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This article presents a comparison between two approaches for implementing a variational method when 

calculating excited states of atoms, namely a numerical approach in which the equations arising from the 

requirement of an extremum of the variational functional (the Hartree-Fock equations) are solved, and an 

analytical approach in which the energy functional expressed in terms of  analytical test functions is minimized. 

Both approaches are analyzed from the point of view of the approximations used to ensure that the conditions 

are satisfied for the complete wave function of the excited state being sought to be orthogonal to all wave 

functions of lower-lying energy states having the same symmetry. The well-known ATOM package is used for 

numerically solving the Harrree-Fock equations and the MINMAX package is used for the analytical 
variational calculations. It is shown that the analytical approach based on the minimax method possesses 
greater possibilities for taking account of  relaxation effects. A comparison is made between single-electron 

wave functions, the matrix elements, and the energies of dipole transitions for a number of  excited states of 

the Ne atom, as calculated using both approaches. 

INTRODUCTION 

Two approaches can be mentioned from among those for implementing the variational method in atomic theory which 
have been developed and have mutually complemented and enriched each other. One of these involves numericaUy solving the 

equations which arise from the requirement of an extremum of the variational functional. The second approach, let us call it 

the analytical approach, involves determining some system of optimal variational parameters in terms of which test wave 

functions and the corresponding energy functionals are expressed. 
At present, thanks to the use of powerful computer technology, methods based on numerically solving self-consistent 

field equations, and in particular the Hartree-Fock equations in various modifications, are widely employed in atomic 

calculations. The Har t ree-Fock equations are actually a consequence of satisfying the conditions for an absolute minimum of 

the energy functional. The Hart ree-Fock solutions therefore most correctly describe states having the lowest energy in their 

symmetry class. 
The task of finding solutions corresponding to excited states is complicated by the need to take account of the conditions 

for orthogonality of the complete wave function of the excited state being sought to all the wave functions of the states of lower 

energy having the same symmetry. In this case the variational problem for excited states becomes a problem of finding a 

conditional minimum at which the imposed orthogonality conditions act as supplementary conditions [1]. 
In the context of a single-electron approximation, further simplifying assumptions are necessary in order to meet the 

requirements of thi, ~ conditions for orthogonality of the complete wave functions. These simplifications are either implemented 
by ~ freezing" the shell orbitals of the excited configuration or involve rejecting the orthogonality of the single-electron functions 

inside the excited configuration. 
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Fig. a 3s electron for the 
2p53s[t,3p] states of the Ne atom, obtained by the 

numerical (points) and analytical (solid curve) methods 

using the frozen atom shell and frozen ion shell 

approximations. 

The most widely used are the "frozen" atomic shell and "frozen" ion shell approximations. In the frozen atom shell 

approximation the wave functions of the shell electrons are selected as given from a calculation of the atomic ground state. 
Clearly the wave functions and the energy spectrum of the excited states found in this way represent a solution of a 

nonself-consistent problem. 
In the frozen ion shell approximation the shell functions are selected from a calculation of the corresponding ion. 

However in order to satisfy all the necessary orthogonality conditions in this case one must change to nonorthogonal orbitals 
in the complete wave function of the excited configuration. It then turns out to be very difficult to solve even the 

nonself-consistent problem numerically [2-7]. 
It should also be mentioned that there is a fundamental theoretical problem of providing the limiting properties of the 

variational energies. The values of  the total energies obtained in approximate variational calculations, taking account of the 

orthogonality conditions, in general fail to possess limiting properties related to the corresponding eigenvalues of the 

Harniltonian. This is because the orthogonalizafion of the functions of excited states is performed on the approximate and not 

the complete functions of the lower-lying states. For this reason paradoxes of the type of the "collapse" of energy levels [8-10] 

become possible. 

1. MINIMAX METHOD AS A GENERALIZED VARIATIONAL METHOD 

It was shown in [11-13] that these difficulties in calculating excited states can be overcome by utilizing the results of 

a generalized variational method. In particular, it was established that excited states correspond to saddle points in the energy 

functional. Based on this, a method for calculating excited states having lower-lying states of the same symmetry was 

formulated in [12, 13]. It was based on a determination of the saddle points of the energy functionals using the minimax 
method. Conditions were formulated under which the energy of the excited state considered is an upper limit of increased 

accuracy to the corresponding eigenvalue of the Hamiltonian. It is important that this method can be applied to any class of 

analytical test functions which satisfy the usual conditions. 
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Fig. 2. Wave function of a 3p electron for the 2p53p[1,3p, 1.3D, 3S] states of the Ne 

atom, obtained by the numerical (points) and analytical (solid curve) methods using the 
frozen atom shell and frozen ion shell approximations. 

