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A number of optical characteristics of the crystal KsSb of cubic structure (the 
complex dielectric permeability function, the density of electron states, the re- 
fractive and absorptive indices, the optical density of the material) arecomPUted 
on the basis of the electron energy spectrum calculated by the pseudopotential 
method taking account of nonlocality and spin-- orbital interaction. Direct and 
indirect transition models to describe the optical excitation of electrons are 
discussed. Theoretical and experimental curves are compared. 

Antimony alkaline compounds are used extensively in engineering as effective photo- 
cathodes. A sufficiently large quantity of experimental work devoted to the study of the 
optical and photoemission properties of these compounds has recently been executed. In this 
connection, there is the need for a theoretical investigation permitting an explanation of 
the experimental facts from a single viewpoint. Such an investigation cannot do without a 
study of the electron energy spectrum on whose basis information about the nature of the pro- 
cesses governing the optical and photoemission properties of the material can be obtained. 

In previous papers [1-3], a theoretical study of the electron band structure and its 
associated optical properties was started for the antimony alkali compounds K3Sb, KNa2Sb, 
K2CsSb, NasSb, etc. A model of the effective Hamiltonian has been developed for this group 
of compounds in the approximation of rigid ions, taking account of the nonlocality and spin-- 
orbit interaction. The fundamental qualitative features of the band structure of these com- 
pounds were set up. 

Cubic K3Sb, which is a characteristic and comparatively simple representative of this 
group of compounds, was selected as the object of a more detailed investigation in this paper. 
The band spectrum of K3Sb was computed by the method of the pseudopotential, which was con- 
structed in the form of a sum of ionic pseudopotentials V K and VSb shielded by using the di- 
electric permittivity function c(q). The pseudopotential of potassium was selected in the 
form of a sum of local and nonlocal parts. The nonlocal part was given by the relationship 

V~ (r) = { -- A~P~,o, rr <> R~RK, (1) 

where  P2 i s  t h e  p r o j e c t i o n  o p e r a t o r  on t h e  subspace  o f  f u n c t i o n s  c o n v e r t i b l e  a c c o r d i n g  to  t he  
r e p r e s e n t a t i o n  o f  a r o t a t i o n  group w i t h  Z = 2; R K = 2.51526 a tomic  u n i t s  i s  t h e  co re  r a d i u s  
o f  p o t a s s i u m .  The p a r a m e t e r  A2 was s e l e c t e d  e q u a l  to  2 .5958Ry ,  as  i n  [4] .  The l o c a l  p a r t  
o f  t h e  p s e u d o p o t e n t i a l  o f  t h e  p o t a s s i u m  i o n  and t h e  p s e u d o p o t e n t i a l  o f  t he  an t imony  i o n  were 
g i v e n  by t h e  p a r a m e t r i c  f o r m u l a  

v (r) = 2 r > R~. 

where vo, Rm, and c are certain parameters and the form-factor of such a potential has the 
form 

--4~Z~ X(qo),..(q0) Y(q) ) (3) V(q) = ~  X(q) , 
where 
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TABLE i. Parameters of the Potassium and 
Antimony Ion Pseudopotential 

Parameter 
Ion qo I 

Vo (Ry) Rm(a.u.) A.2 (Ry) . R~ 
I 

Pota~ium 0,92 2,2 3,8 I --22958 2,51526 
Antimony 0,835 --3,43 3,77 [ 

~o = t4,25 

2 (2cosqRm+ 1)+s lnqR,~(1  6 ) 
g (q) = qR m (qRm) 2 ' 

is the volume of an elementary cell, qo is the first zero of the function v(q) (it is con- 
nected to the parameter c by the relationship c = X(qo)/~Y(qo)). The function v(q) was cut 
off after the second zero in the computations. 

