РЕЛЕЙНАЯ ЗАЩИТА ТРАНСФОРМАТОРОВ

Выбор типа тр-ра зависит от

- Мощности
- Роли в энергосистеме
- Типа системы охлаждения (масляной, сухой, охлаждаемые негорючим жидким диэлектриком (совтол и др.))

При выполнении 3 необходимо учесть треб. её срабатывания при

- Междуфазных КЗ
- Обмотки и на выводах
- Межвитковых КЗ
- Внешних КЗ
- Различного рода перегрузках

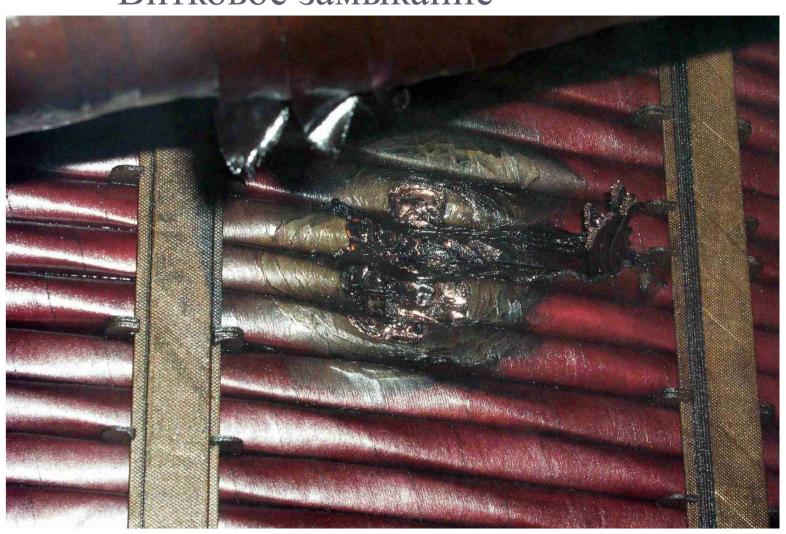
Блочный трансформатор на электростанции

Блочный трансформатор на электростанции

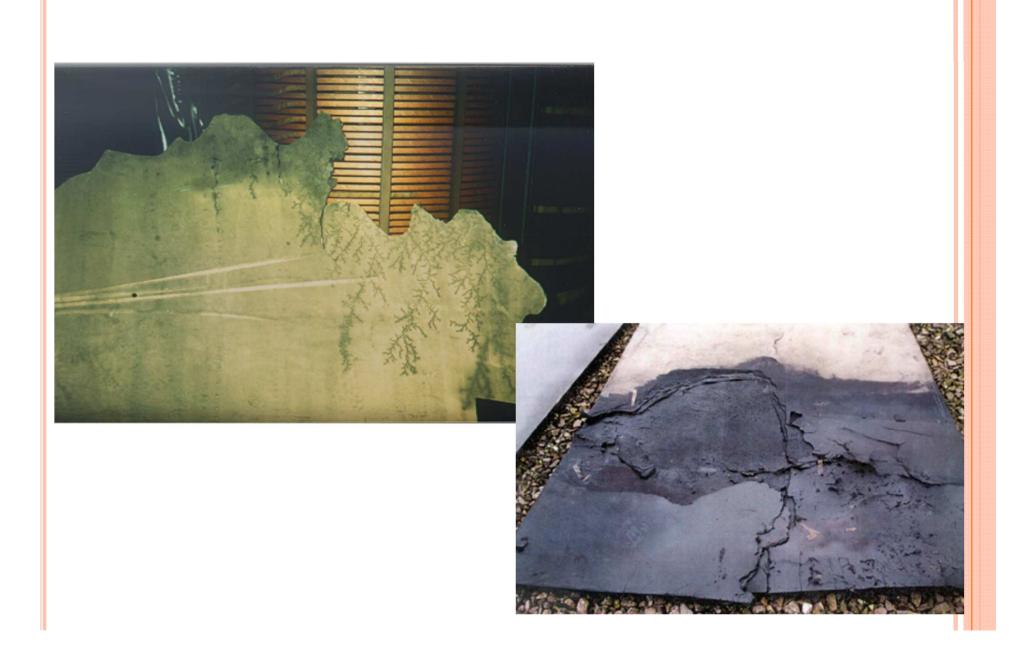
Понизительный трансформатор на подстанции

Группа однофазных трансформаторов на подстанции Ильково 500 кВ

Повреждения трансформаторов и автотрансформаторов


- Междуфазное КЗ.
- КЗ одной или двух фаз на землю.
- КЗ между витками одной фазы (межвитковое).
- Замыкание между обмотками разных напряжений.
- КЗ на вводах, ошиновке и в кабелях (междуфазное и на землю).
- «Пожар стали»

Короткое замыкание на вводах



Витковое замыкание

Ползущий разряд по планкам между фазами

Последствия междуфазных замыканий

Нарушения нормальных режимов работы Т и АТ

- Сверхтоки, проходящие через Т при повреждении связанных с ним элементов.
- Перегрузка.
- о Выделение из масла горючих газов.
- Понижение уровня масла.
- о Повышение температуры масла.

