

TOMSK POLYTECHNIC UNIVERSITY

NUCLEAR POWER PLANT EFFICIENCY

NPP ENERGY BALANCE

- Ein heat/energy released in the reactor core
- Eout electrical power output
- Heat Losses:
 - \Box In the main (first) coolant circuit $\Delta \mathbf{q}_{\mathbf{lc}}$
 - \Box In the condenser $\Delta \mathbf{q}_{\mathbf{c}}$
 - In pipelines $\Delta \mathbf{q}_{pipes}$
 - Mechanical (friction) loss in the turbine $\Delta \mathbf{q}$ tur
 - \square In the electrical generating set $\Delta \mathbf{q}_{eg}$

NPP THERMAL EFFICIENCY

Elements:

- Efficiency factor
- Heat rate
- □ Fuel-consumption rate

NPP EFFICIENCY

$$\eta_{npp} = \frac{N_{el.}}{Q_{total}}$$

- The efficiency factor of a power plant is the percentage of the total amount of energy produced in the reactor that is converted into electricity
- The remaining energy is usually lost to the environment:
 - Steam generating facilities loss (reactor, steam generator)
 - Pipes loss
 - Turbine loss

ONE-CIRCUIT NPP EFFICIENCY

$$\eta_{npp} = \eta_{el} \cdot \eta_{pipes} \cdot \eta_{rs}$$

5

TWO-CIRCUITS NPP EFFICIENCY

 $\eta_{npp} = \eta_{el} \eta_{pipes}^{II} \eta_{sg} \eta_{pipes}^{I} \eta_{rs}$ 6

THREE-LOOP NPP EFFICIENCY

REACTOR SYSTEM EFFICIENCY

 $\eta_{rs} = \frac{Q_{rs}}{Q_{rs}}$

PIPES EFFICIENCY

$$\eta_{pipes} = \frac{Q_{rs'}}{Q_{rs}}$$

EFFICIENCY OF FIRST LOOP PIPES

 $\eta_{pipe}^{1} \ge 0,99$

EFFICIENCY OF II AND III LOOP PIPES

$$\eta_{pipe}^{II} = 0,97 \div 0,98$$

$$\eta_{pipe}^{III} = 0,97 \div 0,98$$

STEAM GENERATOR EFFICIENCY

$$\eta_{sg} = \frac{Q_{sg}}{Q_{rs'}}$$

Includes

Environmental heat loss (<1%)</p>

Steam generator blowdown water loss

$$Q_{bd} = G_{bd}(h_s^{I} - h_{fw})$$

INTERMEDIATE HEAT EXCHANGER EFFICIENCY

Environmental heat loss

NPP EFFICIENCY

$\eta_{npp-\text{Gross Efficiency}}$

Does not include consumption of electricity for own needs (service power)

SERVICE POWER

Nsp-Service Power

- Consists of:
 - Pump drives
 - Common plant systems
 - Electric heaters
 - Instrumentation and controls
 - Valve drives
 - etc.

SERVICE POWER COEFFICIENT

$$\beta_{sp} = \frac{N_{sp}}{N_{el}}$$

$$\beta_{sp} = 0,05-0,07$$

- Values can be found in a reference book
- 5 7% of NPP generated electricity is consumed for NPP own needs (Service power)

NPP NET EFFICIENCY

$$\eta_{npp}^{net} = \frac{N_{el} - N_{sp}}{Q_{total}}$$

$$\eta_{npp}^{net} = \eta_{npp} (1 - \beta_{sp})$$

NUCLEAR POWER UNIT EFFICIENCY (TURBINE INSTALLATION K-500-60/3000)

NPP gross efficiency

$$\eta_{npp} = \frac{N_{el.}}{Q_{total}} = \frac{1000}{3200} = 0,313$$

NPP net efficiency

$$\eta_{npp}^{net} = \frac{N_{el} - N_{sp}}{Q_{npp}} = \frac{1000 - 70}{3200} = 0,291$$