In contrast to [1-3], a one-parameter function of the dielectric permittivity calculated 
by Green's function method in the Penn model [5] was used to describe the shielding: 

4e~vm {l { ~h'---'----rf-~ '~ ( 1 )} (q) = 1 + --  \ - -  arsh ~-+- arsh 3 ~ , (4) 

where K F is the momentum of the free electron gas at the Fermi level, ~ = KFqfi 2/EXm; E x is the 
energy gap approximately equal to the direct transition to the Brillouin zone at thepoint X~ 
which is related to the value of the function e(q) at q = 0 by c(0) = 1 + (8~2e'/9m)(K~/E~). 
It is convenient to use the quantity eo = e(0) as a parameter. 

The pseudopotential parameters qo, Vo, Rm of the antimony ion were selected by means of 
spectroscopic data from the correspondence between values of the fundamental optical transi- 
tions in a number of AIIIB V compounds, including antimony, and experiment. The parameters 
of the local part of the potassium pseudopotential were selected so as to obtain the correct 
band structure for KCI. The value of the parameter eo was selected from the considerations 
that the width of the K,Sb forbidden band observed in test would be obtained. The values ob- 
tained for the parameters of the crystalline pseudopotential are presented in Table i. 

The spin--orbit interaction is taken into account in the model of Weisz [6], where the 
interaction parameter is selected such that the spin--orbit splitting at point F for K3Sb 
agrees with HUbner's value Ac.o=0.97 eV [7] for antimony alkali compounds. 

The band structure of KsSb calculated with these parameters is presented in Fig. i. The 
computation was performed by the Np-method in a regular mesh of Brillouln zone points. The 
spectrum structure and level symmetry at the points F, X, L, W of the KaSb Brillouln zone 
are the same as in [3]. Hence, in order not to clog the figure, the level symmetry is not 

shown. The characteristic features of the KsSb band structure are very flat valence bands, 
the presence of an optical gap between the first and second conduction bands, and also the 
sufficiently flat section in the first conduction band near the Brillouin zone boundary. 

The density of the electron states (Fig. i), defined by s formula 

2. ~ ~ d~K~(E_ E~(~)), (5) 
p ( E )  = (2~)  % . 

is calculated by using the Gilat--Raubenhalmer method [8]. There are three deltalike peaks 
on the curve p(E) which describe the density of states in the flat valence bands, The density 
of states in the conduction band is small at first and then grows rapidly and oscillates around 
a certain mean value as the energy grows. 

By using the Gilat--Raubenhaimer method, the frequency dependence of the imaginary part 
of the dielectric permlttivity was also computed, which can be written in the form 

e2h2 d3uIMns(~)l~g(En(g)--Es(K)--hm) (6) 
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Fig. I. Energy spectrum and the density of 
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Fig. 2. Imaginary part of the dielectric permittivity e2 
computed in the direct (solid line) and indirect (dashes) 
transition models without taking account of the effects of 
finiteness of the lifetime (a); contributions to el from 
direct transitions from the s-th (valence) band to the n-th 
(conduction) band (b); imaginary part of the dielectric 
pe~ittivity in the direct transition model computed taking 
account of the finiteness of the lifetime (c). 

in the dipole approximation in the direct transition model without taking account of the 
electron-- phonon interaction. Here Mns(K) are matrix elements of the optical transltionsp 
El(K) is a function describing the dependence of the energy in the i-th band on the wave 

vector i and the summation over s is carried out in the valence band, while the summation over 
n is carried out in the conduction band (taking spin into account). 

The dependence e2(~) as well as the contributions of transitions from specific valence 
bands to the conduction bands (Fig. 2b) is shown in Fig. 2a. The numbering of the bands 
starts from the bottom so that the first conduction band is the fifth in this notation. 
It is seen that the first large peak on the curve e=(~) is due to transitions from the third 
and fourth (valence) bands to the fifth (conduction) band. A comparison of the contributions 
from the different domains of the Brillouin zone showed that the principal contribution to 
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Fig. 3. Theoretical curves of the refractive index n and 
the absorption index~(a); optical density of the sub- 
stance log T computed for a film thickness d = 610 ~ (b). 

