CALCULATION OF PHOTOEMISSION CHARACTERISTICS OF CUBIC K3Sb
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A three-step model of photoelectron emission is used to calculate the quantum
efficiency and the energy distribution functions of emitted electrons with
allowance for the scattering of the excited electrons leading to the pro~
duction of electron—hole pairs. The calculated quantum efficiency is com-
-pared with experimental data in the visible part of the spectrum. The cor-
relation between the structure of the photoemission characteristics and the
density of the electron states is discussed.

It was shown in the previous [1] that the basic features of the spectral dependences
of the optical characteristics of cubic K3Sb, a representative of the group of antimony-—
alkali. compounds, can be understood on the basis of the model of the band spectrum pro-
posed in [1, 2]. Here, we study the photoemission properties of this compound. To cal-
culate them, we use the band spectrum and optical characteristics calculated, as in [1],
by means of an empirical pseudopotential with allowance for nonlocality and the spin—
orbit interaction.

Photoelectron emission will be regarded as a three-step process [3]. The first
stage of this process — the optical excitation — is accompanied by transitions of elec-
trons from the valence to the conduction band. For compounds with narrow valence bands
(such as K3Sb), these transitions can be described on the basis of models of both direct
and indirect transitions. Indeed, the energy distribution of the optically excited
electrons in the model of direct transitions is described by the function
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whére Mg are the matrix elements of the optical transitions, E is the electron energy,
hw is the photon energy, summation is performed over the electron states in the valence
band (s) and the conduction band (n), and integration over the Brillouin zone.
Assuming that the matrix elements Mg depend on K only through the energies £, (),
E (k) and replacing ZNE——I‘M —~£E,) in (1) by p,(£—hw) (since for flat valence bands
s
E; hardly depends on K), we obtain for Ny(E, w) the expression
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which describes the energy distribution of the electrons in the model of indirect transi-
tions. (Here, p, and p, are the densities of the electron states in the conduction and
valence bands, respectively; M? are the probabilities of optical transitions averaged
over the wave vectors.)

In considering the second stage of photoemission, the propagation of the excited
electrons to the surface, we shall regard the electron as a randomly walking particle.
We shall restrict ourselves to considering electron scattering processes in which elec-
tron—hole pairs are formed (ee scattering). 1In such a scattering, the electron loses
an energy greater in magnitude than the gap width. Since the probability of ee scatter-
ing decreases strongly with decreasing electron energy, in the part of the spectrum in
which we are interested (the visible and adjoining ultraviolet), we can ignore electrons
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Fig. 1. Energy spectrum and density
of electron states.

Fig. 2. Quantum efficiency Y{(w)
calculated with (curve 1) and
without (curves 2-4) allowance
for the ee interaction; the
broken curves show Y{(w) without
the contribution of secondary
electrons,

that undergo two or more ee scatterings. Following [3], we assume that the distribution
with respect to the directions of motion of the excited and scattered electrons is iso-
tropic, and that the only electrons which reach the vacuum are those that arrive at the
surface within an exit cone with energy exceeding the vacuum level. (The exit cone 1is
defined by the condition 6 < 60, where § is the angle between the normal to the surface
and the direction of motion of the electron; 6, is the critical angle for which emission
is still possible.) In such an approach, the energy distribution function N(E, w) of

the emitted electrons and the quantum efficiency Y(w) are each a product of probabilities
integrated over the intermediate states:

a) the probability P(x, w)dx of absorption of a photon by an electron at depth x
from the surface in a layer of thickness dx;

b) the probability Njy(E', m)dﬁ' of optical excitation of the electron to a state
with energy between E' and E' + dE';

c) the probability f(E', E; x) of the photoelectron's getting from the depth x to
the surface with energy E in the exit cone. Thus

N(E, o) = [ dENo(E, o) fo dxP (x, 0)[ (&, E; %), (3)
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In the framework of the quasiclassical random-walk model, the probability f(E', E: x)
for a semi-infinite sample has the form [3]
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Here, T(lﬁ x)==5;j dze—*lts; [ =[(E) is the mean free path of an electron with energy E be-
K .- .
tween ee scatterings; !'=/[(£'); K=cosfy S(E’, E) is the probability that the electron
goes over in the ee scattering from a state with energy E' to one with energy E.