The essence of the generalized variational method is as follows. Let ,I,,({B}) be a test multielectron wave function of 
the ,c-th excited state which, as well as depending on the spatial and spin variables, depends on a set of variational parameters 
{~/}. Let us utilize q,~({qi}) to denote the orthonormalized wave functions of the lower-lying states having the same symmetry 

which are functions of their variational parameters {qi}. The set of conditions for the orthogonality of the wave functions of 
the ,c-th excited state to all the (,c - 1) functions of the lower-lying states having the same symmetry 

< $ , ( { ~ } ) l ¢ , ( { q , } ) > = O ,  i = I ,  2 ..... x--I  (1) 

forms a system of'equations relating the parameters {B} and {qi}. As a result the energy functional of the excited state becomes 
dependent not only on the parameters {B} but also on the parameters {qi} of all the functions of the lower-lying states having 
the same symmetry: 

E~=E,(~} ,  {q,}), i = l ,  2 . . . . .  x--1 .  (2) 

As part of the minimax approach the energy E~ of the r-th excited state is determined by the value of the energy functional 
found at the saddle point ({~},  {~}) from the minimax procedure: 

E,=E,~({I~o}, {qO})= max minE ({l~), {q}). (3) 

Equation (3) implies the following sequence of the solution: the maximum value of the energy functional for the parameters 
{qi} of the lower-lying states is sought from all its values which have a minimum for the parameters {B} of the desired excited 
state. Thus, the position of the energy level of the r-th excited state is strongly dependent on the parameters {qi} of the 
lower-lying states. The parameters {qi} are called control parameters. It is quite probable that the energy functional 
EK({~/}, {qi}) can possess more than one saddle point. Consequently the problem arises of fmding the saddle point which 
corresponds to the upper limit of the eigenvalue of the Hamiltonian. It was shown in [9] that this condition is satisfied by the 
saddle point at which all the nondiagonal matrix elements of the Hamiltonian fulfill the condition of being equal to zero: 
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<¢~ , ( {q? } ) lH l~ l , j ( {q~ } )>=O,  i = /= i= l ,  2 .... , ~ - - I ,  

^ (4) 
< % ({q? }) I H i m ,  ({f~o}) > = o. 

The minimax approach is more general than the method of directly seeking a minimum of the energy functional taking 

account of the supplementary conditions for orthogonality. Here all the functions entering the space of the test functions 

undergo variation, i.e., both the desired excited state function and the functions of the lower-lying states having the same 
symmetry. By selecting the appropriate test functions, the minimax approach includes all the other variational methods for 

calculating the excited states as particular cases. It should be noted that the procedure using Eq. (3) reduces to ordinary 
minimization for the excited states of lower energy in its symmetry class. 

2. EXCITED STATES IN THE NEON ATOM 

Here we consider the ground and lower excited states of the 2p53s and 2p53p configurations of the neon atom. In the 
LS-coupling scheme the 2p53s configurations correspond to the 1.3p terms. These terms are the lowest among all the terms of 

this symmetry and so the task of calculating them is one of finding an absolute minimum. This makes it possible to obtain both 

numerical wave functions and energies by solving the appropriate self-consistent Hartree-Fock equations and analytical wave 
functions by directly minimizing the energy functional expressed in terms of analytical test functions. Single-electron functions 
which are orthogonal inside the configuration can be used for either approach. 

The terms L3S, P, D correspond to the 2p53p configuration. The 3Sand 1,3D terms also require no special investigation 
since they are the lowest terms in their symmetry class. The 1,3p terms of the configuration considered have lower-lying Z.3p 

terms of the 2p53s configuration. However in the context of the single-electron approximation the complete wave functions of 
these states are automatically orthogonal, i.e., 

<2pS3s ['.~P] 12pS3p)['.sP] > =0, (5) 

by virtue of the orthogonality of the single-electron functions '#3p and '#3s- As a consequence of satisfying condition (5), the 

terms 1,3p of the 2p53p configuration can also be considered without explicitly taking account of the conditions for the 
corresponding wave functions to be orthogonal to the wave functions of the lower-lying 2p53s configuration. Here it is also 
possible to obtain self-consistent solutions numerically, while from the point of view of the direct variational method the 
problem reduces to finding the absolute minimum of the energy functional. 

