## **ГАЗИФИКАЦИЯ ТВЕРДЫХ ТОПЛИВ**Лекция 4. Гетерогенные реакции газификации твердых топлив.

Лектор:

Доцент НОЦ И.Н. Бутакова Слюсарский Константин Витальевич

#### Входной контроль

- Что такое гетерогенная реакция?
- Как скорость реакции зависит от температуры?
- Как скорость реакции зависит от степени конверсии?
- Какие режимы гетерогенных реакций сущестуют?
- Какие существуют методы определения характеристик гетерогенных химических реакций?

#### Гетерогенные реакции газификации

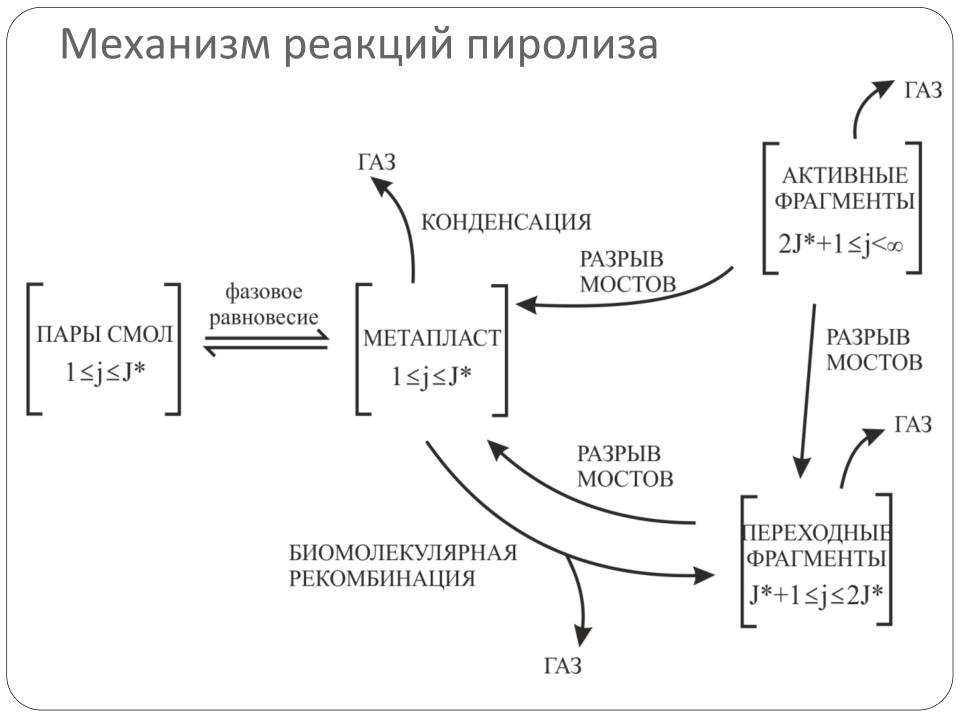
**Гетерогенные реакции** – это химические реакции, действующие вещества в которых находятся в различной фазе.

При газификации твердых топлив основными гетерогенными химическими реакциями являются процессы пиролиза и реакции углерода топлива с компонентами газообразной окислительно-восстановительной среды.

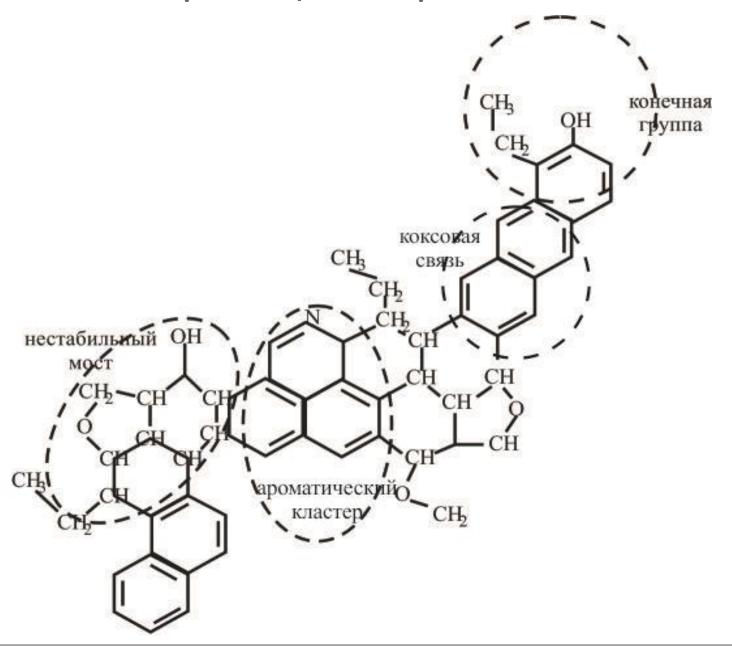
Основные гетерогенные реакции газификации следующие:

