NPP Steam Generators

Heat transfer with single-phase coolants in NPP SGs

OUTLINE

Heat transfer: nonmetallic coolant flow Heat transfer: metallic coolant flow

Formula selection algorithm for calculation of heat transfer in single-phase flow

General equation for nonmetallic fluids (circular channel)

Turbulent flow of fluids and gases in the range $Pr = 0.5 \dots 200$ and $Re = 10^4 \dots 10^6$

$$Nu_0 = \frac{0,023 \cdot \text{Pr} \cdot \text{Re}^{0,8} \cdot C_t}{1+2,14 \cdot \text{Re}^{-0,1} \cdot (\text{Pr}^{0,7}-1)}$$

Here Re is the Reynolds number; *Pr* is the Prandtl number; C_t is the allowance for non-isothermal flow

Allowance for non-isothermality C_t

Notes: a) n=0.11 – at fluid heating; b) n=0.25 – at fluid cooling; B) Pr_f, Pr_{wall} – Prandtl number at mean temperature of the fluid and tube wall, correspondingly.

Rough calculation algorithm of C_t allowance

- 1. Determine representative temperatures of coolant t_1 and working fluid t_2
- 2. Identify wall temperature $t_{wall} \sim t_{wall} = (t_1 + t_2)/2$
- 3. Determine thermal physical properties at temperature t_{wall}
- 4. Calculate allowance C_t
- 5. Calculate heat transfer coefficient on the working fluid side
- 6. Calculate overall heat transfer coefficient
- 7./Calculate specific heat flux q
- 8. Calculate t^{cl}_{wall} (design temperature)
- 9. Compare t^{cl}wall and twall

Formulas for superheated steam (circular channel)

Turbulent flow in the range of Prandtl numbers from 0.5 to 200 and Reynolds numbers from 10^4 to 10^6

$$Nu_0 = 0,028 \cdot \text{Re}_{cm}^{0,8} \cdot \text{Pr}_{cm}^{0,4} \cdot (v_{\mathcal{H}}/v_{cm})^n$$

Notes:
a) n=1.15 – at coolant heating;
b) n=2.3 – at coolant cooling;
c) v_f, v_{tw} – specific volumes of steam at mean temperature of fluid flow and tube wall, correspondingly.

Formulas for nonmetallic coolants (*longitudinal* flow over tube bundle)

$$Nu = \varepsilon \cdot Nu_0$$

Here Nu_0 – Nusselt number by the formula for circular channel; ϵ – correction factor

$$\varepsilon = 1, 1 \cdot \left(\frac{d_h}{d_{out}}\right)^{0,1}$$

Formulas for nonmetallic coolants (crossflow over tube bundle)

$$Nu = C_Z \cdot Nu_0$$

Here Nu_0 is the Nusselt number for a single tube in the centre of a bundle (crossflow); C_z – correction factor:

$$Z_{z}=1,032-0,559/z+0,2078/z^{2}$$

- in-line array;

$$C_z = 1,048 - 0,712/z + 0,2837/z^2$$

- staggered array;

Dependence of C_z on z for in-line (corridor) array

Z	1	2	3	4	5	6	7
C _Z	0.681	0.804	0.869	0.905	0.929	0.945	0.956

10

Formulas for metallic coolants (flow in tubes)

This type of heat transfer is the most thoroughly studied. Empirical formulas:

$$Nu = 5 + 0,025 \cdot Pe^{0,5}$$
 npu $Pe < 4 \cdot 10^{3}$

For contaminated coolants (emergency mode) the following formula types are recommended:

 $Nu \approx 3 + 0,014 \cdot Pe^{0,8}$ $npu \ Pe < 4 \cdot 10^4$

Formulas for metallic coolants (longitudinal flow over tube bundle)

$$Nu = 7,55 \cdot x - 20 \cdot x^{-13} + 0,041 \cdot x^{-2} \cdot Pe^{0,56+0,19 \cdot x}$$

Here \mathbf{x} is the relative pitch (spacing) of the array (grid):

$$x = S_1 / d_{out}$$

$$x = \sqrt{S_1 \cdot S_2} / d_{out}$$

- triangular, square arrays;
 - staggered, in-line (corridor) arrays;

Thank you for attention