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Preface 

 
 
This textbook is intended mainly for students who have already studied the 
basic Mathematics and need to study and practice using the methods of 
Differential and Integral Calculus. All the important concepts of Calculus 
are explained and there are exercises of each point to concentrate on those 
methods, which students need to use but which often cause difficulty. The 
mathematical language used is as simple as possible. 
 
The textbook covers the topics to be studied in the second semester. 
 
1. The Fundamental Theorems of Differential Calculus. 
2. Investigation of Functions. 
3. Indefinite Integrals. 
4. Definite Integrals. Geometric Applications of Definite Integrals. 
5. Improper Integrals. Convergence and Divergence of Improper Integrals 
6. Functions of Several Variables. 
7. Complex Numbers. 
8. Ordinary Differential Equations of the First Order. 
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Chapter 1 
FUNDAMENTAL THEOREMS OF DIFFERENTIAL 

CALCULUS 
1.1.  The Rolle Theorem 

Theorem: Let a function )(xf  
be defined and continuous on a 
closed interval [  and be 
differentiable at each point of 
the open interval ( . 

]ba

ba
)

,

),
If ()( bfaf = , then there 
exists a point c  such 
that 

)b∈ ,(a
0)( =′ cf . 

The idea of a Proof is evident 
from . By assumption, the 

function 
Fig.1

)(xf  is continuous on the closed interval [  and ],ba
)()( bfaf = , so )(xf  attains either its maximum or minimum at some 

point cx =  of the open interval . The tangent line of the function ),( ba
)(xfy =  at this point is a horizontal line. Hence, its slope is equal to zero, 

that is, the derivative 0)( =′ cf . 

Note that the Rolle Theorem does not claim where  can be found on 
; it claims only that there exists at least one point c  such that 

c
),( ba

0)( =′ cf . 
As for the curve in Fig. 1, there are two points satisfying the equation 

0)( =′ xf . 

1.2.   The Mean Value Theorem 
Theorem: Let a function )(xf  be defined and continuous on a closed 
interval [  and be differentiable on the open interval ( . ],ba ba

∈
),

Then there exists a point c  such that  ),( ba

)()()( cf
ab

afbf ′=
−
−

.    (1) 

Proof: Consider the auxiliary function 

)()()()()()( ax
ab

afbfafxfx −
−
−

−−=Φ , 

which satisfies the conditions of the Rolle Theorem. 
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Indeed,  is the sum of the functions defined and continuous on  
and differentiable on . Moreover, 

)(xΦ ],[ ba
),( ba 0)()( =Φ=Φ ba . 

Therefore, by the Rolle theorem, there exists some point  such 
that 

),( bac∈

0)()()()( =
−
−

−′=Φ′
ab

afbfcfc . 

Hence, the theorem. 
Note that the Mean Value Theorem does not claim where  can be found 
on . 

c
),( ba

Geometric Interpretation 

8

• The difference quotient 
ab

afbf
−
− ()( )

))(a

 

equals the slope of the secant line 
through the points ( , fa  and 

))(,( bfb . 
• The derivative )(cf ′  equals the slope 

of the tangent passing through the point 
))(,( cfc . 

Hence, the theorem asserts that the secant 
line through ( ))(, afa  and ))(,( bfb  is 
parallel to the tangent at some point 

))(,( cfc , where . (See Fig. 2.) bca <<

 
Corollary 1: The Rolle Theorem is a special case of the Mean Value 
Theorem: 
If )()( bfaf = , then 0)( =′ cf  for some ),( bac∈ . 

Corollary 2: If 0)( =′ xf  for all points of some interval , then ),( ba )(xf  
is a constant on ( . ),ba
Proof: Let x  and  be any points on . 0x ),( ba
Then by the theorem, 

))(()()( 00 xxcfxfxf −′=− , 
where  is some point between  and c 0x x . 
But 0)( =′ cf   and hence,  )()( 0xfxf =   for any ),( bax∈ . 

Corollary 3: If functions )(xf  and  are such that )(xg )()( xgxf ′=′  for 
all , then ),( bax∈ Cxgxf += )()( , where C  is a constant. 
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Proof: Noting that 
0)()())()(( =′−′=′− xgxfxgxf , 

by Corollary 2, we obtain Cxgxf =− )()( . 

Example 1: One can easily check that the functions xarctan  and 

21
arcsin

x

x

+
 have the same derivative )1(1 2x+ . 

Therefore, by Corollary 3,   Cxxx +=+ arctan)1(arcsin 2 . 
Setting , we find the value of the constant: 0=x C+= 00 . 
Thus,   

x
x

x arctan
1

arcsin
2
=

+
. 

Example 2: By the same argument, equations 

)(arcsin
1

1

1
arctan

22
′=

−
=

′

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
x

xx

x
 

yield 

x
x

x arcsin
1

arctan
2
=

−
,        ( 0=C ). 

1.3.   The Cauchy Theorem 
Let functions )(xf  and  be defined and continuous on a closed 
interval  and be differentiable on the open interval , and 

 for 

)(xg
],[ ba ),( ba

0)( ≠′ xg bxa << . 
Then there exists a point  such that ),( bac∈

)(
)(

)()(
)()(

cg
cf

agbg
afbf

′
′

=
−
−

.   (2) 

Proof: Note that . Otherwise, by the Rolle Theorem, 
 for some 

)()( agbg ≠
0)( =′ xg cx = , that contradicts to the assumption . 0)( ≠′ xg

Consider the function 

))()((
)()(
)()()()()( agxg

agbg
afbfafxfx −

−
−

−−=Φ . 

It satisfies the conditions of the Rolle Theorem: 
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•  is defined and continuous on ; )(xΦ ],[ ba
•  has the derivative on : )(xΦ ),( ba

)(
)()(
)()()()( xg

agbg
afbfxfx ′

−
−

−′=Φ′ ; 

• 0)()( =Φ=Φ ba . 
Hence, according to the Rolle Theorem, there exists a point  such 
that , which implies the desired result: 

),( bac∈
0)( =Φ′ c

0)(
)()(
)()()( =′

−
−

−′ cg
agbg
afbfcf . 

1.4.   The L’Hopital Rule 
The definition of the derivative of a function is based on the concept of the 
limit of the ratio of infinitesimal quantities. The rules of differentiation and 
the derivatives of the basic functions are derived by making use of limits. 
On the other hand, one of the most powerful tools for finding limits of 
functions is connected with application of derivatives. The corresponding 
algorithm is named the L’Hopital Rule. 

The L’Hopital Rule for an indeterminate form 
0
0

. 

Let functions )(xf  and  be defined and differentiable on , and 
 for all . 

)(xg ),( ba
0)( ≠′ xg bxa <<

Assume that 
1) , and )(lim0)(lim xgxf

axax →→
==

2) there exists 
)(
)(lim

xg
xf

ax ′
′

→
 (finite or not). 

Then there exists 
)(
)(lim

xg
xf

ax→
 and the equality is true: 

)(
)(lim

)(
)(lim

xg
xf

xg
xf

axax ′
′

=
→→

.    (3) 

Proof: In view of assumption 1) we put 
0)( =af   and   0)( =ag . 

Then by the Cauchy Theorem, we have 

)(
)(

)()(
)()(

)(
)(

cg
cf

agxg
afxf

xg
xf

′
′

=
−
−

= , 
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where . xca <<
Taking the limit in this equality and noting that  as , we come 
to (3). 

ac → ax →

Note: If the fraction 
)(
)(

xg
xf

′
′

 is again an indeterminate form 
0
0

, then the 

L’Hopital Rule can be applied repeatedly. 

Example 1: The expression 
x

x)51ln( +
 is the indeterminate form 

0
0

 as 

. 0→x
By the L’Hopital Rule, 

5
1

)51(5lim))51(ln(lim)51ln(lim
000

=
+

=
′

′+
=

+
→→→

x
x

x
x

x
xxx

. 

Example 2: If , then 0→x 3
sin
x

xx −
 represents the indeterminate form 

0
0

. 

In order to find the limit we need to apply the L’Hopital Rule several times: 

.
6
1

1
coslim

6
1)(sinlim

6
1

2
sinlim

3
1

)(
)cos1(lim

3
1

3
cos1lim

)(
)sin(limsinlim

000

20203030

==
′
′

==

′

′−
=

−
=

′

′−
=

−

→→→

→→→→

x
x

x
x
x

x
x

x
x

x
xx

x
xx

xxx

xxxx
 

The L’Hopital Rule for an indeterminate form 
∞
∞

. 

Let functions )(xf  and  be defined and differentiable on , and 
let 

)(xg ),( ba
∞→)(xf  and  ∞→)(xg    as     . ax →

Assume that there exists 
)(
)(lim

xg
xf

ax ′
′

→
 (finite or not). 

Then there exists also 
)(
)(lim

xg
xf

ax→
 and 

)(
)(lim

)(
)(lim

xg
xf

xg
xf

axax ′
′

=
→→

. 
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Proof: An indeterminate form 
∞
∞

 can be easily reduced to the form 
0
0

 by 

means of a simple transformation:  )
0
0(

)(1
)(1

)(
)(

⇒=
xf
xg

xg
xf

. 

Let A
xg
xf

ax
=

→ )(
)(lim . Then 

))(1(
))(1(lim

)(1
)(1lim

)(
)(lim

′
′

===
→→→ xf

xg
xf
xg

xg
xfA

axaxax
. 

By the rule of differentiation of a quotient, we have 

)(
)()

)(
1( 2 xg

xg
xg

′
−=′   and  

)(
)()

)(
1( 2 xf

xf
xf

′
−=′ . 

Then making use of the properties of limits we obtain 

.
)(
)(lim

)(
)(lim

)(
)(lim

)(
)(

)(
)(lim

))(1(
))(1(lim

2
2

2

2

xf
xgA

xf
xg

xg
xf

xf
xg

xg
xf

xf
xgA

axaxax

axax

′
′

=
′
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

′
′

=
′
′

=

→→→

→→
 

Therefore, 

)(
)(lim1

xf
xgA

ax ′
′

=
→

,   and hence, 
)(
)(lim

xg
xfA

ax ′
′

=
→

. 

Example 3: In order to find
)2tan(

)1ln(lim
01 x

x
x π

−
+→

 one has to expand the 

indeterminate form 
∞
∞

.  

Applying the L’Hopital Rule we obtain: 

1
)2(coslim2

)2(cos1
)1(1lim2

)2tan(
)1ln(lim

2

0120101 −
=

−
=

−
+→+→+→ x

x
x

x
x

x
xxx

π
ππππ

. 

This is the indeterminate form 
0
0

, and we can apply the L’Hopital Rule 

once more: 

0
1

)2sin()2cos(2lim
1

)2(coslim2
01

2

01
==

− +→+→

xx
x

x
xx

πππ
π

. 



Differential Calculus 

 13

Summary: The L’Hopital Rule yields the same formula for both 

indeterminate forms, 
0
0

 and 
∞
∞

. This rule can also be applied for limits at 

infinity: 

)(
)(lim

)(
)(lim

xg
xf

xg
xf

xx ′
′

=
∞→∞→

   (4) 

as well as for unilateral limits: 

)(
)(lim

)(
)(lim

xg
xf

xg
xf

xx ′
′

=
+∞→+∞→

  and  
)(
)(lim

)(
)(lim

xg
xf

xg
xf

xx ′
′

=
−∞→−∞→

. 

In each case the conditions of the theorem has to be changed properly. 
For instance, the condition )(lim0)(lim xgxf

axax →→
==  is replaced by 

,   etc. )(lim0)(lim xgxf
xx ∞→∞→

==

1.4.1.   The Other Indeterminate Forms 
Consider the following forms of an indeterminacy: 
1) ,   2)   ,   3)   ∞⋅0 ∞−∞ ∞1 , , 00 0∞ . 

All these forms can be reduced to one of the above-considered forms: 
0
0

 or 

∞
∞

.  

1) Let 0)( →xf  and ∞→)(xg  as .  ax →
Then an indeterminate form ∞⋅=⋅ 0gf  can be easily transformed to 

the form 
0
0

 as 
g
fgf

1
=⋅ , or to the form 

∞
∞

 as 
f

ggf
1

=⋅ . 

2) If ∞→)(xf  and ∞→)(xg  as , then     ax →

gf

fg

gf

gf 1

11

1
1

1
1

−
=−=− . 

Thus, the indeterminate form  ∞−∞  has been reduced to the form   00 . 

3) In view of the formula  each of the forms, ,  and 

, can be transformed to the product 

fgg ef ln= ∞1 00
0∞ )(ln)( xfxg , which is the 

indeterminate form  considered above. (See Case 1.)  ∞⋅0
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Indeed, 
• Let , that is, ∞=1gf 1)( →xf  and . Then ∞→)(xg

0)(ln)( ⋅∞=xfxg . 

• Let , that is, 00=gf 0)( →xf  and . Then 0)( →xg
∞⋅= 0)(ln)( xfxg . 

• Let , that is, 0∞=gf ∞→)(xf  and . Then 0)( →xg
∞⋅= 0)(ln)( xfxg . 

Thus, if Bxfxg
ax

=
→

)(ln)(lim , then . Bxg
ax

exf =
→

)())((lim

Example 4:   contains the indeterminate form . However, 

it can be easily transformed to the form  

xx
x

lnlim
0→

∞⋅0

∞
∞

,   as   1
lnln −=
x

xxx . 

By making use of the L’Hopital Rule we obtain 

0=−=
−

=
′

′
=

→→−→−→
x

x
x

x
x

x
x

xxxx 0201110
lim

1
1lim

)(
)(lnlimlnlim . 

Example 5: x
x

x 4
3

0
)sin21(lim +

→
  contains the indeterminate form . ∞1

We can use the identity  .  fef lnlimlim =
Taking the logarithm of the expression under the sign of the limit we obtain 

x
xx x

4
)sin21ln(3)sin21ln( 4

3
+

=+ . 

By the L’Hopital Rule we evaluate the limit of this expression:  

.
2
3

1
sin21

cos2

lim
4
3

))sin21(ln(lim
4
3

4
)sin21ln(3lim

0

00

=+=

′
′+

=
+

→

→→

x
x
x

x
x

x

x

xx
 

Finally, we obtain:  

32
3

4
3

0
)sin21(lim eex x

x
==+

→
. 
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1.5.    The Taylor Formula 
1.5.1.   The Taylor Formula for Polynomials 

Theorem 1: For any  a polynomial 0x )(xP  of degree  can be 
represented as 

n

,)(
!

)(

)(
!

)(...)(
!1

)()()(

0
0

0
)(

0
0

)(

0
0

0

k
n

k

k

n
n

xx
k

xP

xx
n

xPxxxPxPxP

−=

−++−
′

+=

∑
=

  (5) 

where , , … are the derivatives of )( 0xP′ )( 0xP ′′ )(xP  at the point . 0x
Note: Formula (5) is called the Taylor Formula for polynomials. 
Proof: Any polynomial of degree  can be written as follows: n

∑
=

−=
n

k

k
k xxaxP

0
0 )()( .    (6) 

Therefore, we have to prove that     
!

)( 0
)(

k
xPa

k

k =   for  nk ≤≤0 . 

First, the equality  follows from (6) when )( 00 xPa = 0xx = . 
Then let us find the kth derivative of the polynomial )(xP  at the point 

. 0xx =
One can easily see that sum (6) contains just one term, whose kth derivative 

at the point  is not equal to zero:    0xx = ( ) !)(
)(

0 kaxxa k
kk

k =−  
The kth derivative of other terms of this sum either equals zero for any x  or 
contains the factor , which vanishes as ever )( 0xx − 0xx = . 

Thus,  !)( 0
)( kaxP k

k =  and hence, the theorem. 

Example: Represent the polynomial )(xP  in powers of x , if 
32 )2()2(6)2(81)( −+−+−+= xxxxP . 

Solution: The Taylor Formula with 00 =x  gives the answer in the general 
form: 

32
6

)0(
2

)0()0()0()( xPxPxPPxP
′′′

+
′′

+′+= . 

It remains to find )0(P  and : )0()(kP
•  ⇒  32 )2()2(6)2(81)( −+−+−+= xxxxP 1)0( =P . 



Differential Calculus 

 16

2)2(3)2(128)( −+−+=′ xxxP•   ⇒  4)0( −=′P . 
• )2(612)( −+=′′ xxP    ⇒  0)0( =′′P . 
• 6)( =′′′ xP      ⇒  6)0( =′′′P . 

Thus,     . 341)( xxxP +−=

1.5.2.   The Taylor Formula with the Remainder 
Theorem 2: Let a function )(xf  be  times differentiable at a point . 
Then 

n 0x
)(xf  can be represented by the Taylor Formula 

)()(
!

)()( 0
0

0
)(

xRxx
k

xfxf n
k

n

k

k
+−= ∑

=
,  (7) 

where  by definition, and  is a function such that )()( 00
)0( xfxf = )(xRn

0)(...)()()( 0
)(

000 ===′′=′= xRxRxRxR n
nnnn .  (8) 

Note that  is called the remainder. )(xRn

Proof: The remainder  is the difference between )(xRn )(xf  and the 
polynomial 

k
n

k

k

n xx
k

xfxP )(
!

)()( 0
0

0
)(

−= ∑
=

. 

By the argument used in the proof of Theorem 1, we obtain 

)()( 00 xfxPn =   and  )(!
!

)()( 0
)(0

)(

0
)( xfk

k
xfxP k

k
k

n == . 

Therefore, 
0)()()()()( 0

)(
0

)(
0

)(
0

)(
0

)( =−=−= xfxfxPxfxR kkk
n

kk
n  

for nk ≤≤0 , which implies formulas (8). 

In a special case when , the Taylor formula is named the Maclaurin 
formula: 

00 =x

)(
!

)0()(
0

)(
xRx

k
fxf n

k
n

k

k
+= ∑

=
   (9) 

Now let us come back to formula (7) and rewrite it in terms of differentials. 
We need to recall the relevant definitions. 
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The difference  can be considered as an increment of the 
argument; then 

xxx ∆=− 0
)()()( 0 xfxfxf ∆=−  is the corresponding increment of 

the function. 
By definition , that is, the differential of the argument equals the 
increment. The kth differential of the argument is defined as . 

xdx ∆=
kk dxdx )(≡

The differential of )(xf  at the point 0xx =  is dxxfxdf )()( 00 ′= , and 

the kth differential of )(xf  at this point is . kkk dxxfxfd )()( 0
)(

0 =

The Taylor Formula has the simplest form in terms of differentials: 

)(
!

)(...
!3

)(
!2

)()()( 00
3

0
2

0 xR
n

xfdxfdxfdxdfxf n

n
+++++=∆ .   (10) 

The Taylor Formula has diverse applications. Most often it is used tor 
approximation of transcendental functions by polynomials. In this case the 
polynomial  is an approximation to )(xPn )(xf , whereas  is an error 
of the approximation. Such conclusion has the following background. 

)(xRn

If )(xf  is a continuous function on some interval, then so is the remainder 
. In view of the fact that )(xRn 0)()( 00 =′= xRxR nn , the remainder is 

small enough in some vicinity of the point . Moreover, the remainder 
 is an infinitesimal whose order of smallness is greater than  as 

,  that is, 

0x
)(xRn n

0xx →

0
)(
)(lim

00

=
−→ n
n

xx xx
xR

. 

This statement can be easily proved by applying the L’Hopital rule  times 
and taking into account equalities (8): 

n

0
!

)(lim...
)(
)(lim

)(
)(lim

)(

1
00 000

===
−

′
=

− →−→→ n
xR

xxn
xR

xx
xR n

n
xxn

n
xxn

n
xx

. 

Whenever we deal with approximations, we need to control the errors. 
One of the ways is based on the Lagrange form of the remainder: 

1
0

)1(
)(

!)1(
)()( +

+
−

+
= n

n

n xx
n

cfxR ,  (11) 

where  is some point between c x  and . 0x
If 10 <− xx  and , then Mxf n ≤+ )()1(
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0
!)1(

)()(
!)1(
)()(

1
01

0

)1(
→

+
−

≤−
+

=
+

+
+

n
xxMxx

n
cfxR

n
n

n

n  

very quickly as . ∞→n
Therefore, the more n , the better approximation to )(xf  by the 
polynomial .  )(xPn

The Taylor Formula with the Lagrange form of the remainder can be 
written as follows: 

1
0

)1(

0
0

0
)(

)(
!)1(
)()(

!
)()( +

+

=
−

+
+−= ∑ n

n
k

n

k

k
xx

n
cfxx

k
xfxf . (12) 

In a special case when 0=n , this formula implies the Mean Value 
Theorem over the interval : ],[ 0xx

))(()()( 00 xxcfxfxf −′+= . 
 

1.5.3.   Applications of the Taylor Formula 
All the formulas below follow from the Maclaurin Formula. All we need to 
find the expansion for a specific function )(xf  is the general form of the 
nth derivative of )(xf . The remainders in all the cases are written in the 
Lagrange form. 

1) Let . Then  xexf =)(
xn exf =)()(  and       for . 1)0()( =nf 0≥n

Therefore, 

Error.++++++=
!

...
!3!2

1
32

n
xxxxe

n
x

   (13) 

Error = 1
!)1(

)( +
+

= n
c

n x
n
exR , 

where c  is a point between zero and x . 
If    ,   then     and  0<x 1<ce

 | Error | < 1||
!)1(

1 +
+

nx
n

. 
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2) If xxf sin)( = ,   then 

)
2

sin()()( πkxxf k +=    and    
2

sin)0()( πkf k = . 

If 12 −= nk , then  
1)12( )1()0( −− −= nnf , 

while if nk 2= , then  
0)0()2( =nf . 

Therefore, 

Error.+
−

−+−+−=
−

−
!)12(

)1(...
!5!3

sin
12

1
53

n
xxxxx

n
n

  (14) 

| Error | 
!)2(

|| 2

n
x n

<    for  0<x , 

 | Error | 
!)12(

|| 12

+
<

+

n
x n

   for  . 0>x

3) If xxf cos)( = ,   then  

)
2

cos()()( πkxxf k +=    and   
2

cos)0()( πkf k = , 

that is,        and   . 0)0()12( =+nf nnf )1()0()2( −=

Error.+−+−+−=
!)2(

)1(...
!4!2

1cos
242

n
xxxx

n
n

  (15) 

| Error | 
!)22(

|| 22

+
<

+

n
x n

   for any x . 

4) Let xxf arctan)( = .  Then 

Error.+
−

−+−+−=
−

−
12

)1(...
53

arctan
12

1
53

n
xxxxx

n
n

 (16) 

If    10 << x ,   then  

| Error | < 12||
12

1 +

+
nx

n
. 
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)1ln()( xx5) Let , where 1−>x .   Then  1)0( =f ,  f +=

!)1(
)1(

)1()(
1

)( −
+

−
=

−
n

x
xf n

n
n ,  and !)1()1()0( 1)( −−= − nf nn  

Error.+−+−+−=+ −
n
xxxxx

n
n 1

32
)1(...

32
)1ln(   (17) 

Error = 1
1

)1(
1

)1()( −−
+

+
+

−= n
n

n
n c

n
xxR , 

where c  is a point between zero and x . 

If    10 ≤< x ,   then    | Error | < 1
1

1 +

+
nx

n
. 

6) Let , where  is any rational number.  Then mxxf )1()( += m
nmn xnmmmxf −++−−= )1)(1)...(1()()( , 

)1)...(1()0()( +−−= nmmmf n . 
Therefore, 

Error
!

)1)...(1(...
!2

)1(1)1( 2

+

+−−++−++=+ nm x
n

nmmmxmmmxx
 (18) 

If   nm = ,   then  Error = 0. 

