
Coulomb term. This is close to the value 0.2 eV cited in the literature for the activation 
energy of indium donors. With rising temperature the maximum of this band shifts to higher 
energies (from 1.93 eV at 4.2 K to 1.98 eV at 300 K) and its half-width increases. The shift 
of the band to higher and not lower energies is apparently due to the fact that as the tem- 
perature increases the donor--acceptor pairs break up as a result of thermal dissociation and 
an increasing role is played by the emission resulting from the transition of electrons from 
the donor level to the conduction band. We point out, however, that with increasing temper- 
ature the main role in the emission is played by the band with maximum intensity at 2.374 eV 
at 77 K and 2.247 eV at room temperature. The maximum of this band coincides with the posi- 
tion of the maximum of the principal emission at room temperature for undoped crystals and, 
therefore, we assume that this interpretation is correct, i.e., that the emission is due mainly 
to electron transitions to shallow acceptor levels, most probably Lizn levels. Thus, in the 
case of doping with indium we observe two emission bands at room temperature, both of which 
are due to impurities, but the impurity band with maximum at ~2.25 eV dominates. 

LITERATURE CITED 

i. T. L. Larsen, C. F. Varotto, and P. A. Stevenson, J. App!. Phys., 43, No. i, 173 (1972). 
2. F. B. Bryant and P. Verity, J. Lumin., 22, No. i, 171 (1981). 
3. V. S. Blakshiv, G. M. Grigorovich, etal., Fiz. Tekh. Poluprovodn., 8, No. 5, 1108 (1974) o 
4. V. S. Blakshiv, G. M. Grigorovich, etal., Fiz. Tekh. Poluprovodn., ~, No. ii, 2251 (1974). 
5. I. K. Andronik and P. G. Mikhalash, Izv. Akad. Nauk SSSR, Neorg. Mater., I0, 1890 (1974). 
6. V. S. Vavilov, V. S. Koval', etal., Fiz. Tekh. Poluprovodn., ~, No. 2, 28"~ (1972). 
7. H. Rodot, Cryst. Lair. Defects, ~, No. 4, 351 (1970). 
8. N. Magnea and D. Bensahel, Phys. Solid State B, 94, No. 2, 627 (1979). 
9. M. V. Fok, Tr. FIAN, 59, 3 (1972). 

i0. J. J. Hopfield, J. Phys. Chem. Sol., iO, No. 2/3, Ii0 (1959). 
Ii. J. Gu and K. Tonomura, J. Appl. Phys., 44, No. i0, 4692 (1973). 

TRANSPORT OF NONEQUILIBRIUM ELECTRONS IN PHOTOEMISSION FROM SEMIBOUNDED MEDIUM 

V. V. Konev and V. A. Chaldyshev UDC 537.533.2 

The equation is formulated and accurately solved for the problem of the transport 
of photoexcited electrons which undergo scattering before reaching vacuum, with 
the formation of an electron--hole pair, as well as multiple scattering of elastic 
type. The analytical expressions obtained permit calculations of the spectral 
composition of the emitted-electron flux and the quantum yield of photoemission. 
The limiting expression for the probability that secondary electrons will reach 
the vacuum which is obtained when the elastic-scattering mechanism is switched off 
is compared with literature data. 

The spectral composition of the emitted electron flux is determined by various factors, 
among which electron scattering processes with the formation of electron--hole pairs (e--epro- 
cesses) and with the emission or absorption of a phonon (e--p scattering) are important. The 
transport of photoexcited electrons, taking account of such processes, has been considered in 
a whole series of works, both within the framework of the single-dimensional model [I-4] and 
in a three-dimensional propagation pattern [5-7]. Using various model assumptions, analyti- 
cal expressions for the probability that the electrons will emerge into the vacuum are ob- 
tained describing electron transport in a semiinfinite medium [i, 4-7] and an emissional!y 
active layer of finite thickness [2, 3], The results obtained in [1-7] allow the contribu- 
tion of primary electrons to the photoemission current to be calculated. If the electrons 
are excited by light to a state of energy exceeding the position of the vacuum level by an 
amount larger than the forbidden band width, however, the spectral composition of the emitted- 
electron flux is formed by both primary and secondary electrons. 
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In [8-13], in calculating the photoemission characteristics, effects associated with the 
formation of secondary excitations were taken into account, but e-p scattering processes were 
ignored. 

