 .
3) Transform to the polar form the number z, =2-2i.
Solution:
|2, [=4+4=+8=22, arg(z,) :arctan(—l):—%.
Therefore,
2, =22/2e7 74,
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4) Find the product and quotient of the numbers 21:3+i\/§ and

Solution:
i _i% i(C-") i~
o (B+iV3)(2-2i)=24/3e3242e 4=46e 3 4 =4/6e12,
LT I
i i(=+-) -
—(?2+'\2/§)=1/3/2e 374 = [3/2e 12,

6.4. Complex Roots
A complex number can be written in different ways. For instance, for any
integer m the angle @+ 2z m corresponds to the same point in the
complex plane as the angle &, so the most common form of argz is the
following:
argz=60+2zm,

Hence, the Euler Formula can be rewritten in the following equivalent

form:
7 = re|(0+27r m)_

Let us recall that a number t is said to be the nth root of a number z if

t" = z. Therefore, in view of the DeMoivre Identity the nth roots of a
number z are determined by the following expression:
11 .6+2zm 1 042
z"=r"e " =r"(cos
n

rm .. @+2rm
+I1SIN————

). (18)

There exist n different roots exactly:

m

0
Ii
0 — tle/?ean/F(cosgﬂsin%).
.0+2x
|
m=1 = t,=re " =Q/F(cose+2”

0+2rx
n

+1isin

).
.O0+4r
Ii

m=2 = ty=Ure " :Q/F(cosg+n47[+isin9+n4ﬂ).

m=n-1 =
0+27(n-1)
|— — —
t,=re " :Q/F(coseJrZ”(n D 4 isin 22700 1)).
N N

The next value of integer m gives the root t,,,; that coincides with t;:
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it9+27zn 042 049
— +2n . . O+2m
ti=Yre " =¥r(cos +isin )
n n

= Q/F(cos(%+ 27) +1 sin(%+ 21)) = Q/F(cosg +1sin %) =1.

Note: All the roots have the same modulus ¥r , that is, they lie on the
circle with the radius Vr .

Example: Find the square roots of the number z =1+ i"/3.
First, we calculate the modulus r and argument 6 of z:

r=|1+iv3|=4/1+3=2,
0=arctan\/_=%.

Then, we need to take the square root of the magnitude r and divide the

phase & by 2: Jr=42, 0/2=r/6.
Finally, we use formula (18) with n=2 and m =0, 1:
T .. T N N N
t, =+v2(cos—+1sIn—) =+/2(—+—-)=—+—,
1\/_(6 6)\/_(22)22
t2=f2(cos(%+;;)+isin(%w)):ﬁ(—?—%):—?-%.

One can easily check that both numbers, t; , = ig(\/g+ 1), are roots of

the given number z: (i%(ﬁﬁ- i))2 = %(3+ 2ir/3-1) = 1+i+/3).

The figures below illustrate graphically the properties of nth roots. There
are shown the square and cube roots of the complex number i in Fig. 5.

; _3/
z[&j”

2
Y The Cube Roots of 7 :

The Square Roots of i :
l r—"ﬁf
2 I«ﬁ t 4 77 s

[
(o8]
\ -
o
A"
it
=
-2
[l
|
el e
|
=y
oW
W{ .
[
A"
b
[
[nou]
no I
I '
| q’} I
o ool
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Verification: We can easily check these results by raising to the second
and third powers correspondingly. For instance:

. (i%(lﬂ))z =%(1+ 2i-1)=i.

. (%(£+i))3=%(3@+9i+3ﬁi2+i3)=%(3@+9i—3ﬁ—i)=i.

All the cube roots of the number (-1) and the fourth roots of the number 1
are shown in Fig. 6.

(=3
1= arg(—1) =7z ¥ 1
A , 1 "JI,— : | =

1 K=t |
2 2 ty =1

fz 1 t-=—1 55
) 4 2 1 1 7 t3=-1
k f—l—g£ .
X T2 T2 = fg =

Fig. 6

There is a simple way to plot all n roots of a number z when one of the

roots is known. All we need is to divide the circle with radius | z |]/n into n

equal parts starting from the point on the circle that corresponds to a root of
Z . For instance, one of the twelve roots of 1 equals 1 and 27/12=7/6. The

-m
other 11 roots are COST+ISIHT (m=1, 2, ..., 11).