For the Is term of the 2p53p configuration, the lower-lying term having the same symmetry is the 2p6[tS] ground state. 

The condition for orthogonality to this must be explicitly taken into account. In order to ensure that the 21553p[1S] wave function 
is orthogonal to the 2/~[xS] wave function (the bar over the function being introduced to denote the difference between the 2p 
functions from the different configurations), i.e., in order to satisfy the condition 

<2pS3p [,S] J2p' [ 'S ]>  =0 (6) 

it is necessary for the single-electron functions ,p~ from the 2p 6 configuration and '#3p from the 2~3p configuration to be 
orthogonal. However the 'P2p and ¢'3p functions inside the 2~3p configuration then turn out to be nonorthogonal, i.e., 

<7~2. I q~3.> = x=#0. (7) 

Thus one must take account of condition (7) when calculating the 2~53p[[S] state, i.e., of the nonorthogonality of the 

single-electron functions inside the excited configuration. The corresponding system of single-electron equations is then made 
considerably more complicated so that it becomes questionable whether one can obtain self-consistent solutions by numerical 

methods. 
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TABLE 1. Energies of 2p53p[ 1,3L] - -  2p53s[l,3p] Dipole Transitions 
(eV) in the Ne Atom 

I Variational,[ Variational, ] 

]atom shell lion shell ] 

Experimental 
I17] 

tS 2.085 1.857 - -  2,120 2.12~ 
~S 1,640 1,647 ! ,648 1,736 1,736 
~P 1,794 1,749 1,721 1,878 i.868 
3p 2,018 1,880 1,893 1,992 2,052 
ID 1,754 1,702 1,68'0 1,856 1,830 
3D 1,886 1,794 1,802 1,962 1,959 

Numeri~l 
Experimental 
[181 

Ishell t _ 

a,' ,fst 

t \  . - i c - o  

Figl 3. Wave function of a 3p electron for the 2p53p[1S] 

states of the Ne atom, obtained by the numerical (points) and 
analytical (solid curve) methods using the frozen atom shell 

and frozen ion shell approximations. 

3. M E T H O D  OF C A L C U L A T I O N S  

In the present work the well-known ATOM program package [14] was used for numerically solving the H a r t r e e - F o c k  
equations, and the MINIMAX package [15] was used for the analytical variational calculations. 

The MINIMAX package makes it possible to determine the saddle points of  the energy functionals, to reveal which 

of these correspond to upper limits and also to perform direct minimization of the energy functionals talcing into account 

supplementary conditions, and to solve the problem of finding the absolute minimum. The use of this package requires a class 

of  test functions to be specified in the form of an energy functional. Generalized hydrogen-like functions were used in the 

present work, their radial part being of the form 

m a x t 2 . n - - 1 )  . 

R,,t=N.t ~_~ at" rmte-TF, m ~ = m i n ( l l + i ,  n) .  (8) 
l m l  

Here Nnl is a normalization coefficient; {a/a, ~'i} are variational parameters. 
The energy functionals for all the terms of the configurations considered, except for the tS term of the 2p53p 

configuration, were given in standard form. The energy functional for the 1S term of the 5 2~ 3p configuration, taking condition 

(7) into account, is of the form 
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E (2p53p [iS]) = <2pS3p['S] I f l  12p~3p[ 's ]  > = [ l  + 5 ~ } ] - ' x  
X{2[1+5~}] [ / ( l s )+ l (2s )+5 / (2p )+ / (3p )+5L [2 / (2p ,  3p)+4Ll (2p) ]+ 

+,[F°(ls, Is) +F°(2s, 2s) +4F°(ls, 2s)--2G°(ls, 2s)] [1+5~}] + 
+215F°(ls, 2p)+F°(,ls, 3p)+5F°(2s, 2p)+F°(2s, 3p)] + 

+ lO~,[2R°(is2p, ls3p) +4LF°(ls, 2p) +2R°(2s2p, 2s3p) + 

+4~,F°(2s, 2p) ] -  ~ [5G' (Is, 2p) + G ~ (Is, 3p) +5G ~ (2s, 2p) + G ~ (2s, 3p) ] + 