Example 1: Calculate approximately 3 e . 
Solution: Formula (13) for 3,2,1=n  and 31=x  yields successively: 

1)   xex +≈1    ⇒ 333.1
3
4

3
11313 ≈=+≈= ee ; 

2)   
2

1
2xxex ++≈   ⇒ 389.1

18
25

3
1

!2
1

3
11 2

3 ≈=++≈e ; 

3) 
62

1
32 xxxex +++≈   ⇒

 395.1
81

113
3
1

!3
1

3
1

!2
1

3
11 32

3 ≈=+++≈e . 

Compare the answers with the exact result ...3956.13 =e  
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Example 2: Calculate approximately . °18sin
Solution: First, it is necessary to convert degrees to radians: 1018 π=° . 
Then formula (14) for  and 2,1=n 10π=x  yields successively: 

1)   ⇒  xx ≈sin 314.0
1010

sin ≈≈
ππ

; 

2) 
!3

sin
3xxx −=  ⇒  3089.0

106
1

1010
sin

3
≈⎟

⎠
⎞

⎜
⎝
⎛−≈
πππ

. 

The exact result is  ...3090.0
Example 3: Calculate approximately 3 10 . 
Solution: It is necessary to transform the problem for applying formula 
(18): 

3333 4112)411(82810 +=+=+= . 
Now formula (18) for  and 2=n 41=x  yields 

( )
144
155

4
1)1

3
1(

3
1

2
1

4
1

3
11411411 2

313 =−+⋅+≈+=+ . 

Therefore, 1528.272155411210 33 ≈≈+= . 
The exact result is  ...1544.2

Example 4: Suppose we need to calculate e , using an approximating 
polynomial. 
In order to estimate an error bound, we can use the Lagrange form of the 
remainder. Since  is the increasing function and    ,   so    

. 

xe 5.00 << c
2<ce

Therefore,  

nn

c

n
nn

eR
2!)1(

1
2

1
!)1(

)
2
1( 1 +

<⋅
+

= + , 

which yields 
25.0)5.0(1 <R ,  04.0241)5.0(2 ≈<R ,  005.01921)5.0(3 ≈<R ,    

etc. 
Thus, the approximating polynomial of the third degree yields a value of 

e  with an error bound of at most . 005.0
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Summary: The table below contains a list of approximating formulas for 
some functions in a vicinity of the point 0=x . The formulas are illustrated 
by drawings. 

Functions First Approximation Close Approximation 

xe  x+1  
2

1
2xx ++  

xsin  x  
6

3xx −  

xcos  
2

1
2x

−  
242

1
42 xx

+−  

xtan  x  
3

3xx +  

)1ln( x+  x  
2

2xx −  

xarctan  x  
3

3xx −  

x+1
1  x−1  21 xx +−  

x+1  2
1 x
+  

82
1

2xx
−+  
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Fig. 3 

 
 
 
 

 
Fig. 4 
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Fig. 5 
 
 
 
 

    
Fig. 6 
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Fig. 7 

 
 
 
 

 
Fig. 8 
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1.6. Graphs of Functions 
1.6.1.  Symmetry of Functions 

Even-Odd Symmetry: Assume that for every x  in the domain of a 
function )(xf , )( x−  also enters into the domain. A function is called an 
even function if )()( xfxf =−  for all x  in its domain.  
The graph of an even function is symmetric with respect to -axis. y
A function is called an odd function if )()( xfxf −=−  for all x  in its 
domain. 
The graph of an odd function is symmetric with respect to the origin. 
Examples of even and odd functions are shown in Fig. 9. 

 
One should keep in mind the following properties of even or odd functions: 

     The sum of even functions is an even function and so is the product 
  of any number of even functions. 

      The sum of odd functions is an odd function. 
      The product of two odd functions is an even function. 
      The product of an even function and an odd function is an odd one. 

Most functions are neither even nor odd. 
Periodic Symmetry: A function is said to be periodic if there exists a 
positive number T  such that )()( xfTxf =+  for all x  in its domain. The 
smallest positive number T  is the period of the function. 
All trigonometric functions are periodic functions and so are their 
combinations. An example of a periodic function is given in Fig. 10. 
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1.6.2.   Increasing and Decreasing Functions 
Intervals of increasing and decreasing of a function can be easily found by 
the sign of its derivative. 
Theorem: Let a function )(xf  be defined and differentiable on some 
interval .  ),( ba
If 0)( ≥′ xf  at all points of the interval, then )(xf  is a monotone 
increasing function on . ),( ba
If 0)( ≤′ xf  at all points of the interval, then )(xf  is a monotone 
decreasing function on . ),( ba
Proof: Let ,  and ),(1 bax ∈ ),(2 bax ∈ 21 xx < . Then by the Mean Value 
Theorem 

))(()()( 1212 xxcfxfxf −′=− , 
where . 21 xcx <<
If 0)( ≥′ cf , then  and hence, )()( 12 xfxf ≥ )(xf  is a monotone 
increasing function on . ),( 21 xx
Likewise, if 0)( ≤′ cf  then )(xf  is a monotone decreasing function on 

. But  and  are arbitrary points on .  ),( 21 xx 1x 2x ),( ba
Hence, the theorem. 

Example 1: Find the intervals of monotonicity of the function 
1486163)( 234 +−−+= xxxxxf . 

Solution: First, we find the derivative of )(xf : 

)44(1248124812)( 2323 −−+=−−+=′ xxxxxxxf . 
Then we solve the equation 0)( =′ xf  by factoring: 

0)1)(1)(4(44 23 =−++=−−+ xxxxxx . 
The derivative is positive for    14 −<<− x     and for     . 1>x
The derivative is negative for    4−<x    and for     11 <<− x . 
Therefore, the given function is monotonically increasing on each of the 
intervals  and , and monotonically decreasing on  
and . 

)1,4( −− ),1( +∞ )4,( −−∞
)1,1(−
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1.6.3.   Maxima and Minima of Functions 
It is said that a function )(xf  has a local or relative maximum at a certain 
point in its domain, if the value of the function at this point is greater than 
or equal to the values at all other points in some vicinity of the point. 
A function )(xf  has a local or relative minimum at a point c , if 

)()( xfcf ≤  for all x  in some vicinity of the point c . 
The global maximum (minimum) is the highest (lowest) value, which a 
function attains on the given domain. 
An extreme point is the point where the function attains either its 
maximum or minimum. 

Usually the domain of a function can be divided into a finite number of 
intervals of monotonicity of the function. The derivative of the function has 
the same sign for all inner points of these intervals. But the derivative 
either equals zero or does not exist at the partition points. (See the figure 
below.) 
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A point  is called a critical point for a function c )(xf , if either 0)( =′ cf  
or )(cf ′  does not exist. 
Therefore, in order to find extreme values of a function )(xf  we have to 
determine critical points by solving the equation 0)( =′ xf . At these points 
the tangents are horizontal. We need also to determine points, where the 
derivative of )(xf  does not exist. 
Then we have to check whether a critical point is an extreme point, 
following the rules: 
• At a point of maximum the derivative changes its sign from positive to 

negative. 
• At a point of minimum the derivative changes its sign from negative to 

positive. 
• If the derivative holds its sign, passing through a point, then the point is 

not an extreme one. 
There is another method to solve this problem, which is based on the 
investigation of a behavior of a differentiable function by applying the 
Taylor Formula: 

)(
!

)(...
!3

)(
!2

)()()(
32

xR
n

cfdcfdcfdcdfxf n

n
+++++=∆ . 

The first differential  gives the first approximation for the increment 
of the function. However, at a critical point 

)(cdf
0)()( =′= dxcfcdf , and 

hence, we have to take into account the second differential. Then for small 
enough  we have dx

)(
2
1)( 2 cfdxf =∆ . 

Since  and xdcfcfd 22 )()( ′′= 02 >xd , so )(xf∆  has the same sign as 
)(cf ′′ . 

If 0)( >′′ cf , then 0)( >∆ xf  regardless of the sign of x∆ . Therefore, the 
point c  is a point of a relative minimum. 
If 0)( <′′ cf , then 0)( <∆ xf . Therefore, the function has a relative 
maximum at the point . c
If 0)( =′′ cf , then the second derivative test does not give any answer, and 
it is necessary to take into consideration the next term of the Taylor 
Formula. 
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1.6.4.    Curvature of Curve 
A curve )(xfy =  is said to be concave (or concave downwards) on some 
interval , if ),( ba 0)( >′′ xf  at all points of the interval. 
If 0)( <′′ xf  on , then the curve is convex (or concave upwards). ),( ba
A point of inflection is the point of changing of curvature from convex to 
concave or vice versa. This point separates the concave and convex arcs of 
a curve. 
At a point of inflection the second derivative either equals zero or does not 
exist. 
In order to determine the points of inflection, we have to find the solution 
of the equation 0)( =′′ xf . We have also to determine the points, where 
the second derivative of )(xf  does not exist. 
Then we need to check whether the obtained point is a point of inflection. 
As above, one can use the following rules: 
• At a point of inflection the second derivative changes its sign. 
• If it changes the sign from plus to minus, then the curvature is changing 

from concave to convex. 
• If it changes the sign from minus to plus, then the curvature is changing 

from convex to concave. 
• If the second derivative holds its sign, then the point is not a point of 

inflection. 
Some examples of concave curves are shown in Fig. 12 (b), (e), (g). 
Fragments of convex curves are represented by Fig. 12 (a), (f), (h). 
Points of inflection are shown in Fig. 12 (c), (d). 
 

1.6.5.    Asymptotes 
An asymptote is a straight line approached by a given curve as one of the 
variables in the equation of the curve approaches infinity. 
Asymptotes can be vertical, horizontal or inclined. 
If   ∞→)(xf    as   ,  then there exists the vertical asymptote, 
which is described by the equation 

ax →
ax = . In this case they say about the 

asymptotic behavior of the curve as   . ax →
If   bxf →)(    as   ,   then there exists the horizontal asymptote, 
whose equation is   . 

∞→x
by =

The general equation of an inclined asymptote is the following: 
bkxy += .     (19) 
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Assume that a curve  )(xfy =   asymptotically approaches line (19) as   
, that is,  ∞→x bkxxf +≈)(  as ∞→x . 

Therefore,   
x
b

x
xfk −≈
)(

,   and we obtain by the limit process 

x
xfk

x

)(lim
∞→

= .    (20) 

Likewise,  kxxfb −≈ )(   implies 
))((lim kxxfb

x
−=

∞→
   (21) 

Thus, if there exist finite limits (20) and (21), then the curve )(xfy =  has 
the inclined asymptote bkxy += . 
Do not forget that the short form ∞→x  describes two cases:  
and . 

+∞→x
−∞→x

For instance, if , then there exists the asymptote  as 
 but there is not any asymptote as 

xexf =)( 0=y
−∞→x +∞→x . 

Example: Find the asymptotes for the function 
7

3)(
2

−
=

x
xxf . 

Solution: The function ∞→)(xf   as  .  7→x
Therefore, there is the vertical asymptote 7=x . 
One can easily get that 

3
)7(

3lim)(lim
2

=
−

==
∞→∞→ xx

x
x
xfk

xx
, 

.21
7

2133lim

)3
7

3(lim))((lim

22

2

=
−

+−
=

−
−

=−=

∞→

∞→∞→

x
xxx

x
x

xkxxfb

x

xx  

Therefore, there is the inclined asymptote  213 += xy . 
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Chapter 2 
FUNCTIONS OF SEVERAL VARIABLES 

2.1.    Introduction 
The basic concepts of the theory of functions of several variables are the 
same or can be formulated like that of a single variable. Many definitions 
of a function of one variable can be easily generalized to functions of two 
or more than two variables. 
However, some complications arise in the computation and interpretation 
of results. 
Let us begin from the simplest concepts. 
Distance Between Points 
Any point  in the P −xy plane can be described by the ordered pair  
of real numbers. The distance between two points 

),( yx
),( yxP  and  

is 

),( 000 yxP
2

0
2

00 )()(),( yyxxPP −+−=ρ . 

In order to describe a point in three-dimensional space, it is necessary to 
operate with a triplet ),,( zyx  of numbers, so that the distance between 
points ),,( zyxP  and  is  ),,( 0000 zyxP

2
0

2
0

2
00 )()()(),( zzyyxxPP −+−+−=ρ . 

In a similar way a point in multidimensional space can be represented by  
numbers . The generalized formula for the distance between 
points  and  looks like above: 

n
nxxx ,...,, 21

),...,,( 21 nxxxP ),...,,( 21 naaaP

22
22

2
110 )(...)()(),( nn axaxaxPP −++−+−=ρ .  (1) 

Definition of Functions 
Let  be a point of some set . ),...,,( 21 nxxxP D
If each point of  is associated with one value of a variable , then it is 
said that a function u  of variables  is defined on the set . 

D u
nxxx ,...,, 21 D

Recall that a function of one variable is denoted as )(xfy = . A function 
of several variables is denoted just in the same manner using the function 
notation by the equality 

),...,,( 21 nxxxfu =  
or in a short form as    )(Pfu = . 
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The set  is called the domain of definition, and the set of all values of u  
is called the range of a function. 

D

In particular, a function of two independent variables is usually denoted as 
),( yxfz = . The equation ),( yxfz =  can be interpreted graphically as a 

surface in three-dimensional space. 
The domain of definition of a function of two variables is some set of 
points in −xy plane. 
Example: The domain  of the function  D

2222 21 yxyxz −−+−+=  

is the ring domain ))2()1(( 2222 ≤+≥+= yxyxxD I , that means 

any values of x  and  such that   . y 21 22 ≤+≤ yx

Some examples of domains are shown in Fig. 1. 

 

2.2.    Limits of Functions of Several Variables 
The mathematical statement 

Axf
ax

=
→

)(lim  

for a function of the single variable means that the difference between 
)(xf  and A  vanishes as the distance between points x  and  on the 

number line is getting smaller and smaller. 
a

The definition as well as the properties of limits of a function of one 
variable can be easily generalized to functions of more than one variable. 
Moreover, the limit of a function of several independent variables can be 
defined just in the same way as in case of a function of one variable. 
Let )(Pf  be a function of several variables, which is defined in some 
vicinity of a point . 0P
The limit of )(Pf  as  tends to  is equal to P 0P A  if and only if for any 

0>ε  there exists a number 0>δ  such that )(Pf  obeys the inequality 
ε<− APf )( , 
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),( 0PPwhenever the distance ρ  between points  and  obeys the 
inequality 

P 0P

δρ <),( 0PP . 
This statement is denoted as 

APf
PP

=
→

)(lim
0

.    (2) 

In a particular case of a function of two variables one uses the natural 
notation 

Ayxf
by
ax

=

→
→

),(lim     (3) 

If limit (3) exists, then 
),(limlim),(limlim),(lim yxfyxfyxf

axbybyax
by
ax →→→→

→
→

== .  (4) 

All properties of limits hold for functions of several variables: 
 If there exists  and c  is any number, then )(lim

0

Pf
PP→

)(lim)(lim
00

PfcPcf
PPPP →→

= .   (5) 

 If there exist both limits,  and , then there 

exist the limits of the sum, product and quotient of functions such that 

)(lim
0

Pf
PP→

)(lim
0

Pg
PP→

 The limit of the sum of functions is the sum of the limits of the 
functions: 

)(lim)(lim))()((lim
000

PgPfPgPf
PPPPPP →→→

±=± . (6) 

 The limit of the product of functions is the product of the limits of 
the functions: 

)(lim)(lim)()(lim
000

PgPfPgPf
PPPPPP →→→

=  .  (7) 

 The limit of the quotient of functions is the quotient of the limits 
of the functions, provided 0)(lim

0

≠
→

Pg
PP

: 

)(lim

)(lim

)(
)(lim

0

0

0 Pg

Pf

Pg
Pf

PP

PP

PP
→

→

→
= .   (8) 
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Example: Find the limit of the function 
)1(

sin),(
yx

xyyxf
+

=  as 

.  )3,0(),( →yx
Solution:  
1)   In view of (4) we have to hold fixed one of the variables in order to 
take the limit with respect to the second variable. 
Let us hold fixed y  as x  approaches zero: 

)1(
sinlim

)1(
1

)1(
sinlim

00 y
y

x
xy

yyx
xy

xx +
=

+
=

+ →→
. 

2)   Now let :  3→y

4
3

)1(
lim

3
=

+→ y
y

y
. 

It does not matter whether we hold fixed x  or y . By interchanging of the 
order of a passage to the limit we obtain the same result as above: 

x
x

yx
xy

y 4
3sin

)1(
sinlim

3
=

+→
  ⇒ 

4
3

4
3sinlim

)1(
sinlimlim

030
==

+ →→→ x
x

yx
xy

xyx
. 

Thus, the given function tends to 43  as  approaches . ),( yx )3,0(

Naturally, there are such functions, which have no limits at some points. 

For instance, consider the limit of the function 22

22
)(

yx
yxxf

+

−
=   as  

.  )0,0(),( →yx

Note that 

11limlimlim
022

22

00
==

+

−
→→→ xyx yx

yx
, 

while 

1)1(limlimlim
022

22

00
−=−=

+

−
→→→ yxy yx

yx
. 

The results differ from each other. Hence, the given function has no a limit 
at the point . )0,0(
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It is appropriate to mention here that the 
limit of a function of one variable exists if 
and only if the left-hand and right-hand 
limits equal with each other. 
So, as for the example above, there is 
nothing new; the only difference is that 
there is an infinite number of directions of 

passages to the limit point but not just two. 

2.3.    Continuity of Functions of Several Variables 
The concept of continuity of functions of one variable does not require any 
modification with reference to functions of several variables. 
A function )(Pf  is called continuous at a point  if there exists the finite 
limit of 

0P
)(Pf  that equals the value of the function at the point : 

. 
0P

)()(lim 0
0

PfPf
PP

=
→

A function )(Pf  is said to be continuous on some set , if it is 
continuous at each point of . Otherwise, if 

D
D )(Pf  is not continuous, e.g., 

at a point , it is said that the function 1P )(Pf  is discontinuous at the point 
 or that 1P )(Pf  has a discontinuity at the point . 1P

The points of discontinuity can form lines or surfaces.  
Examples:  
• The function xyz tan=  is not defined on the lines 2)12( π+= kxy , 

where k  is any integer. The lines of discontinuity are the set of 
hyperbolas. 

• The function 
xyx

zxu
32

2

−+
−

=  is not defined in the plane 

032 =−+ zyx , which is the plane of discontinuity. 
Continuous functions have the same properties, no matter how many of 
variables. 

 The sum of a finite number of continuous functions is a continuous 
function as well as the product of a finite number of continuous 
functions is a continuous function.  

 The quotient of two continuous functions is a continuous function 
wherever the denominator is non-zero. 

 All elementary functions are continuous in their domains. 
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2.4.    Partial Derivatives 
The derivative of a function of one variable is defined as the limit of the 
quotient of the increment )()( xfxxff −∆+=∆  of the function to an 
increment  of the argument as x∆ 0→∆x : 

x
xfxxf

dx
xdf

x ∆
−∆+

=
→∆

)()(lim)(
0

. 

The partial derivatives of a function of several variables are defined in a 
similar way. 
For convenience sake consider a function of two independent variables. 
The partial derivative of ),( yxfu =  with respect to x  is defined as 

x
yxfyxxf

x
yxf

x ∆
−∆+

=
∂

∂
→∆

),(),(lim),(
0

.   (9) 

The definition of the partial derivative of ),( yxfz =  with respect to y  
looks like above: 

y
yxfyyxf

y
yxf

x ∆
−∆+

=
∂

∂
→∆

),(),(lim),(
0

.   (10) 

In a short form partial derivatives are denoted by the symbols xf ′ ,   or  yf ′

xu′ ,  . yu′
Partial derivatives have the same properties as ordinary derivative as well 
as all rules of differentiation hold. 
Note that when one takes the partial derivative, e.g., with respect to x , it is 
necessary to hold the other variables as constants. 
Example: Find the partial derivatives of ),( yxf  with respect to x  and y , 

if yexyxyxf −+= sin5),( 32 . 

Solution:    xxyfx cos52 3 +=′ , 

y
eyxf y

x 2
13 22 −=′ . 

Partial derivatives of higher orders are defined in a similar way as ordinary 
higher derivatives: 

)(2

2

x
f

xx
f

∂
∂

∂
∂

=
∂

∂
,   )(2

2

y
f

yy
f

∂
∂

∂
∂

=
∂

∂
, 

)(
2

x
f

yyx
f

∂
∂

∂
∂

=
∂∂

∂
,   )(

2

y
f

xxy
f

∂
∂

∂
∂

=
∂∂

∂
. 
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2xfThey are also denoted as  ′′ , 2yf ′′ , xyf ′′  , yxf ′′  correspondingly. 

Partial derivatives like  , xyf ′′ yxf ′′  are called mixed partial derivatives. 
There exists the theorem according to that mixed partial derivatives do not 
depend on the order of differentiation provided that the partial derivatives 
are continuous functions. We are going to consider only functions, which 
obey such conditions. 
Therefore,  

yxxy uu ′′=′′  ,   22 yxxyxyx uuu ′′′=′′′=′′′ ,  etc. 

2.5.    Total Differentials 
Let ),( yxfu =  be a function of two independent variables. 
Increments of the argument are called the differentials of the independent 
variables: 

xdx ∆=   and    ydy ∆= . 
The total differential of a function ),( yxfu =  is defined as 

dy
y
udx

x
udu

∂
∂

+
∂
∂

= .    (11) 

This definition of the differential can be easily generalized for a function u  
of  independent variables: n

n
n

n

k
k

k
dx

x
udx

x
udx

x
udx

x
udu

∂
∂

++
∂
∂

+
∂
∂

=
∂
∂

= ∑
=

...2
2

1
11

.  (12) 

The properties of differentials of functions of several variables differ 
nothing from that of one variable: 

duduvud ±=± )( , 
vduudvvud +=⋅ )( , 

2)(
v

vduudv
v
ud −

= . 

Theorem: Let the functions ),( yxA  and  have continuous partial 
derivatives to the second order inclusive. Then the expression of the form 

),( yxB

dyyxBdxyxA ),(),( +  
is the total differential of some function ),( yxfu =  if and only if 

x
B

y
A

∂
∂

=
∂
∂

.     (13) 

Proof: Let us prove the necessity of condition (13). 
Assume that 
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dyyxBdxyxAdu ),(),( += . 
Then from definition (11) it follows that 

   
x
uyxA
∂
∂

=),(   and  
y
uyxB
∂
∂

=),( . 

Therefore,  

yx
u

y
yxA

∂∂
∂

=
∂

∂ 2),(
  and  

xy
u

x
yxB

∂∂
∂

=
∂

∂ 2),(
. 

However, the mixed partial derivatives xyu ′′  and yxu ′′  equal each other 
because they are continuous functions. 
Hence,   xy BA ′=′ . 