In events of e-p interaction, there is randomization of the directions of electron prop- 
agation (with a small change in electron energy). Therefore, for electrons able to enter re- 
peatedly into such interactions, the pattern of transport is fundamentally changed. Since 
the subsequent transport of electrons undergoing c ~ scattering is no different from the trans- 
port of primary electrons with the same energy, e--p scattering processes must be taken into 
account. 

In the one-dimensional model, secondary-electron transport taking account of e-p inter- 
action was considered for a semiinfinite medium in [14] and for a layer of material of finite 
thickness in [15]. In the present work, it is shown that this problem has an analytical so- 
lution for a semiinfinite medium, even with a three-dimensional pattern of electron propagation. 

In describing secondary-electron transport, the approach proposed in[l] for primary elec- 
trons is followed: the propagation of a single nonequilibrium electron is traced from the 
event of photoexcitation to emergence into vacuum, neglecting the change in scattering pa- 
rameters of the electron in e-p scattering events. 

The first step is to introduce the probability qn(x; E, E') of the process in which the 
electron excited to a state with energy E at a depth x from the emitting surface undergoes n 
scattering episodes with the formation of electron--hole pairs and emerges into vacuum with 
energy E'. The sum of individual probabilities qn gives the total probability that the elec- 

tron will reach the vacuum: q =~q=. Note that qo(x; E, E') = 6(E--E')go(x; E), where ~(E) 
n=0 

is a Dirac delta function and go describes primary-electron transport [7]. 

Electrons undergoing two or more e-e scattering episodes are neglected, and the equa- 
tion for the probability qi(x; E, E') is formulated. 

Suppose that K(x, y) is the probability of electron transition from a depth x to a depth 
y without e--p and e-e scattering, taking account of its reflection from the boundary. At a 
depth y, in a small interval dy, both e-p scattering (with no change in electron energy) and 
e-e scattering, with a probability S(E, E') of electron transition from a state with energy 
E to a state with energy E' are possible. Correspondingly, the equation for q~ takes the 
form 

Llp 

where Ip and I e are the mean free path lengths of electrons for e-p and e--e scattering, re- 
spectively. The factor 2 preceding the probability S appears because the photoexcited elec- 
tron and the electron excited in e--e scattering make different contributions to the photo- 
emission current. 

Suppose that electron scattering by the surface is diffusional in character. Then, ac- 
cording to [7], the core of the integral operator in Eq. (!) takes the form 

K(x ,  ~)=~ , - - Y .  ~- ~'., (2) 
, I ' - 7 )  7 j  

~c 

where E n (x) = j ~ttlt-ne -xu 
i 

the electrons; f-l = If71 -r' fe-~ 

For convenience of exposition, the arguments E and E' are omitted, where possible, un- 
derstanding that q1(x) = q:(x; E, E'), S = S(E, E'), R = R(E), R' = R(E'), i = l(E), etc. 

Next Eq. (!) is transformed to give 

oo 

are integral exponentials; ~ is the effective free path length of 

(3) 
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The only solution of this equation which is of physical interest is that satisfying the 

boundary condition q, (x) -~ 0 as x -~ =. 

Equation (3) was obtained in the region x~0 It is solved by the Wiener--Hopf method. 
To this end, it is regarded as an equation on the whole x axis, predetermining the last term 

on the right-hand side of Eq. (3) hypothetically as zero when x<0. 

Complex Fourier transformation of Eq. (3) gives 

~*(~; s  + (o) + 1 - - - In ( I - - i l k - )  , (4) 1 arctgxl A ^ arctg~I R 
Klp , q+ (~') + q~" (K) = 2S Kle ~o ~ q~ x2 [ 

. . +  

where q7 (<) are Fourier transformations of the function q1(x)e (+x) 

oo 

S S q+ (re) = dxd~Xq~ (x), q7 (x) = dxe~-"q, (x). 
0 --Co 

Following the Wiener--Hopf method, Eq. (4) is transformed so that it contains only two 
functions, one of which is analytical in the upper halfplane and the other in the lower half- 
plane, with some con=non plane of overlap of their regions of analyticity. 