Топливо = 
$$C_xH_y + CO_2 + CO + H_2 + H_2O$$
  
 $C + O_2 = CO_2$   
 $2C + O_2 = 2CO$   
 $C + H_2O = CO + H_2$   
 $C + 2H_2O = CO_2 + 2H_2$   
 $C + CO_2 = 2CO$   
 $C + 2H_2 = CH_4$ 

#### Механизм реакций пиролиза


**Пиролиз** – процесс термического разложения органической части топлива при нагреве.

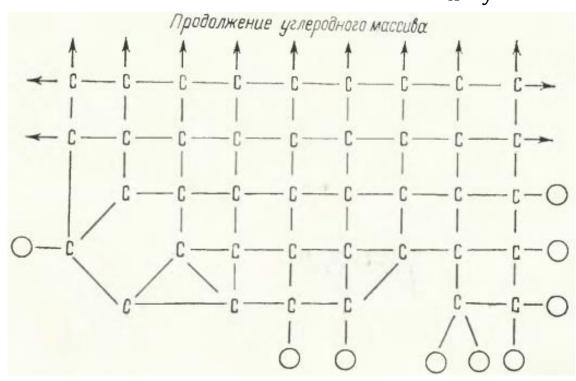
Пиролизом обычно называют широкий спектр процессов, включающих возгонку летучих, процессы термодеструкции органической части топлива и пр., а не только процессы разложения топлива в условиях отсутствия и/или недостатка кислорода.


$$C_x H_y O_z + \frac{x - z}{2} O_2 \to x \cdot CO + \frac{y}{2} H_2$$

$$C_x H_y O_z + (x - z) CO_2 \to x \cdot CO + \frac{y}{2} H_2$$

$$C_x H_y O_z + (x - z) H_2 O \to x \cdot CO + \left(\frac{x + y}{2 - z}\right) H_2$$




#### Механизм реакций пиролиза



#### Механизм окисления углерода

Горение углерода протекает в несколько ступеней:

- Адсорбция кислорода: C + 0,5 О2 = C(O)
- 2. Химические реакции углерода с кислородом:  $C(O) = C_x O_v$
- 3. Десорбция продуктов реакции:  $C_xO_v = CO + CO_2$



#### Температурная зависимость скорости гетерогенных реакций

В общем виде, уравнение для зависимости скорости гетерогенной химической реакции от температуры может быть записано как:

$$r = A_0 \cdot e^{\frac{-E}{RT}} \cdot p_a \cdot f(\alpha)$$

$$k_i = k^* \exp\left[-\frac{E_i}{RT} \left(1 - \frac{T}{T^*}\right)\right]$$

В зависимости от количества одновременно учитываемых реакций, выделяют три метода расчета:

$$\frac{dY}{dt} = (Y_0 - Y)A_k T^b \exp\left(-\frac{E_k}{RT}\right) \quad y200b \xrightarrow{k_1} (1 - Y_1)\kappa \kappa \kappa c + Y_1 nemy ue$$

$$y200b \xrightarrow{k_2} (1 - Y_2)\kappa \kappa \kappa c + Y_2 nemy ue$$

$$1 - \frac{V}{V^*} = \int_0^\infty \exp\left(-k_0 \int_0^t e^{-E/RT} dt\right) f(E) dE$$