2.6.    Differentials of Higher Orders 
The nth differentials of arguments are the nth power of the first 
differentials:  

22 )(dxdx = ,  , … ,   ,  . 22 )(dydy = nn dxdx )(= nn dydy )(=
The second differential of a function is the differential of the first 
differential; the third differential is the differential of the second 
differential, and so on:  

)(2 dudud = , , …,  . )( 23 uddud = )( 1uddud nn −=
If ),( yxfu = , then 

2
2

22
2

2

2

2
2

222
2

2

2

2

2

)()(

)()()(

dy
y
udxdy

yx
udx

x
u

dy
y
udxdy

yx
udydx

xy
udx

x
u

dy
y
uddx

x
uddy

y
udx

x
udud

∂

∂
+

∂∂
∂

+
∂

∂
=

∂

∂
+

∂∂
∂

+
∂∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=

 (14) 

due to equality of the mixed partial derivatives. 
The nth differential of a function can be simply obtained by the following 
formal rule: 

u
x

dy
x

dxud nn )(
∂
∂

+
∂
∂

= .    (15) 

In such a way the sum has to be raised to nth power. Then the parentheses 
have to be removed, putting the symbol u  from the right of each of the 
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symbols like 
x∂
∂

. Finally, we have to interpret the exponents as the orders 

of derivatives and differentials. 
Example: Find the third differential of a function of two variables. 
Solution: The first step: 

u
y

dy
x

dxud 33 )(
∂
∂

+
∂
∂

= . 

The second step: 

u
y

dy
yx

dydx
yx

dydx
x

dxud )33( 3

3
3

2

3
2

2

3
2

3

3
33

∂

∂
+

∂∂

∂
+

∂∂

∂
+

∂

∂
= . 

The final step: 

3
3

3
2

2

3
2

2

3
3

3

3
3 33 dy

y
udydx

yx
udydx

yx
udx

x
uud

∂

∂
+

∂∂

∂
+

∂∂

∂
+

∂

∂
= . 

2.7.     Derivatives of Composite Functions 
Let  be a composite function of the variables 

, where , 
),...,,( 21 nxxxfu =

nxxx ,...,, 21 )(11 txx = )(22 txx = , …, )(txx nn =  all are 
functions of the variable t . Then the complete derivative is 

∑
= ∂
∂

=
n

k

k

k dt
dx

x
u

dt
du

1
 .    (16) 

If the function u  is also an explicit function of t , that is, 
, then ),,...,,( 21 txxxfu n=

∑
= ∂
∂

+
∂
∂

=
n

k

k

k dt
dx

x
u

t
u

dt
du

1
.    (17) 

In particular, let ),,( tyxfu =  with )(txx =  and )(tyy = . Then  

dt
dy

y
u

dt
dx

x
u

t
u

dt
du

∂
∂

+
∂
∂

+
∂
∂

= .   (18) 

Example: Find   
dt
du

,  if       with  35 yeu x= tx sin=   and   . 2ty =

Solution:    
5sin56sin52535 6cos523cos5 tettetyeyte

dt
du ttxx +⋅=+⋅= . 
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2.8.    Derivatives of Implicit Functions 
• Let a function  be defined by an implicit function: )(xyy =

0),( =yxF .    (19) 

Then the total differential of F  is     0=
∂
∂

+
∂
∂

= dy
y
Fdx

x
FdF . 

Therefore, the derivative of y  with respect to x  can be expressed through 
the partial derivatives as follows: 

y

x
F
F

dx
dy

′
′

−= .     (20) 

• Let a function  of two variables be defined by an implicit 
function: 

),( yxzz =

0),,( =zyxF . 
As above, the total differential of F  is equal to zero: 

0=
∂
∂

+
∂
∂

+
∂
∂

= dz
z
Fdy

y
Fdx

x
FdF .  (21) 

In order to find, for instance, the partial derivative of z  with respect to x , 
we divide both sides of this equality by  and hold the variable dx y  as a 

constant. In this case the ratio 
dx
dz

 has to be considered as the partial 

derivative 
x
z
∂
∂

, and hence 

z

x
F
F

x
z

′
′

−=
∂
∂

    (22a) 

The other partial derivatives can be found in a similar way: 

z

y

F
F

y
z

′

′
−=

∂
∂

,  
y

x
F
F

x
y

′
′

−=
∂
∂

,  
y

z
F
F

z
y

′
′

−=
∂
∂

,    etc.  (22b) 

Example: Find the partial derivatives of z  with respect to xand y  if  

0ln32 =−+ zyxzzxy . 
Solution: First, let us find the partial derivatives of the function 

zyxzzxyzyxF −+= ln),,( 32 : 

xzzyFx +=′ 32 ,   zxyzFy 12 3 −=′ , 
222 )2(ln3 zyzxzxyFz ++=′ . 

Then, we use formulas (22): 
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222

32

)2(ln3 zyzxzxy
xzzy

x
z

++

+
−=

∂
∂

, 

222

3

)2(ln3
12

zyzxzxy
zxyz

y
z

++

−
−=

∂
∂

. 

2.9.    Geometric Interpretation of Partial Derivatives 
Consider a function of two variables. 
The equation of a surface in three-dimension space can be written as 

),( yxfz = .    (23) 
This equation can also be represented in the implicit form as follows: 

0),,( =zyxF .    (24) 
Assume that there exist the partial derivatives of z  at some point 

 on the surface, that is, the surface is smooth enough in the 
vicinity of the point . 

),,( 0000 zyxP
0P

There is an infinite number of lines that are tangents to the surface at this 
point. These lines form a plane called the tangent plane to the surface at 
the given point. 
An equation of the tangent plane can be written in the form 

0)()()( 000 =−+−+− zzCyyBxxA .  (25) 
Here CBA and,  are components of a normal vector to the surface at the 
point . 0P
In order to determine this vector we consider anther way to get the equation 
of the tangent plane. 
Let ),,( zyxP  be any point on the surface. If the point ),,( zyxP  
approaches , that is,  ),,( 0000 zyxP

00 →−=∆ xxx ,  00 →−=∆ yyy ,  00 →−=∆ zzz , 
then the vector },,{ zyx ∆∆∆=∆r  tends to the vector , 
which is coplanar to the tangent plane.  

},,{ dzdydxd =r

By equation (24), the differential of F  at the point  is equal 
to zero. Hence, in view of formula (21) 

),,( 0000 zyxP

0
),(),(),( 0,000,000,00 =

∂
∂

+
∂

∂
+

∂
∂

dz
z

zyxF
dy

y
zyxF

dx
x

zyxF
.  (26) 
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This equation states the orthogonality condition of the vectors 
 and },,{ dzdydxd =r )}(),(),({ 000 PFPFPF zyx ′′′=N , where the vector 

 lies in the tangent plane. rd
Therefore, the partial derivatives of F  at the point  are the components 
of a normal vector to the tangent plane and so to the considered surface at 
this point: 

0P

x
zyxF

A
∂

∂
=

),( 0,00 ,  
y

zyxF
B

∂
∂

=
),( 0,00 ,  

z
zyxF

C
∂

∂
=

),( 0,00 . 

Then formula (25) yields the equation of the tangent plane to surface (24) 
at the given point: 

0))(())(())(( 000000 =−′+−′+−′ zzPFyyPFxxPF zyx . (27) 

Now we can also write the equations of the straight line passing through the 
point  and being perpendicular to the surface 0P 0),,( =zyxF : 

),,(),,(),,( 000

0

000

0

000

0
zyxF

zz
zyxF

yy
zyxF

xx

zyx ′
−

=
′

−
=

′
−

.  (28) 

If the surface is defined by equation (23) in the explicit form, then 
),(),,( yxfzzyxF −=  

and hence, 
xx fF ′−=′ ,     yy fF ′−=′    and     1=′zF .   (29) 

Example: Find the equation of the tangent plane to the surface of the 
paraboloid of revolution      at the point . 22 yxz += 25)3,(-4,
Solution: Using formulas (29) we find the partial derivatives of  

22),,( yxzzyxF −−=  
at the given point: 8)( 0 =′ PFx ,   6)( 0 −=′ PFy  and   1)( 0 =′ PFz . 
In view of (27) the equation of the tangent plane is 

0)25()3(6)4(8 =−+−−+ zyx  
or equivalently  

02568 =++− zyx . 
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2.10.  Maxima and Minima of Functions of Two Variables 
The definitions of the maximum and minimum of a function of several 
variables are just the same as in case of function of one variable. 
For instance, a function )(Pf  has a relative maximum at a point , if 

 for all points 
0P

)()( 0PfPf ≤ P  in some vicinity of the point . 0P
An extreme point is the point where the function attains either maximum 
or minimum. 
The problem of determining the maximum and minimum of some 
differentiable function can be solved by using of the Taylor Formula. 
The main idea is quite clear: if the difference )( 0Pf∆  holds its sign in 
some vicinity of , then  is an extreme point. Otherwise, the function 0P 0P

)(Pf  has neither maximum nor minimum at this point. 
Let ),( yxfz =  be a given function. We begin with the first 
approximation: dyPfdxPfPdfPf yx )()()()( 0000 ′+′=≈∆ . 
Even if one of these partial derivatives is not equal zero, then the sign of 

 depends on the signs of the increments  and . )( 0Pf∆ dx dy
Hence, all the partial derivatives of )(Pf  either equal zero or do not exist 
at the extreme point. 
To find critical points we need to solve the following equations 
simultaneously: 

0),( =′ yxfx   and   0),( =′ yxf y .  (30) 
Note that the tangent planes at such critical points are parallel to the 

−xy plane. 
Then we have to take into account the next term in the Taylor formula. 
Using the form of the second differential one can prove the following rule. 

Rule: Let the partial derivatives of the second order )( 02 Pfx′′ , , 

 and 

)( 0Pfxy′′

)( 0Pf yx′′ )( 02 Pf y′′  be the elements of the determinant: 

)()(
)()(

00

00

2

2

PfPf
PfPf

D
yyx

xyx
′′′′
′′′′

=    (31) 

where  is a critical point. 0P
• If 0>D  and , then  is a point of a relative minimum. 0)( 02 >′′ Pfx 0P
• If 0>D  and , then  is a point of a relative minimum. 0)( 02 <′′ Pfx 0P
• If 0<D , then function ),( yxf  has a saddle point at . 0P
• If 0=D , then the rule does not give any answer. 
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Chapter 3 
INDEFINITE INTEGRALS 

3.1. Primitives 
Integrals, together with Derivatives, are the basic objects of Calculus. 
Indefinite integrals are defined through Primitives (or Antiderivatives). 
The function  is called a primitive (or antiderivative) of a function )(xF

)(xf  if  
( ) ( )xfxF =′     (1) 

for all x  in the domain of )(xf . 
In other words a primitive of )(xf  is a function whose derivative equals 
the given function )(xf . 

Example 1: The function  is a primitive of )(xF )(xF ′ . 

Example 2: The function    is a primitive of  )1ln( 2x+ 21
2

x
x

+
   since 

2
2

2
2

1
2)1(

1
1))1(ln(

x
xx

x
x

+
=′+⋅

+
=′+    for all . Rx∈

Primitives have the following important property: 

 Let  and  be primitives of )(1 xF )(2 xF f , that is,  
)()()( 21 xfxFxF =′=′  

for all x  in the domain of )(xf . 
Then there exists a constant C  such that  

CxFxF += )()( 21 . 
Indeed,  by definition. Therefore, the derivative of the 
difference between functions  and  is equal to zero for all 

)()( 21 xFxF ′=′
)(1 xF )(2 xF x  on 

the given interval: 
0)( 2121 =′−′=′− FFFF . 

Hence, the difference  equals a constant by the corollary to the 
Mean Value Theorem. (See Chapter 1, page 5.) 

21 FF −

In general, if a function has one primitive, then it has an infinite number of 
primitives. 
However, if we know one primitive  of the function )(xF )(xf , then we 
know all primitives of f . The set of all primitives of f  can be represented 
as , where CxF +)( C  is an arbitrary constant. 
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Example 3: Both functions,  and , are 
primitives of 

2
1 )1( += xF 422

2 −+= xxF
)1(2)( += xxf   for all Rx∈ . 

One can easily check that the difference between the primitives is a 
constant:  

.5)42()12(

)42()1(
22

22
21

=−+−++=

−+−+=−

xxxx

xxxFF
 

3.2.  The Definition and Properties of Indefinite Integrals 
The set of all primitives  of )(xF )(xf  is called the indefinite integral of 
the function )(xf . 
The indefinite integral of )(xf  is denoted by the symbol , 
which is read as "The integral of 

∫ dxxf )(
)(xf  with respect to x ". 

( ) CxFdxxf +=∫ )(  

if and only if ( ) ( )xfxF =′ . 

 The function )(xf  under the integral sign is called the integrand. 
 The x  is the integration variable. 
 The symbol dx  is the differential of x . 
 An arbitrary constant C is said to be a constant of integration. 

All indefinite integrals have the following properties: 
 Differentiation is the inverse operation to indefinite integration: 

)())(( xfdxxf =′∫ ,    (1a) 

dxxfdxxfd )()( =∫ .    (1b) 

 These formulas follow from the definition of indefinite integrals and 
can be easily memorized using the following rule: 
Symbols  and  cancel each other if they follow one after 
another. 

d ∫

 Integration of the derivative of )(xf  yields the function )(xf : 

Cxfxdfdxxf +==′ ∫∫ )()()( .   (2) 

 This property is evident since the function )(xf  is a primitive of 
)(xf ′ . 
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Note that integration is the inverse operation to differentiation. 
However do not forget to add a constant of integration when 
integration is the last operation! 

The following two general formulas allow us to transform a given integral 
into another integral or integrals. 

 A constant factor can be taken outside the integral sign. 

∫∫ = dxxfcdxxcf )()( .     (3) 

 The integral of an algebraic sum of functions equals the algebraic sum 
of the integrals of each of the functions. 

∫∫∫ ±=± dxxgdxxfdxxgxf )()())()(( .   (4) 
 Both these properties are based on the properties of derivatives. 

Indeed, 
)())(( xcfdxxcf =′∫  and . )())(())(( xcfdxxfcdxxfc =′=′ ∫∫

Therefore, both sides in equality (3) represent primitives of the same 
function. 
Property (4) can be obtained in a similar way since the derivative of a 
sum of functions equals the sum of derivatives of each of the 
functions. 

 Let       ( ) ( ) C+=∫ xFdxxf . 
Then 

( ) ( ) C+=∫ uFduuf     (5) 
for any differentiable function )(xuu = . 

 This property is based on the invariance of the form of the first 
differential, according to which the differential formula 

 holds for any composite function :   dxxFxdF )()( ′= ))(( xuF
duuFudF )()( ′= . 

Advice: Try to memorize and understand all these rules. 
Let us consider some elementary examples to illustrate the definition and 
properties of indefinite integrals before going on. 
Examples: 

•  xxdx
dx
d 3sin3sin 33 =∫ .    | property (1) | 

•  Cxdxx
x

dx
+=′= ∫∫ tan)(tan

cos2 .  | property (2) | 
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•    CxCxdxxdxx +=+== ∫∫ 3
3

22 2
3

666 .  | property (3) | 

•    

.33
2

2

32)32(

2
2

CxxCxx

dxxdxdxx

+−=+−=

−=− ∫ ∫∫  | properties (3) and (4) | 

•    Cxxdxdx
x

x
+== ∫∫ 5

ln)(ln)(lnln 5
4

4
. | property (5) | 

3.3.    A Table of Common Integrals 
Let us recall the derivatives of elementary functions. For instance, the 
power rule states that 

1)( −=′ kk kxx . 
This formula can be transformed as follows. 
First, we substitute  for )1( +n k : 

nn xnx )1()( 1 +=′+ . 
Then we divide both sides of the equality by )1( +n )  (provided that 

) and read the formula from right to left: 1−≠n

)
1

(
1
′

+
=

+

n
xx

n
n . 

Therefore, the function 
1

1

+

+

n
xn

 is a primitive of nx , so the power rule for 

integration is the following: 

∫ +
+

=
+

C
n
xdxx

n
n

1

1
,   1−≠n

The derivatives of all elementary functions can be treated likewise. Then 
the table of derivatives can be easily transformed into the table of common 
integrals. 
Thus, we have a list of common indefinite integrals. 
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Table 1 

Derivatives
 

Integrals 

)
)1(

(
1

′
+

=
+

n
xx

n
n  

∫ +
+

=
+

C
n
xdxx

n
n

1

1
             ( ) 1−≠n

∫ += Cxdx  

)(ln1 ′= x
x

 ∫ += Cx
x
dx ||ln     

 ( 0≠x ) 

)
ln

( ′=
a

aa
x

x  

)( ′= xx ee  

C
a

adxa
x

x +=∫ ln
  ( , )0>a 1≠a

Cedxe xx +=∫  

)cos(sin ′−= xx  Cxdxx +−=∫ cossin  

)(sincos ′= xx  Cxdxx +=∫ sincos  

)(tan
cos

1
2

′= x
x

 Cx
x

dx
+=∫ tan

cos2  ( nx ππ
+≠

2
) 

)cot(
sin

1
2

′−= x
x

 Cx
x

dx
+−=∫ cot

sin2   ( nx π≠ ) 

⎩
⎨
⎧

′−

′
=

− )arccos(
)(arcsin

1

1
2 x

x

x
 

⎩
⎨
⎧

+−
+

=
−

∫ Cx
Cx

x

dx
arccos

arcsin

1 2
   ( ) 1|| ≤x

⎩
⎨
⎧

′−

′
=

+ − )cot(

)(arctan

1
1

12 x

x

x
 

⎩
⎨
⎧

+−

+
=

+ −∫ Cx

Cx

x
dx

12 cot

arctan

1
 

 
Comment on # 2:  

If , then  and 0>x xx ln||ln =
x

x 1)||(ln =′ . 

If , then  and 0<x )ln(||ln xx −=
xx

xx 1)1(1))(ln()||(ln =−
−

=′−=′ . 

Therefore, the function 
x
1

 is a primitive of  in both cases. ||ln x
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Corollary 1: Each of the functions, xarcsin  and )arccos( x− , is a 

primitive of 
21

1

x−
. Therefore, the difference between them should be 

equal to a constant: 
Cxxxx =+=−− arccosarcsin)arccos(arcsin . 

Setting  we find the constant 0=x C : 
2200arccos0arcsin ππ =+=+=C . 

Thus, 
2arccosarcsin π=+ xx . 

Corollary 2: In a similar way one can get one more formula of elementary 
mathematics: 

2cotarctan 1 π=+ − xx . 
The result for any particular integral can often be written in many different 
forms. 
In order to solve successfully integration problems, it is necessary to know:  
• the properties of integrals; 
• the table of common integrals; 
• the techniques used for manipulation with integrals. 
The best way to acquire enough knowledge of the integral formulas is to 
use them as many times as possible. Knowledge of the formulas develops 
the ability to recognize them. 

3.4.   Techniques of Integration 
Evaluating integrals is much more difficult than evaluating derivatives. As 
for derivatives, there is a systematic procedure based on the chain rule that 
effectively allows any derivative to be worked out. However, there is not 
any similar procedure for integrals. 
One of the main problems is that it is difficult to know what kinds of 
functions will be needed to evaluate a particular integral. When we work 
out a derivative, we always end up with functions that are of the same kind 
or simpler than the ones we started with. But when we work out integrals, 
we often end up needing to use functions that are much more complicated 
than the ones we started with. 
Whenever the specific integration formulas do not apply, we have to 
transform the problem into another problem or problems. One can try to 
manipulate the integrand algebraically, separate the integrand, if possible, 
put any constant factors outside of the sign of the integral by making use of 
the properties of integrals, and so on. 
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The basic techniques of integration are algebraic manipulation, 
substitutions, integration by parts, and the method of partial fractions. 

3.4.1.  Integration by Substitution 
The technique of substitutions helps to reduce many integrals to common 
indefinite integrals, which are given in Table 1. 
For convenience sake all substitutions may be subdivided into two classes: 
• , )(xgu =
• )(tux = . 
In both cases we change the variable of integration - in one way or another. 
As a rule, the substitution )(xgu =  is used when a given integral has the 
following structure: 

dxxgxgf∫ ′ )())(( . 
Then the substitution  implies )(xgu = dxxgdu )(′= , so that we obtain 

( ) duufdx(x)gg(x)f ∫∫ =′ )( .   (6) 
Therefore, the initial integration problem is transformed into another 
integration problem. However if we can not integrate the function )(uf , 
then another method of integration may be required. 
On the other hand, the substitution )(tux =  gives another way of 
transformation of a given integral. 

Now let      be a given integral.  dxxf∫ )(
Then the substitution )(tux =  implies dttudx )(′= , and we obtain 

( ) dt(t)u(t)ufdxxf ∫∫ ′=)( .   (7) 

As above, we expect that the new integral is easier evaluated. Otherwise, 
another substitution or integration method may be needed. 
As a matter of fact, formulas (6) and (7) give the reverse transformation to 
each other. They are called the substitution formulas. 
The technique of substitution is quite general and can be used in a wide 
variety of problems. 
In particular, one can generalize the table of common integrals applying the 
technique of substitutions. Consider, for instance, the power rule: 

∫ +
+

=
+

C
n
xdxx

n
n

1

1
              ( ). 1−≠n

Let )(tu  be any differentiable function. If we use the substitution ux = , 
then the power rule can be formulated as follows: 
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∫ +
+

=
+

C
n
uduu

n
n

1

1
              ( ). 1−≠n

This formula is exactly the same as the original power rule. The only 
difference is the interpretation of the symbol  as a function of a variable u t  
and so dtudu ′= . Therefore, we obtain the following generalized power 
rule: 

∫ +
+

=′
+

C
n

tudttutu
n

n

1
)()()(

1
             ( ). 1−≠n

One can interpret each of the common integrals in a similar way by 
considering the variable of integration as a function. 

3.4.1.1. Examples of Integrating by Substitution 
Example 1:  Each of the following integrals 

1) ∫ +
dx

x
x
2

4

1
)(arctan

, 

2) ∫ + )1)((arctan 2xx
dx

, 

3) ∫ + 2
)(arctan

1 x
dxe x  

can be written as 

.)(arctan)(arctan

))(arctan(arctan
1

)(arctan 2

∫

∫∫
=

′=
+

xdxf

dxxxf
x

dxxf
 

Therefore, the substitution xu arctan=  is fairly suitable for each of them: 

∫∫∫ +===
+

Cuduuxdxdx
x

x
5

)(arctan)(arctan
1

)(arctan)1
5

44
2

4
. 

Once the solution has been found in terms of u , one needs to replace 
in it by the corresponding function of u x . So the final solution is the 

following: 

Cxdx
x

x
+=

+∫ 5
)(arctan

1
)(arctan 5

2

4
. 

 52



Indefinite Integrals 

.|arctan|ln||ln

arctan
)(arctan

)1)((arctan
)2 2

CxCu
u
du

x
xd

xx
dx

+=+==

=
+

∫

∫∫
 

.

)(arctan
1

)3

arctan

)(arctan
2

)(arctan

CeCedue

xde
x

dxe

xuu

xx

+=+==

=
+

∫

∫∫
 

One can easily check these solutions by differentiating. Let us check, 
e.g., the last integral: 

2

arctan
arctanarctan

1
)(arctan)(

x
exee

x
xx

+
=′=′ .  That is O.K. 

Example 2:  Both integrals,   ∫ dx
x

x)sin(ln
   and  ∫

− 2)(ln1 xx

dx
, are 

easily evaluated by using of the substitution xu ln= . They are just 
common integrals: 

CuCuududx
x

x
+−=+−== ∫∫ )cos(lncossin)sin(ln

, 

CxCu
u

du

xx

dx
+=+=

−
=

−
∫∫ )arcsin(lnarcsin

1)(ln1 22
. 

Example 3:  Each of the integrals below is reduced to the table integral  

Cu
u

dx
+=∫ tan

cos2 , 

using the appropriate substitution: 

• Cx
x

dx
+−=

−∫ )43tan(
3
1

)43(cos2  ( 43 −= xu , ). dxdu 3=

• Cx
xx

dx
+=∫ )tan(2

)(cos2   ( xu = ,  
x

dxdu
2

= ). 

