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P H O T O E L E C T R O N  E M I S S I O N  F R O M  S E M I C O N D U C T O R S  

W I T H  L O W  V A L E N C E  B A N D  D I S P E R S I O N  

V.  V.  K o n e v  a n d  V.  A.  C h a l d y s h e v  UDC 537.533.2 

In applicat ion to the group of compounds under  considerat ion,  a s imple  analyt ical  express ion  is 
obtained for  the quantum yield.  Elec t ron  sca t t e r ing  p r o c e s s e s  of both e las t ic  and inelas t ic  na ture  
a r e  t aken  into account.  The influence of such sca t t e r ing  p r o c e s s e s  on the s t ruc tu re  of the spec -  
t r a l  dependence of the quantum yield is d i scussed .  It is shown that  they can be respons ib le  for  
the appearance  of a number  of fea tu res  in this  spec t ra l  dependence.  

The band spec t rum  and assoc ia ted  p r o p e r t i e s  of ant imony-a lkal i  compounds were  studied in [1-3]. It is 
shown that  the cha rac t e r i s t i c  p rope r ty  of these  c rys t a l s  is the plane nature of t he i r  valence bands.  Fundamental  
re la t ionships  fo r  the computat ion of the photoemiss ion  cha rac t e r i s t i c s  of such semiconductors  a re  obtained in 
this paper .  The influence of sca t te r ing  p a r a m e t e r s  on the spec t ra l  dependence of the quantum yield Y(w) is 
studied when using the s imple  model  of the e lec t ron  energet ic  spec t rum while taking account of the low valence 
band d i spe r s ion  and the graphic  r ep re sen ta t i on  of the e lec t ron  sca t t e r ing  mechan i sms .  Underlying the de-  
scr ip t ion  of the photoemiss ion  p r o c e s s  is a mul t i s tage  theory .  

1. Absorption of e lec t romagne t ic  radia t ion  of sufficiently high f requency w r e su l t s  in the excitat ion of 
par t  of the valence e lec t rons  in the conduction band, whose th ree -d imens iona l  d is t r ibut ion over  the spec(men 
bulk is de te rmined  by the nature  of light wave at tenuation,  while t he i r  energy  dis t r ibut ion is descr ibed  by the 
function N0(E, w). This initial dis t r ibut ion N0(E~ w) is d i s tor ted  by photoelect ron s c a t t e r i n g  p r o c e s s e s  as welt  
as by the i r  in terac t ion  with the su r face .  The following can be ext rac ted  as the mos t  impor tan t  sca t te r ing  
m e c h a n i s m s :  1) sca t t e r ing  with the fo rmat ion  of e l e c t r o n - h o l e  pa i r s ,  which are  substant ia l ly  inelast ic  p r o -  
ce s se s ;  and 2) in teract ion with la t t ice  v ibra t ions .  The probabi l i ty  of the f i r s t  p r o c e s s  ( e - e  scat ter ing)  depends 
s t rongly on the e lec t ron  energy.  It is ze ro  for  E< 2Eg (Eg is the forbidden bandwidth) and grows rapidly  as the 
energy inc reases  for  E > 2Eg. Energy lo s ses  in one e - -e  sca t t e r ing  act exceed Eg. Scat ter ing by phononsalso  
r e su l t s  in a reduct ion in the energy  of the excited e lec t rons  since the p r o c e s s e s  of phonon emiss ion  by e l ec -  
t rons  predomina te  over  absorpt ion p r o c e s s e s ,  i .e. ,  on the average  an e lec t ron  loses  a ce r ta in  energy Ep in the 
e - p  in teract ion act .  Ordinar i ly  Ep is 10 -2 eV in o rde r  of magnitude so that even those e lec t rons  that under -  
went a not iceable number  of e - p  sca t te r ings  can have sufficient energy  for  emergence  into a vacuum. It is 
cha r ac t e r i s t i c  tha t the  d i rec t ion of e lec t ron  veloci ty  in each e - p  in terac t ion  act can change substant ia l ly .  Con-  
sequently,  those  e lec t rons  which moved init ially f r o m  the sur face ,  as well as the e lec t rons  re f lec ted  f r o m  the 
sur face ,  can change the di rect ion of t he i r  propagat ion and induce a contribution to the photoemiss ion  current  
because  of sca t t e r ing  by phonons. This means  that  the p r e s e n c e  of such sca t t e r ing  p r o c e s s e s  can contribute 
to the emergence  of a l a rge  number  of excited e lec t rons  in a vacuum. The m e c h a n i s m  mentioned a lso  resu l t s  
in an effect ive inc rease  in the path t r a v e r s e d  by the photoelect ron up to the emit t ing su r face ,  i .e . ,  in an i nc rea se  
in the probabi l i ty  of e - e  sca t te r ing .  
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2, Only e lec t rons  undergoing not more  than one e - e  soat ter tng yield a substantial contribution to the 
photocurrent  in a calculation of the. photoemtsston charac te r i s t i c s  In a su.ffieteatly broad energy range.  The 
e lectrons  can here  exper ience  multiple e - p  scat ter ing both before and af te r  e - e  interact ion.  The following 
express ion  