It follows from Eq. (3), with the boundary condition that ql (x) -~ 0 as x -~ ~, that the 
^+ A 

function q,(<) is analytical in the region Im x~0 and q[(x) is analytical in the region 

Ira< <Z-:. 
^+ 

The factor preceding q2(K) in Eq. (4) is written in the form 

1 arctgn/ Y+ (x) , (5) 
xlp Y -  (x) 

~~ ev+(x); Y-(~-) (~c--i/l)eP-(,c); L i s  d e t e r m i n e d  f r o m t h e  e q u a t i o n  1 =L tanh ( l p /  where Y+ (K) = 
K + i/!  

L). The definition and some properties of the function F-+(<) may be found in [7]. Here it 
is simply noted that the functions F• are analytical in the whole complex plane with cuts 
along the imaginary axis from (--i/Z) to (--i~) and from i/1 to i=, respectively; in their re- 
gions of analyticity, F+(<) -~ 0 as ]<] -~ ~. 

Using Eq. (5), Eq. (4) is reduced to the form 

^ ilZ-i 2R y+ { ^ xy+( t~)q+(~)_  l_+Rq~(0) (to)_- Y-(x)  --~:qT(~c)§ (6) 

-[- 1 ~  q~ (0) 1 l -+- In (1 -+- ixt) -~ 2S l~ -- / I / -  (x) arctgt ~cl A 

Consider the function 

arctg ~cI ^ 
(to) = - -  - -  F-( tc )  g +  (~:; E' ) .  ( 7 )  

' x - -  i / L  ! 

It is analytical inside the strip 0~Im ~< l/L, and decreases at its ends (as Re K "+ -+ ~). 
Therefore,~(K) may be written in the form 

(,c) = ~+ (~) - ~-  (,% (s )  

where the functions q~+--(~) are defined by the expression 

1 ,~ dt 
' = " 1 ~ ( t )  (9 )  ~• z:L,.  t - - x  

and are analytical in the halfplane Im K~0 and Im tc<t,,'L respectively. The integration 
contours C -+ run from It i = ~, Re t <0 to I tl = ~, Re t > 0 in the region of analyticity of 
function q(t) ; C + passes below the point t = <, and C- above this point. 

Substituting Eqs. (7) and (8) into Eq. (6) yields an equation in which the function ana- 
lytical in the region Im ~0 is equal to the function analytical in the halfplane Im < < 
l/L, and thus its analytical continuation on the whole complex plane. The only function ana- 
lytical in the whole complex plane is a polynomial. 

Taking into account that both sides of Eq. (6) increase no faster than < as I<! -~ =, it 
may be concluded that this is a first-order polynomial 

883 



A i l2  2R l (tc_ilL)~+(tc)=A ~ + A,K. ~Y+(tc)q+(tc)-- ! l+Rq,(O) Z+(~r (I0) 

It; follows from this equality, when ~ : 0, that 

Ao i [p 2R y+ t I ~+ (0). [ I + R  q'(O) (O)+2Sle L 

Considering the behavior of both sides of Eq. (I0) at infinity (< 
be determined 

.4, = iq, (O) [1 In 2R/~] 
- -  T i + " ( 1 2 )  

Now let < = i/L. Taking into account that Y+(O) :--(i/L) ] . /~ - - l  l~, it is found that 

• ~+ (0) (13) (o) 2St, (1 + R) /'~ R (1 --1/'1 -- l!/p)" 
1 -  T 

. (10) in  the form 
^+ 

Expressing qx(<) from Eq 

A i Ip 2R [ 
q+, ( ~ ) = -  - q, ( o 3  

x I I + R  I 
i - l / ~  '< + i,'z ] _ . c--F+IK) 

~c 9- i,'L 
4- i2S~e (~+ (0) -- ?+ (to)) 

(ll) 