На 100 трансформаторов приходится 3-5 повреждений.

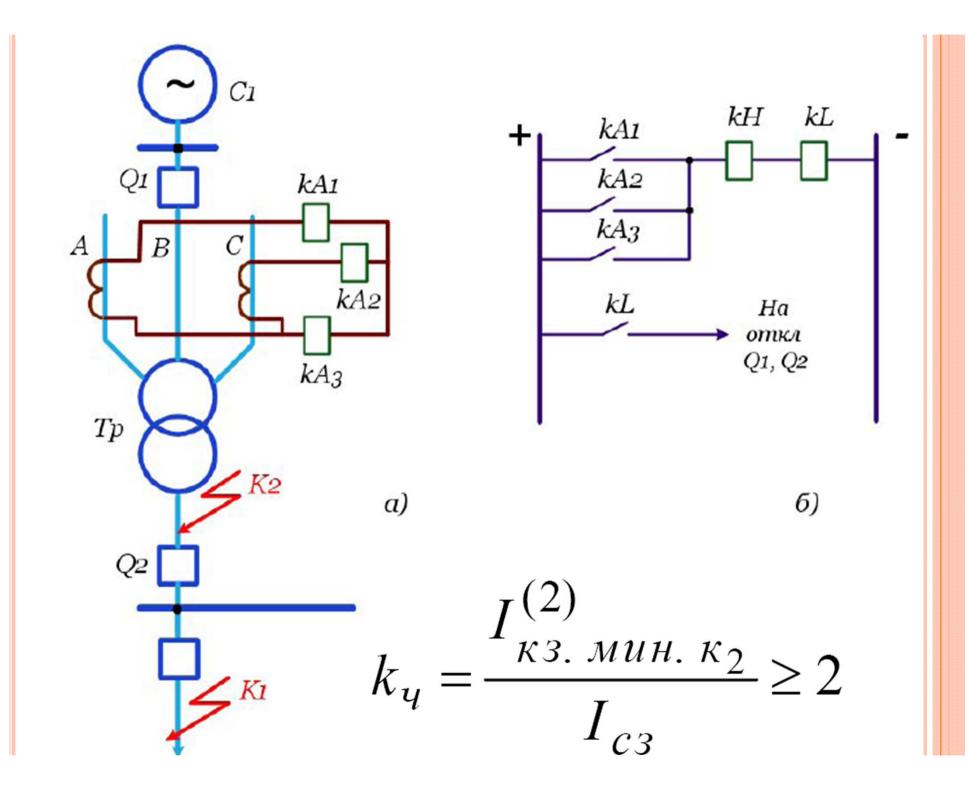
- \circ Витковая изоляция 60%.
- Отводы − 8%.
- Вводы -7%.
- \circ Главная изоляция 7%.
- Магнитопровод -2%
- **O** ...

Защита от внутренних повреждений (междуфазных КЗ)

- □ 2ступенчатая МТЗ (S<4000 кВА),1ст токовая отсечка;2ст МТЗ.
- □Продольная дифференциальная защита (S>4000 кВА);
- □Газовая защита (с масляной системой охлаждения при S>1000кBA.)