(1) IZ g,/~ 

can be wri t ten for  the energy distr ibution function of the emitted e lec t rons .  The f i rs t  component descr ibes  
e lect rons  that emerge  into the vacuum without generat ing secondary excitat ions.  The second t e r m  in (1) takes 
account of both the e lect rons  which were  excited by light and underwent scat ter ing wl, th the format ion  of an 
e l e c t r o n - h o l e  pair  p r io r  to emerging into the vacuum, and the e lec t rons  excited because of this scat ter ing 
p rocess .  Here Pn(a;  E) is the probabil i ty averaged with respec t  to the degree of light absorption, for  the p ro -  
cess in which an e lec t ron  excited in a state with energy E + nEp emerged  into the vacuum af te r  n acts of e - p  
interact ion without e - e  scat ter ing,  Pk, n (a ;  E0, E) is the probabil i ty of an e lec t ron emerging into a vacuum 
af te r  k e - p ,  one e - e ,  and n acts of e - p  interact ion in the sequence mentioned, and S(E, E') is the probabil i ty 
of e lec t ron scat ter ing f rom a state with energy E into a state with energy E' in the e - e  interact ion act. 

In that e lec t ron  energy domain in which sca t te r ing  with the formation of e l e c t r o n - h o l e  pai rs  is energe t i -  
cally possible,  the probabil i ty of some significant mtmber of e - p  interact ions p r io r  to e - e  scat ter ing is small .  
There fore ,  the e lec t ron  energy d i rec t ly  ahead of e - e  scat ter ing should not differ  substantially f rom its energy 
E0 af ter  optical excitation. Hence, the quantity kEp in (1) can be neglected in compar ison with those E0 for 
which the probabil i ty S is different  f rom ze ro .  
of the total probabil i t ies  

in place of Pk,n" 

This pe rmi t s  summation over  k in (1) and subsequent util ization 

Q. = ~ P~',. ' ( 2 )  
/r 

It is expedient to take account of the combined influence of the e - e  and e - p  p ro ce s se s  in a sufficiently 
simple model .  The Kane model [4] can be such a basis .  In this model one-dimensional  random walks of p r i -  
ma ry  e lectrons  are  considered with the e - e  and e - p  interact ions and par t ia l  e lec t ron  ref lec t ion f rom the su r -  
face taken into account. The fundamental pa r am e te r s  charac te r iz  [ng the probabil i ty of e lec t ron  emergence  
into a vacuum are  the mean f ree  paths le and lp with respec t  to the e - e  and e - p  p rocesses ,  respec t ive ly ,  the 
coefficient Re of e lec t ron  ref lec t ion f rom the sur face ,  anf the coefficient of optical absorpt ion a .  The dependence 
of these  p a r a m e t e r s  on the initial e lec t ron  energy is taken into account,  but the i r  changes during the acts of 
e - p  interact ion a re  neglected.  Under the assumption of normal  light incidence and its exponential attenuation 
in the substance,  a simple analytical  express ion  is obtained in [4] for  the probabil i ty P n ( a ;  E): 

( l ~"1 r~t~+;,~--.2 (2n- - s ) !  ( s - 1 )  [,1 + r ) - * - ( l  +~/ ) -~  ] (3) 

where r = (1 --  Re (g))/(1 + Re (E)), l-1 _ l~-I § i[1. 