#### Методы расчета скорости реакции

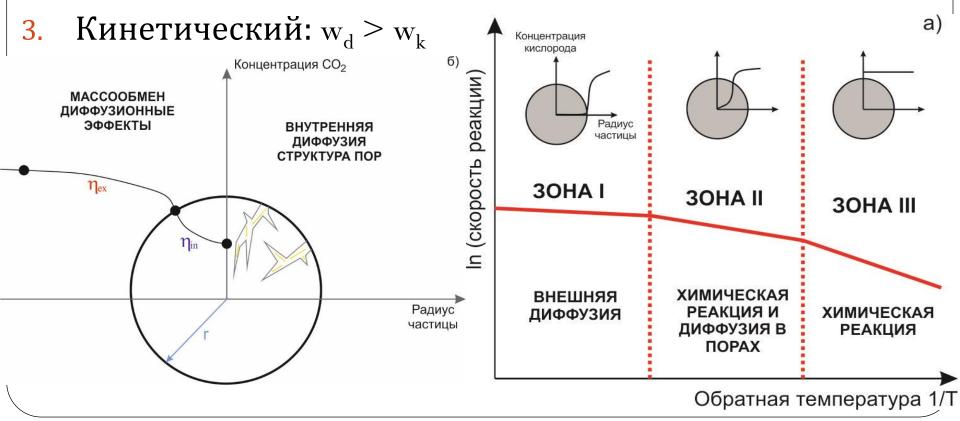
Методы расчета:

1. Простой реакции:

$$\frac{dY}{dt} = (Y_0 - Y)A_k T^b \exp\left(-\frac{E_k}{RT}\right)$$

2. Двух параллельных реакций:

уголь 
$$\longrightarrow$$
  $(1-Y_1)$  кокс  $+Y_1$  летучие   
уголь  $\longrightarrow$   $(1-Y_2)$  кокс  $+Y_2$  летучие


3. Распределенной энергии активации;

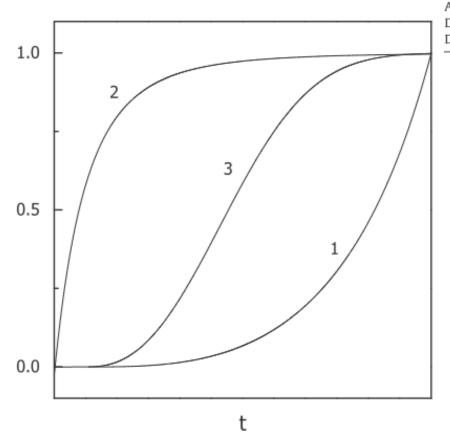
$$1 - \frac{V}{V^*} = \int_0^\infty \exp\left(-k_0 \int_0^t e^{-E/RT} dt\right) f(E) dE$$

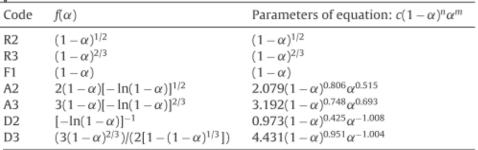
#### Режимы протекания химических реакций

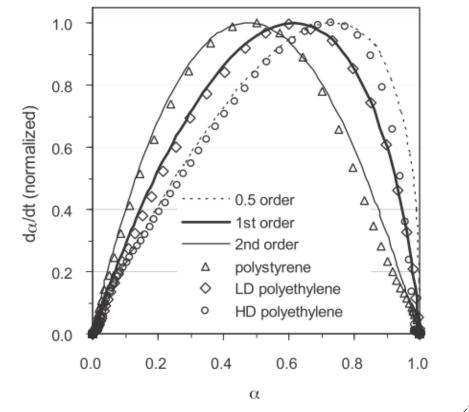
Режим реакции определяется соотношением скорости диффузии  $w_d$  исходных веществ к реакционной поверхности и скоростью реакции  $w_{\nu}$ :

- 1. Внешнедиффузионный:  $w_d < w_k$
- 2. Смешанный (внутреннидиффузионный):  $w_d \approx w_k$




#### Кинетические функции


Вид кинетической функции определяется физико-химическими особенностями процесса газификации. Определяется режимом протекания процесса.