_12 3 I 3
Jf-—'\/I j‘lz]_ fzz?'i'g f3—5+l?
Y 1 43 A3
L 3'4—1 fs:_;—l_lT fﬁ:_?‘i‘ig
31 143




Differential Equations

Chapter 7
FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

7.1. Introduction

Let x be the independent variable, and let y be the dependent variable.

A differential equation is an equation, which involves the derivative of a
function y(X). The equation may also contain the function itself as well as

the independent variable.
The general form of a differential equation of the first order is

F(X, Y, y,) =0. (1)
The solution procedure consists in finding the unknown function y(Xx),

which obeys equation (1) on a given interval.
The general solution of equation (1) is a function y = ¢(X,C), which is the

solution of (1) for any values of a parameter C. By setting C = const we
obtain a particular solution of equation (1).
Sometimes the solution can be found in the implicit form only. If the
equation

d(x,y,C) =0, (2)
determines the general solution of (1), then it is called the general integral
of the differential equation.
If there given an initial condition y(Xp) = Yo in addition to equation (1),
then it is necessary to find the particular solution, which obeys the initial
condition.

Here we consider only such classes of first-order differential equations,
which can be solved analytically.

7.2. Directly Integrable Equations

A directly integrable differential equation has the following form:
y'=f(x), (3)
where f(X) is a given function.
From this equation follows that the function y(X) is a primitive of f(X)
and hence
y(X) = j f(x)dx+C. (4)

A constant Ccan be determined from the initial condition, if the one is
given.
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Example: Find the solution of the equation
y'(X) = X+ COS X

with the initial condition y(0) =1.

Solution: In view of (4) the general solution is
2
X :
y(X) =I(x+cosx)dx+C =7+5|n X+C.

Taking into account the initial condition, we find: 1=0+C, thatis, C =1.

Therefore, the function  y(X) = x2/2 +sin X +1 being the solution of the
given equation, satisfies the initial condition.

7.3. Separable Equations

A separable differential equation is an equation of the form

y'=f£09g(y), (5)
that is, y'(X) equals the product of given functions, f(x) and g(y), each
of which is a function of one variable only.
We can not integrate equation (5) directly because the right-hand side
contains an unknown function y(X) together with the variable X.
To separate the variables we rewrite the equation in the form:

Yt dx (5a)
a(y)
and then integrate both sides:
dy
——=| f(x)dx+C. (6)
J g(y) J

Thus, the general integral of equation (5) is found.
A differential equations of the form

y' = f(ax+hby+c) (7)
can be reduced to a separable equation by introducing of a new dependent
variable u(x) instead of y:

u=ax+hy+c. (8)
Next we have to derive the equation for the variable u(x). By
differentiating (8), we obtain u’ = a +by’, which implies the equation

u'=a+bf(u)
being the separable equation.
: du du
Thenwe obtain ———=dx = I—=X+C.
bf(u)+a bf(u+a
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Example 1: Solve the equation

y, _ e2x—3y

Solution: The variables can be easily separated:
e3Ydy = e?Xdx.
By integrating, we obtain a general integral of the given equation:

1 1

—e¥ =Ze?X4C.

3 2

By means of simple formula manipulations we can also write the general

solution in the explicit form:
y = Eln(EeZX +C)
3 2 '
where the constant 3C; is denoted by C.

Example 2: Find the solution of the equation
y' =cos(x+Y), (9)

which obeys the initial condition y(0) = /2.

Solution: Let us introduce a new variable:
Uu=Xx+y.
Then from (9) we obtain the separable equation for u(x)

u’'=1+cosu.
By separating the variables and integrating, we have:

Using the formula 1+ cosu = 2 cos? u/2 we obtain the algebraic equation
tan (u/2) =x+C,
which implies
u=2arctan(x+C).
Since  y=uU-Xx, the general solution of the given equation is the
following one: y = 2arctan(x + C) — x.

The initial condition yields: z/2=2arctanC, sothat C =1.