• Cx
x

dxx
+=∫ )tan(

5
1

)(cos
5

52

4
  ( 5xu = ,  dxxdu 45= ). 

• Cx
xx

dx
+=∫ )tan(ln

)(lncos2    ( xu ln= , 
x
dxdu = ). 
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• Ce
e

dxe x
x

x
+=∫ tan

)(cos2    ( xeu = , ).  dxedu x=

The formal substitution into the integral really is not necessary. 

3.4.1.2. Some Important Integrals 

Problem 1: Evaluate the following integral: ∫ + 22 xa
dx

. 

Solution:  Let us make the substitution atx = . Then 

.arctan1arctan1
1 2222222

C
a
x

a
Ct

a

t
dt

a
a

taa
adt

xa
dx

+=+=

+
=

+
=

+ ∫∫∫
  (8) 

Problem 2:  Find the integral  ∫
− 22 xa

dx
. 

Solution: By making use of the same substitution atx =  we get: 

.arcsinarcsin
1

1

2

222222

C
a
xCt

t

dt
ta

adx

taa

adt

xa

dx

+=+=
−

=

−
=

−
=

−

∫

∫∫∫
  (9) 

Problem 3:  Prove the following formula: 

Caxx
ax

dx
+±+=

±
∫ )ln( 22

22
.  (10) 

Proof: The formula can be verified by differentiation. We have only to 

check whether the derivative of the function )ln( 22 axx ±+  equals the 
integrand. 

.11

)2
2

11(1))(ln(

2222

22

22

2222
22

axax

xax

axx

x
axaxx

axx

±
=

±

+±

±+
=

±
+

±+
=′±+

 

That is true and hence the formula. 
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3.4.2.   Integration by Parts 
The formula for integration by parts states that 

∫ ∫−= vduuvudv     (11) 
for any differentiable functions  and . )(xu )(xv

This formula allows us to transform one problem of integration into 
another. 
If one of the two integrals,  or , is easily evaluated, it can be 
used to find the other one. This is the main idea of the method of 
integration by parts. 

∫udv ∫ vdu

Formula (11) can be derived in the following way: 
vduudvuvd +=)(  ⇒ vduuvdudv −= )(  ⇒ 

 ⇒ . ∫ ∫∫ −= vduuvdudv )( ∫ ∫−= vduuvudv
In practice, the procedure of integrating by parts consists of the following 
steps: 
• First, we introduce intermediary functions  and )(xu )(xv′  to represent 

the function )(xf  as the product of the factors  and , so that 
 and 

)(xu )(xv′
dvxudxxvxudxxf )()()()( =′=

∫∫ = udvdxxf )( . 
For example, one can set )()( xfxu = , which implies 1)( =′ xv . 

• Next we need to differentiate  and integrate )(xu )(xv′  to get the 
differential  and the function  
respectively. Note that a constant of integration can be taken zero at this 
step (

dxxudu )(′= ∫ ′= dxxvxv )()(

0=C ). 
• Then we use formula (11) and try to evaluate the integral . ∫ vdu
FAQ (Frequently Asked Questions): Why do we prefer to deal with the 
integral  instead of the initial one? ∫ vdu

Answer: It depends on the choice of  whether the integral  is 
easier to evaluate in comparison with the initial one. We assume that there 
exists the right choice. 

)(xu ∫ vdu

The main problem one faces when dealing with the method of integration 
by parts is the choice of the intermediary functions. There is no general rule 
to follow it. It is a matter of experience and nothing more. At first in order 
to understand better this technique, it is necessary to make any choice and 
perform the calculations. If the new integral is simpler than the given one, 
then the choice is a good one; otherwise, go back and make another choice. 
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In such a way one can easily appreciate whether the choice of  is the 
best one. It is possible that you need to evaluate a few integrals before you 
will start to feel the right choice. 

)(xu

One can apply the following criteria to make the right choice. 
A:     The integral of v′  should be easy for evaluation. 
B:     The derivative of  should be a simple function. Moreover, it is 
desirable  that  would be more simple function than . 

)(xu
)(xu′ )(xu

The following examples illustrate the most common cases in which we 
need to use the technique of integration by parts. 

Example 1: Evaluate the integral . dxxx∫ ln2

Solution: Consider some variants of representation of the above integrand 
as the product udv . 

1)   ,  xu ln= 2xv =′  ⇒ 
x
dxdu = ,  ; ∫= dxxv 2

2)   xu = ,  xxv ln=′  ⇒ dxdu = ,  ; ∫= xdxxv ln

3)   2xu = ,  xv ln=′  ⇒ xdxdu 2= ,  ; ∫= xdxv ln

4)   , xxu ln= xv =′  ⇒ )ln( xxddu = , ; ∫= xdxv

5)   xxu ln2= , 1=′v   ⇒ , . )ln( 2 xxddu = ∫= dxv
Let us discuss these choices in detail this time. 
Both hypotheses, 2) and 3), do not satisfy criterion A, because it is not clear 
how to integrate , while hypotheses 4) and 5) contradict to criterion B. xln
Similar reasons suggest that the first way only is appropriate. Indeed, 
• The power function 2x  is easily integrated and its primitive is  

3

3
2 xdxxv == ∫   ( 0=C ). 

• The derivative of the transcendental function  is the rational 
function:  

xln

1)(ln −=′ xx . 
Therefore, in view of formula (11) we finally get 

Cxxxdxxxx
x
dxxxxdxxx +−=−=−= ∫∫∫ 9

ln
33

1ln
33

1ln
3

ln
33

2
3

3
3

2 . 
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Example 2: Evaluate   . ∫ xdxarctan

Solution: Let xu arctan=  and 1=′v . Then 21 x
dxdu
+

=  and xv = . 

We integrate by parts: 

∫∫ +
−= dx

x
xxxxdx 21

arctanarctan . 

To evaluate the new integral we use the substitution 21 xz += , which 

implies ,  and so   xdxxddz 2)1( 2 =+= dzxdx
2
1

= . 

Therefore,  )1ln(
2
1||ln

2
1

2
1

1
2

2 xz
z
dzdx

x
x

+===
+ ∫∫ . 

Hence, the final solution is the following: 

Cxxxdx
x

xxxxdx ++−=
+

−= ∫∫ )1ln(
2
1arctan

1
arctanarctan 2

2 . 

In a similar way one can integrate the product of a polynomial )(xP  and 
any inverse trigonometric function, as well as the product of a polynomial 

)(xP  and the logarithmic function. 

Each of the following function 
xxP arcsin)( ,  
xxP arccos)( , 
xxP arctan)( , 

xxP 1cot)( −    and 
xxP ln)(  

can be integrated by parts.  
The inverse trigonometric function (or ) should be chosen as  xln )(xu

and )()( xPxv =′ . 

It is not always so easy. Sometimes one has to integrate by parts more than 
once to obtain the result. 

Example 3: Evaluate  . ∫ xdxx 2ln

Solution: Let xu 2ln=  and xdxdv = . Then 
x
xdxdu ln2

=  and 
2

2xv = . 

The formula of integration by parts gives 
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∫∫ −= xdxxxxxdxx lnln
2

ln 2
2

2 . 

Now we integrate by parts a second time, setting  xu ln=  and  xdxdv = . 

After integration and differentiation, we get  
x
dxdu =   and  

2

2xv = . 

Therefore, 

4
ln

22
1ln

2
ln

222 xxxxdxxxxdxx −=−= ∫∫ . 

The final result is the following: 

.)1ln2ln2(
44

ln
2

ln
2

)
4

ln
2

(ln
2

ln

2
222

2
2

22
2

2
2

CxxxCxxxxx

Cxxxxxxdxx

++−=++−=

+−−=∫
 

Example 4:  Evaluate . ∫ dxex x2

Solution:  We have to make the right choice between differentiation and 
integration of 2x . Note that every differentiation of a polynomial decreases 
its degree, and hence, the polynomial vanishes after a few steps, while 
integration of a polynomial increases its degree. 
Therefore, the right choice is the following: 

2xu =   and  dxedv x=   ⇒  xdxdu 2=   and  . xev =
The formula of integration by parts yields: 

     .    (12) ∫∫ −= dxxeexdxex xxx 222

We need to integrate by parts once more. 
Let xu =  and dxedv x=  which imply dxdu =  and xev = . 
Therefore, 

xxxxx exedxexedxxe −=−= ∫∫ . 
From here and equality (12) we obtain 

Cexeexdxex xxxx ++−=∫ 2222 . 

The examples above illustrate that the single integration by parts can not be 
enough to obtain the answer, and so some extra work may be needed, e.g., 
another integration by parts or using some other techniques. 
The last example can be generalized: 
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Each of the following integrals 
dxexP ax∫ )( , 

         and dxaxxP∫ sin)(

dxaxxP∫ cos)(  
can be evaluated using the integration by parts. 

In order to get the solution, it is necessary to use integration by 
parts  times if the degree of the polynomial equals . n n

 

The summary table below includes some suggested substitutions and 
formulas. 

Table 2 
Integrals Substitutions Basic Formulas 

dx

x
x

x
x
x

xP

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
∫

ln
cot

arctan
arccos
arcsin

)(
1

 

 
 
 
 

   

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=
−

x
x

x
x
x

u

ln
cot

arctan
arccos
arcsin

1

 
 
 
  dxxPdv )(=  

   

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+
−

+

−
−

−

=

x
dx

x
dx
x

dx
x

dx
x

dx

du

2

2

2

2

1

1

1

1

 

   ∫= dxxPv )(  

   dx
ax
ax

e
xP

ax

∫
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

cos
sin)(

  )(xPu =  

   dx
ax
ax

e
dv

ax

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
cos
sin

   dxxPdu )(′=  

   
⎪
⎩

⎪
⎨

⎧

−=
ax

ax
e

a
v

ax

sin
cos1
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By making use of integration by parts we sometimes come to an equation 
for the integral but not an explicit formula. However, by solving this 
equation we obtain the desired result. Let us consider a typical problem of 
such a kind. 
Problem 4: Find the integral . ∫= dxbxeI ax )cos(

Solution: Let  and axeu = bxdxdv cos= , so that  and dxaedu ax=
bbxv sin= . The formula of integration by parts gives 

∫∫ −= bxdxe
b
abxe

b
bxdxe axaxax sinsin1cos . 

The new integral is similar to the initial one. Let us integrate by parts the 
second time. Note that we have to use again  as u . Otherwise, we 
would come back to the original integral and nothing more. 

axe

Thus, now let  and axeu = bxdxdv sin= . Then  and dxaedu ax=
bbxv cos−= . 

In this case we have 

)cos(cos1sin ∫∫ −−−= bxdxe
b
abxe

b
bxdxe axaxax . 

Combining both formulas yields 

)coscossin1cos 2

2

2 ∫∫ −+= bxdxe
b
abxe

b
abxe

b
bxdxe axaxaxax . 

This equality can be considered as a linear equation with respect to the 

given integral :   I I
b
abxe

b
abxe

b
I axax

2

2

2 cossin1
−+= . 

By combining of similar terms and making use of simple algebraic 
manipulations, we get 

)cossin()( 22 bxabxbeIab ax +=+  ⇒ 
axe

ba
bxbbxaI 22

sincos
+

+
= . 

Hence, the final solution is 

Ce
ba

bxbbxabxdxe axax +
+

+
=∫ 22

sincoscos .  (13) 

In a similar way one can obtain another formula of this kind: 

Ce
ba

bxbbxabxdxe axax +
+

−
=∫ 22

cossinsin  .  (14) 
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3.5.  Integration of Rational Functions 
3.5.1.    Main Definitions 

Let us start from the definition chain: 
Rational Functions → Proper Fractions → Partial Fractions 

A rational function is a function that can be expressed as the ratio of two 
polynomials: 

)(
)()(

xQ
xPxf = . 

A rational function 
)(
)(

xQ
xP

 is said to be a proper fraction if the degree of 

the polynomial )(xP  is less than that of . )(xQ
For example, the following functions 

72

3

+x
x

,  
15

23
3 −+
−
xx

x
 ,  4)5(

1
+x

. 

are the rational functions. Furthermore, the last two functions are the proper 
fractions. 
Fractions of the following form 

1) nax )(
1
−

   ( 1≥n ),    (15) 

2) nqpxx
BAx

)( 2 ++
+

  ( 1≥n )    (16) 

are called the partial fractions, where the quadratic polynomial 
 is assumed to be irreducible, that is, the discriminant 

 is negative. 

qpxx ++2

qpD 42 −=
The problem of integration of rational functions can be subdivided into 
several separate problems such as: 
1) Integration of partial fractions. 
2) Decomposition of a proper fraction into a sum of partial fractions. 
3) Reduction of any rational function to a proper fraction. 

Consider the procedure of integration of a ration function 
)(
)()(

xQ
xPxf = . 

It comprises the following steps. 

• Assume that )(xf  is a proper fraction. Otherwise it is necessary first to 
perform the polynomial long division in order to represent the function 
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)(xf  as a sum of some polynomial and the remainder term (which is a 
proper fraction). Any polynomial is easily integrated, so in both cases 
we can deal only with proper fractions. 
Therefore, the problem of integration of rational functions can always 
be reduced to the one of integration of proper fractions, keeping in mind 
that any rational function either is a proper fraction or can be expressed 
through a proper fraction. 

• In order to decompose the given function (or the remainder term) into 
the sum of partial fractions, the denominator  has to be factored 
into irreducible polynomials, that is, linear and irreducible quadratic 
polynomials. The corresponding method is called Decomposition of 
Rational Functions into a Sum of Partial Fractions (in short form: 
Partial Fraction Decomposition). 

)(xQ

• To integrate each of the obtained partial fractions. 

3.5.2.    Integration of Partial Fractions 
We attach importance to the partial fractions because any proper fraction 
can be decomposed into a sum of partial fractions. 
Partial fractions of the first type (expression (15)) are easily integrated in 
view of common integrals: 

∫ +−=
−

Cax
ax

dx ||ln ,     (16) 

C
axnax

dx
nn +

−+−
=

− −∫ 1))(1(
1

)(
  ( ). (17) 1≠n

In order to integrate partial fractions of the second type (expression (16)), 
one has to complete the square for the polynomial , e.g., 
making use of the substitution 

qpxx ++2

2pxt += , that is, 2ptx −= .  
Hence, 

,)
4

(
24

)
2

()
2

(

22
2

2
22

2

22

atpqtqpptpptt

qptpptqpxx

+=−+=+−++−=

+−+−=++
 

where the positive constant 
4

2pq −  is denoted as . 2a

Thereto, dtdx =  and 1)
2

( BAtpABAtBAx +=−+=+ , where 

21 pBB −= . 
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Then we apply the properties of integrals to obtain 

.
)()(

)()(

22122

22
1

2

∫∫

∫∫

+
+

+
=

+

+
=

++

+

nn

nn

at
dtB

at
tdtA

dt
at
BAtdx

qpxx
BAx

  (18) 

The first integral on the right-hand side is easily evaluated: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>+
++−

=++
=

+

+
=

+
=

+

−

∫

∫∫

.1,
))(1(2

1

;1,)ln(
2
1

)(
)(

2
1

)(
)(

2
1

)(

122

22

22

22

22

2

22

nC
atn

nCat

at
atd

at
td

at
tdt

n
n

nn

if

if  

Now let us apply the technique of integration by parts to find integrals 

∫ +
= nn at

dtI
)( 22   ( ).   (19) 1≥n

Let  nat
u

)(
1

22 +
=  and dtdv = .  

Then 122 )(
2

++
−

= nat
ntdtdu  and  tv = .  

Therefore,  

∫∫

∫

∫∫

+

+

+

+
−

+
+

+
=

+
−+

+
+

=

+
−−

+
=

+

.
)(

2
)(

2
)(

)(
)(2

)(

)(
)2(

)()(

122
2

2222

122

222

22

122

2

2222

nnn

nn

nnn

at
dtna

at
dtn

at
t

dt
at

aatn
at

t

dt
at
tn

at
t

at
dt

 

Then we combine the similar terms and express the integral  through 
the integral : 

1+nI
nI

)
)()(

)12((
2

1
)( 22222122 nnn at

t
at

dtn
naat

dt
+

+
+

−=
+ ∫∫ + .  (20) 
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This recurrence formula allows us: 
• to find integral  if integral  is known (setting 2I 1I 1=n ), 
• to find integral  if integral  is known (setting 3I 2I 2=n ), and so on. 
Note that integral  can be found by using of simple methods. (See 
equality (8).) 

1I

C
a
t

aat
dtI +=
+

= ∫ arctan1
221 . 

Then setting  we have by recurrence formula (20) 1=n

C
at

t
a
t

aaat
dtI +

+
+=

+
= ∫ )arctan1(

2
1

)( 2222222 , etc. 

Thus, the problem of integration of partial fractions is completely solved. 
 

3.5.3.    Partial Fraction Decomposition 
3.5.3.1.  The Main Idea of the Method 

In simple cases the decomposition of proper fractions into a sum of partial 
fractions can be easily obtained by means of algebraic manipulations. 
Here are typical examples: 

).11(1
))()((

)()(
))()(())((

1

axbxabbxaxab
bxax

bxaxab
ab

bxax

−
−

−−
=

−−−
−−−

=

−−−
−

=
−−

•   
 

•     )
7

1
7

1(
14
1

)7)(7(
1

)49(
1

2 +
−

−
=

+−
=

− xxxxx
. 

).
4

1(
4
1)

)4()4(
)4((

4
1

)4(
)4(

4
1

)4(
4

4
1

)4(
1

22

2

2

2

2

22

22

+
−=

+
−

+

+
=

+

−+
=

+
=

+
•

x
x

xxx
x

xx
x

xx
xx

xxxx
   

 

In more complicated cases one has to use the Method of Partial Fractions 
Decomposition. 
The main idea of this method can be illustrated by the following simple 
example.  
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Example 1:  

1)   The sum of partial fractions, 
1

2
−x

 and 
4

5
+x

, can be combined into a 

more complicated fraction: 

)4)(1(
37

)4)(1(
)1(5)4(2

4
5

1
2

+−
+

=
+−

−++
=

+
+

− xx
x

xx
xx

xx
. 

When we read this formula from left to right, we say about reduction of 
fractions to the common denominator. 
We can also read the same formula from right to left: 

4
5

1
2

)4)(1(
37

+
+

−
=

+−
+

xxxx
x

. 

In this case we say about decomposition of the compound fraction into the 
sum of partial fractions. 

2)  Let us assume that we need to decompose the fraction 
)4)(1(

37
+−

+
xx

x
 

into partial fractions. It looks in a general form as follows: 

41)4)(1(
37

+
+

−
=

+−
+

x
B

x
A

xx
x

, 

where A  and  are undetermined constants. B
If we multiply across by )4)(1( +− xx , then we get 

)1()4(37 −++=+ xBxAx . 
This equality is the equation for constants A  and  but at the same time it 
is the identity with respect to 

B
x . So one can substitute any value for x  to 

find the constants. 
Setting  we get the equality 1=x A510 =  which implies 2=A . 
Setting , we obtain 4−=x B5)25( −=−  ⇒ 5=B . 

Therefore,    
4

5
1

2
)4)(1(

37
+

+
−

=
+−

+
xxxx

x
. 

as it was desired. 
The Method of Partial Fractions Decomposition proceeds in the opposite 
direction in comparison with the reduction to a common denominator, that 
is, it transforms a compound fraction into a sum of partial fractions. 
Partial Fractions Decomposition is the reverse procedure to reduction to the 
common denominator. 
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3.5.3.2.  Partial Fraction Decomposition: The Main Rules 
There are a few rules to decompose any proper fraction into a sum of 
partial fractions. 

Rule 1:  Let 
)(
)(

xQ
xP

 be a proper fraction and let  )()()( 1 xQaxxQ −= . 

Then there exists a unique proper fraction 
)(
)(

1

1
xQ
xP

 and a unique constant A , 

such that the given proper fraction can be represented in the form 

)(
)(

)(
)(

1

1
xQ
xP

ax
A

xQ
xP

+
−

= . 

Note that the degree of a polynomial  is less than the degree of the 
given polynomial : 

)(1 xQ
)(xQ 1))1 −= QQ degree(degree( . 

Then one can apply this rule to the proper fraction )()( 11 xQxP , if the 
denominator  includes a linear factor, that is, )(1 xQ )()()( 21 xQbxxQ −= . 
Therefore,  

)(
)(

)())((
)(

2

2

2 xQ
xP

bx
B

ax
A

xQbxax
xP

+
−

+
−

=
−−

. 

Each such transformation decreases the degree of the denominator of the 
proper fraction. 

Corollary: If the denominator  of the proper fraction  )(xQ
)(
)(

xQ
xP

 consists 

of  different linear factors, that is,   n ))...()(()( 21 naxaxaxxQ −−−= ,    
then 

n

n

n ax
A

ax
A

ax
A

axaxax
xP

xQ
xP

−
++

−
+

−
=

−−−
= ...

))...()((
)(

)(
)(

2

2

1

1

21
. 

One can say that each linear factor )( kax −  in the denominator of the 

proper fraction yields the partial fraction 
k

k
ax

A
−

, where  is a constant. kA

The structure of decomposition of any proper fraction depends only on the 
factors, which the denominator consists of. For instance, both fractions 
below have the same structure of decomposition into partial fractions: 

23)2)(3(
1 321

+
+

−
+=

+− x
A

x
A

x
A

xxx
 ,  (21) 
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23)2)(3(
15 321

+
+

−
+=

+−
−

x
A

x
A

x
A

xxx
x

.  (22) 

The numerator determines numerical values of the constants , , . 1A 2A 3A
Let us find, e.g., numerical values of the constants in decomposition (21). 
First, we multiply both sides by )2)(3( +− xxx : 

)3()2()2)(3(1 321 −++++−= xxAxxAxxA . 
One can see that all fractions have disappeared. 
Then we take for x  such values that make some of the terms vanish: 

0=x   ⇒ 11 62)3(1 AA −=−=    ⇒  611 −=A , 
3=x  ⇒       ⇒  2151 A= 1512 =A , 

2−=x   ⇒       ⇒  3101 A= 1013 =A . 
Finally, it remains to put the constants back into the original partial 
fractions: 

)2(10
1

)3(15
1

6
1

)2)(3(
1

+
+

−
+−=

+− xxxxxx
. 

If the denominator of a proper fraction includes nth power of the factor 
, then one can use the following rule of decomposition into a sum 

of partial fractions: 
)( ax −

Rule 2:   Let  
)(
)(

xQ
xP

   be a proper fraction and let  .  )()()( 1 xQaxxQ n−=

Then there exists a unique proper fraction )()( 11 xQxP  and unique 
constants   such that the given rational function can be 
represented in the form  

nAAA ...,,, 21

)(
)(

)(
...

)()()(
)(

1

1
2

21

1 xQ
xP

ax
A

ax
A

ax
A

xQax
xP

n
n

n +
−

++
−

+
−

=
−

. 

Then one can apply the above rules to the proper fraction 
)(
)(

1

1
xQ
xP

, if the 

denominator  includes a linear factor (repeated or not). )(1 xQ

Example 2: The decomposition of any proper fraction 
)(
)(

xQ
xP

 with 

denominator  has the following form: 3))(()( bxaxxQ −−=

3
3

2
21

3 )()())((
)(

bx
B

bx
B

bx
B

ax
A

bxax
xP

−
+

−
+

−
+

−
=

−−
. 
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Example 3: Decompose the fraction 2)4)(1(
1
−+ xx

 into partial fractions. 

