

TOMSK POLYTECHNIC UNIVERSITY

NPP ECONOMIC EFFICIENCY

ECONOMIC INDICATORS

- NPP capital costs
- Generating electricity and heat costs
- Total cost
- Capacity factor

SPECIFIC CAPITAL COSTS

$$k_{sp} = K/N_{el}^{inst}$$
, rub / kW

K - capital costs, [rub]

Nel - installed electrical capacity, [kW]

SPECIFIC CAPITAL COSTS DEPENDS ON

- Type of power plant
- Working fluid properties
- Type of coolant-moderator and properties
- Electrical capacity of the NPP and single power unit

DEPENDENCE OF SPECIFIC CAPITAL COSTS ON CAPACITY

INCREASE OF SPECIFIC CAPITAL COSTS

Additional capital investments in NPP

- Plant safety system
- □ Nuclear waste dump
- Decommissioning of the nuclear power plants

POWER PLANT'S SPECIFIC CAPITAL COSTS WORLDWIDE, [US\$ / KW]

NPP	4610–7550
Coal Power plant	1870–4090
Gas turbine	540-1000
Combined-cycle plant	880-1600
Combined-cycle plant (coal gasification)	2860-4770
Geothermal power plant	2570-3580
Wind power plant	1340-2700
Solar power plant	3080-5100

SPECIFIC ELECTRICITY AND HEAT GENERATION COSTS

$$c_{el} = C_{el} / \Im$$

$$C_{heat} = C_{heat} / Q$$

Cel и Cheat - generating electricity costs, [Rub], or heat costs, [Rub]

- **Э** power generation, [kWh]
- Q heat production for the consumer, [GJ]

TOTAL ELECTRICITY GENERATION COST

$$C_{\rm el} = C_{\rm fuel} + C_{\rm c} + C_{\rm 0\&M}$$

- The cost per kWh is determined by:
 - Fuel costs
 - □ Construction cost (depreciation, repairs, safety systems modernization etc.)
 - Operation and maintenance (O&M) costs (salaries and wages, taxes, consumable materials etc.)

SPECIFIC ELECTRICITY GENERATION COST

$c_{\rm el} = C_{\rm el} / \Im = C_{\rm f} / \Im + C_{\rm c} / \Im + C_{\rm O&M} / \Im =$

 $=C_{f} + C_{c} + C_{O&M}$

SPECIFIC CONSTRUCTION COST

$$c_c = E K / (N_{el}^{inst} \cdot \tau_{inst})$$

 $c_c = p_a k_{sp} / \tau_{inst}$

WORLDWIDE ELECTRICITY GENERATION COSTS, [CENT / KWH]

Coal Power plant	2,4-3,3
Combined-cycle plant	1,6–2,55
NPP (VVER-1000)	1,8–3,24
Cogeneration plants	1,2-2,8

SPECIFIC ELECTRICITY / HEAT GENERATION COSTS

Cost depends on amount of generated electricity or heat (generating equipment performance)

ELECTRICITY TARIFFS

- Prices may exceed generating electricity cost by 1.5 times
- Fraction of tariff goes to decommissioning fund of NPP

CAPACITY FACTOR

$$CF = \frac{\partial_{yr}}{(N_{yr}^{inst} \cdot \tau_{yr})} \cdot 100 \%$$
$$\frac{\partial_{yr}}{\partial_{yr}} = N^{mean} \cdot \tau_{yr}$$

 $\exists \partial_{yr}$ – amount of electricity generated during the year

- Generally, N^{mean} < N^{inst}
 - Power reduction is due
 - planned and unplanned shutdowns of equipment
 - □ load limits in accordance with the dispatch load schedule, etc.

ANNUAL NUMBER OF HOURS OF USE OF INSTALLED CAPACITY

$\tau_{inst} = \beta_{yr} / N_{el}^{inst} = CF \cdot \tau_{yr}$

CAPACITY FACTOR

- Global average CF 87 %
- Finnish NPP "Loviisa" (VVER-440)
 - CF 95 96 %

OPTIMIZATION CRITERION

NPP CLASSIFICATION

THANK YOU FOR YOUR ATTENTION