+ [10F mp, P (2p, 2p)] +5 mp, 3p)+ 

+ 5G ° (2p, 3p)--0,4G 2 (2p, 3p) + 30;L2F ° (2p, 2p) --2,4~2F 2 (2p, 2p) + 
+ 40~.R o (2p2p, 2p3p) ---3,2~.R ~ (2p2p, 2p3p) }, 

(9) 

where 

I (nl) = l (nt, nl) ; 
O o  

I (n t l ,  n 2 l )  = - -  R.,t (r) + 
r 

o 

l (I + 1)] R,,,t (r) r2dr  
r ~ J 

is the radial matrix element of  the single-electron operator h = - (1 /2)V 2 - Z/r, and Z is the nuclear charge of  the atom. 

The radial integrals of the electrostatic interaction are determined in the usual way: 

F ~ (nttl, n212) = R ~ (ntt lnd2,  ntl tnd.j) ,  

G ~ (nt/t, n21~) = R ~ (nttlrtd2, n212ntll), 

r_..5_< 
R" (nl l, n212, n= l~ n~ l~) ---- r~+t X 

X Rn,t, (rt)  R~,t, ( r , )  R~,,t, (G)  Rn, t , (r2)  r~ r] dr I dr , ,  

where r<  is the smaller and r> the larger of r] and r 2. Expression (9) is a particular case of the more general results obtained 

for the method of  nonorthogonal orbitals [16]. 

4. D I S C U S S I O N  O F  R E S U L T S  

Let us compare the numerical and analytical wave functions obtained for the ground and excited states of  the Ne atom 

in the different versions of  the calculation. The calculation shows the numerical and analytical wave functions of  the inner shells 

to be practically identical, and the 2p functions to be very similar. Small discrepancies between the values of  the 2p functions 

close to their maximum results in a difference between the total energies. The numerical Har t r ee -Fock  calculation gives a total 

energy of  the ground state of  Enum(2P 6) = - 1 2 8 . 5 4 7  atomic units and the analytical calculation gives Eanal(2p 6) 
= - 128.516 atomic units, so that the difference is 0.031 atomic units (0.02% of the value of  the Har t ree-Fockenergy) .  These 

wave functions will henceforth be used in calculations of  the excited states in the frozen atom shell approximation. 

A similar picture is observed for the Ne + ion. In this case the numerical and analytical functions, including the 2p 

functions, are practically identical. This is also confn-med by the values of  the total energies: 

E ,urn (2p 5) = - -  127.8178 atomic units , £ anal (2p 5) = - -  127.8031 atomic units 

We shall henceforth use these functions in calculations of  excited states using the frozen ion shell approximation. 

The frozen atom shell and frozen ion shell approximations in a certain sense represent limiting cases as regards taking 

account of  relaxation effects in calculations of excited states. Relaxation effects are completely neglected using the frozen atom 

shell approximation whereas the relaxation accompanying excitation of the atom is overestimated using the frozen ion shell 
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TABLE 2. Radial Integral < 3p [ r I 3s > 

- -  2p53s[t,3P] Dipole Transitions in Ne 

Variational, 
as + t L frozen 

atom shell 

~S 4.314 
3S 4,352 
ip 4,559 
3p 4,288 
ID 4,563 
aD 4,331 

(atomic units) for 2p53p[l,3L] 

Numerical, [ Variational. I Numerical, ] Numerical, I Experimental 
i frozen ]frozen I frozen [ FEAS* ]tlSl 
atom shell lion shell lion shell ] I 

4.456 4,717 - -  4.466 4.522 (0,032) 
4,378 4,576 4,722 4,437 4,587 (0,01 l) 
4,677 4,699 4,888 4,680 4,731 (0,027) 
4,409 4,516 4.713 4.389 4,378(0,011 l 
4,680 4,708 4,891 4.684 4,720 (0,026) 
4,420 4,574 4,723 4,4.14 4,462(0,007) 

*FEAS (frozen excited atom shell): self-consistent calculation made of the 
ls22s22p53p[l.3L] states in whose frozen shell configuration (ls22s22p 5) the 

3s wave function is calculated. 

approximation. Thus it is the choice of  the physical approximation which is decisive for the wave functions of  the ground state 

of both the atom and the ion, especially for the inner shells, and not the method of obtaining them. 