r~ is shown in [5-7] that the Kane model allows of general izat ion.  Thus, this model is general ized to the 
th ree-d imens iona l  case  in [5, 6]. A simple method is proposed in [7] which would permi t  including secondary 
e lec t rons  in the analysis and would take into account in a single manner  the e - e  and e - p  interact ions of both 
the p r i m a r y  and secondary  e lec t rons .  The express ions  

Qn ( a, Eo, E) = l[o~lo ~ (,~ -- ~)-~ [P~ (a; E) -- Pn(eo; E) (ro + ~lo) a/(ro + t~olo) l~o], (4) 

where ro = r (Eo), lo = l (Eo), l~o = l~ (Eo), t~ = 1-1 ]/1 -- l/lv, t~o = t~ (Eo), a re  obtained: for  the probabil i t les  Qn. 

The function N0(E , co) in (1) is re la ted  to the band spec t rum s t ruc tu re  and is expressed  in the indirect  
t ransi t ion model in t e r m s  of the state densi t ies  Pv and Pc (in the valence and conduction bands, respect ively) :  

No.(e, ,o) = p~ (E) p~ (E -- h~,)/ ~ d~,p~ (E,) p.~ (E, -- h~o). (5) 

(The energet ic  dependence of the mat r ix  e lements  of the optical t rans i t ions  is neglected in this expression.)  

The scat ter ing probabil i ty S(E, E') is also expressed  in t e r m s  of the s t a t e  density in the Wrandom wave 
vectors  W approximation [8]: 

S (E, E') = 2p~ (E'), s dec,% (Eo) Pc (Eo + E -- E') (6) 
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(the energy  is m e a s u r e d  f r o m  the apex of the va!ence band). Let us note that the denominator  of the las t  ex~ 
p r e s s ion  is the r ec ip roca l  l i fe t ime ~- (E) of the e lec t ron  s ta te  with energy E with r e spec t  to e - e  sca t t e r ing  to 
the accu racy  of a constant .  

The approximat ions  used in deriving (5) and (6) a r e  of the s a m e  nature ,  neglect  of the se lect ion rule  in 
the quas tmomentum.  For  compounds wi th  smal l  valence band d ispers ion ,  v/nose s ta tes  densi ty pv(E)  can be 
r ep re sen t ed  approx imate ly  in the f o r m  

%(s  = cons~ ~a ( E - -  E~); (7) 
i 

such a se lec t ion ru le  in not important  s ince ignoring it does not resu l t  in a substant ial  inc rease  in the number  
of s ta tes  between which t rans i t ions  a re  allowed. The re fo re ,  t he re  is a foundation to expect [9] that  the nrandom 
wave vec to r s  n approximat ion  should work  weli for  the c lass  of compounds under considerat ion,  especia l ly  for  
the caiculat ion of quanti t ies whose s t ruc tu re  is s i m i l a r  to  (5) and (6). 

Taking account of (5) and (7) and integrat ing (1) with r e spec t  to E, we obtain the following s imple  e x p r e s -  
sion fo r  the quantum yield:  

i ~ " " ' (8) 

where  6 ~ (,'~)= ~ p ,  (h,,, + E~), and the subscr ip t  i enumera t e s  the valence subbands.  
i 

Equation (8) can be s implif ied by replac ing  nEp in the a rguments  for  Pn and S by a cer ta in  mean  value 
nEp. It is poss ib le  to identify n approx imate ly  with the mean  number  of e - p  col l is ions.  It should be kept in 
mind that in der iving (3) and (4) the quanti t ies /e, lp, r were  a s sumed  invariant  a f t e r  an a r b i t r a r y  number  of 
e - p  in terac t ions .  Consequently,  for  e lec t ron  energ ies  l e s s  than the threshold  for  e l e c t r o n - h o l e  pa i r  f o r m a -  
tion, the probabi l i t ies  Pn a r e  different  f r o m  ze ro  even for  a r b i t r a r i l y  l a rge  n because  there  is no mechan i sm 
for  the excited e lec t rons  leaving the emis s ion  p roce s s  in the model i t se l f  in this  case .  There  is such a m e c h -  
an i sm in the rea l  p roce s s ,  viz.,  e lec t ron  ro l l -up  in energy  because  of phonon emiss ion .  The e lec t ron  depar tu re  
can be taken into account phenomenologic~l!y if the effect ive f ree  path l is introduced by replacing l-1 in (3) 
and (4) by T -I  = 1-1 + L -l ,  where  L = (n + l ) /p .  This is equivalent to the fact  that  an additional fac tor  enters  into 
the express ion  for  Pn which is a lmos t  one for  n< n and d e c r e a s e s  rapidly as n grows for  n> n. There fo re ,  

actual ly  only those  ion which have physical  meaning will en ter  the sum 6 = X P~ " The summat ion  over  n 

can now be executed in (8) 

