
which became detached was considerably less than those which became attached. At low atomic fluxes there 
was an increase in the  number of detachment events and the growth rate began to depend on the roughness. 
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ELECTRON SCATTERING IN PHOTOEMISSION 

V. V. Konev and V. A. Chaldyshev UDC 537.533.2 

Kane's one-dimensional model of the scattering of photoelectrons as they propagate to the 
emitting surface is generalized to the three-dimensional case. It is shown that this 
problem reduces to the Milne problem. An analytic expression is obtained for the proba- 
bility of an electron's reaching the surface. 

Photoelectron emission can be regarded as a three-stage process: excitation of the electrons by 
photons of the incident wave, propagation of the electrons to the emitting surface, and their transition through 
the solid-vacuum interface. As the electrons travel to the surface, they can undergo both elastic and inelas- 
tic scattering. The problem of electron transport has been studied from various points of view by different 
authors [1-3]: In a one-dimensional model [1], Kane obtained an exact analytic expression for the probability 
of escape of electrons with allowance for the possibility of their scattering with the production of e lect ron-  
hole pairs and multiple scatteriugs on phonons. In [2], Beckmann first  solved the problem of electron 
transport for an infinite space, in which the transition of the electrons through an imaginary surface was 
then simulated. Duckett [3] studied this problem in detail in the random-walk model. In the present paper 
it is shown that the problem of propagation of photoelectrons to the surface in the three-dimensional 
generalization of Kane's model [1] can be reduced to the Milne problem. An analytic expression is obtained 
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for  the probabi l i ty  of an e l e c t r o n ' s  r each ing  the su r face .  

We cons ider  the following p rob lem,  an e lec t ron  propagates  f r o m  depth x to the su r face ,  We take 
into account e lec t ron  sca t t e r ing  p r o c e s s e s  in which e l e c t r o n - h o l e  pa i r s  a re  fo rmed  (ee sca t t e r ing)  and 
interact ion with phonons (ep s ca t t e r i ng ) .  As in [1], we a s s u m e  that if an e lec t ron  undergoes  ee sca t te r ing ,  
then nei ther  the sca t t e red  initial e lec t ron  nor the secondary  e lec t ron  can escape  into the vacuum.  We shall  
a lso ignore ene rgy  l o s s e s  in ep in te rac t ions .  

The probabi l i ty  that an e lec t ron  undergoes  ee  sca t t e r ing  in a shor t  in terval  Ar is 5r/le. The 
analogous probabi l i ty  for  ep sca t t e r ing  is hr/lv (le and lp a r e  the mean f ree  paths between ee and ep 
in terac t ions ,  r e spec t ive ly ) .  An a r b i t r a r y  dis tance r can be divided into N smal l  in terva ls  Ar: r = N . A r .  
The probabi l i ty  p ( r )  of an e l ec t ron ' s  t r a v e r s i n g  the dis tance r without sca t t e r ing  is (1--hr/l~) ~" �9 (l--hr/lp) N 
and for  l a rge  N takes  the fo rm p ( r )  = e x p ( - c r ) ,  where  c = a + b ,  a=l- i ' ,  b = l  e-~. 

Let pn(x) be the probabi l i ty  of the p roce s s  in which the e lec t ron  r eaches  the su r face  f r o m  depth x 
without ee sca t t e r ing  but undergoing ep sca t t e r ing  n t imes .  This  probabi l i ty  can be r e p r e s e n t e d  as the 
product  of the following probabi l i t ies  in tegrated over  the in te rmedia te  s ta tes :  a) the probabi l i ty  of the 
e l e c t r o n ' s  t r a v e r s i n g  the dis tance r in the solid angle sin 0d0dr without sca t te r ing;  b) the probabi l i ty  of 
a subsequent  ep interact ion;  c ) t h e  probabi l i ty  of reach ing  the su r face  a f te r  a fu r ther  n - 1 ep in te rac t ions .  
Assuming  that the dis tr ibut ion over  the d i rec t ions  of motion of the excited and sca t t e red  e lec t rons  is i so t ropic ,  
we can wri te  down the r e c u r s i o n  re la t ion  

. r / cos  

p ~ ( x ) =  sinOdO dre-c 'p~_, (x- -rcosO)  + sinOdO dre-~'p~_:(x--rcosO) , 

0 0 r.i2 0 

which is r ead i ly  t r a n s f o r m e d  to o? 
p.(x) =~ ayg,(clx-yl)p._,(y), 

0 

where  E~(x) is the exponential  in tegra l .  The function E~ (x) is defined by 

E~ (x) = ~ exp ( - -  xt) .  t-"dr, (n >1. 0). 
1 

(1) 

The total probabi l i ty  of the e l e c t r o n ' s  r each ing  the su r face  is 
co 

g (x) = "r ~ P n  (x). 
n = O  

Summing (1) f rom 1 to oo, we obtain an equation for  g (x ) :  
oo 

g (x) = Po (x) + (a 2) S dyE, (c[ x -- y 1) g (y), 
0 

(2) 

where  P0(X ) 
sca t t e r ing .  

= (1 /2 )E  2 (cx)  is the probabi l i ty  of the e l e c t r o n ' s  r each ing  the su r face  f r o m  depth x without 
We introduce the integral  ope ra t o r  A, 

A~" (x) = (a 2) t" dyE, (c I x -- Yl) W (y) 
0 

(3) 

and define the function r (x) by :? (x) = c/a -- g (x). 