Finally we obtain:
y = 2arctan(x +1) — x.
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7.4. Homogeneous Equations

If some differential equation can be represented in the following form:

y' =t (10)
X

then it is called a homogeneous equation.

One of the main methods of solving differential equations is based on
introducing a new dependent variable u(x) instead of y. There is no
general rule to make the right choice of u because it depends on the form
of the equation. That is why it is necessary to consider different classes of
equations separately. One of typical techniques of such a kind is illustrated
below by solving an homogeneous equation.

The right-hand side of equation (10) suggests the substitution u=y/x.
Then we have to derive the equation for the new dependent variable u.

To find the derivative of y =ux, we use the rule of differentiation of the

product:

y' =uX+u.
From (10) we obtain the equation
ux+u=f(u),
which being rewritten in the form

w=2(Hw)-u) (11)

IS a separable equation. Then the problem of integration is solved just in the
same way as above. (See equation (5).)
Example: Solve the equation

y=—7 (12)

X=Jxy

(]

y _ Y
X=xy 1-yy/x x
the given equation is the homogeneous equation.
To solve this problem, we introduce the variable u = y/x instead of y and

derive a differential equation for u(x).
First, y=ux,so Yy =u'x+u. Therefore, by (12),

u ol
1-Ju -

Solution: Since

ux+u=
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LU g & j(u—3/2—3)du+c =j% =
Jud X u X
—2/\u=In|ul=In|x|-C.
Replacing u by y/x we obtain the general integral of equation (12):
In|y|+2x/y =C. (13)

7.5. Linear Equations

A linear differential equation is an equation, which can be represented as
y'+P(x)y =Q(x), (14)
where P(X) and Q(X) are given functions.
To solve the equation, we introduce a new dependent variable u(X) instead
of y by the equality
y =u(x)v(x), (15)
keeping in mind to determine a function v(x) later.
To derive the differential equation for u(x) we find the derivative
y'=u'v+uv’ and substitute it into original equation (14):

u'v+v'u+P(x) uv=0(x).
Next we group the terms and take out the common factor:
u'v+u(v'+P(x)v) =Q(x). (16)
Now we are ready to determine the function v(X). Let v(X) be a function
such that

v'+P(x)v=0. (17)
By separating the variables, we obtain the solution of equation (17):
Y__fppgdx = nvi=-[Pydx =
Vv
v =g | P()dx (18)

A constant of integration is chosen to be equal to zero because it is enough
to have one function only, which obeys condition (17).

In view of (18), equation (16) is reduced to the directly integrable equation
of the form

u'=Q(x)e "™, (19)
where f(Xx) = j P(x)dx is one of primitives of P.
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Therefore,
u(x) ZJ-Q(X)ef(X)dX-I-C. (20)
Thus, equation (14) has the following general solution:
y(x)=e~ " ([Qx)e Mdx+C). (21)

Example: Find the general solution of the equation
y' =3y/X+X. (22)
Solution: Let y =uv. Then y' =u'v+uv'.

Substituting these expressions into the original equation, we obtain
uv+vu=3uv/x+x =

u'v+u(v' —3v/x) = Xx. (23)
Then we find the function v(X) by solving of the equation
v'—3v/x=0.
The variables are easily separated and we have
Vv X
d—:3jd— = In|vl=3In|x] = v=x°
Vv X
Now we come back to (23), which is reduced to the separable equation
3 _
ux” =x.
Therefore, u:I%+C:—1+C.
X X

Finally, we obtain

y:uv:(—lJrC)x3 = —x2+Cx°.
X

7.6. The Bernoulli Equations
The Bernoulli Equation is an equation of the form

y'(x)+P(X)y =Q(x)y", (24)
where n is any rational number except 0 and 1.
The technique of solving the Bernoulli equations is just the same as for
linear equations: A new dependent variable u(X) is introduced by means of

the equality

y =u(x)v(x). (25)
This variable satisfies the equation
u'v+u(v +P(x)v) =Q(x)u"v", (26)
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where the function v(X) is a partial solution of the equation
vV +P(X)v=0 (27)
and hence,
V= e—jP(x)dx.
Therefore, equation (26) is transformed to the form
u'v=Q(x)u™"
and can be rewritten as a separable equation:
u"du = Q(x)v"dx.
By integrating, we obtain