Y 0,,) =-'~b,') ~,~c (he, + Z,) [O (~; ho~ + E~ --  nE~) + ~ dE S (h,,. + E~, E -:- 7/E~) H (~; t~  + E .  E)], (9) 
i 

where  according  to  [4, 7] 

G (~; E) r~l  (~[ + ] /1  I/lp)- '--' (r + l / " - ~ - - - l ]  -~ . . . .  z , %  , (Io) 

~,o ~ 

H ( ~ ; E o .  E ) - -  .~Q~ G + I ~ + , ~ +  o ) ( , o + r o / t o ) ( i ~ o + ~ ) ] - L  ~1) 

Thus, for  the spec t r a l  dependence of the quantum yield of the compounds under considera t ion  we obtain a s imple  
express ion  that takes  account of e lec t ron  sca t t e r ing  with e lec t ron-hole  pa i r  fo rmat ion  and the i r  mult iple  s c a t t e r -  
ing by phonons.  

3. Let us analyze  qual i tat ively the effects  resu l t ing  f rom e - p  sca t t e r ing  p r o c e s s e s .  To do this we c o m -  
pa re  the spec t ra]  dependences of the quantum yield computed with and without taking_account of these  p r o c e s s e s .  
The exclusion of the e - p  in teract ion is achieved by the passage  to the l imi t  lp ---~,  n ~ 0 .  Here  just the e x p r e s -  
sion in the square  b racke t s  changes in (9), while the re la t ionships  (10) and (11) take the f o r m  

Ge(~; E) = (1 - -  Re) ~le/2 (i + ~[e), (12) 

f/r e (~.; E0, E) = O e (~; E) (1 q- r0 q- a-10e -[- loe/le)[(1 q- to) (1 + c~lo,) (1 + loe/le)]-'. (13) 

As liw + E i changes f rom the vacuum level  E v to the threshold  of e l e c t r o n - h o l e  pa i r  format ion,  Ge(Ce;15w + E i) 
g rows  as (1 - R e ) / 2 .  As the photon energy  r i s e s  fur ther ,  the e - e  sca t t e r ing  p r o c e s s e s  s t a r t  to play a governing 
ro le  in the behavior  of G e. 
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Now, let us examine the probabili ty G(a; ti oa+Ei-nEp) in (9). Near  the photoemission threshold,  e - p  
interact ion resu l t s  in part  of the excited e lec t rons  leaving the emiss ion process  (as is depicted in (9) by the 
shift of the energet ic  argument for  G by nEp). As the e lec t ron energy r i ses  above the vacuum level ,  the i r  
energy losses  in the e - p  scat ter ing acts become less  substantial,  and the chaotization effects of the direct ions 

N ' of electron motion acquire importance.  This is easi ly seen if ~ f l -  l/lp is r epresen ted  in the form 

V lp (~ + 1) + l e 
Vi--~/lp---- laCa+l)+le(-~+2) (14) 

In the domain of "pure e - p  interact ion n ]//1 -- l / lp  =(n  + 2) -lj2 , so that for  large  n the probabil i ty G can be close 

to one. If the path length [ e is of the same order  as lp, then G(a; E -~Ep)  ~ G e ( a ,  E), i .e . ,  the e - p  interact ion 
exer ts  no noticeable influence on photoelectron t ranspor t .  

Since a change in a~ is accompanied by a significant change in the spectral  composit ion of the excited 
e lect rons ,  then under favorable conditions the appearance of singulari t ies due to the effect  of e - e  and multiple 
e - p  scat ter ing p rocesses  can be expected in the dependence Y(~). Th i s  means that in pr inciple  it is possible 
to obtain cer ta in  information about the p rocesses  of excited e lec t ron  scat ter ing in a solid on the basis of the 
integral  cha rac te r i s t i c s ,  for  instance, the spectra l  dependence of the quantum yield.  
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