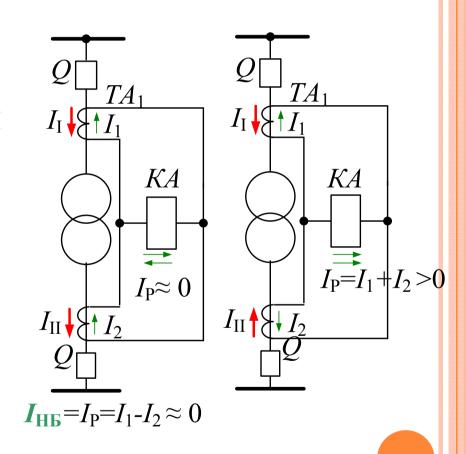
Токовая отсечка

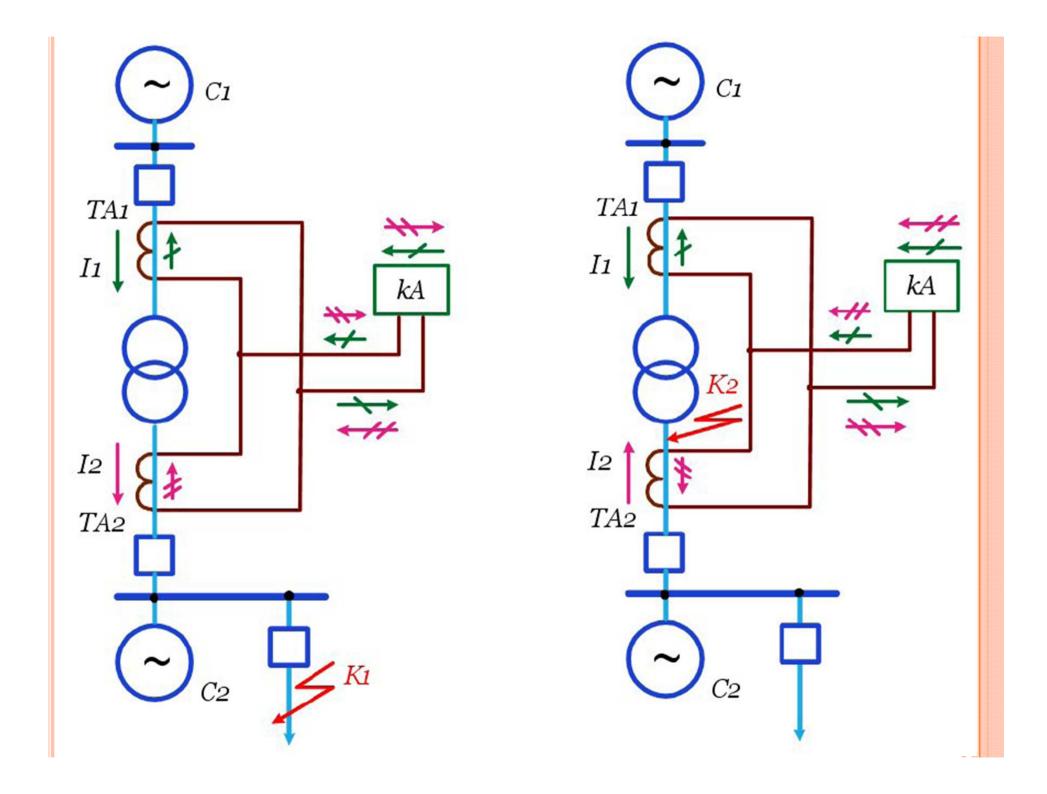
- Токовая отсечка устанавливается на трансформаторах со стороны питания.
- о ток срабатывания отстраивается от 3ф K3 на шинах **HH**


$$I_{c3} \ge k_{\scriptscriptstyle H} I_{\rm max.HH}^{(3)}$$

- 3 не должна срабатывать от броска тока намагничивания в момент включения Т под напряжение
- Из двух выбирается большее

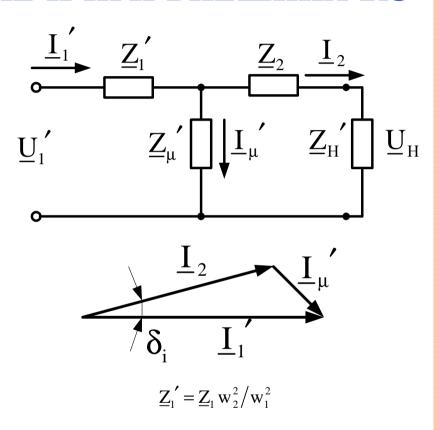
Токовая отсечка


 2 ступень отстраивается от мах рабочего режима


 Ч проверяется по 2х-ф КЗ в месте установки 3

Дифференциальная защита Т и АТ

- Принцип действия измерение разности токов двух (трех) сторон объекта.
- Область применения: применяется в качестве основной защиты для Т мощностью 4 МВА и выше.



ОСОБЕННОСТИ ВЫПОЛНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ ЗАЩИТ ТРАНСФОРМАТОРОВ ОБУСЛОВЛЕНЫ:

- о различием номинальных напряжений и токов сторон трансформатора,
- фазовым сдвигом между токами отдельных сторон трансформатора из-за различия схем соединения его обмоток,
- о броском тока намагничивания при включении Т или при восстановлении напряжения после отключения близкого КЗ.
- о небалансом в дифференциальной цепи при внешних однофазных КЗ.

Факторы, увеличивающие ток небаланса в нагрузочном режиме и при внешних КЗ

- Насыщение трансформаторов тока, что приводит к излишнему срабатыванию защиты.
- Погрешности ТА (конструктивные отличия ТА на сторонах ВН,СН, НН, различие характеристик намагничивания ТА на разных фазах и др.).

$$\underline{\mathbf{I}}_{1}' = \underline{\mathbf{I}}_{1} \mathbf{w}_{1} / \mathbf{w}_{2}$$

Торможение – загрубление уставки при увеличении сравниваемых токов.