Solution: By applying the above rules we have:  

2
321

2 )4(41)4)(1(
1

−
+

−
+

+
=

−+ x
A

x
A

x
A

xx
. 

Then we multiply both sides by : 2)4)(1( −+ xx
)1()4)(1()4(1 32

2
1 ++−++−= xAxxAxA . 

To solve this equation with respect to  and , we take for 21, AA 3A x  a few 
values: 

1−=x   ⇒        ⇒  1251 A= 2511 =A ; 

4=x    ⇒         ⇒  351 A= 513 =A ; 

0=x    ⇒  51425164161 2321 +−=+−= AAAA   ⇒ 2512 −=A . 

Thus,  

)
)4(

5
4

1
1

1(
25
1

)4)(1(
1

22 −
+

−
−

+
=

−+ xxxxx
. 

Consider now the case when the denominator of a proper fraction includes 
the irreducible factor . )( 2 qpxx ++

Rule 3: Let 
)(
)(

xQ
xP

 be a proper fraction and let  

)()()( 1
2 xQqpxxxQ ++= . 

Then there exists a unique proper fraction 
)(
)(

1

1
xQ
xP

 and unique constants A  

and  such that the given rational function can be represented in the form B

)(
)(

)()(
)(

1

1
2

1
2 xQ

xP
qpxx

bAx
xQqpxx

xP
+

++
+

=
++

. 

Note that 2))1 −= QQ degree(degree( . 

Then one can apply the above rules to the proper fraction
)(
)(

1

1
xQ
xP

, if its 

denominator includes either linear or irreducible factors. 
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Example 4: The proper fraction 
)2)(3(

1
2 +−− xxx

 is decomposed into 

partial fractions as follows: 

)2()3()2)(3(
1

2
221

2 +−
+

+
−

=
+−− xx

BxA
x
A

xxx
. 

As above we get the equality 
)3)(()2(1 22

2
1 −+++−= xBxAxxA  

and solve it with respect to  and : 21, AA 2B
3=x   ⇒      ⇒  181 A= 811 =A ; 

0=x   ⇒     ⇒ 21 321 BA −= 23
4
3 B−=  ⇒ 412 −=B ; 

1=x   ⇒  )2)((21 221 −++= BAA   ⇒  
2
12

4
11 2 +−= A    ⇒ 

8
1

2 −=A . 

Thus,   )
)2(

2
)3(

1(
8
1

)2)(3(
1

22 +−

+
−

−
=

+−− xx
x

xxxx
. 

At last, we need only to consider the case when the denominator of a 
proper fraction includes n  times repeated irreducible factor . )( 2 qpxx ++

Rule 4: Let 
)(
)(

xQ
xP

 be a proper fraction and let  

)()()( 1
2 xQqpxxxQ n++= . 

Then there exists a unique proper fraction 
)(
)(

1

1
xQ
xP

 and unique constants 

 and  such that the given rational function can 
be represented in the form 

nAAA ...,,, 21 nBBB ...,,, 21

.
)(
)(

)(

...
)()()(

)(

1

1
2

22
22

2
11

1
2

xQ
xP

qpxx
BxA

qpxx
BxA

qpxx
BxA

xQqpxx
xP

n
nn

n

+
++

+
+

+
++

+
+

++

+
=

++
 

Here nQQ 2))1 −= degree(degree( . 

Example 5: The partial decomposition technique gives 

3)2(2)2)(3(
1 3

22
22

2
11

22 −
+

+−
+

+
+−

+
=

+−− x
A

xx
BxA

xx
BxA

xxx
. 



Indefinite Integral 

 70

3.5.3.3.   Factoring 
One of the steps of decomposition of a proper fraction into a sum of partial 
fractions consists of factoring of the denominator . )(xQ
It is appropriate to mention here the fundamental theorem of algebra: 
Every polynomial can be factored into linear factors (polynomials of 
degree 1) and irreducible polynomials of degree 2. 
Some Examples of Factoring: 
• The polynomial   155 23 −−− xxx    can be factored into a linear factor 

and an irreducible factor of degree 2: 
)52)(3(155 223 +−−=−−− xxxxxx . 

• The polynomial   962 ++ xx    has a twice repeated linear factor (of 
degree 1):  

22 )3(96 +=++ xxx . 

• The polynomial   12 24 ++ xx    has a twice repeated irreducible factor 
of degree 2: 

2224 )1(12 +=++ xxx . 

• Both factors of the polynomial  14 +x   are irreducible ones of degree 2: 

).21)(21(

2)1(2)12(1
22

2222244

xxxx

xxxxxx

++−+=

−+=−++=+
 

FAQ: How can we know whether a quadratic polynomial is irreducible or 
it can be factored further into two linear factors? 
Answer: A reducible quadratic polynomial has two zeros or one repeated 
zero; an irreducible quadratic polynomial has no zeros. So if the quadratic 
formula results in a negative expression under the radical (the 
discriminant), the associated polynomial is irreducible. 
• The quadratic polynomial   452 +− xx    has two zeros:  and 

. Therefore, it can be factored into two linear factors as follows: 
11 =x

42 =x
)4)(1(452 −−=+− xxxx . 

• The quadratic polynomial  has one repeated zero: 

. Therefore,  . 

)44( 2 +− xx
221 == xx 22 )2(44 −=+− xxx

• Using the quadratic formula for the polynomial  yields: )42( 2 +− xx
314112,1 −±=−±=x . 

Since the discriminant is negative, the polynomial is irreducible. 
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3.5.4.    Polynomial Long Division 

Let 
)(
)(

xQ
xP

 be a rational function, and let the degree of the polynomial )(xP  

be greater than or equal to the degree of the polynomial . Then there 
exist the uniquely determined polynomials  and , such that the 

rational function 

)(xQ
)(xS )(xR

)(
)(

xQ
xP

 can be represented in the form 

)(
)()(

)(
)(

xQ
xRxS

xQ
xP

+= , 

where 
)(
)(

xQ
xR

 is a proper fraction.  

The polynomial  is called the quotient; the term  is the divisor 
and the expression  is called the remainder. In the special case when 
the remainder equals zero, it is said that  divides evenly into 

)(xS )(xQ
)(xR

)(xQ )(xP . 

Let us consider the division algorithm in detail for particular examples. 
Example 6: Perform polynomial long division if  

13
745)( 2

23

−+
++−

=
xx

xxxxf . 

First, we write the expression in a form of long division: 

745 23 ++− xxx   132 −+ xx  
   

Next we divide the leading term 35x  in the numerator of the given 
polynomial by the leading term 2x  of the divisor, and write the answer  
under the line: 

x5

745 23 ++− xxx   132 −+ xx  
  x5  

Now we multiply the term  to the divisor x5 132 −+ xx , and write the 
answer  

xxxxxx 5155)13(5 232 −+=−+  
under the numerator polynomial, lining up the terms of equal degree: 

745 23 ++− xxx   132 −+ xx  

xxx 5155 23 −+   x5  
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Then subtract the last line from the line above it: 
 745 23 ++− xxx   132 −+ xx  
 xxx 5155 23 −+   x5  
   7916 2 ++− xx    

Now we have to repeat the procedure: to divide the leading term  

of the polynomial in the last line by the leading term 

)16( 2x−
2x  of the divisor to 

obtain , and add this term to the  under the line on the right-hand 
side: 

)16(− x5

 745 23 ++− xxx   132 −+ xx  
 xxx 5155 23 −+   165 −x  
   7916 2 ++− xx    

Then multiply the term  by the divisor )16(− 132 −+ xx , and write the 
answer 

164816)13(16 22 +−−=−+− xxxx  

under the last line polynomial, lining up terms of equal degree: 
 745 23 ++− xxx   132 −+ xx  
 xxx 5155 23 −+   165 −x  

  
 

   7916 2 ++− xx
  164816 2 +−− xx  

  

Subtract the last line from the line above it: 
 745 23 ++− xxx   132 −+ xx  
 xxx 5155 23 −+   165 −x  

  
 

   7916 2 ++− xx
  164816 2 +−− xx  

  

 957 −x    

At the next step we would divide the term  by the leading term x57 2x  of 
the divisor, not yielding a polynomial expression. 
Therefore, the division procedure is terminated. The remainder is in the last 
line: , and the quotient is 957 −x 165 −x . One can see that the remainder 
( ) has degree 1, which is less than the degree of the divisor. 957 −x
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Thus, we finally get: 

13
957)165(

13
745

22

23

−+
−

+−=
−+

++−
xx

xx
xx

xxx
. 

The easiest way to check the answer algebraically is to multiply both sides 
by the divisor: 

)957()13)(165(745 223 −+−+−=++− xxxxxxx . 
Then we multiply out and simplify the right side: 

.745

9571648165155

)957()13)(165(745

23

223

223

++−=

−++−−−+=

−+−+−=++−

xxx

xxxxxx

xxxxxxx

 

Thus, we have the identity and so the answer is correct. 

Example 7: Perform polynomial long division if 
2

64)( 2

23

+−
−−−

=
xx

xxxxf . 

In a similar way as above we get: 
 64 23 −−− xxx   22 +− xx  
 xxx 223 +−   3−x  

  
 

633 2 −+− xx
633 2 −+− xx  

  

 0   
In this case, the remainder equals zero, so ( 3−x ) divides evenly into 
( 22 +− xx ). 

Therefore,     3
2

64
2

23
−=

+−
−−− x

xx
xxx

. 

Multiplying both sides by the divisor yields:  
)3)(2(64 223 −+−=−−− xxxxxx . 

By polynomial long division, the polynomial  is factored, 
that is, it is written as the product of polynomials with lower degrees. 

64 23 −−− xxx

Summary example: Evaluate the integral  dx
xx

x
∫ −

+
9
1

3

4
 using the 

technique of integrating rational functions. 
Solution: Since the degree of the numerator is greater than that of the 
denominator, we have to perform the polynomial long division to get 



Indefinite Integral 

 74

xx
xx

xx
x

9
19

9
1

3

2

3

4

−
+

+=
−
+

. 

Next we factor the denominator: 
)3)(3()9(9 23 +−=−=− xxxxxxx . 

Then we use the method of partial fractions to split the fraction 
xx

x
9

19
3

2

−
+

 

into easily integrable ones: 

33)3)(3(
19

9
19 2

3

2

+
+

−
+=

+−
+

=
−
+

x
C

x
B

x
A

xxx
x

xx
x

. 

Now we simplify this equality to get 
)3()3()3)(3(19 2 −++++−=+ xCxxBxxxAx . 

To solve this equation with respect to the constants we take for xa few 
values:  

0=x    ⇒ A91 −=   ⇒ 91−=A ; 
3=x    ⇒ B1882 =   ⇒ 941=B , 

3−=x   ⇒ c1882 =   ⇒ 941=C . 

Therefore,  

)
3

41
3

411(
9
1

9
19

3

2

+
+

−
+−=

−
+

xxxxx
x

, 

which implies 

)
3

41
3

411(
9
1

9
19

9
1

3

2

3

4

+
+

−
+−+=

−
+

+=
−
+

xxx
x

xx
xx

xx
x

. 

Finally, we get:  

.|9|ln
9
41||ln

9
1

2

|)3|ln|3|(ln
9
41||ln

9
1

2

)
33

(
9
41

9
1

)
)3(9

41
)3(9

41
9
1(

9
1

2
2

2

3

4

Cxxx

Cxxxx
x
dx

x
dx

x
dxxdx

dx
xxx

xdx
xx

x

+−+−=

+++−+−=

+
+

−
+−=

+
+

−
+−=

−

+

∫∫∫ ∫

∫∫
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3.6.  Integration of Trigonometric Functions 
3.6.1.    Integrals of the Form  ∫ dxxcosxsin nm

We consider here two cases: either both exponents, m  and , are even 
numbers or at least one of them is odd. 

n

Case 1: Let  and n  be even numbers, that is, m km 2=  and ln 2= . 
Then the powers of sines and cosines can be reduced step by step, using the 
following trigonometric identities: 

xx 2cos1sin2 2 −= ,   (23a) 

xx 2cos1cos2 2 += ,   (23b) 
xxx 2sincossin2 = .   (24) 

Indeed,  

.)2cos1()2cos1(

)(cos)(sincossin

4
1

2222

∫

∫∫
+−=

=

dxxx

dxxxxdxx

lk

lklk

 

By removing parentheses, we obtain the sum of simpler integrals, some of 
which have to be further simplified in a similar way as above. 
Case 2: Let  be an odd number: n 12 += kn . 
Then for any number m  we get: 

.cos)sin1(sin

coscossincossin
2

212

∫
∫∫

−=

=+

xdxxx

xdxxxxdxx
km

kmkm

 

This form suggests the substitution xt sin= , which implies xdxdt cos= , 
and so 

∫∫ −=+ dtttxdxx kmkm )1(cossin 212 . 

If  is an odd number, then by making use of the substitution m xt cos= , 
we obtain 

∫∫ −−=+ dtttxdxx nknk )1(cossin 212 . 

Thus, the problem of integration is reduced to a simple procedure of term-
by-term integration of a linear combination of power functions. 
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Examples: 

Cxxdxxxdx ++=+=• ∫ ∫ )2sin
2
1(

2
1)2cos1(

2
1cos2 . 

.)12sin
12
1(

8
1)12cos1(

8
1

||6sin
4
13cos3sin 222

Cxxdxx

xdxxdxx

+−=−=

=•

∫

∫∫   (24) formulaby   
 

.sin
5
1sin

3
2sin

5
1

3
2)21(

|  sinon  substitutiby cos)sin1(cos

53

5342

225

Cxxx

Ctttdttt

xtxdxxxdx

++−=

++−=∫ +−=

=∫ −=∫•

 

.
4

coscos|cos|ln

4
||ln

)21()1(

|  coson  substitutiby sin
cos

)cos1(
cos
sin

4
2

4
2

3
22

225

Cxxx

Cttt

dttt
t

dt
t
t

xtxdx
x

xdx
x
x

++−=

++−=

∫ +−=∫
−−=

=∫
−=∫•

 

3.6.2.    Integration of Powers of Trigonometric Functions 

3.6.2.1.  Integrals of the Form  ∫ xsin
dx

n  and   ∫ xcos
dx

n  

The power n  is assumed to be a natural number. So there are two possible 
cases. 
Case 1: Let  be an odd number, that is, n 12 −= kn . 

In this case, both problems of integration, ∫ x
dx

nsin
 and ∫ x

dx
ncos

, can be 

solved by using of the substitutions tx =cos  or tx =sin , 
correspondingly: 

∫∫∫∫∫ −
−=

−
−=

−
==− kkkkk t

dt
x
xd

x
xdx

x
xdx

x
dx

)1()cos1(
)(cos

)cos1(
sin

sin
sin

sin 222212 , 

∫∫∫ −
=

−
=− kkk t

dt
x

xdx
x

dx
)1()sin1(

cos
cos 2212 . 
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Hence, the given integrals are transformed to integrals of proper fractions. 

Case 2: Let  be an even number, that is, n kn 2= .  

The integral ∫ x
dx

nsin
 can be transformed by using of the trigonometric 

identities: 

x
x

xx
x

2
2

22

2 cot1
sin

cossin
sin

1
+=

+
=  ⇒ 

x
x

xxx
kk

k 2
12

2
1

22 sin
1)cot1(

sin
1)

sin
1(

sin
1 −− +==  

 ⇒ 

∫∫∫ −−
+−=+= dtt

x
dxx

x
dx kk

k
12

2
12

2 )1(
sin

)cot1(
sin

, 

where xt cot= . 

As above, the integral ∫ x
dx

ncos
 can be evaluated by the substitution 

xt tan= : 

∫∫∫ −− +=+= dtt
x

dxx
x

dx kk
k

12
2

12
2 )1(

cos
)tan1(

cos
. 

Thus, we have the integral of a polynomial. 

Examples: 

C
x
x

x
xd

x
xdx

x
dx

+
−
+

=
−

==• ∫∫∫ sin1
sin1ln

2
1

sin1
)(sin

cos
cos

cos 22 . 

.
3

tantan
3

)1(

cos
)tan1(

cos
33

2

2
2

4

CxxCttdtt

x
dxx

x
dx

++=++=+=

+=•

∫

∫∫
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3.6.2.2. Integrals of the Form    and    ∫ dxxtann ∫ dxxcotn

As usual, the power  is assumed to be natural unless otherwise is 
stipulated. 

n

Note that the given integrals are easily evaluated for 1=n  and . For 
instance, 

2=n

.tantan
coscos

cos1tan 22

2
2

Cxxdxx

dx
x

dxdx
x

xxdx

+−=−=

−=
−

=

∫

∫∫∫∫  

Hence, the problem of integration consists in lowering of the power  of 
tangents and cotangents, that can be easily carried out by using of 
trigonometric identities: 

n

dxx
x

dxxdx
x

xdxx nnnn ∫∫∫∫ −−− −=−= 2
2

2
2

2 tan
cos

tan)1
cos

1(tantan . 

Taking into account that 

C
n

xxxd
x

dxx
n

nn +
−

==
−

−− ∫∫ 1
tan)(tantan

cos
tan

1
2

2
2 , 

we obtain the following reduction formula: 

∫∫ −
−

−
−

= xdx
n

xxdx n
n

n 2
1

tan
1

tantan .   (25) 

Therefore, the problem of integration of xntan  is reduced to that of 
integration of xn 2tan − . In this way one can lower any natural power  to 
1 or zero. 

n

Similarly, one can also get the reduction formula for the cotangent 
function: 

)1
sin

1(cotcotcotcot 2
222 −== −−

x
xxxx nnn   ⇒ 

dxx
x

dxxdxx nnn ∫∫∫ −− −= 2
2

2 cot
sin

cotcot   ⇒ 

dxx
n

xdxx n
n

n ∫∫ −
−

−
−

−= 2
1

cot
1

cotcot .   (26) 

In particular, Cxxdxxxdxx +−−=−−= ∫∫ |sin|ln
2

cotcot
2

cotcot
22

3 . 
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3.6.3.   Integration of Products of Sines and Cosines 
Each of the following integrals 

∫ bxdxax cossin ,     and  ∫ bxdxax sinsin ∫ bxdxax coscos

can be easily evaluated with the help of trigonometric identities: 

))sin()(sin(
2
1cossin βαβαβα ++−= ,   (27) 

))cos()(cos(
2
1sinsin βαβαβα +−−= ,   (28) 

))cos()(cos(
2
1coscos βαβαβα ++−= ,  (29) 

Examples: 

•  Cxxdxxxxdxx +−−=+= ∫∫ cos
2
13cos

6
1)sin3(sin

2
1cos2sin . 

•  Cxxdxxxxdxx +−=−= ∫∫ 8sin
16
12sin

4
1)8cos2(cos

2
13sin5sin . 

Sometimes it is necessary to apply identities (27) – (29) more than once to 
obtain the final result. 

Example: In order to evaluate  it is necessary to 
transform the product of trigonometric function into their linear 
combination. 

∫ xdxxx 4cos3cos2sin

By identity (29) we have 

)7cos(cos
2
14cos3cos xxxx += . 

Then we use identity (27): 

).9sin)5sin(3sin(sin
4
1

)7cos2sincos2(sin
2
1

)7cos(cos2sin
2
14cos3cos2sin

xxxx

xxxx

xxxxxx

+−++=

+=

+=

 

Hence, 

Cxxxxxdxxx ++−+−=∫ )9cos
9
15cos

5
13cos

3
1(cos

4
14cos3cos2sin . 
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3.6.4.   Rational Expressions of Trigonometric Functions 

3.6.4.1. General Substitution   
2
xtant =  

Let ),( yxP  and  be polynomials with respect to variables ),( yxQ x  and 
y . 

The quotient 
),(
),(),(

yxQ
yxPyxR =  of two polynomials is a rational 

expression of x  and y . 
Likewise, the quotient 

)cos,(sin
)cos,(sin)cos,(sin

xxQ
xxPxxR =  

is called a rational expression of sine and cosine. 
Note that all the other trigonometric functions are rational functions of sine 
and cosine. 
Example 1: Such expressions as  

xx
x

sin2cos47
sin32

2 +−
−

, 
x5cos31

1
+

,   
xx

x
sincos52

cos
3+

 

are rational ones of sine and cosine, but the expression 
xcos1

1
+

 is not 

that. 
Theorem: Let  be a rational expression of sine and cosine. 
Then there exists a rational function 

)cos,(sin xxR
)(tf  such that 

∫∫ = dttfdxxxR )()cos,(sin . 

Note: Any integral of a rational function can be evaluated. Therefore, the 
theorem states that any integral of a rational expression  can 
be transformed into the integral of a rational function and hence, can also 
be evaluated. 

)cos,(sin xxR

Proof: Let 
2

tan xt = . Then  and  can be expressed through 

rational functions with respect to 

xsin xcos

t  by using of double-angle formulas: 

2222 1
2

)
2

(tan1

2
tan2

)
2

(sin)
2

(cos

2
cos

2
sin2

sin
t
t

x

x

xx

xx

x
+

=
+

=
+

= ,   (30) 
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2

2

2

2

22

22

1
1

)
2

(tan1

)
2

(tan1

)
2

(sin)
2

(cos

)
2

(sin)
2

(cos
cos

t
t

x

x

xx

xx

x
+

−
=

+

−
=

+

−
= .  (31) 

Moreover, from   tx arctan2=   it follows that    21
2

t
dtdx
+

= . 

Therefore,  

∫∫∫ =
++

−

+
= dttf

t
dt

t
t

t
tRdxxxR )(

1
2)

1
1,

1
2()cos,(sin 22

2

2 , 

where   22

2

2 1
2)

1
1,

1
2()(

tt
t

t
tRtf

++

−

+
=   is some rational function. 

This completes the proof. 

Example 2: By applying the substitution 
2

tan xt =  we get 

CxCt
t
dt

t
dt

t
tx

dx
+=+==

+
+

= ∫∫∫ |
2

tan|ln||ln
)1(

2

1
2
1

sin 2
2

. 

Note that 

Cx

x

xd

x

dx
x

dx
++=

+

+
=

+
= ∫∫∫ |)

42
tan(|ln

)
2

sin(

)
2

(

)
2

sin(cos
π

π

π

π . 

Example 3: Find ∫ −+ xx
dx

sincos2
 

Solution: Let 
2

tan xt = . Using simple algebraic manipulations we obtain: 

.
)3)(1(

2
32

2
21)1(2

2

1
2

1
2

1
12

1
sincos2

222

2

22

2

∫∫∫

∫∫

−+
=

+−
=

−−++
=

+
⋅

+
−

+

−
+

=
−+

tt
dt

tt
dt

ttt
dt

t
dt

t
t

t
txx

dx

 

The technique of partial fraction decomposition gives 
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.|
1
3|ln

2
1|)1|ln|3|(ln

2
1

)
13

(
2
1

)3)(1(
2

C
t
tCtt

t
dt

t
dt

tt
dt

+
+
−

=++−−=

+
−

−
=

−+ ∫∫∫
 

It remains to substitute 
2

tan x
 for t :  

C
x
x

xx
dx

+
+
−

=
−+∫ |

12tan
32tan|ln

2
1

sincos2
. 

3.6.4.2. Other Substitutions 

General substitution 
2

tan xt =  enables us to evaluate integrals of the form 

 but very often in a complicated way. ∫ dxxxR )cos,(sin
However, there are a few specific cases when a rational expression 

 has even-odd symmetry. In these cases, integrals 
 can be transformed into integrals of rational functions 

by another trigonometric substitutions, which turn out often to be more 
preferable for integration of rational functions. 

