Преобразования матрицы, не изменяющие ее ранг  

      Рассмотрим следующие элементарные преобразования матриц:

  1. Перестановка строк или столбцов.
  2. Умножение строки или столбца на ненулевое число.
  3. Прибавление к строке (столбцу) другой строки (столбца), предварительно умноженной на любое число.

Теорема. Элементарные преобразования не изменяют ранг матрицы.

     Для доказательства теоремы достаточно убедиться в том, что в результате элементарных преобразований нулевой определитель остается нулевым, а ненулевой – ненулевым.
  1. Перестановка строк или столбцов матрицы изменяет только знак определителя.
  2. При умножении строки (столбца) матрицы на ненулевое число определитель умножается на это число.
  3. Определитель не изменяется, если к строке (столбцу) прибавляется другая строка (столбец).

     Таким образом, в результате элементарных преобразований сингулярные матрицы остаются сингулярными, а  несингулярные – несингулярными.