Fig. 4. Spectrum dependences of the imaginary part of 
the dielectric permittivity obtained experimentally [i0] 
for cubic KsSb according to Sommer (a), refractive and 
absorptive indiceso(b) , and optical density of the sub- 
stance at d = 610 A (c) for brown KsSb (curve I) and 
cubic KsSb according to Sommer (curve 2). 

the first peak is given by transitions from a sufficiently large volume in the neighborhood 
of the point X of the Brillouin zone. The valley between this and the next large peak is as- 
sociated with the presence of the gap separating the fifth and sixth bands, and the peak is 
itself formed because of transitions from the fourth and third bands to the sixth and seventh, 
as well as of transitions from the second band (detached because of the spin-- orbital inter- 
action) to the fifth. 

There is a foundation to assume [9] that the indirect transitions may make a substantial 
contribution to the optical excitation of electrons in KsSb. It can be shown that models of 
direct and indirect transitions yield similar results for compounds with narrow valence bands, 
as holds for KsSb. Indeed, by extracting the mean value of the matrix elements from under the 
integral sign in (6) and considering them independent of the energy, we obtain 

% (~) -- 6m2~--------~e2h2M2~,__.~,~ ~[ dE' ~d~(E'--Eo(K)--h~)~(E'--E~(K)). 
The E s levels are almost independent of K for the case of narrow valence bands so that the 

replacement of X g(E'--Es--h~) by Pv(E' --~) can be performed in the last integral (to the 

accuracy of a constant). Then taking account of (5), we arrive at the expression 

~.2 (w) ~ S ?~(E') p~ (E'  - -  ho) dE', (7) 

which is obtained in the indirect transition model (Pc is the density of the states in the conduc- 
tion band and Pv in the valence band). 

Curves for Ea(m) calculated by means of (6) and (7) are presented in Fig. 2a. It is 
seen that the curves have identical singularities but the curve corresponding to the indirect 
transitions model (dashes) drops more slowly as ~ grows. This circumstance is apparently 
associated with the fact that the dependence of the transition probability on the energy is 
not taken into account in (7). 

A frequency dependence ~a(m) (Fig. 4a) with a sufficiently rapid drop in the area of 
large m is obtained from experimental results in [i0], which apparently indicates a dim- 
inution in the transition probability with the rise in the transition energy. 

There is a large quantity of singularities missing from the experimental curve in the 
Ea(m) curves (Fig. 2a). This circumstance is associated both with the imperfection in the 
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experiment technique (limited resolution of the instruments, disorder in the real structure 
of K3Sb) and with not taking account of the different electron-scattering effects. All these 
factors can be taken into account phenomenologically by introducing the effective spectral 
line broadening by replacing the delta function ~(x) in (6) by a certain deltallke function 
L(x). We selected L(x) in the form 

I r L(x) = 

and t o o k  t h e  b r o a d e n i n g  p a r a m e t e r  F e q u a l  t o  0 .005  Ry, 

The curve e2(~) obtained is presented in Fig. 2c. On the whole, its configuration agrees 
with the configuration of the experimental curve (Fig. 4a). However, the location of the 
singularities on the theoretical curve is shifted somewhat toward the higher photon energy 
domain. The spacing between the two main peaks is 0.7 eV on the theoretical dependence e2(~), 
which is in satisfactory agreement with the experimental value of 0.9 eV. On the whole, the 
computed curve e2(~) is above the experimental curve. Thus, the theoretical value in the 
first peak is approximately twice the experimental value. This is apparently related to the 
fact that the matrix elements of the optical transitions Mns were evaluated by means of pseudo- 
wave functions. In conformity with this, it is expedient to normalize e2(~) so that the 
theoretical and experimental values at the first peak would agree. By knowing the spectral 
dependence e=(e), the real part of the dielectric permittlvlty can be reproduced by the Kra- 
mers--Kronig relationship. The "tail" of e2 was approximated by a two-parameter rational 
fraction. The parameters were selected from the conditions of continuity of the function ~2 
and its derivative at the merger point. The refractive n and absorptive ~ indices were com- 
puted by means of the calculated dependencies e1(~) and e2(e). Their graphs are presented 
in Fig. 3a. 

