which became detached was considerably less than those which became attached, At low atomic fluxes there
was an increase in the number of detachment events and the growth rate began to depend on the roughness,
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ELECTRON SCATTERING IN PHOTOEMISSION
V. V. Konev and V, A, Chaldyshev UDC 537,533.2

Kane’s one-dimensional model of the scattering of photoelectrons as they propagate to the
emitting surface is generalized to the three-dimensional case. It is shown that this
problem reduces to the Milne problem, An analytic expression is obtained for the proba-
bility of an electron’s reaching the surface.

Photoelectron emission can be regarded as a three-stage process: excitation of the electrons by
photons of the incident wave, propagation of the electrons to the emitting surface, and their transition through
the solid—vacuum interface. As the electrons travel to the surface, they can undergo both elastic and inelas~
tic scattering. The problem of electron transport has been studied from various points of view by different
authors [1-3]. In a one-dimensional model [1], Kane obtained an exact analytic expression for the probability
of escape of electrons with allowance for the possibility of their scattering with the production of electron—
hole pairs and multiple scatterings on phonons. In [2], Beckmann first solved the problem of electron
transport for an infinite space, in which the transition of the electrons through an imaginary surface was
then simulated. Duckett [3] studied this problem in detail in the random-walk model. In the present paper
it is shown that the problem of propagation of photoelectrons to the surface in the three-dimensional
generalization of Kane’s model [1] can be reduced to the Milne problem. An analytic expression is obtained
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for the probability of an electron’s reaching the surface,

We consider the following problem, an electron propagates from depth x to the surface, We take
into account electron scattering processes in which electron-hole pairs are formed (ee scattering) and
interaction with phonons {ep scattering). As in [1], we assume that if an electron undergoes ee scattering,
then neither the scattered initial electron nor the secondary electron can escape into the vacuum, We shall
also ignore energy losses in ep interactions.

The probability that an electron undergoes ee scattering in a short interval Ar is Arfl.. The
analogous probability for ep scattering is Ar/l, (I, and [, are the mean free paths between ee and ep
interactions, respectively). An arbitrary distance r can be divided into N small intervals Ar: r = N-Ar,
The probability p(r) of an electron’s traversing the distance r without scattering is (1—Ar/l,)¥ . (1—Arflp)¥
and for large N takes the form p(r) = exp(—cr), where c=a--b, a=={;", b=1°"".

Let pn(x) be the probability of the process in which the electron reaches the surface from depth x
without ee scattering but undergoing ep scattering n times. This probability can be represented as the
product of the following probabilities integrated over the intermediate states: a) the probability of the
electron’s traversing the distance r in the solid angle sin #d0d¢ without scattering; b) the probability of

a subsequent ep interaction; c) the probability of reaching the surface after a further n — 1 ep interactions.
Assuming that the distribution over the directions of motion of the excited and scattered electrons is isotropic,

we can write down the recursion relation

=2 xicosd T

P, (%) = %{ f sin 06 fdre—crp,,_l (x — recost) + Esin 88
0 =2

[y
0

dre=cp,_i(x — rcos 8)},

OQ’—)S .

which is readily transformed to
a
palx) =5 f dyE, (¢] X — y]) Pucr (),
0

where E (x) is the exponential integral. The function E, (x) is defined by

E,(x) = | exp(— x)-t=dt, (n>0).
1

The total probability of the electron’s reaching the surface is

0

g(x) = X p,(x).

n=(0

Summing (1) from 1 to «, we obtain an equation for g(x):
g(x) =p(x)+ @2 | dyE |z —y) gy,
0

where po(x) = (1/2 )Ez(cx) is the probability of the electron’s reaching the surface from depth x without
scattering. We introduce the integral operator A,

A (x) = (2 2) [ dyE, (c]x — y) ¥ (y),
0

and define the function ¢ (x) by o (x) =c'a — g (x).
In the notation of (3), the equation for this function is
(I—A) ¢(x) =b/a.
The solution ¢0( x) of the homogeneous equation
(1—A) ¢o (x) =0

describes the density distribution of neutrons in an infinite half-space without sources, and Eq. (5) itself is
called the Milne equation [4]. In what follows, we require the commutation relations