In the notation of (3), the equation for  this function is 

( l - - A )  q~ (x) = b/a, 

The solution ~c0(x) of the homogeneous equation 

(l--a) ~0 ( x ) = 0  

describes the density distribution of neutrons in an infinite half-space without sources, and Eq. (5) itself is 
called the Milne equation [4]. In what follows, we require the commutation relations 

(4) 

(5) 
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d [A,r (x) l  - -~ d ~  (x)  = aE, (cx) v~ (o), 
dx dx 2 

A S dyq}" (y) -- dy [AT (y) ] = (a/2c) dyE2 (cy) ~I' (y). 
0 

(6) 

(7) 

(here  ~ ( x )  = v-~  (0)  ,~ ( x ) ,  
expression for ~(x) :  

Differentiating (4) and (5) and using (6), we find that the functions d ~ ( x ) / d x  and d~0(x)/dx are  solutions of 
the same equation 

(l -- A) ~ (x) = al2E~ (cx), 

i . e . ,  they differ only by a solution of the homogeneous equation (5): 

= do(X) § 
dx dx 

?0 (x) ---- ~ CO) ~0 (x), ~ is a constant). Integrating (8) f rom 0 to x, we obtain an 

(8) 

x 

~- (x) = .~0 (x) + X S dye0 (y). (9) 
0 

Thus, the problem of the e lec t ron ' s  reaching the surface has been reduced to the solution of the homogeneous 
equation (5), i . e . ,  to the Milne problem. We introduce the function ~00+(x), which is equal to ~0(x) for x > 0 
and vanished for x < 0. Using the Wiener-Hopf  method, one can show [4] that the Four ier  t ransform of this 
function, continued analyt ical ly with respect  to the t ransformat ion variable to the complex p!ane, has the 
form ^ 

,%+ (p) = i~0 (0).  (p + i c ) ( f  + 1/L'-)-, exp [ - - / :  (P)] ,  (10) 

2 L c - -  1 

I t 1 -co ,  Re t>O 

j , - p  [,,+,/,, 
I t I=<o, Re t<0  

(the contour of integration passes lower than t = p and does not in tersect  the cut along the imaginary axis 
f rom -lop to - i c  and f rom ic to i~).  The function r can be found in accordance with the inversion 
formula and can be conveniently expressed in the form 

?o (x) = ?o (0) {(1/2) (Lc + 1) exp [x/L -- F (i/L) l -- (1/2) (Lc -- 1) exp [-- x/L -- F (--  i/L)] -- f (x)}, 

f ix )  = (a2c) .~dy {y (y + 1) l - (a/2cy)In Y--Y + +a',:";('~'~,') exp [-- cxy + ," (~Y)I. 
1 

To determine the constant X, we apply the operator  1 -- A to both sides of Eq. (9). Using (4) and (7), we 
find that X = - -  2/~'[a~p.~ (0)], where 

r  

0 

We introduce the function 

(x) d~0 (x) dy~o (y) __ ap/(2bL2). 
dx s 

0 

It sat isf ies  the equation 
(l--A) O(x) = (a/2) El (cx)--a2~t/(4bcL ~) Ei (cx) 

and decreases  exponentially at infinity. We multiply this equation by ~0:(x) and integrate f rom 0 to oo. 
Noting that 

o o  c o  

I dx% (x) (1 -- A) cD (x) -- ! dx~) (x) (1 -- A) ~00 (x) = 0, 

we determine p : P = (2L/B, )V 1-- ~, [~ •. a/c. 
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Thus,  the probabi l i ty  of the e l ec t ron ' s  reaching  the su r face  is 

x 

0 

Since g (x)  cannot inc rease  as x ~ 0% we conclude f rom the last  equation that g (0) = ~-' (1 -- V'I ~ - '~ ) .  It is 
easy  to show that for  all physical ly  meaningful ~ (0 --- fl -- 1) the n e c e s s a r y  condition 1/2 -< g(O) ~ 1 is 
sat isf ied.  Thus, the solution of Eq. (2) with boundary condition specified at infinity has the fo rm 

x 

g (x) = ~-'[I -- V I - ,8~o (x) + L-' ]/" i-~--~ ~ dy~o (y)]. (11) 
0 

We assume fur ther  that the exciting light is "damped exponential ly in the ma t t e r .  Then the mean probabi l i ty  
of an e l ec t ron ' s  reaching  the sur face  is 

o = ~, ~ a x e - , , g  (x )  = ~-, [1 V 1 - p (~ - l/L) ,%-~ (0)~ + (ia)]. 
0 

Substituting ~0+(ia) f rom (10) in this equation, we finally obtain 

O=(lp/l){1 --]/rl l/lp [(~L+L/I),/(~L+ 1)] exp [-- F (i~)]}, (12) 

where we have introduced the effect ive mean f r ee  path l = c - ' .  One can show that when the e lee t ron-phonon  
interact ion is switched off (which is achieved by going to the l imit  Ip--~oo) Eq. (12) goes over  into the wel l -  
known express ion  obtained in [5] : G ~-~ (1]2) [ 1-- (Hal) In (I + al) ], For  this it is n e c e s s a r y  to note that in the 
l imit  Ip--.~oo 

F(ia) ---> (1/alp)ln(l+al), and L =>l[ l+2 exp (--2lp/l)]. 
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