The theoretical dependencies n(e) and~(~) agree with the experimental data for cubic 
K3Sb [i0] (Fig. 4b). The 3.7-5.5-eV domain on the computed curve ~(~) is a domain of strong 
optical absorption (~ ~ i). As the photon energy grows, the absorptive index • slowly de- 
creases. The refractive index n has only a weak dependence on ~ on both the theoretical and 
experimental curves for low photon energies. This dependence becomes substantial only in 
the domain ~ ~> 2.5eV. On the curve n(~) there is a valley at h~ 3.3 eV and a stable drop 
in the energy domain to 5.5 eV. 

It is of known interest to compare the results obtained theoretically with the charac- 
teristics measured directly. To this end, we computed the spectral dependence of the coef- 
ficient of optical passage T through a layer of substance of thickness 610 ~ for cubic K3Sb 
(Fig. 3b). 

A detailed comparison of the theoretical curves with experiment is made complicated by 
the fact that quantitative information about the optical characteristics communicated by dif- 
ferent authors, differ noticeably. Thus, the dependencies log T(m) for brown K3Sb and cubic 
KsSb according to Sommer behave substantially distinctly (Fig. 4c). Although the positions 
of the main peaks agree (one peak at ~m = 2.75 eV and a double peak at ~ = 3.65; 3.9 eV), 
there is, however, not the quite definite minimum at N~ = 3.25 eV for brown K3Sb on the curve 
of cubic K3Sb according to Sommer. These differences are related to the distinct technologies 
used to obtain the KsSb films. 

The configuration of the theoretical curve log T(~) (Fig. 3b) agrees on the whole with 
the configuration of the experimental dependence for cubic KsSb according to Sommer. How- 
ever, the singularities on the curve considered are shifted somewhat toward high values of 
the photon energy relative to the experimental curves. We have already noted such a shift 
in discussing the spectral dependence e2(~). The band spectrum model proposed therefore per- 
mits an explanation of the fundamental configurational singularities in the optical charac- 
teristics of cubic KsSb. 
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SPIN EQUATIONS OF MOTION IN AN EXTERNAL FIELD. II 
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In [i] the derivation of chemical equations of motion for the electron spin by rigorous 
quantum-mechanical methods was considered. In contrast to a number of well-known works [2- 
4], accurate quantum-mechanical equations of motion which were functionally the same as the 
corresponding classical equations of motion were obtained for the even components of the spin 
operators. Thus, in this case, the transition to classical equations is made simply by re- 
placing the even components of the operators by their quantum-mechanical mean over the given 
state. 

Note further that all the conditions imposed in the previous approaches [2-4] on the 
freedom of choice of the wave packet over which the equations of motion are averaged are 
satisfied automatically in the present approach, in which, in fact, all the operator equa- 
tions of motion were constructed within the framework of single-particle theory. In addi- 
tion, the description of a quantum system using the even components of the operators alone 
is only possible under the condition that the motion is quasiclassical. 

I. Conditions of Applicability of Classical Equations 

of Motion of Electron Spin 

Thus, the conditions of applicability of the spin equations of motion obtained in the 
present approach [i, 3] may be formulated as follows. 

a) The particle wave function must be a packet of width a > ~/mc that is localized close 
to the classical trajectory (in the intrinsic reference system). 

b) The particle momentum must not vary greatly over distances of the order of the wave- 
length~/Ip I and at distances of order ~/a (condition of quasiclassical motion). 

c) The electromagnetic field in which the electron is moving must be sufficiently small 
in the quasiclassical sense. For example, for particle motion in a magnetic field, the ra- 
dius of the quasic~lassical orbit may be taken as the characteristic length L: 

.L = R = 1 / "  
-p I/2 s 

-~ e H  i ,  

[5]. Then the condition of quasiclassical motion requires that R >> ~Imc or ehHlmpc2<< l. 
Introducing the characteristic parameter • = (H/Hcr)(p/mc), where Hcr = mZc3/eh, this con- 
dition may be rewritten in the form 

Z\p!  

At small particle momenta (nonrelativistic approximation), the condition of applicability of 
the resulting equations of motion transforms to the requirement H <Hcr. A stronger con- 
straint derives from the requirement of sufficiently smooth change in the field at distances 
of the order of the packet width: 
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