)cos,(sin xxR

∫ dxxxR )cos,(sin

Let us consider these cases. 
Case 1: If 

)cos,(sin)cos,sin( xxRxxR −=− , 
then one can apply the substitution xt cos= . 
Case 2: If 

)cos,(sin)cos,(sin xxRxxR −=− , 
then the suitable substitution is  xt sin= . 
Case 3: If 

)cos,(sin)cos,sin( xxRxxR =−− , 
then both substitutions,  xt tan=   and  xt cot= ,  are suitable. 
As an example, let us give reasoning for Case 1. 
Proof: The expression  is an odd rational function with 
respect to 

)cos,(sin xxR
xsin . Hence, we have 

)cos,(sinsin
sin

)cos,(sinsin)cos,(sin 1 xxRx
x

xxRxxxR ⋅== . 
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xHere  is some even rational function with respect to si)cos,(sin1 xxR n  
containing only even powers of sine. 
Hence,  

)cos,cos1()cos,(sin)cos,(sin 2
2

2
21 xxRxxRxxR −== . 

However, the last rational expression is some rational function f  with 
respect to : xcos

)(cos)cos,cos1( 2
2 xfxxR =− . 

Therefore, by making use of the substitution tx =cos , we obtain 

dttfdxxxfdxxxR ∫∫∫ == )(sin)(cos)cos,(sin  

Hence, the desired result. 
Other cases can be treated similarly. 

Example 1:  Find   ∫ −
dx

x
x
2

3

cos4
sin

. 

Solution: This is Case 1, that is )cos,(sin)cos,sin( xxRxxR −=− . 
Indeed, 

x
x

x
x

2

3

2

3

cos4
sin

cos4
)sin(

−
−=

−

−
. 

Then for the substitution xt cos=  we have xdxdt sin−=  and 
dttxdxxxdxxxdx )1(sin)cos1(sinsinsin 2223 −−=−== . 

Therefore,  

.|
2cos
2cos|ln

4
3cos|

2
2|ln

4
3

4
3)

4
31(

4
1

cos4
sin

222

2

2

3

C
x
xxC

t
tt

t
dttdt

t
dt

t
tdx

x
x

+
−
+

+−=+
−
+

+−=

−
+−=

−
+−=

−

−
−=

− ∫∫∫∫
 

Example 2:  Find  ∫ +
dx

x
xx
1sin3

cossin
. 

Solution: Here we have Case 2 due to the identity 

1sin3
cossin

1sin3
)cos(sin

+
−=

+
−

x
xx

x
xx

. 

So we make the substitution  
xt sin= , 

which gives  dtxdx =cos .  
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Therefore,  

.|)1sin3|ln
3
1(sin

3
1

|)13|ln
3
1(

3
1

)
13

11(
3
1

131sin3
cossin

Cxx

Ctt

dt
t

dt
t
tdx

x
xx

++−=

++−=

+
−=

+
=

+ ∫∫∫

 

Example 3:  Find ∫ +− 5sin4cossin2 2 xxx
dx

. 

Solution: This is Case 3 since: 

5sin4cossin2
1

5)sin(4)cos)(sin(2
1

22 +−
=

+−−−− xxxxxx
, 

that is, . )cos,(sin)cos,sin( xxRxxR =−−

First, we transform the integrand: 

.
)5tan2(tancos

1
cos5cossin2sin

1
)cos(sin5sin4cossin2

1
5sin4cossin2

1

2222

2222

++
=

++
=

++−
=

+−

xxxxxxx

xxxxxxxx
 

Therefore, the rational expression of sine and cosine has been transformed 
into the rational function of t  by the above formula. So we have reduced 
the initial problem to integration of the rational function: 

CxCt
t

td
tt

dt
xxx

dx

+
+

=+
+

=
++

+
=

++
=

+−

∫

∫∫

2
1tanarctan

2
1

2
1arctan

2
1

4)1(
)1(

525sin4cossin2

2

22
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For convenience sake, let us summarize the main results. The table gives 
substitutions and basic formulas for all the cases. 

Table 3 

Properties Substitutions Basic Formulas 

)cos,(sin
)cos,sin(
xxR

xxR
−=

=−
 tx =cos  

dtxdx =− sin  
22 1sin tx −=  

)cos,(sin
)cos,(sin
xxR

xxR
−=

=−
 tx =sin  

dtxdx =cos  
22 1cos tx −=  

 
 

tx =tan  
 

dt
x

dx
=2cos

 

2

2
2

1
sin

t
tx
+

=  

2
2

1
1cos
t

x
+

=  

 
 
 
 
 

)cos,(sin
)cos,sin(
xxR

xxR
=

=−−
 

tx =cot  

dt
x

dx
−=2sin

 

2
2

1
1sin
t

x
+

=  

2

2
2

1
cos

t
tx
+

=  

 
 
Any rational expression 

)cos,(sin xxR  

 
 

tx
=

2
tan  

21
2

t
dtdx
+

=  

21
2sin

t
tx

+
=  

2

2

1
1cos

t
tx

+

−
=  
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3.7.   Integrals Involving Rational Exponents 

1. Integrals with rational exponents nx
1

 can be transformed to integrals of 
rational functions by making use the substitution nux = , which implies 

uxn =  and . dunudx n 1−=

Example 1: Let ∫ + 3x
dx

 be a given integral. 

The substitution 2ux =  yields ux =  and ududx 2= , so that 

.|3|ln62

|3|ln62
3

62

3
)33(2

3
2

3

Cxx

Cuu
u
dudu

u
duu

u
udu

x
dx

++−=

++−=
+

−=

+
−+

=
+

=
+

∫∫

∫∫∫

 

2. Integrals with a few rational exponents can be evaluated by the 
substitution nux = , where  is the least common multiple of the 
denominators of the exponents. 

n

Example 2: Consider the integral ∫ + 3 xx
dx

. 

The substitution 6ux =  allows us to get rid of both square and cube 
radical signs without getting new fractional exponents. Then 3ux = , 

23 ux =  and , so that duudx 56=

∫∫∫ +
=

+
=

+ 1
66

3

23

5

3 u
duu

uu
duu

xx
dx

. 

This integral of the rational function can be easily evaluated by 
employing a polynomial long division: 

.|1|ln3
2

)1(3
3

)1(

|1|ln3
2

)1(3
3

)1(
1

3)1(3)1(
1

66
2636

23

2
3

Cxxxx

Cuuuu
u
dududuuduu

u
duu

++−+
+

−
+

=

++−+
+

−
+

=

+
−++−+=

+ ∫∫∫∫∫
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Therefore, 

Cxxxx
xu

dx
++−+

+
−

+
=

+∫ |1|ln3
2

)1(3
3

)1( 66
2636

3 . 

3. Integrals involving expressions of the form n
dcx
bax

+
+

 can be evaluated 

by the substitution nu
dcx
bax
=

+
+

, which eliminates the radical sign and 

yields x  as a rational function of u : 
cua
bdux n

n

−

−
= . 

3.8. Integrals Involving Radicals 22 xa ±  or 22 ax −  
Consider integrals that involve the following radicals: 

22 xa − ,  22 xa +   or  22 ax − . 
In order to eliminate the radical sign, one needs to use appropriate 
substitutions, e.g., trigonometric substitutions. 

Problem 1: Eliminate the radical sing for 22 xa − . 
Solution: The trigonometric identity xx 22 cossin1 =−  suggests the 
substitution uax sin= . Indeed,  

.coscos)sin1(

sin
2222

22222

uauaua

uaaxa

==−=

−=−
 

Note: The same idea works for the cosine-substitution: uax cos= . In this 

case uaxa sin22 =− . 

Problem 2: Eliminate the radical sign for  22 xa + . 
Solution: The trigonometric identity 

u
u 2

2

cos
1tan1 =+ , 

hints at the substitution uax tan= . Then 

u
a

u
auauaaxa

coscos
)tan1(tan 2

2
2222222 ==+=+=+ . 
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Note: One can also use the substitution ux cot= , which gives 

u
axa

sin
22 =+ . 

Problem 3: Eliminate the radical sign for 22 ax − . 
Solution: Since the difference 

u
u
u

u
u

u
2

2

2

2

2

2 cot
sin
cos

sin
sin11

sin
1

==
−

=−  

is the perfect square, the substitution 
u

ax
sin

=  is suitable for eliminating 

of the radical: 

uaua
u

aa
u

aax cotcot)1
sin

1(
sin

22
2

22
2

2
22 ==−=−=− . 

Note: The identity u
u

tan1
cos

1
2 =−  suggests the substitution 

u
ax

cos
= , 

which is also suitable for eliminating of the radical 22 ax − . 

In this case uaax tan22 =− . 

The following examples illustrate applications of the above trigonometric 
substitutions for elimination of radical signs. 

Example 1: Find  dx
x

x
∫

−
2

23
. 

Solution: Let ux sin3= . Then 

Cuudu
u

udu

duu
u
udx

x
x

+−−=−==

=
−

∫∫

∫∫

cot)1
sin

1(cot

cos3
sin3

cos33

2
2

22

2

 

The solution is found in terms of u , and we have to express it in terms of 
x : 

ux sin3=   ⇒ 
3

arcsin xu = , 



Indefinite Integral 

 89

x
x

x

x

x

x

u
u

u
uu

2
2

2
2 3

3

3
1

3
arcsinsin

3
arcsinsin1

sin
sin1

sin
coscot −

=
−

=
−

=
−

== . 

Therefore, the final solution is 

Cx
x

xdx
x

x
+−

−
−=

−
∫ 3

arcsin33 2

2

2
. 

Example 2: Find  dx
x

x
∫

+
4

29
. 

Solution: Let ux tan3= . Then 
u

dudx 2cos
3

=  and 

uu
uux

cos
3

cos
9)tan1(9tan999 2

222 ==+=+=+ . 

Therefore,  

.
sin27
1

27
1

|sin|
9
1

sin
cos

9
1

costan81
99

33

44

344

2

C
u

C
t

ut
t
dt

u
udu

du
uu

dx
x

x

+−=+−=

===

=
+

∫∫

∫∫

on   substituti  

It remains to express the answer in terms of x : 

ux tan3=   ⇒ 
3

arctan xu = , 

.
9)

3
(1

3

)
3

(arctantan1

)
3

tan(arctan

tan1

tan

sincos

sinsin

222

222

x

x
x

x

x

x
u

u

uu

uu

+
=

+
=

+
=

+
=

+
=
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Finally we have 

C
x

xxdx
x

x
+

++
−=

+
∫ 3

22

4

2

27
9)9(9

. 

Example 3:  Find ∫
− 522 xx

dx
 

Solution: Let 
u

x
sin

5
= . Then  du

u
udx 2sin

cos5
−= , 

u
u

u
u

x cot5
sin

)sin1(55
sin

55 2

2

2
2 =

−
=−=−  

Therefore, 

Cuudu
uu

uduu

xx

dx
+=−=−=

−
∫∫∫ 5

cossin
5
1

sincot55
sincos5

5 2

2

22
. 

Now we have to return to the initial variable x : 

u
x

sin
5

= ⇒  
x

u 5sin =   ⇒ 

x
x

xx
uu 551)5(1sin1cos

2

2
22 −

=−=−=−= . 

Therefore, 

C
x

x

xx

dx
+

−
=

−
∫ 5

5

5

2

22
. 

Problem 4: Eliminate the radical sign for qpxx ++± 2 . 
Solution: In order to evaluate an integral of expression involving the 
radical of this type, one has to complete the square of the quadratic 
trinomial. Then the previous methods can be used to solve the integrals.  

Example 4: Consider the radical 1062 +− xx . 
Let us transform the quadratic polynomial under the radical sign to get a 
perfect square: 

2222 4)3(16)96(256 +−=++−=+− xxxxx . 
Then we can use the tangent-substitution     ux tan43 =−     to solve the 
problem. 
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dxbxax pnm )( +∫3.9. Integrals of the Form  

Chebyshev proved the following theorem: 
Let  and nm, p  be rational numbers. 
Then the following integral 

dxbxax pnm )( +∫  
is evaluated in terms of elementary functions if and only if there is an 

integer among the numbers p , 
n

m 1+
 and  p

n
m

+
+1

. 

Proof: Consider three cases. 
1) Let the number p  be an integer, and let s  be the least common 

multiple of the denominators of the exponents  and . Then by 
substitution 

m n
stx = , the given integral can be transformed to the 

integral of a rational function. Therefore, it can be evaluated in terms of 
elementary functions. 

2) Let the number 
n

m 1+
 be an integer. By making the substitution 

zxn = , that is, nzx 1=  we get 

dzbzaz
n

dzz
n

bzazdxbxax pn
m

npn
m

pnm )(11)()(
1111

+=+=+ ∫∫∫
−

+
−

. 

If s  is the denominator of the rational number p , then by substitution 
stbza =+  we obtain the integral of a rational function. 

3) Let the number p
n

m
+

+1
 be an integer. The last integral can be 

written as: 

dz
z
bzazdzbzaz pp

n
m

pn
m

)()(
1111

+
=+ ∫∫

−+
+

−
+

. 

Therefore, by substitution st
z
bza

=
+

 it is transformed to the integral 

of a rational function ( s  is the denominator of the rational number p ). 
Thus, all the cases are investigated. 
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In conclusion, we give the table of substitutions for all these cases. 
Table 4 

Integer Substitutions 

 
p  

sux =  
s  is the least common multiple of the denominators of the 

rational exponents  and  m n

n
m 1+

 
sn tbxa =+  

s  is the denominator of the rational exponent p  

p
n

m
+

+1
 

s
n tb

x
a

=+  

s  is the denominator of the rational exponent p  

Example: Consider ∫ + dxx4 21 .  

Here all numbers, 41=p , 
2
1

2
101
=

+
=

+
n

m
 and 

4
31

=+
+ p
n

m
, are not 

integer. Hence, the given integral cannot be expressed through a finite 
number of elementary functions. 

3.10. Some Irreducible Integrals 
Integrals of rational functions are evaluated straightforward, and the answer 
is expressed in terms of rational functions, logarithms, and inverse 
trigonometric functions. 
But it is still possible to find even fairly simple looking integrals that just 
cannot be done in terms of elementary functions such as exponentials, 
logarithms, trigonometric functions and so on. 
Liouville  showed that the integrals given below cannot be expressed in 
terms of a finite number of elementary functions: 

dxe x∫ − 2
,       ∫ dx

x
ex

,       ∫ dx
x

xsin
,       ∫ dx

x
xcos

,       ∫ x
dx

ln
. 

Each of the following integrals is also irreducible: 

∫ dxxx ,  ∫ dx
x

xarctan
,  ∫ +

dx
x

x
1

ln
. 
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3.11. Extended List of Common Indefinite Integrals 
The table below gives the list of the most important indefinite integrals. 

Table 5 

∫ +
+

=
+

C
n
xdxx

n
n

1

1
  ( 1−≠n ) ∫ +−=

−
Cax

ax
dx ||ln  

Cedxe xx +=∫   C
a

adxa
x

x +=∫ ln
 

Cbax
a

dxbax ++−=+∫ )cos(1)sin(  

Cbax
a

dxbax ++=+∫ )sin(1)cos(  

Cx
x

dx
+=∫ tan

cos2  Cx
x

dx
+−=∫ cot

sin 2
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−

+
=

−
∫

C
a
x

C
a
x

xa

dx

arccos

arcsin

22
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−

+
=

+ −
∫

C
a
x

a

C
a
x

a
xa

dx
1

22
cot1

arctan1

 

Caxx
ax

dx
+±+=

±
∫ )ln( 22

22
 C

ax
ax

aax
dx

+
+
−

=
−∫ ln

2
1

22  

Cxxdx +−=∫ |cos|lntan  Cxxdx +=∫ |sin|lncot  

Cx
x

dx
+=∫ |

2
tan|ln

sin
 Cx

x
dx

++=∫ |)
42

tan(|ln
cos

π
 

Ce
ba

bxbbxabxdxe axax +
+
−

=∫ 22
cossinsin  

Ce
ba

bxbbxabxdxe axax +
+
+

=∫ 22
sincoscos  

)
)()(

(
2

1
)( 22222122 nnn ax

x
ax

dx
aax

dx
+

+
+

=
+ ∫∫ +  

∫∫ −
−

−
−

= xdx
n

xxdx n
n

n 2
1

tan
1

tantan  
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Chapter 4 
DEFINITE INTEGRALS 

4.1.  The Geometric Definition of Definite Integrals 
The mathematical concept of definite integrals can be understood better by 
considering the following problem. 

Problem: Let a function )(xfy =  be 
positive defined on a closed interval 

.  Find the area of the region 
under the curve 

],[ ba
)(xfy =  bounded 

by the x -axis and the lines ax =  and 
bx = .  (See Fig.1.) 

Solution: The main idea is very 
simple: parts form a whole. 
• First, we partition the interval 

 into  subintervals , 
,…,  by 

arbitrary points 

],[ ba n ],[ 10 xx
],[ 21 xx ]n,[ 1n xx −

121 ...,,, −nxxx  of the partition, as it is shown in Fig. 2. 

 
• Next, we draw vertical lines at the partition points to approximate the 

region by  rectangles. The area of each rectangle equals the product of  n
its base and height, and 
it can be easily found. 
The base of each 
rectangle is the 
difference between one 
value of x  and the 
previous value of x : 

011 xxx −=∆ , 

122 xxx −=∆ , …, 

1−−=∆ nnn xxx . 
The heights of the 
rectangles are equal to 

)( kxfky = , where 
index k  varies from 1 to 

. n
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• Then, we sum up the areas of all rectangles to find approximately the 
total area A  of the region bounded by the graph of )(xfy = , the x -
axis and the lines ax =  and bx = . 

∑
=

∆≈
n

k
kk xxfA

1
)( .    (1) 

The above sum is known as the Riemann Sum. 
• By comparing Fig. 3 and Fig. 4 one can easily see that approximation 

(1) is getting better when the number of approximating rectangles 
increases. 

 
 
If the number of the 
rectangles tends to 
infinity, so that all the 
bases of the rectangles 
tend to zero, then sum 
(1) gives the area under 
the curve exactly. 
 
 
 
 
 

Note that the last condition can be written for a short as "maximum 
" because in this case all bases 0→∆x 0→∆ kx  ( nk ...,,2,1= ) and the 

number of the rectangles ∞→n . 
Therefore,  

∑
=→∆

∆=
n

k
kk

ox
xxfA

1max
)(lim .    (2) 

If this limit exists, no matter how the partition points  are chosen, then it 
is called a definite integral of 

kx
)(xf  over the interval . ],[ ba

A definite integral is denoted as an indefinite integral but with upper and 
lower limits: 

∑∫
=→∆

∆=
n

k
kk

ox

b

a
xxfdxxf

1max
)(lim)( .   (3) 

The numbers  and b  are said to be lower and upper limits 
correspondingly. 

a
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4.2.  The Algebraic Definition of Definite Integrals 
Let )(xf  be a function defined on a closed interval . Consider a 
partition of the interval  taking points 

],[ ba
],[ ba 121 ...,,, −nxxx  such that 

bxxxxxa nn =<<<<<= −1210 ... . 
The sum of the products kk xxf ∆)(  is called the Riemann Sum, where 

 denotes the difference between two successive partition points, that is, 
,   

kx∆
1−−=∆ kkk xxx Nk ∈ . 

Let  and all . If the limit of the Riemann Sums exists and 
does not depend on a choice of the points  of the partition, then it is 
called a definite integral of the function 

∞→n 0→∆ kx
kx

)(xf  over the interval : ],[ ba

∑∫
=→∆

∆=
n

k
kk

ox

b

a
xxfdxxf

1max
)(lim)( .    (4) 

The process of computing an integral is called integration and the 
approximate computation of an integral is called numerical integration. 

4.3.  Properties of Definite Integrals 
The following properties are based on the definition of definite integrals. 
1. The variable of integration is a dummy variable, that is, an integral is 

independent of the choice of a symbol denoting the variable of 
integration: 

∫∫ =
b

a

b

a
dttfdxxf )()( . 

2. For any constant c and any function )(xf  we have: 

∫∫ =
b

a

b

a
dxxfcdxxcf )()( . 

3. The integral of a sum of integrable functions over the interval   is 
equal to the sum of the integrals of the addends over : 

],[ ba
],[ ba

∫∫∫ +=+
b

a

b

a

b

a
dxxgdxxfdxxgxf )()())()(( . 

4. By definition . 0)( =∫
a

a
dxxf

5. . ∫∫ −=
a

b

b

a
dxxfdxxf )()(
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6. ∫∫ ≤
b

a

b

a
dxxfdxxf )()( , ( ba < ). 

7. . ∫∫∫ +=
b

c

c

a

b

a
dxxfdxxfdxxf )()()(

This formula is quite evident if ],[ bac∈  (see Fig. 5), but it holds true 
when  provided that all the above integrals exist. ],[ bac∉

8. )()()( abxfdxxf
b

a
−=∫ ,  ( bxa << ).   (See Fig. 6.) 

 

Fig. 5 
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4.4.  The Fundamental Theorems of Calculus 

1. If the function )(xf  is continuous on , then the function  

is a primitive of 

),( ba ∫
x

a
dttf )(

)(xf  for any ),( bax∈ : 

)()( xfdttf
dx
d x

a
=∫ .    (5) 

2. If the function )(xf  is continuous on a closed interval  and  
is a primitive of 

],[ ba )(xF
)(xf  on the interval , then ],[ ba

)()()()( aFbFxFdttf
b

a

b

a
−==∫ .   (6) 

Proof: Let us recall the definition of the derivative: 

x
xxx

dx
xd

x ∆
−∆+

=
→∆

)()(lim)(
0

ϕϕϕ
. 

Therefore, by Property 7, 

.

)(

lim

)()()(

lim

)()(

lim)(

00

0

x

dttf

x

dttfdttfdttf

x

dttfdttf

dttf
dx
d

xx

x
x

x

a

xx

x

x

a
x

x

a

xx

a
x

x

a

∆
=

∆

−+

=

∆

−

=

∫∫∫∫

∫∫
∫

∆+

→∆

∆+

→∆

∆+

→∆
 

Applying Property 8 to the interval ],[ xxx ∆+  we find that 

xxfdttf
xx

x
∆=∫

∆+
)()( , 

where   ),( xxxx ∆+∈   and   xx →   as   0→∆x . 
By combining these results, we get 

)()(lim)(
0

xf
x

xxfdttf
dx
d

x

x

a
=

∆
∆

=
→∆∫ . 
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Therefore, the function 

CdttfxF
x

a
+= ∫ )()(     (7) 

is a primitive of )(xf . 
This is the first fundamental theorem of calculus. 
Setting ax = , we find the constant C : 

CdttfaF
a

a
+= ∫ )()(   ⇒  )(aFC = . 

Hence, 

)()()( aFxFdttf
x

a
−=∫ . 

Setting , we get the second fundamental theorem of calculus: bx =

)()()( aFbFdttf
b

a
−=∫ . 

Therefore, both fundamental theorems of calculus are proved. 
The Fundamental Theorems of Calculus bind a definite integral of )(xf  
over the interval  with an indefinite integral of ],[ ba )(xf . All we need 
only is to evaluate  at  and to subtract  evaluated at  from it. )(xF b )(xF a
Examples: Evaluate each of the following integrals: 

1)  ∫
12

0
2cos

π

xdx ,   2)    ∫ −
5

2

2 )73( dx
x

x . 

Solution:  

1) 
4
1)0sin

6
(sin

2
12sin

2
12cos

12

0

12

0
=−==∫

πππ

xxdx . 