Substituting (5) in (3) and assuming that the light propagates in accordance with

the exponential law P (x, 0) = a (w) e~%* (where o(w) is the coefficient of optical
absorption), we obtain
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In our model, the main parameter, which determines the probability of séattering of
the excited electron, is the mean free path [(E). It is intimately related to the band
structure and can be expressed in terms of the mean group velocity V(E) of the electron
and the lifetime T(E) of a state with the given energy: [(E) == V(E) :-%(E). The mean group
velocity V(E) and the coefficient of optical absorption a(w) are calculated on the basis
of the band spectrum shown in Fig. 1. The energy dependence of the parameter K was chosen
in the simple form
W .
K= R E>W
1, E<W

where W is the work function (for cubic K3Sb, W = 2.3 eV). This expression is obtained

if the electrons at the surface are treated as a gas of free electrons and one requires

conservation of the tangential component of the electron guasimomentum on the transition
through the interface of the media. We calculated the lifetime T(E) and the probability
S(E', E) in Kane’s approximation of "random" x [4]:
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In this approximation, the conservation of the quasimoméntum in the process of ee
scattering is ignored, and the matrix elements of the ee interaction are assumed indepen-
dent of the wave vectors of the initial and final states. The calculation of T(E) then
results in the appearance of a parameter A, which can be determined if we know the mean
free path at some energy. Since we do not, we varied the unknown A in a wide range.

Figure 2 shows the calculated gquantum efficiencies Y(w).

The upper curve 1 describes Y(w) without allowance for ee interaction in the model
of indirect transitions. The dependence Y(w) with allowance for ee interaction is shown
by curves 2-4 for three different values of A. The chosen values correspond to a mean
free path 1 at E = 5 eV equal to 100, 10, and 1 A, respectively. The broken curves
show the quantum efficiency without the contribution of secondary electrons. It is nor-
malized to one absorbed photon. The energy distribution functions N(E, w), calculated
for three different photon energies (hw = 3.38, 4.65, 5.5 eV) with 1 = 10 AatE=5 eV,
are plotted in Fig. 3. The finite lifetime of the excited states is taken into account
semiphenomenologically by the introduction of an effective level width. This is achieved
by going over from N(E, w) to the funttion fElL(E, E;)N(E,, w) by means of the §-like
function L(E, El) = ﬂ'l-I‘/[I‘2 + (E — El)z], where the broadening parameter T is taken
equal to 0.04 eV. To interpret the ‘features of the N(E, w) curves, it is convenient to
use the correspondence between the structure of the density of electron states and the
structure of the optical electron energy distribution Np(E, w). The density of the
electron states in the valence band of cubic K3Sb has 'a well-defined §-like nature,
while the density of the states in the conduction band oscillates in a wide range. Since
No(E, w) ~ pV(E —_ hw)pc(E), the structure of Nj(E, w) as a whole must repeat the struc-
ture of the density of the electron states in the valence band (presence of three sharp
peaks) shifted through the energy scale by hw. The same peaks must also be present in
the distribution of the emitted electrons, though, of course, the scattering processes
and conditions of leaving the material distort the initial energy distribution. At large
hw, the spectrum of emitted electrons contains secondary electrons (the broad peak at
low energies in the curves in Figs. 3b and 3c). There are only two peaks in the N(E, w)
curve at hw = 3.38 eV (Fig. 3a) because the transitions from the lower valence band take
place to states below the vacuum level.

Figure 2 shows that in the investigated spectral region ee scattering plays an
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Fig. 3. Energy distribution func- : 25 27 29 Jr7
tions of emitted electrons cal-
culated for photon energies 3.38
eV (a), 4.65 eV (b), 5.5 eV (c).

Fig. 4. Theoretical (bro-
ken) and experimental
(continuous) curves of
the quantum efficiency.

important part. Variation of the parameter A in a fairly wide range leads to a certain
change in the structure of the Y(w) curve, and also to a displacement of the threshold
of electron—hole pair production (from 3.1 to 3.7 eV). It can be seen in Fig. 2 that
the secondary electrons appear in the emission spectrum at photon energies hw = 4.2 eV.
It is characteristic that this energy and the number of secondary electrons are almost
insensitive to variation of A. To illustrate the equivalence we noted above between
the models of direct and indirect transitions in the case of compounds with narrow
valence bands, we have plotted in Fig. 2 the results of calculating Y(w) in the former
model.

For comparison with the experimental data [5], we also calculated the quantum
efficiency normalized to an incident photon: Y'(w) = (1 — R(w))Y(w). The coefficient
of optical reflection R was calculated on the basis of the complex permittivity func-
tion calculated in [1]. Comparison of the theoretical Y(w) with the experimental values
(for two different samples) at photon energies up to 3.1 eV (Fig. 4) reveals good agree-
ment. When this agreement is considered in the light of the equivalence of the models
just mentioned, it serves as an indirect proof that the valence bands in cubic K3Sb
have small dispersion. Unfortunately, the literature does not contain data on measure-
ments of the quantum efficiency of cubic K3Sb at higher photon energies, so that we
cannot make a more complete and detailed comparison with experiment or determine more
accurately quantities such as the threshold for the production of electron—hole pairs
or the electron mean free path at a given energy.
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