Let us now consider the wave functions of  an excited electron. Figure 1 gives the 3s functions for the 2p53s 1,3p terms. 

It can be seen that the difference between the numerical and analytical 3s functions using the frozen atom shell and frozen ion 

shell approximations is not great. The greatest discrepancies are in a limited region of r values close to the minimum of the 

function. The wave functions obtained from a self-consistent calculation and by the direct minimization method turn out to be 

even closer in the case of  complete unfreezing. 
Figure 2 gives the numerical and analytical 3p functions of  the 1,3p, 1,3D, and 35 terms, obtained using the frozen atom 

shell and frozen ion shell approximations. The numerical and analytical 3p functions for these terms differ markedly near the 

values of  the maximum of the 3p functions, these differences being much greater using the frozen atom shell approximation 

than using the frozen ion shell approximation. In the case of  complete unfreezing the difference between the 3p functions 
remains and is of  the same nature as in Fig. 2. Since the numerical functions for these terms are more accurate using the 
approximation considered, it can be concluded that it is necessary to increase the accuracy of  the form of the analytical 3p 

functions given by formula (8). 
The picture for the 3,o function of the IS term of the 2pS3p configuration (Fig. 3) is somewhat different. It can be seen 

that the numerical and analytical 3p functions using the frozen ion shell approximation differ considerably while using the 

frozen atom shell approximation the difference is of  the same nature as for the other terms. This difference of the functions 
is explained by the fact that it is possible to obtain self-consistent numerical solutions for this term using the frozen atom shell 

approximation whereas when using the frozen ion shell approximation self-consistent solutions can be obtained only if one 
neglects the orthogonality of  the 2p53p[IS] wave function and that of  the 2p6[S] ground state. Thus, in this case only the 

variational method using orbitals which are nonorthogonal inside a configuration enables one to calculate the 2053p[1S] state 

taking account of  the complete unfreezing of the shell (i.e., taking the relaxation of the shell into account). 

The quality of  the wave functions and the suitability of  the approximations used to obtain them can be estimated for 

calculations of  the physical characteristics of atoms. We considered as examples the energies and radial matrix elements of 

dipole transitions between the considered excited configurations of  the Ne atom. The corresponding results are given in Tables 

1 and 2 .  
Table 1 gives the energies of  dipole transitions in the term system considered, calculated as the difference between the 

total energies of  the corresponding excited states. It can be seen from Table 1 that the numerical and variational values of  the 
transition energies are in reasonable agreement with each other. It is observed that the numerical transition energies lie between 

the corresponding values of  the variational quantities obtained using the frozen atom shell and frozen ion shell approximations. 

This situation is natural since, as was mentioned above, the frozen atom shell approximation fails to take account of  the effect 

of shell relaxation while the frozen ion shell approximation overestimates it, whereas the relaxation is accurately accounted for 
in the self-consistent calculation (in the context of  the Ha r t r ee -  Fock approximation). At the same time, the variational method 

makes it possible to obtain a value of the [15] --, [1p] transition energy which is in satisfactory agreement with experiment 

whereas the numerical H a r t r e e - F o c k  method fails to enable the total energy of the 2p53p[IS] term to be calculated taking 

account of the condition of orthogonality to the ground state. 
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Comparing the dipole radial integrals (Table 2) it can be noted that: 1) the values obtained using the numerical 

Hartree-Fock approximation are greater than the corresponding values of the variational method for both the frozen ion shell 
and frozen atom shell approximations; 2) in both the numerical and variational approaches the values of the matrix elements 

obtained using the frozen atom shell approximation are lower than the corresponding values using the frozen ion shell 

approximation; 3) the best agreement with the experimental values is obtained for the variational method using the frozen ion 

shell approximation (except for the transition from the 3p term) and for the numerical method using the frozen excited atom 
shell approximation (the values of the latter being close to those using the frozen atom shell approximation). 

The features described make it possible to conclude that relaxation effects play an important role in the calculation of 
atomic characteristics. It can therefore be stated that the choice of the physical model is decisive in calculating the transition 

probability. At the same time, it follows from Table 1 that the transition energies are more subject to the influence of 

correlation effects in the initial and final states. 
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