2)   

.
2
5ln7117)2ln72()5ln75(

)ln7(73)73(

33

5

2
3

5

2

5

2

2
5

2

2

−=−−−=

−=−=− ∫∫∫ xx
x

dxdxxdx
x

x  
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4.5. Techniques of Integration 
This section contains a review of the major techniques of integration 
including substitution method and integration by parts. 

4.5.1.    Substitution Method 
Theorem: Let )(xf  be a continuous function on the interval . 
Assume that a function 

],[ ba
)(tx ϕ=  has a continuous derivative on the interval 

],[ βα .  
If a=)(αϕ  and b=)(βϕ , then 

∫∫ ′=
β

α
ϕϕ dtttfdxxf

b

a
)())(()(     (8) 

Proof: Let  be a primitive of )(xF )(xf  on the interval . ],[ ba
Applying the fundamental theorem of calculus and the properties of 
primitives we have 

.)())(()())(()())((

))(())(())(()()()(

∫∫∫

∫∫

′==′=

=−=−=

β

α

β

α

β

α

β

α

ϕϕϕϕϕϕ

ϕαϕβϕ

dtttftdtftdtF

tdFFFaFbFdxxf
b

a  

Formula (8) allows us to change the variables of integration in definite 
integrals just as in the case of indefinite integrals, but in addition we have 
to replace the limits of integration. 
Note that it is not necessary to return to the initial variable x . 

Example 1: Evaluate dx
x
xe

∫
1

ln
. 

Solution: Let xt ln= . Then the equalities  
⎩
⎨
⎧

=
=

ex
x 1

   imply    
⎩
⎨
⎧

==
==

.1ln
01ln

et
t

Therefore, the interval of integration from 1 to e is replaced by the interval 
: ]1,0[

2
1

2
1ln 1

0
2

1

01
=== ∫∫ ttdtdx

x
xe

. 
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Example 2: Evaluate . dxex x∫
3

2

2 3

Solution: By applying the substitution 3xt = , we have dxxdt 23= . 
Then we find the lower and upper limits of integration:  

⎩
⎨
⎧

=
=

3
2

x
x

    ⇒     
⎪⎩

⎪
⎨
⎧

==

==

.273

82
3

3

t

t

Therefore,  

)1(
3
1)(

3
1

3
1

3
1 19882727

8

27

8

3

2

2 3
−=−=== ∫∫ eeeeedtedxex ttx . 

4.5.2.    Integration by Parts 
The formula for integration by parts for definite integrals states that 

∫∫ −=
b

a

b

a

b

a
vduvuudv     (9) 

for any differentiable functions  and . )(xu )(xv

The following example refers to the case when we need to use the method 
of integration by parts and the substitution technique. 

Example: Evaluate . ∫
1

0
arcsin xdx

Solution: Let xu arcsin=  and dxdv = . Then 
21 x

dxdu
−

=  and xv = . 

Therefore,    

∫∫
−

−=
1

21
2

1

21

1

21 1
arcsinarcsin

x

xdxxxxdx . 

In view of the fact that  21arcsin π=   and  6)21(arcsin π= , we obtain 

6
5

1222
1arcsin

2
11arcsinarcsin

1

21

πππ
=−=−=xx . 

The integral on the right-hand side can be evaluated by substitution of the 
variable. One natural substitution is the following. We introduce a new 
variable t  in order to eliminate the radical sign of the integrand. 
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Let 22 1 xt −= .  

Then tx =− 21  and xdxtdt −= . 
The new limits of integration are as follows: 

The lower limit equals  23== 432)1(-1 2 . 

The upper limit equals  01-1 2 = . 

Thus, we get  
2
3

1

23

0

23

0

0

23

1

21
2

===−=
−

∫∫∫ tdt
t

tdtdx
x

x
. 

By combining these results, we finally obtain 

2
3

6
5arcsin

1

21
−=∫

πxdx . 

4.6.  Geometric Applications of Definite Integrals 
4.6.1.    The Area of a Region 

One of the problems of such a kind has been considered in section 4.1. 
Let us recall the main idea: The given region is represented by an infinite 
number of rectangles, whose altitudes depend on x -coordinate, and the 
definite integral of the altitude gives the area of this region. 

Problem 1: Given a functions )(xfy =  
defined over a closed interval [ , find the 
area 

]ba,
A  of the region bounded by the graph of 

this function, the x -axis and the vertical lines 
ax =  and bx = . 

Solution: The altitude of the rectangle with 
base in the vicinity of the point x  is equal to 
the absolute value of )(xf  - it does not matter 
whether the curve )x(fy =  lies above or 

below the x -axis. 
Therefore, we have the following formula for the area of the given region:  

∫=
b

a
dxxfA )( . 
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Note: If the graph lies below the x -axis, then 0)( <xf  and 

 . Adxxf
b

a
−=∫ )(

Problem 2: Given two functions, )(xfy =  
and )(xgy = , defined over a closed interval 

, find the area ],[ ba A  of the region bounded 
by their graphs and the vertical lines ax =  
and bx = . 
Solution: This region can be represented by 
an infinite number of rectangles whose 
altitudes are equal to the absolute value of the 
difference between )(xf  and . 
Therefore, 

)(xg

∫ −=
b

a
dxxgxfA )()( .   (10) 

Problem 3: Let a function be specified in the polar system of coordinates 
as )(ϕrr = ; find the area A  of the region bounded by the graph )(ϕrr =  
and the rays αϕ =  and βϕ = . 
Solution: This region can be represented by an infinite number of sectors. 
(See ). 9 Fig. 

 
Fig. 9 

The area of an arbitrary sector is ϕdrdA 2
2
1

= .  

Therefore, the area of the whole region is 

∫=
β

α
ϕdrA 2

2
1

.    (11) 
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Example: Find the area of the region bounded by the graphs of the 
functions    and   . xy 3= 2xy =
Solution: First, let us make a sketch of this region. 

Then we find the points of intersection, solving 
the equation 23 xx = . This equation has two 
roots: 01 =x  and 32 =x , which give the limits 
of integration. 
Finally, we obtain 

2
99

2
27)

32
3()3(

3

0

323

0

2 =−=−=−= ∫
xxdxxxA . 

 

4.6.2. The Arc Length of a Curve 
Problem 1: Given a curve )(xfy =  in the −xy plane, find the arc length 
of the curve between the given values of x . 
Solution: The given arc can be subdivided by partition points into an 
infinite number of portions of the curve, and each of the portions can be 
represented by a line segment.  
Look at the Fig. 6, where some partition of the arc is shown. There is also 
an arbitrary portion with the approximating line segment in expanded scale. 

 

Fig. 11 

Let  and  be Cartesian coordinates of an arbitrary segment. Then its 
length  can be found by the Pythagorean Theorem: 

dx dy
dL

22 )()( dydxdL += . Therefore, 

dxydx
dx
dydL 22 )(1)(1 ′+=+= , 

where  is the derivative of the function y′ )(xfy =  with respect to x . 
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The total length of the arc equals the sum of all lengths of the portions, and 

hence, the definite integral of 2)(1 y′+  with respect to x . 

Therefore, the arc length of the curve between points  and b  of the a x -
axis is given by the following formula: 

∫ ′+=
b

a
dxyL 2)(1     (12) 

Another solution: The length of an arbitrary portion of the arc can be 

written by the Pythagorean Theorem as 22 )()( dydxdL +=  which 
implies 

dxydx
dx
dydL 22 )(1)(1 ′+=+= , 

where  is the derivative of the function y′ )(xfy =  with respect to x . 

Therefore, )(xL  is a primitive of 2)(1 y′+ : 

CdxyxL +′+= ∫ 2)(1)( . 

Since 0)( =aL  and LbL =)( , so ∫ ′+=
b

a
dxyL 2)(1 . 

Problem 2: Let a given curve be defined parametrically in three-

dimensional space:  
⎪
⎩

⎪
⎨

⎧

=
=
=

).(
),(
),(

tzz
tyy
txx

Find the arc length of the curve between the given values of t . 
Solution: As above by the Pythagorean Theorem, we have 

222 )()()( dzdydxdL ++=    ⇒ dt
dt

dzdydxdL 2

222

)(
)()()( ++

=

 ⇒ 

dt
dt
dz

dt
dy

dt
dxdL 222 )()()( ++=  ⇒

 dtzyxdL 222 )()()( ′+′+′= , 

where  and yx ′′, z′  are derivatives of the functions )(tx , )(ty  and )(tz  
correspondingly with respect to t . 
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If the end-points of arc are determined by the values  and  of the 
parameter 

1t 2t
t , then the arc length of the curve is given as 

dtzyxL
t

t
∫ ′+′+′=
2

1

222 )()()( .   (13) 

This formula gives the general solution of finding the arc length of a curve. 
In a particular case when the curve lies in the −xy plane and the x - 
coordinate is considered as the parameter t , we have xx = ,  and )(xyy =

0=z . 
Hence, we return to formula (12). 

4.6.3. Volumes of Solids 
Problem 1: Given a solid, find the volume of the solid. (See Fig. 12.) 
Solution: Assume that the solid is of such a nature that whenever we 
intersect the solid with a plane perpendicular to the x -axis, the cross-
sectional area A  is known. 
This area A  is a function of a point x , which we make the cross-section 
through. Let )(xA  be the cross-sectional area at the point x , and let 

0)( =xA  for any . ],[ bax∉
By intersecting the solid with planes perpendicular to the x -axis, it can be 
subdivided into an infinite number of layers. Each of the layers can be 
represented by a cylinder. The volume of an arbitrary cylinder is 

dxxAdV )(= . 

 

Fig. 12 
 
In a similar way as above we can conclude that the volume of the solid 
between points a  and b  is given by the following formula: 

∫=
b

a
dxxAV )(     (14) 

Note: In order to determine the values of the limits of integration,  and b , 
one can use the following rules: 

a
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The lower limit a  of integration is the smallest number such that 0)( =xA  
for all . ax <
The upper limit b  of integration is the largest number such that 0)( =xA  
for all . bx >

Problem 2: Let a curve )(xfy =  be defined over a closed interval ; 
find the volume of the resultant solid of revolution by rotating of the curve 
about the 

],[ ba

x -axis. 
Solution: If we intersect the solid with a plane perpendicular to the x -axis, 
then the cross-section of the solid is a circular disk. The radius of this 
circular disk is |)(| xf . By the formula for the area of a circle, the cross-

sectional area of the solid at x   equals , provided that 
. 

)()( 2 xfxA π=
bxa <<

Thus, in view of formula (14), the volume of the solid of revolution is 
given by 

∫∫ ==
b

a

b

a
dxxfdxxAV )()( 2π .    (15) 

 107



Improper Integrals 

 108

Chapter 5 
IMPROPER INTEGRALS 
5.1. Basic Definitions 

Improper integrals are either integrals with at least one infinite limit of 
integration or integrals of functions that are unbounded on the interval of 
integration. For instance, the following integrals are improper: 

∫
∞+

a
dxxf )( ,  ,  ,  ∫

∞−

b
dxxf )( ∫

∞+

∞−

dxxf )( ∫
1

0 x
dx

,  ∫ −

2

1 2 x
dx

,  ∫ −

5

2
2)3(x

dx
. 

All improper integrals are defined as limits of the definite integrals. In 
particular, 

∫∫ +∞→

∞+
=

c

aca
dxxfdxxf )(lim)( ,    (1) 

∫∫ −∞→∞−

=
b

cc

b
dxxfdxxf )(lim)( .    (2) 

Note that integrals with both infinite limits do not require a special 
consideration because of 

∫∫∫
∞+

∞−

∞+

∞−

+=
c

c
dxxfdxxfdxxf )()()( .   (3) 

Note also that the integral with the lower infinite limit can be transformed 
into the integral with the upper infinite limit by substitution tx −= : 

∫∫
∞+

−∞−

−=
b

b
dttfdxxf )()( .     (4) 

Integrals of unbounded functions are defined in a similar way: 
Let ∞→)(xf  as . Then ax →

∫∫ →
=

b

cac

b

a
dxxfdxxf )(lim)( .    (5) 

An improper integral is said to be convergent, if there exists the limit of 
the corresponding definite integral. Otherwise, if the limit does not exist or 
it is infinite, then the improper integral is called divergent. 
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Examples of convergent integrals: 

•   1)11(lim)1(limlim
11

2
1

2 =−=−==
∞→∞→∞→

∞

∫∫ cxx
dx

x
dx

c

c

c

c

c
. 

• 
5
1)1(lim

5
1)

5
1(limlim 5

0

5

0

5

0

5 =−=−== −

+∞→

−

+∞→

−

+∞→

∞+
− ∫∫ c

c

c
x

c

c
x

c
x eedxedxe . 

.
2
2ln)2ln1(ln

2
1)

4
2ln

1
1(lnlim

2
1

1
1lnlim

2
1

1
lim

1 33
2

3
2

=+=−
+
−

=

+
−

=
−

=
−

•

∞→

∞→∞→

∞

∫∫

c
c

x
x

x
dx

x
dx

c

c

c

c

c  

Examples of divergent integrals: 

•   ∞====
∞→∞→∞→

∞

∫∫ ||lnlim||lnlimlim
111

cc
x
dx

x
dx

c

c

c

c

c
. 

•   cxxdxxdx
c

c

c

c

c
sinlimsinlimcoslimcos

000 ∞→∞→∞→

∞
=== ∫∫ ,   

which does not exist. 

5.2.  Convergence and Divergence of Improper 
Integrals 

If )(xf  is a positive defined function on some interval , then 

 represents the area of the region bounded by the graph of the 

function 

),( ba

∫
b

a
dxxf )(

)(xfy = , the x -axis and the vertical lines ax =  and . bx =
In order to determine whether or not some integral is convergent we can 
either evaluate it by the definition or use the comparison tests. 
The idea of the simplest comparison test is based on the property of 
integrals: If a curve goes down as a whole, then the area under the curve 
decreases, and vice versa. This means that: 
• If some integral converges, then the integral of a smaller positive 

function also has to converge. 
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• If some integral of a positive function diverges, then the integral of a 
greater function also has to be divergent. 

Direct Comparison Test 

Let )(xf  and  be two functions defined on  such that  )(xg ),( ba
 )()(0 xgxf ≤≤   

  for any  . bxa <<

•  If    converges, then    also converges. ∫
b

a
dxxg )( ∫

b

a
dxxf )(

•  If    diverges, then     also diverges. ∫
b

a
dxxf )( ∫

b

a
dxxg )(

Here  and  are finite or infinite numbers, and the function a b )(xf  has the 
improper behavior at a  or b . 
According to this test we have to find an integral that is similar to but 
always less than the original one. If it diverges by any tests, then the 
original integral also diverges. On the contrary, we can try to find an 
integral similar to but always greater than the original one. If it converges, 
then the given integral also converges. 

5.2.1.    Convergence and Divergence of Integrals with 
Infinite limits 

The integral  equals the area of the region under the curve ∫
∞+

a
dxxf |)(|

|)(| xfy =  bounded by the x -axis and the vertical line ax = . It is evident 
that this area is infinite, if the function )(xf  is not decreasing one. 

Divergence Test 

If 0)(lim ≠
+∞→

xf
x

,  

then the integral   ∫
∞+

a
dxxf )(     diverges. 
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0)(lim =
+∞→

xf
x

Note that the implication goes only one way: if , it does not 

mean that the integral of )(xf  is convergent.  

For instance, 01lim =
+∞→

x
x

, but the integral ∫
∞

1 x
dx

 is divergent. (See the 

example above.) 
One can also compare the rates of decreasing of functions to determine 
whether some integral converges. 

Let λ=
+∞→ )(

)(lim
xg
xf

x
. There are three possible cases: ∞<< λ0 , 0=λ  or 

∞=λ . 

• If λ  is a finite non-zero number, then the integral 

∫
∞+

a
dxxf )(  converges if and only if ∫

∞+

a
dxxg )(  converges; 

∫
∞+

a
dxxf )(  diverges if and only if ∫

∞+

a
dxxg )(  diverges. 

It follows from the fact that the area under the asymptotic part of a 
curve being multiplied by a finite non-zero number λ  holds its 
finiteness or infinity. 

• If 0=λ , then the convergence of the integral ∫
∞+

a
dxxg )(  implies the 

convergence of the integral ∫
∞+

a
dxxf )( . 

However, we can say nothing if the integral of  is divergent. )(xg

• If ∞=λ , then the divergence of the integral ∫
∞+

a
dxxg )(  implies the 

divergence of the integral ∫
∞+

a
dxxf )( . 

However, we can say nothing if the integral of  is convergent. )(xg
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Limit Comparison Test 
Let )(xf  and  be two functions defined on )(xg ),[ ∞+a  such that  

∞<<
+∞→ )(

)(lim0
xg
xf

x
 

Then both integrals,  and ∫
∞+

a
dxxf )( ∫

∞+

a
dxxg )( , converge or diverge 

simultaneously. 

To use this test for a given integral we have to find a second integral such 
that the limit of the ratio of integrands is evaluable. 
If the second integral converges (diverges) by any tests, then the original 
integral also converges (diverges). 

Example: Determine whether the integral ∫
∞+

1
3

ln
x
xdx

 converges. 

Let us compare the given integral with the convergent integral ∫
∞+

1
2x

dx
. (See 

the example above.) 
To apply the limit comparison test we calculate: 

0lnlim
1

lnlim 2

3
==

+∞→+∞→ x
x

x
xx

xx
. 

Therefore, the given integral is also convergent. 

Note that there are useful integrals of the general form ∫
∞+

a
px

dx
, which are 

called p -integrals. They are helpful in comparison tests because of the 
following theorem:  

Theorem 

The p -integral  
    if   diverges,

   if converges,

⎩
⎨
⎧

≤
>

∫
∞+

1
1

p
p

x
dx

a
p  

Proof: If , then 1≠p
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. if ,divergence

 if e,convergenc

⎩
⎨
⎧

>+−
<+−

⇒
+−

=
∞++−∞+

∫ 0)1(
,0)1(

1

1

p
p

p
x

x
dx

a

p

a
p  

If , then the integral 1=p ∫
∞+

a
px

dx
 is divergent. (See the example above.) 

Example: Determinate whether or not the integral ∫
∞+

+1
4 52

dx
x

x
 

converges. 
Solution: We use the comparison test, comparing with the p -integral: 

∫∫∫
∞+∞+∞+

=<
+ 1

27
1

4
1

4 2
1

252 x
dxdx

x
xdx

x
x

. 

The p -integral with  converges. Hence, the given integral also 
converges. 

1>p

5.2.2.    Convergence and Divergence of Integrals of 
Unbounded Functions 

The limit comparison test can be easily adapted for unbounded function. 
For instance, assume )(xf  is unbounded at the point . a

Limit Comparison Test 
Let )(xf  and  be two functions defined on  such that  )(xg ),( ba

∞<<
→ )(

)(lim0
xg
xf

ax
 

Then both integrals,  and , converge or diverge ∫
b

a
dxxf )( ∫

b

a
dxxg )(

simultaneously. 

If the function )(xf  is unbounded at bx = , then we have to operate with 
 instead of , changing nothing more. For instance, let 

bx→
lim

ax→
lim )(xf  and 

 be two functions defined on  such that  )(xg ),( ba

∞<<
→ )(

)(xflim0
xgbx

. 
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Then both integrals,  and , converge or diverge 

simultaneously. 

∫
b

a
dxxf )( ∫

b

a
dxxg )(

We need also to modify the p -integrals. 

Theorem 

The p -integrals  ∫ −

b

a
pax

dx
)(

 and   ∫ −

b

a
pxb

dx
)(

    

⎩
⎨
⎧

≥
<

    if   diverge,
   if converge,

1
1

p
p

 

Proof: If , then 1≠p

 
. if ,divergence

 if e,convergenc

⎩
⎨
⎧

<+−
>+−

⇒
+−

−
=

−

+−

∫ 0)1(
,0)1(

1
)(

)(

1

p
p

p
ax

ax
dx

b

a

pb

a
p  

If , then 1=p |)|lim||(ln axab
ax

dx
ax

b

a
−−−=

− →∫ . Since this limit does 

not exist so the given integral diverges. 
Similar arguments can be used to prove the second part of the theorem. 

Example: Consider the integral ∫ −

5

2
2 )4(xx
dx

. 

The function 
)4(

1
2 −xx

 is unbounded at 2=x . Compare the original 

integral with the divergent p -integral: ∫ −

5

2 2x
dx

.  

The limit of the ratio of the integrands is a finite number: 

8
1

)2(
1lim

)4(
2lim

222
=

+
=

−

−
→→ xxxx

x
xx

. 

Thus, we conclude that the given integral diverges by the limit comparison 
test. 
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Chapter 6 
COMPLEX NUMBERS 

A complex number is an expression of the form iyx + , where x  and  

are real numbers, and i  is the imaginary number such that . 

y
12 −=i

Usually a complex number is denoted by a single letter, e.g.,  iyxz += . 
The numbers x  and  are called the real and imaginary parts of y z . They 
are symbolized as  zx Re= , zy Im= . 
Thus,  

zizz ImRe += .     (1) 
Note that both numbers, zRe  and zIm , are real numbers. 
The set of all complex numbers is denoted by the symbol C . Any real 
number x  can be considered as a complex number whose imaginary part 
equals zero. Therefore, the set of complex numbers includes the set of all 
real numbers as a subset. 
The set of real numbers is a proper subset of the set of complex numbers: 

CR ⊂ . 
If 0Re =z , then a number iyz =  is said to be purely imaginary. 

6.1.   Algebraic Operations 
1. Two complex numbers, 111 iyxz +=  and 222 iyxz += , are equal to 

each other if and only if 21 xx =  and 21 yy = : 

21 zz =  ⇔ 
⎩
⎨
⎧

=
=

.
,

21

21
yy
xx

    (2) 

2. Complex numbers are added (or subtracted) by adding (or subtracting) 
the real and imaginary parts correspondingly: 

)()()()( 21212211 yyixxiyxiyx ±+±=+±+ . 
Complex numbers have the same addition properties as real numbers: 

1221 zzzz ±=± , 
)()( 321321 zzzzzz ++=++ , 

zz =+ 0 , 
0)( =−+ zz . 

3. In order to multiply complex numbers one has to expand the product 
and substitute  for : )1(− 2i

).()(
)())((

12212121

21
2

1221212211
yxyxiyyxx
yyiyxyxixxiyxiyx

++−=
+++=++  
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Multiplication properties for complex numbers are the same as for real 
ones: 

1221 zzzz = , 
)()( 321321 zzzzzz = , 

3121321 )( zzzzzzz +=+ , 
zz =⋅1 , 
00 =⋅z . 

4. The number iyxz −=*  is said to be complex conjugate of a number 
iyxz += . 

• For any complex number z  

*)(
2
1Re zzz += ,  *)(

2
1Im zz
i

z −= .  (3) 

• For any complex number z  the product  *zz  is a nonnegative real 
number: 

2222* )())(( yxiyxiyxiyxzz +=−=−+=⋅ . 
Therefore, the sum of squares of any real numbers can be factored 
into linear complex factors:  . ))((22 ibaibaba −+=+

• The absolute value of z  is denoted by the symbol || z  and defined as 

22*|| yxzzz +=⋅= .   (4) 

• The complex conjugate is associative and distributive: 
*
2

*
1

*
21 )( zzzz +=+ , 

*
2

*
1

*
21 )( zzzz = . 