 $\eta_{npp}^{net} = \eta_{npp} (1 - \beta_{sp}) = 0,313(1 - 0,07) = 0,291$

NPP HEAT RATE

$$q_{npp} = \frac{Q_{total}}{N_{el}} = \frac{1}{\eta_{npp}}$$
$$q_{npp} = \frac{1}{\eta_{npp}} = \frac{1}{\eta_{npp}} = \frac{1}{0,312} = 3,21$$
$$q_{npp} = \frac{3600}{\eta_{npp}} = \frac{3600}{0,312} = 11,5 \cdot 10^3 \frac{\text{kJ}}{\text{kW} \cdot hr}$$

SPECIFIC CONSUMPTION OF BURNUP NUCLEAR FUEL

$$b_{nf} = \frac{B_{nf}}{E} = \frac{B_{nf}}{Q_{total} \cdot \eta_{npp}} = \frac{B_{nf}}{Q_{nf}B_{nf}\eta_{npp}} = \frac{1}{Q_{nf}\eta_{npp}}, kg / kJ$$

Bnf – rate of consumption of burnup fuel

E – electrical power output

SPECIFIC CONSUMPTION OF BURNUP NUCLEAR FUEL IN KW-HR

$$b_{nf} = \frac{3600}{Q_{nf}\eta_{npp}}, \frac{kg}{kW \cdot hr}$$

HEAT GENERATED FROM BURNUP FUEL

- Fission of 1 kg U-235 generates 7,9 · 10¹⁰ kJ
- During operation 10-20 % of nuclear fuel is converted into non-fissionable isotope U-236, Pu-240

$Q_{nf} = 6,7 \cdot 10^{10} \text{ kJ/kg}$

SPECIFIC CONSUMPTION OF BURNUP NUCLEAR FUEL

$$b_{nf} = \frac{3600}{Q_{nf}\eta_{npp}} = \frac{3600}{6,7\cdot10^{10}\eta_{npp}} = \frac{0,0537\cdot10^{-6}}{\eta_{npp}}kg / (kW\cdot hr)$$

To consider service power, should change gross efficiency to net

NHPP HEAT EFFICIENCY

Elements:

- □ Electricity production
- Heat production for customers

NHPP ELECTRIC EFFICIENCY

$$\eta_{npp}^{\text{el}} = \frac{N_{el}}{Q_{total} - Q_{hc} / (\eta_{hc} \cdot \eta_{losses})}$$

 \blacksquare η_{losses} - efficiency which includes losses in heat exchangers and pipes from turbine to heat consumers

HEAT USED FOR ELECTRICITY GENERATION

$$Q_{total}^{el} = Q_{total} - \frac{Q_{hc}}{\eta_{hc} \cdot \eta_{losses}}$$

$$Q_{total} = Q_{nf} B_{nf}$$

SPECIFIC HEAT RATE FOR ELECTRICITY GENERATION

el $\boldsymbol{\mathcal{L}}_{total}$ q_{npp}^{el} \overline{N} ,

SPECIFIC NUCLEAR FUEL CONSUMPTION FOR ELECTRICITY GENERATION

$$b_{nf}^{el} = \frac{0,0537 \cdot 10^{-6}}{\eta_{npp}^{el}} kg / (kW \cdot hr)$$

To consider service power, should change gross efficiency to net

NHPP HEAT EFFICIENCY

 $\eta_{npp}^{heat} = \eta_{hc} \cdot \eta_{losses}$

SPECIFIC CONSUMPTION OF BURNUP NUCLEAR FUEL FOR HEAT PRODUCTION

$$b_{nf}^{\text{heat}} = \frac{1}{6,7 \cdot 10^{10} \eta_{NHPP}^{heat}} = \frac{0,01}{\eta_{NHPP}^{heat}}, g/\text{GJ}$$

To consider service power, should change gross efficiency to net

THANK YOU FOR YOUR ATTENTION