L 4 :_[Q(x)v”_ldx+C. (29)
-n+1

(28)

Thus,

1
u(x) = ((1— n) [ Qv dx + c)l—n. (30)
The general solution of (24) is  y(X) = u(x) v(X).
Example: Find the general solution of the equation
V' +4xy = 2xe X Jy. (31)
Solution: Let y = uv. Since the derivative of y is y'=u'v+uVv’, then (31)

can be transformed to the equation with respect to the variable u(x):

2
U'v+Vv'u+4xuv =2xe % Juv =

2
u'v+u(v +4xv) =2xe % Juv. (32)
To find the function v(X), we solve the equation
V' +4vx=0.
This is the separable equation, and its partial solution is
2
v=e X" (33)

From (32) we have

2 2 2
ue X Z2xe X WYue " = u=2xJu —

j%:jZde+C = 2Ju=x*+C =
u= (x2 +C)2/4. (34)
Therefore, the general solution of the given equation is
1.2 2 _—2x?
y(X) _Z(X +C)%e : (35)
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7.1. Exact Differential Equations
An exact differential equation has the following form

P(x, y)dx+Q(x, y)dy =0, (36)
where the partial derivatives of P(X, y) and Q(X, y) obey the condition
Py = Qs (37)

Due to condition (37), the expression on the left-hand side of (36) is the
total differential of some function u(x,y) by the theorem of a total
differential (See Chapter 2, page 35.):

du(x,y) =P(x,y)dx+Q(x, y)dy =0.

Therefore,
ou(Xx,
%Y _px,y), (38)
OX
ou(x, y)
——=Q(x,y). (39)
oy
If we hold fixed y, then by integrating of (38) with respect to X we obtain
u(x,y) = [P(x, y)dx +o(y). (40)

Note that a constant of integration may be a function of y because Y is

fixed during integration.
To find the function ¢(y), we substitute this expression for u(Xx,y) into

(39):
% [PO,Y)dx+@(y) =Q(xY) =

?'(y) = Q(x,y) —% [P(x, y)dx. (41

This is an ordinary differential equation for the function ¢(y). Note also
that the expression on the right-hand side is a function of y only.

Otherwise, the equation (36) is not an exact differential equation.
By solving equation (41), we find a partial solution ¢(y) and hence, the

general solution: u(x,y)==C.
Example: Find the general solution of the equation
(y+2x_2)dx+(x—3y_2)dy:0. (42)

Solution: Here P(X,y)=Yy+ 2x~? and Q(x,y) = x—3y_2.
Let us check whether Py (X, y) = Qy(X,Y).

R =2 (s =1 ane Q&(X,Y)=§(X—%)=l.
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Therefore, equation (42) is the exact differential equation of the form
du(x,y)=0.

The general solution of this equationis  u(x,y)=C.

All we need to write the answer is the function u(x, y).

By formula (40),

2 2
Uy = [y + )+ () =yx-Troly). (@3
In view of (41), we have
, 3 0 2
oY) =x-—5——(yx-5) =
yo oy X
P'(y)=x-3y " —x=-3y"*.
This is the directly integrable equation with a partial solution ¢(y) =3/y.

Thus, by formula (44), we find the required function u(x, y):

u(x,y)=yx—g+§.
Xy

Therefore, equation (42) has the following general integral:
2 3
yx——+—=C.
Xy
In conclusion, let us note that any equation (36) can be transformed to the

exact differential equation by multiplying both sides by some integrating
factor x(x,y). It is known that such a factor exists, however there is no

general rule to find this factor but the following two cases:

1) If the expression (Qy — Py)/P depends on the variable y only, then
the integrating factor is also a function of y only, which obeys the
equation

dlIn 1 , ,
M) Qy- ).
dy P(x,y)
2) If the expression (Qy — P{,)/Q depends on the variable X only, then

the integrating factor is also a function of x only, which obeys the
equation

d In u(x) _ 1
dx Q(x,y)

(Qx—Fy).
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