$$f(\alpha) = \alpha^m (1 - \alpha)^n [-\ln(1 - \alpha)]^p$$

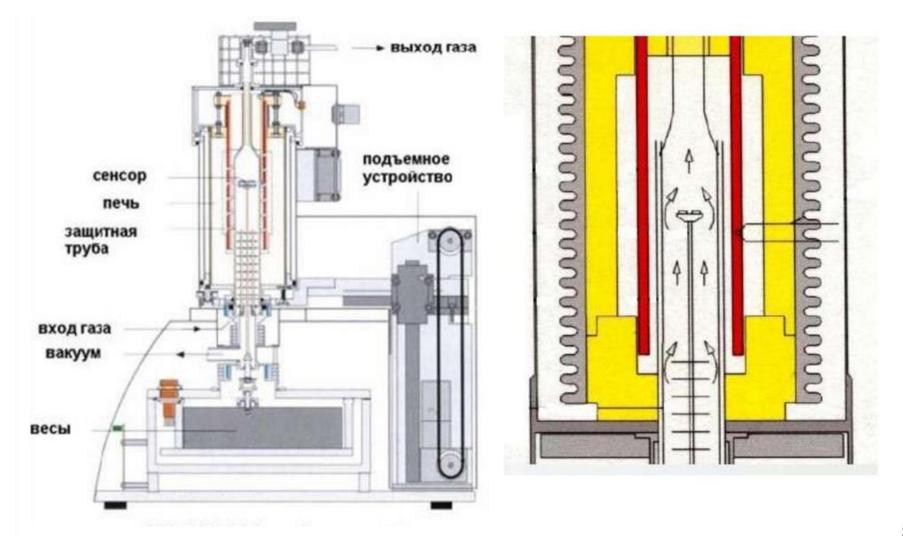
| $f(\alpha)$                                    | $g(\alpha)$                      |
|------------------------------------------------|----------------------------------|
| $4\alpha^{3/4}$                                | $\alpha^{1/4}$                   |
| $3\alpha^{2/3}$                                | $\alpha^{1/3}$                   |
| $2\alpha^{1/2}$                                | $\alpha^{1/2}$                   |
| $2/3\alpha^{-1/2}$                             | $\alpha^{3/2}$                   |
| $1/2\alpha^{-1}$                               | $\alpha^2$                       |
| $1-\alpha$                                     | $-\ln(1-\alpha)$                 |
| $4(1-\alpha)[-\ln(1-\alpha)]^{3/4}$            | $[-\ln(1-\alpha)]^{1/4}$         |
| $3(1-\alpha)[-\ln(1-\alpha)]^{2/3}$            | $[-\ln(1-\alpha)]^{1/3}$         |
| $2(1-\alpha)[-\ln(1-\alpha)]^{1/2}$            | $[-\ln(1-\alpha)]^{1/2}$         |
| $3/2(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}$ | $[1-(1-\alpha)^{1/3}]^2$         |
| $3(1-\alpha)^{2/3}$                            | $1 - (1 - \alpha)^{1/3}$         |
| $2(1-\alpha)^{1/2}$                            | $1 - (1 - \alpha)^{1/2}$         |
| $[-\ln(1-\alpha)]^{-1}$                        | $(1-\alpha)\ln(1-\alpha)+\alpha$ |