Indeed, 

,)()()()(

))()(()()(
*
2

*
122112121

*
2121

*
2211

*
21

zziyxiyxyyixx

yyixxiyxiyxzz

+=−+−=+−+=

+++=+++=+
 

.))(()(

))((

)))((()(

*
2

*
1221112212121

*
12212121

*
2211

*
21

zziyxiyxyxyxiyyxx

yxyxiyyxx

iyxiyxzz

=−−=+−−=

++−=

++=
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5. In order to divide any number w  by a nonzero complex number z  one 
can multiply  by the complex conjugate number w *z  and divide by the 
real number : 2|| z

2||
*

*
*1

z
z

zz
z

z
=

⋅
= . 

Examples:  
• . 1)1()( 2224 =−== ii
• . iiii == 45

• . iiiiii 101131228)4)(32( 2 −=−−+=+−

• i
i
i

i
−== 2

1
. 

• iiiii
ii
ii

i
i

5
2

5
1

25
105

43
8463

)43)(43(
)43)(21(

43
21

22

2
+−=

+−
=

+
+++

=
+−
++

=
−
+

. 

6.2.    The Complex Plane 
Properly speaking, a complex number iyxz +=  is the ordered pair  
of real numbers. The pair  can be considered as the Cartesian 
coordinates of a point in the 

),( yx
),( yx

−xy  plane. 
Therefore, any complex 
number can be graphically 
represented by an unique 
point of the coordinate plane 
of the two-dimensional 
Cartesian coordinate system. 
There is one-to-one 
correspondence between the 
set of complex numbers and 
points in the −xy  plane: 
every point in this complex 
plane corresponds to a unique 
complex number, and vice 
versa. 

All real numbers are represented by the points of the x -axis, while all 
purely imaginary numbers are represented by the points of the y -axis. 
These axes are known as the Real and Imaginary Lines correspondingly. 
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Complex numbers are added and subtracted in the same way as vectors: 

 
From the geometrical point of view the absolute value || z  is the distance 
from the point z  to zero-point in the complex plane. 
The absolute value  is the distance between points  and  in 
the complex plane. 

|| 21 zz − 1z 2z

The point  can also be 
described by the polar coordinates 

P

r  and θ , where r  is the distance 
from the origin  to the point , 
and 

O P
θ  is the angle that the ray 

 makes with the positive 
direction of 
OP

x -axis. There exist 
simple relationships between 
Cartesian and polar coordinates: 

θcosrx = ,  θsinry = , 

,  
x
y

=θtan , 22 yxr +=

22
cos

yx

x

+
=θ ,   

22
sin . 

yx

y

+
=θ

Therefore, a complex number iyxz +=  can be written in the polar form as  
)sin(cos θθ irz += .    (5) 

In this case, || zr =  is said to be the modulus and )arg(z=θ  is known as 
the argument (or phase) of the complex number z . 
Note: One has to apply the following rules in order to find arg( )z . 
1)  If     ,    then   0>x )arctan( xy=θ , 
2)  If        while   , then   0<x 0>y ||arctan xy−= πθ , 
3) If        and      ,  then   0<x 0<y )arctan( xy+−= πθ . 
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All these cases are illustrated by simple examples in Fig. 4. 

 

6.3.    The Euler Formula 
The Euler Formula states: 

ϕϕϕ sincos iei += .    (6) 

Due to the Euler Formula the definition of the exponential  of a real 
number 

xe
x  can be generalized to the exponential  of a complex number ze
iyxz += : 

)sin(cos yiyeeee xiyxiyx +==+ .   (7) 
In a special case, where z  is a real number (that is 0=y ), this formula 
gives the desired result: 

xxix eiee =+=+ )0sin0(cos0 . 

One can easily prove that the exponential of complex numbers have the 
same properties as the exponential of real numbers. For instance, 

2121 zzzz eee =+ . 
The Euler Formula gives the following representation of a complex number 
in the polar form: 

θθθ ireirz =+= )sin(cos .    (8) 
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6.3.1.     Applications for the Euler Formula 
6.3.1.1.   Trigonometric Applications 

All trigonometric identities can be easily derived by making use of the 
Euler Formula. The following examples illustrate typical techniques. 
1. The identities 

)Re()(
2
1cos θθθθ iii eee =+= − ,  (9) 

)Im()(
2
1sin θθθθ iii eee
i

=−= −   (10) 

follow from the Euler Formula by adding and subtracting of the 
equalities 

θθθ sincos iei += ,    (11a) 

θθθ sincos ie i −=−
.    (11b) 

2. Let us square both sides of equality (11a): 

θθθθθθθ cossin2)sin(cos)sin(cos 2222 iie i +−=+= . 

Since θθθ 2sin2cos2 ie i +=  so by property (2), we get double-angle 
identities: 

θθθ 22 sincos2cos −= ,   (12a) 
θθθ cossin22sin = .    (12b) 

3. Consider the product 

)sin)(cossin(cos ββααβα iiee ii ++=  

The expression on the left-hand side can be transformed as: 
)sin()cos()( βαβαβαβα +++== + ieee iii .  (13a) 

On the other hand 

).cossincos(sin)sinsincos(cos
)sin)(cossin(cos

αββαβαβα
ββαα

++−=
=++

i
ii

 (13b) 

Comparing (13a) with (13b) we conclude that 
βαβαβα sinsincoscos)cos( −=+ ,  (14a) 

αββαβα cossincossin)sin( +=+ .  (14b) 
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6.3.1.2.   Algebraic Applications 

1. Let .  Since  ,  so 21zzz = )(
212121

2121 θθθθ +== iii errererzz

|||||| 21 zzz ⋅= , )arg()arg()arg( 21 zzz += .  (15) 

2. Likewise a complex number       is divided by   : 1
11

θierz = 2
22

θierz =

||
||||

2

1

2

1
z
z

z
z

= , )arg()arg()arg( 21
2

1 zz
z
z

−= .  (16) 

3. The integer power n  of a complex number z  can be written in closed 
form as follows:  

θθθ innnn ezninzz ||)sin(cos|| =+= .  (17) 

This formula is known as the DeMoivre Identity. 
Examples:  
1) Derive the fundamental trigonometric identity: 

1cossin 22 =+ θθ . 
Solution:  
Let θiez = , then 1* =⋅=⋅ − θθ ii eezz . 
However, from the Euler Formula it follows that 

θθθθθθθθ 22 sincos)sin)(cossin(cos +=−+=⋅ − iiee ii . 
Hence, the desired result. 

2) Transform to the polar form the number   331 iz += . 
Solution:  

3212)3(3|| 22
1 ==+=z , 

63
3arctan)arg( 1

π
==z . 

Therefore, 
3

1 32 πiez = . 

3) Transform to the polar form the number   iz 222 −= . 
Solution:  

22844|| 2 ==+=z ,   
4

)1arctan()arg( 2
π

−=−=z . 

Therefore,  
4

2 22 πiez −= . 
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4) Find the product and quotient of the numbers 331 iz +=  and 
. iz 222 −=

Solution:  

• 12
)

43
(

43 64642232)22)(33(
πππππ iiii

eeeeii ===−+
−−

. 

• 12
7)

43
(

2323
)22(
)33(

πππ ii
ee

i
i

==
−
+ +

. 

6.4.    Complex Roots 
A complex number can be written in different ways. For instance, for any 
integer  the angle m mπθ 2+  corresponds to the same point in the 
complex plane as the angle θ , so the most common form of zarg  is the 
following: 

mz πθ 2arg += . 
Hence, the Euler Formula can be rewritten in the following equivalent 
form: 

)2( mirez πθ += . 
Let us recall that a number t  is said to be the nth root of a number z  if 

zt n = . Therefore, in view of the DeMoivre Identity the nth roots of a 
number z  are determined by the following expression: 

)2sin2(cos
1211

n
mi

n
mrerz nn

mi
nn πθπθ

πθ
+

+
+

==
+

.  (18) 

There exist n  different roots exactly: 

0=m   ⇒  )sin(cos1 n
i

n
rert nn

in θθ
θ

+== . 

1=m   ⇒  )2sin2(cos
2

2 n
i

n
rert nn

in πθπθ
πθ

+
+

+
==

+

. 

2=m   ⇒  )4sin4(cos
4

3 n
i

n
rert nn

in πθπθ
πθ

+
+

+
==

+

. 

… 
1−= nm   ⇒ 

 ))1(2sin)1(2(cos
)1(2

n
ni

n
nrert nn

nin
n

−+
+

−+
==

−+
πθπθ

πθ

. 

The next value of integer  gives the root m 1+nt  that coincides with : 1t
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.)sin(cos))2sin()2(cos(

)2sin2(cos

1

2

1

t
n

i
n

r
n

i
n

r

n
ni

n
nrert

nn

nn
nin

n

=+=+++=

+
+

+
==

+

+

θθπθπθ

πθπθ
πθ

 

Note: All the roots have the same modulus n r , that is, they lie on the 
circle with the radius n r . 
Example: Find the square roots of the number 31 iz += . 
First, we calculate the modulus  r   and  argument  θ   of   z : 

231|31| =+=+= ir , 

3
3arctan πθ == . 

Then, we need to take the square root of the magnitude r  and divide the 
phase θ  by 2:  2=r ,  62 πθ = . 
Finally, we use formula (18) with 2=n  and 1,0=m : 

2
2

2
6)

22
3(2)

6
sin

6
(cos21

iiit +=+=+=
ππ

, 

2
2

2
6)

22
3(2))

6
sin()

6
(cos(22

iiit −−=−−=+++= ππππ
. 

One can easily check that both numbers, )3(
2
2

2,1 it +±= , are roots of 

the given number z : )31()1323(
4
2))3(

2
2( 2 iii +=−+=+± . 

The figures below illustrate graphically the properties of nth roots. There 
are shown the square and cube roots of the complex number i  in Fig. 5. 
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Verification: We can easily check these results by raising to the second 
and third powers correspondingly. For instance: 

• iii =−+=+± )121(
2
1))1(

2
2( 2 . 

• iiiiiii =−−+=+++=+ )33933(
8
1)33933(

8
1))3(

2
1( 323 . 

All the cube roots of the number (-1) and the fourth roots of the number 1 
are shown in Fig. 6. 

There is a simple way to plot all  roots of a number n z  when one of the 
roots is known. All we need is to divide the circle with radius nz 1||  into  
equal parts starting from the point on the circle that corresponds to a root of 

n

z . For instance, one of the twelve roots of 1 equals 1 and 6122 ππ = . The 

other 11 roots are 
6

sin
6

cos mim ⋅
+

⋅ ππ
,   (m=1, 2, …, 11). 
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Chapter 7 
FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 

7.1.    Introduction 
Let x  be the independent variable, and let  be the dependent variable. y
A differential equation is an equation, which involves the derivative of a 
function . The equation may also contain the function itself as well as 
the independent variable. 

)(xy

The general form of a differential equation of the first order is 
0),,( =′yyxF .     (1) 

The solution procedure consists in finding the unknown function , 
which obeys equation (1) on a given interval. 

)(xy

The general solution of equation (1) is a function ),( Cxy ϕ= , which is the 
solution of (1) for any values of a parameter C . By setting constC =  we 
obtain a particular solution of equation (1). 
Sometimes the solution can be found in the implicit form only. If the 
equation 

0),,( =Φ Cyx ,     (2) 
determines the general solution of (1), then it is called the general integral 
of the differential equation. 
If there given an initial condition 00 )( yxy =  in addition to equation (1), 
then it is necessary to find the particular solution, which obeys the initial 
condition. 
Here we consider only such classes of first-order differential equations, 
which can be solved analytically. 

7.2.    Directly Integrable Equations 
A directly integrable differential equation has the following form: 

)(xfy =′ ,      (3) 
where )(xf  is a given function. 
From this equation follows that the function  is a primitive of )(xy )(xf  
and hence 

Cdxxfxy += ∫ )()( .    (4) 

A constant C can be determined from the initial condition, if the one is 
given. 
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Example: Find the solution of the equation 
xxxy cos)( +=′  

with the initial condition 1)0( =y . 
Solution: In view of (4) the general solution is 

CxxCdxxxxy ++=++= ∫ sin
2

)cos()(
2

. 

Taking into account the initial condition, we find: C+= 01 , that is, 1=C . 
Therefore, the function  1sin2)( 2 ++= xxxy   being the solution of the 
given equation, satisfies the initial condition. 

7.3.  Separable Equations 
A separable differential equation is an equation of the form 

)()( ygxfy =′ ,     (5) 
that is,  equals the product of given functions, )(xy′ )(xf  and , each 
of which is a function of one variable only. 

)(yg

We can not integrate equation (5) directly because the right-hand side 
contains an unknown function  together with the variable )(xy x . 
To separate the variables we rewrite the equation in the form: 

dxxf
yg

dy )(
)(
=      (5a) 

and then integrate both sides: 

Cdxxf
yg

dy
+= ∫∫ )(

)(
.    (6) 

Thus, the general integral of equation (5) is found. 
A differential equations of the form 

)( cbyaxfy ++=′     (7) 
can be reduced to a separable equation by introducing of a new dependent 
variable  instead of : )(xu y

cbyaxu ++= .     (8) 
Next we have to derive the equation for the variable . By 
differentiating (8), we obtain 

)(xu
ybau ′+=′ , which implies the equation 

)(ufbau +=′  
being the separable equation. 

Then we obtain   dx
aufb

du
=

+)(
  ⇒ Cx

aufb
du

+=
+∫ )(

. 
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Example 1: Solve the equation 
yxey 32 −=′ . 

Solution: The variables can be easily separated: 

dxedye xy 23 = . 
By integrating, we obtain a general integral of the given equation: 

Cee xy += 23
2
1

3
1

. 

By means of simple formula manipulations we can also write the general 
solution in the explicit form: 

)
2
3ln(

3
1 2 Cey x += , 

where the constant  is denoted by 13C C . 

Example 2: Find the solution of the equation 
)cos( yxy +=′ ,     (9) 

which obeys the initial condition 2)0( π=y . 
Solution: Let us introduce a new variable: 

yxu += . 
Then from (9) we obtain the separable equation for  )(xu

uu cos1+=′ . 
By separating the variables and integrating, we have: 

Cx
u

du
+=

+∫ cos1
. 

Using the formula 2cos2cos1 2 uu =+  we obtain the algebraic equation 

Cxu +=)2(tan , 

which implies 
)arctan(2 Cxu += . 

Since  xuy −= , the general solution of the given equation is the 
following one:   xCxy −+= )arctan(2 . 
The initial condition yields:   Carctan22 =π ,   so that 1=C . 
Finally we obtain:  

xxy −+= )1arctan(2 . 
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7.4.    Homogeneous Equations 
If some differential equation can be represented in the following form: 

)(
x
yfy =′ ,     (10) 

then it is called a homogeneous equation. 
One of the main methods of solving differential equations is based on 
introducing a new dependent variable  instead of . There is no 
general rule to make the right choice of u  because it depends on the form 
of the equation. That is why it is necessary to consider different classes of 
equations separately. One of typical techniques of such a kind is illustrated 
below by solving an homogeneous equation. 

)(xu y

The right-hand side of equation (10) suggests the substitution xyu = . 
Then we have to derive the equation for the new dependent variable u . 
To find the derivative of uxy = , we use the rule of differentiation of the 
product: 

uxuy +′=′ . 
From (10) we obtain the equation 

)(ufuxu =+′ , 
which being rewritten in the form 

))((1 uuf
x

u −=′      (11) 

is a separable equation. Then the problem of integration is solved just in the 
same way as above. (See equation (5).) 
Example: Solve the equation 

xyx
yy

−
=′ .     (12) 

Solution: Since  

)(
1 x

yf
xy

xy
xyx

y
=

−
=

−
, 

the given equation is the homogeneous equation. 
To solve this problem, we introduce the variable xyu =  instead of  and 
derive a differential equation for .  

y
)(xu

First,  , so  . Therefore, by (12), uxy = uxuy +′=′

u
uuxu
−

=+′
1

   ⇒  
u

uxu
−

=′
1

3
  ⇒ 
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x
dxdu

u

u
=

−
3

1
  ⇒  ∫∫ =+−−

x
dxCdu

u
u )1( 23   ⇒ 

Cxuu −=−− ||ln||ln2 . 
Replacing u  by xy  we obtain the general integral of equation  (12): 

Cyxy =+2||ln .    (13) 

7.5.    Linear Equations 
A linear differential equation is an equation, which can be represented as 

)()( xQyxPy =+′ ,    (14) 

where )(xP  and  are given functions. )(xQ
To solve the equation, we introduce a new dependent variable  instead 
of  by the equality 

)(xu
y

)()( xvxuy = ,     (15) 
keeping in mind to determine a function  later. )(xv
To derive the differential equation for  we find the derivative  

 and substitute it into original equation (14): 
)(xu

vuvuy ′+′=′
)()( xQvuxPuvvu =+′+′ . 

Next we group the terms and take out the common factor: 
)())(( xQvxPvuvu =+′+′ .    (16) 

Now we are ready to determine the function . Let  be a function 
such that 

)(xv )(xv

0)( =+′ vxPv .     (17) 
By separating the variables, we obtain the solution of equation  (17): 

∫∫ −= dxxP
v
dv )(   ⇒   ∫−= dxxPv )(||ln   ⇒ 

∫−= dxxPev )( .     (18) 
A constant of integration is chosen to be equal to zero because it is enough 
to have one function only, which obeys condition (17). 
In view of (18), equation (16) is reduced to the directly integrable equation 
of the form 

)()( xfexQu =′ ,     (19) 

where  is one of primitives of . dxxPxf ∫= )()( P
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Therefore, 
CdxexQxu xf += ∫ )()()( .    (20) 

Thus, equation (14) has the following general solution: 

))(()( )()( CdxexQexy xfxf += ∫− .   (21) 

Example: Find the general solution of the equation 

xxyy +=′ 3 .     (22) 

Solution: Let uvy = . Then vuvuy ′+′=′ . 
Substituting these expressions into the original equation, we obtain 

xxuvuvvu +=′+′ 3   ⇒  
xxvvuvu =−′+′ )3( .     (23) 

Then we find the function  by solving of the equation )(xv
03 =−′ xvv . 

The variables are easily separated and we have 

∫∫ =
x
dx

v
dv 3   ⇒  ||ln3||ln xv =   ⇒  3xv = . 

Now we come back to (23), which is reduced to the separable equation 
xxu =′ 3 . 

Therefore,     C
x

C
x
dxu +−=+= ∫

1
2 . 

Finally, we obtain 
323)1( CxxxC

x
vuy +−=+−== . 

7.6.    The Bernoulli Equations 
The Bernoulli Equation is an equation of the form 

nyxQyxPxy )()()( =+′ ,    (24) 
where  is any rational number except 0  and 1. n
The technique of solving the Bernoulli equations is just the same as for 
linear equations: A new dependent variable  is introduced by means of 
the equality 

)(xu

)()( xvxuy = .     (25) 
This variable satisfies the equation 

nnvuxQvxPvuvu )())(( =+′+′ ,   (26) 



Differential Equations 

where the function )(xv  is a partial solution of the equation 
0)( =+′ vxPv      (27) 

and hence,  
∫−= dxxPev )( .     (28) 

Therefore, equation (26) is transformed to the form 
nnvuxQvu )(=′  

and can be rewritten as a separable equation: 
dxvxQduu nn 1)( −− = . 

By integrating, we obtain 

CdxvxQu
n

nn +=
+− ∫ −+− 11 )(

1
1

.    (29) 

Thus, 

( ) nn CdxvxQnxu −− +−= ∫ 1
1

1)()1()( .   (30) 

The general solution of (24) is   )()()( xvxuxy = . 

Example: Find the general solution of the equation 

yxexyy x2
24 −=+′ .     (31) 

Solution: Let uvy = . Since the derivative of  is y vuvuy ′+′=′ , then (31) 
can be transformed to the equation with respect to the variable )(xu : 

uvxexuvuvvu x2
24 −=+′+′   ⇒ 

uvxexvvuvu x2
2)4( −=+′+′ .   (32) 

To find the function )(xv , we solve the equation 
04 =+′ vxv . 

This is the separable equation, and its partial solution is 
22xev −= .      (33) 

From (32) we have 
222 22 2 xxx uexeeu −−− =′   ⇒  uxu 2=′    ⇒ 

Cxdx
u

du
+= ∫∫ 2   ⇒  Cxu += 22   ⇒ 

4)( 22 Cxu += .     (34) 
Therefore, the general solution of the given equation is 

2222 )(
4
1)( xeCxxy −+= .   (35) 
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7.1.    Exact Differential Equations 
An exact differential equation has the following form 

0),(),( =+ dyyxQdxyxP ,   (36) 

where the partial derivatives of ),( yxP  and  obey the condition ),( yxQ
xy QP ′=′ .     (37) 

Due to condition (37), the expression on the left-hand side of (36) is the 
total differential of some function  by the theorem of a total 
differential (See Chapter 2, page 35.): 

),( yxu

0),(),(),( =+= dyyxQdxyxPyxdu . 
Therefore, 

),(),( yxP
x

yxu
=

∂
∂

,    (38) 

),(),( yxQ
y

yxu
=

∂
∂

.    (39) 

If we hold fixed , then by integrating of (38) with respect to y x  we obtain 

)(),(),( ydxyxPyxu ϕ+= ∫ .    (40) 

Note that a constant of integration may be a function of  because  is 
fixed during integration. 

y y

To find the function )(yϕ , we substitute this expression for  into 
(39):  

),( yxu

),()(),( yxQydxyxP
y

=′+
∂
∂
∫ ϕ   ⇒ 

∫∂
∂

−=′ dxyxP
y

yxQy ),(),()(ϕ .   (41) 

This is an ordinary differential equation for the function )(yϕ . Note also 
that the expression on the right-hand side is a function of  only. 
Otherwise, the equation (36) is not an exact differential equation. 

y

By solving equation (41), we find a partial solution )(yϕ  and hence, the 
general solution:     Cyxu =),( . 
Example: Find the general solution of the equation 

0)3()2( 22 =−++ −− dyyxdxxy .   (42) 

Solution: Here   22),( −+= xyyxP    and   . 23),( −−= yxyxQ
Let us check whether ),(),( yxQyxP xy ′=′ . 

1)2(),( 2 =+
∂
∂

=′
x

y
y

yxPy   and  1)3(),( 2 =−
∂
∂

=′
y

x
x

yxQx . 

 132



Differential Equations 

Therefore, equation (42) is the exact differential equation of the form 
0),( =yxdu . 

The general solution of this equation is    Cyxu =),( . 
),( yAll we need to write the answer is the function xu . 

By formula (40), 

)(2)()2(),( 2 ydx y
x

yx
x

yyxu ϕ +=++= ∫ ϕ− .  (43) 

In view of (41), we have 

)2(3)( 2 x
yx

yy
xy −

∂
∂

−−=′ϕ   ⇒ 

22 33)( −− −=−−=′ yxyxyϕ . 
This is the directly integrable equation with a partial solution   yy 3)( =ϕ . 
Thus, by formula (44), we find the required function ),( yxu : 

yx
yxyxu 32),( +−= . 

Therefore, equation (42) has the following general integral: 

C
yx

yx =+−
32

. 

In conclusion, let us note that any equation (36) can be transformed to the 
exact differential equation by multiplying both sides by some integrating 
factor ),( yxµ . It is known that such a factor exists, however there is no 
general rule to find this factor but the following two cases: 
1) If the expression PPQ yx )( ′−′  depends on the variable y  only, then 

the integrating factor is also a function of y  only, wh  obeys the ich
equation 

)(1)(ln
yx PQyd ′−′=

),( yxPdy
µ

. 

2) If the expression QPQ yx )( ′−′  depends on the variable x  only, then 
the integrating factor is also a function of x  only, which obeys the 
equation 

)(
),(

1
yxQ

yxQdx
d ′−′−=

)(ln Pxµ
. 
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