: iS, S + =), A: may 

~" 4- i'l e -F+~/. (14) 
x (~ -+- ilL) 

and taking account of the result obtained in [7] 

'\ i.Z [p 1 -- R 
g~ (~, E) = - -  

x I 1 - - l p ~ R ( 1 - - ] / 1 - - l / l p )  ~ 
l 

Eq. (14) is written in the more compact form 

[1 - V 1  -- lZ------~ K 4- t:___._Z e_F+(~ ) ] .  (15) 
L " ~" + i/L 

.'~ I [ 2 t 9 ,  ,', i , v ~ - i / l  ] q? (,c) = 2 s  " .o+ , l~ 1 R ~ (0)  g ~  (~-; E)  -1- - -  (~+ (0)  - -  ~+ (K)) e -~ '+~)  . 
-- ;r ~c + i / L 

Now suppose that the exciting light damps exponentially in the material. 
^+ 

there is a simple relation between q, (~) and the mean probability Q~ Q) = ~ i dxe-=Xq~ (x) over 

the absorption depth of the light: 
ity Q: takes the form 

O, (~.; F, E ' ) =  2s (~', ~ ' ) . - ! i t  
4 t 

(16) 

In this case, 

^+ 
Q,(~) = aqx(i~). Thus, the expression for the probabil- 

~-6 l/l ('§ (0) ?+ (i~))e -F+~i=)] 2R ,-+(0) Oo~, E ) + a + l / L  I__R r , ~ -- , (17) 

where Go(a; E) = ago(z~) is the probability that a primary electron emerges into the vacuum. 
The total emergence probability Q(a; E, E') = 6(E--E')Go(~; E) + Qx(~; E, E') allows the re- 
lation between the initial nonequilibrium distribution No(E, m) of the excited electrons and 
the spectral composition of the emitted-electron flux to be established 

N(E' ,  . , )=~aENo(E,  ,~) Q (~; E, E ' ) =  No(E', ,~)0o(=; E ' ) +  
_}_[dENo(E, m) Q~(a; E, E'). (18) 

The quantity O(~; E) = SdE'Q(a; E, E') is understood to be the mean probability of emer- 

gence into vacuum of an electron excited by light to the state with energy E. It may be used 
to calculate the spectral dependence of the quantum yield 

r(to) = ~dENo(E, to)O(=; E). (19) 

To switch off the electron-phonon interaction, Eq. (17) is considered in the limit as 
~p -~ =. If the integration contour C + in Eq. (9) is deformed so that it passes over both 
sides of the cut along the imaginary axis from (--it) to (--i/Z'), Eq. (17) may be reduced to 
the form 

Ql(c< E, E ' ) = 2 S ( E ,  E') 1 - - R '  { [ ] ~  4 R 1--  l l n ( l + = l )  X 

1 I 

X [ clt t l "  In i @ + t "7" In -+- In (1 + al) 
"6 l j 1 + 1/(or/'/) ~-/ �9 (20) 

O 
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Equation (20) may be compared with the expression obtained in [8, 9] 
! 

Q1 =2S(E ,  E') t !n(1 + -- + - -  
\ l ' t  al 

PclP 

What is the difference between Eqs. (20) and (21)? First, penetration of the electron 
through the boundary was considered in [8, 9] on the basis of the emergence-cone model. In 
other words~ it was assumed that the probability of electron transition through the surface 
is unity when % < e c and zero when 0 > e c where 8 is the angle of incidence of the electron 
at the surface with respect to its normal and ~c is the critical angle; cos 0 c = pc/p. Con- 
version from the emergence-cone model to a diffusely scattered surface entails setting the pa- 
rameter Pc/P (which characterizes the emergence cone) equal to zero, and introducing the prob- 
ability (i -- R') that the electron passes through the surface as a factor. 

Second, the contribution to the photoemission current from electrons reflected by the 
surface was disregarded in [8, 9]. These electrons are described by the first term in curly 
brackets in Eq. (20). 

Numerical analysis shows that, with a favorable relation of the scattering parameters, 
the electrons reflected by the surface may make a pronounced contribution to the emission 
current. 
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