### Зависимость скорости реакции от кинетической функции

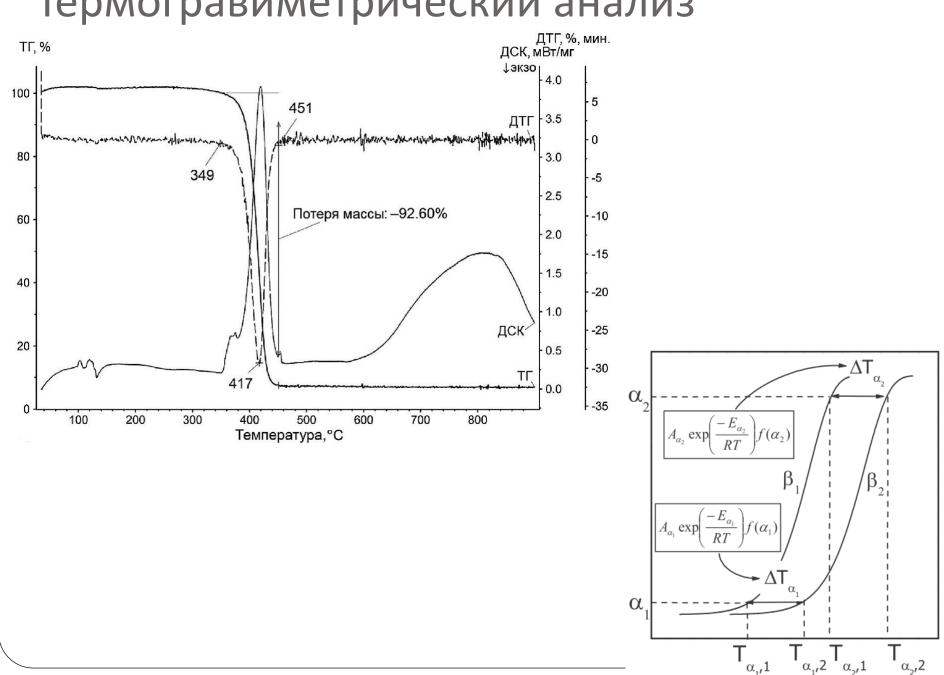







#### Вид частицы топлива

| Группы<br>коксовых остатков      | Группа 1    | Группа 2                           | Группа 3                      |
|----------------------------------|-------------|------------------------------------|-------------------------------|
| Схематичное<br>изображение       |             |                                    |                               |
| Тип структуры                    | Ценосфера   | Мезосфера                          | Инертоид                      |
| Форма коксового<br>остатка       | Сферическая | Сфероидальная<br>неправильная      | Прямоугольная<br>неправильная |
| Пористость                       | > 80 %      | > 50 %                             | < 50 %                        |
| Форма пор                        | Сферическая | Произвольная                       | Сферическая<br>растянутая     |
| Толщина стенки                   | < 5 мкм     | Произвольная                       | > 5 мкм                       |
| Доминирующий<br>структура в угле | Витринит    | Смесь<br>витринита<br>и инертинита | Инертинит                     |
| Степень набухания                | > 1,3       | < 1,0                              | < 0,9                         |


### Экспериментальные методы исследования кинетики химических реакций

- 1. Экспериментальное определение скорости реакции.
- 2. Решение обратной задачи химического реагирования на основе экспериментальных данных.

#### Термогравиметрический анализ



#### Термогравиметрический анализ

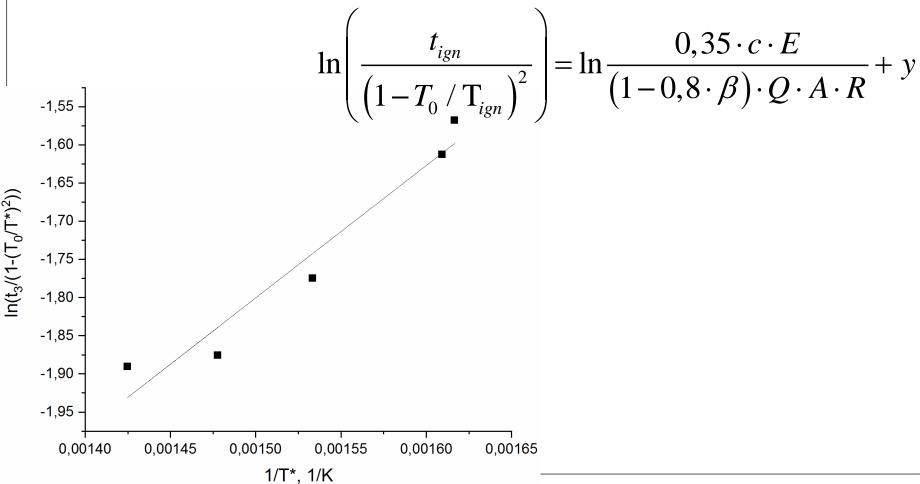


### Обработка результатов термического анализа

Основные уравнение:  $\frac{d\alpha}{dt} = A \exp\left(\frac{-E}{RT}\right) f(\alpha)$ 

Ур-е кинетической функции: 
$$g(\alpha) \equiv \int_0^\alpha \frac{d\alpha}{f(\alpha)} = A \int_0^t \exp\left(\frac{-E}{RT}\right) dt$$

Дифференциальный метод:  $\ln\left(\frac{\mathrm{d}\alpha}{\mathrm{d}t}\right)_{\alpha,i} = \ln\left[f(\alpha)A_{\alpha}\right] - \frac{E_{\alpha}}{RT_{\alpha,i}}$ 


Интегральный метод: 
$$\ln t_{\alpha,i} = \ln \left[ \frac{g(\alpha)}{A_{\alpha}} \right] + \frac{E_{\alpha}}{RT_i}$$

Конечная форма интегрального метода:

$$\ln\left(\frac{\beta_i}{T_{\alpha,i}^B}\right) = Const - C\left(\frac{E_{\alpha}}{RT_{\alpha}}\right)$$

### Решение обратной задачи теплопроводности и зажигания

Основные уравнение:  $c\rho \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2} + \frac{Q \cdot A}{c} \cdot \exp\left(\frac{-E}{RT}\right)$  Расчет времени зажигания:



# Спасибо за внимание!