3)

@)

(5)
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d _A9¥() _a
P [AW (x)] A T 5 E, (¢x) ¥ (0), (6)
Aoj dy¥ (y) — [ dy [T (9)] = (@]20) | dyEs (e9) ¥ (). )

Differentiating 4) and (5) and using (6), we find that the functions d@(x)/dx and d& 0(x)/dx are solutions of
the same equation
(1 —A) ¥ (x) = a/2E, (cx),

e., they differ only by a solution of the homogeneous equation (5):

d? (x) dwo (x)
ax

(here ;(x) = o=1(0) ¢ (x), ;o(x) =05 (0) 9o (x), * isa constant). Integrating (8) from 0 to x, we obtain an
expression for @(x):

Tt g (%) @)

¢ (%) = g (%) + 1 S dyso (y). )

Thus, the problem of the electron’s reaching the surface has been reduced to the solution of the homogeneous
equation (5), i.e., to the Milne problem. We introduce the function cp"Ix) which is equal to ¢ (x) for x > 0
and vanished for x < 0, Using the Wiener~Hopf method, one can show [4] that the Fourier transform of this
function, continued analytically with respect to the transformation variable to the complex plane, has the
form

St () = it (0)-(p + i2) (4 + 1L exp [— F (p)], (10)
where L is determmed by the equation —éln in-ll =1, and
VTR £ 4 ¢ a ¢
F(P)—é-; _pln[ T (I—Tarctg—c-)]
11]=0, R t<0

{the contour of integration passes lower than t = p and does not intersect the cut along the imaginary axis
from —io to —ic and from ic to i»), The function cpo(x) can be found in accordance with the inversion
formula and can be conveniently expressed in the form

20 (%) = 9 (0) ((1/2) (Le + 1) exp [x/L — F (i[L)] — (1/2) (Le — 1) exp [~ &/ — F (—i/L)] — F (%)},

7= (@20 ?dy o+ [(1 ~ (af2ey) n L 20) ettty || exp - oxy + F ().

To determine the canstant A, we apply the operator 1 — A to both sides of Eq. (9). Using 4) and (7), we
find that A = — 2bc/[a%2 (0)], where )

= 05 AYE, ()30 (9).
We introduce the function

® (x) = ‘1”7;5‘—’” —~ L‘— j dyso (y) — ap/(26L7).
0

It satisfies the equation
(1—A) ©(x) = (a/2) E; (cx)—a?u/(4bcL?) E; (cx)

and decreases exponentially at infinity. We multiply this equation by ¢‘o'.(x) and integrate from 0 to .
Noting that

gdx%(x)(l — A)® (x) =§de® (2) (1 — A) 9o (%) = 0,

we determine p: g = (2LB)V'T—B, B =a/e.
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Thus, the probability of the electron’s reaching the surface is

g(x) =81+ ( g(0) — %) 2 (x) + (BL) "V T—F 5 % (3).
' 0

Since g{x) cannot increase as x — =, we conclude from the last equation that g (0) =8~ (1 — VT=8). Itis
easy to show that for all physically meaningful 8 (0 = B = 1) the necessary condition 1/2 = g(0)= 1 is
satisfied, Thus, the solution of Eq. (2) with boundary condition specified at infinity has the form

g (%) =811 = VT=Beo (¥) + L VTI—F j dyee ()] (1)

We assume further that the exciting light is damped exponentially in the matter. Then the mean probability
of an electron’s reaching the surface is

G =a | dxe=rrg (x) = §-1 [1 = VT =B (a — /L) 55 (0)p* (io)].
0

Substituting &;(ia) from (10) in this equation, we finally obtain

G=(,,/H{1—-VI-T1I, [(aL + L)/ (al 4+ 1)} exp[— F (i=)]}, (12)
where we have introduced the effective mean free path /=c¢-!. One can show that when the electron-—phonon
interaction is switched off (which is achieved by going to the limit [,— ) Eq. (12) goes over into the well-

known expression obtained in [5]: G==(1/2)[1—(l/al)in(l +al)]. For this it is necessary to note that in the
limit {p—co

Flia) => (lfolp)In(1+al), and L =>[1+2 exp (—2L/0)].
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