Схемы и область использования дифференциальных токовых защит трансформаторов

Дифференциальные токовые защиты трансформаторов выполняются с использованием:

- 1. дифференциальной токовой отсечки, РТ-40 (устаревшее),
- 2. дифференциальная токовая защита с промежуточными быстронасыщающимися трансформаторами тока, реле РНТ-565 (устаревшее),
- 3. защита с реле, имеющими торможение, ДЗТ-11(устаревшее),
- 4. защита с реле ДЗТ-21,
- 5. защита с полупроводниковыми реле (например PCT-15, RET-316),
- 6. Микропроцессорные защиты (шкафы защит ШЭ1110, ШЭ1112...).

При выборе тока срабатывания защиты необходимо учитывать:

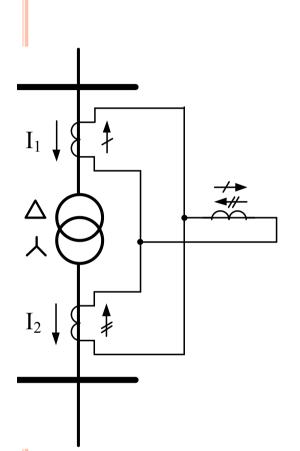
о1. токи небаланса

$$I_{c3} \ge k_{\scriptscriptstyle H} I_{\scriptscriptstyle HOM}$$

$$I_{c3} \ge k_{_{\it H}}(I'_{_{\it H}\it{O}} + I''_{_{\it H}\it{O}} + I'''_{_{\it H}\it{O}})$$

где $I_{H\delta}^{'}$ - составляющая тока небаланса, вызываемая погрешностью трансформаторов тока;

 $I_{\rm H \delta}^{''}$ - составляющая тока небаланса, вызываемая наличием устройства регулирования коэффициента трансформации силовых трансформаторов;


 $I_{H\delta}^{'''}$ - составляющая тока небаланса, вызываемая неточностью выравнивания вторичных токов в плечах защиты.

Из-за дискретизации стандартных значений к-тов трансформации

$$I'_{H\delta} = k_a k_{o\partial H} f_i I_{\text{max}}^{(3)}$$

$$I''_{H6} = \frac{\Delta U\%}{100} I^{(3)}_{BH.\,\text{max}}$$

 $\Delta U\%$ — половина диапазона рег-я РПН.

$$S := 16000 \cdot 10^3$$

$$Uk := 10$$

$$U_{BH} := 35.10^3$$

$$S_{W} := 16000 \cdot 10^{3}$$
 Uk := 10 $U_{BH} := 35 \cdot 10^{3}$ $U_{HH} := 10.5 \cdot 10^{3}$

$$I_{\text{NHOMBH}} := \frac{S}{U_{BH} \cdot \sqrt{3}}$$

$$I_{\text{HOMHH}} := \frac{S}{U_{\text{HH}} \cdot \sqrt{3}}$$

$$I_{HOMBH} = 263.932$$

$$I_{HOMHH} = 879.772$$

$$kCX_{BH} := \sqrt{3}$$

$$kCX_{HH} := 1$$

$$n_{BH} := \frac{500}{5}$$

$$n_{HH} := \frac{900}{5}$$

$$n_{BH} = 100$$

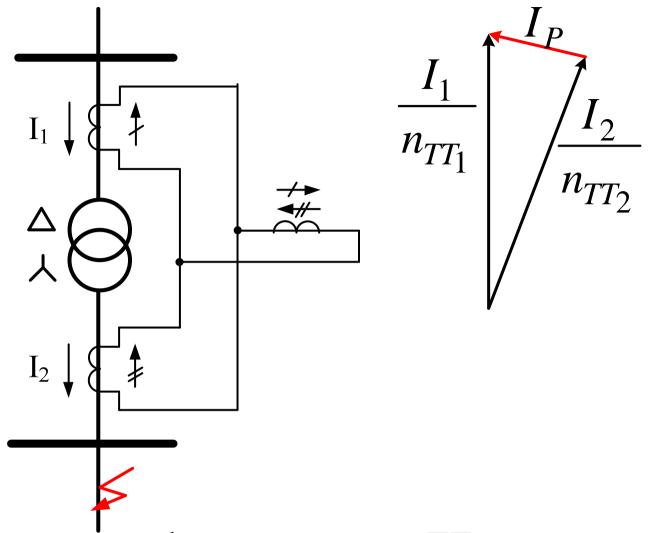
$$n_{HH} = 180$$

$$I_{\text{HBTBH}} \coloneqq \frac{I_{\text{HOMBH}} \cdot kCX_{\text{BH}}}{n_{\text{BH}}}$$

$$I_{\text{HTBTHH}} := \frac{I_{\text{HOMHH}} \cdot kCX_{\text{HH}}}{n_{\text{HH}}}$$

$$I_{HBTBH} = 4.571$$

$$I_{HTBTHH} = 4.888$$

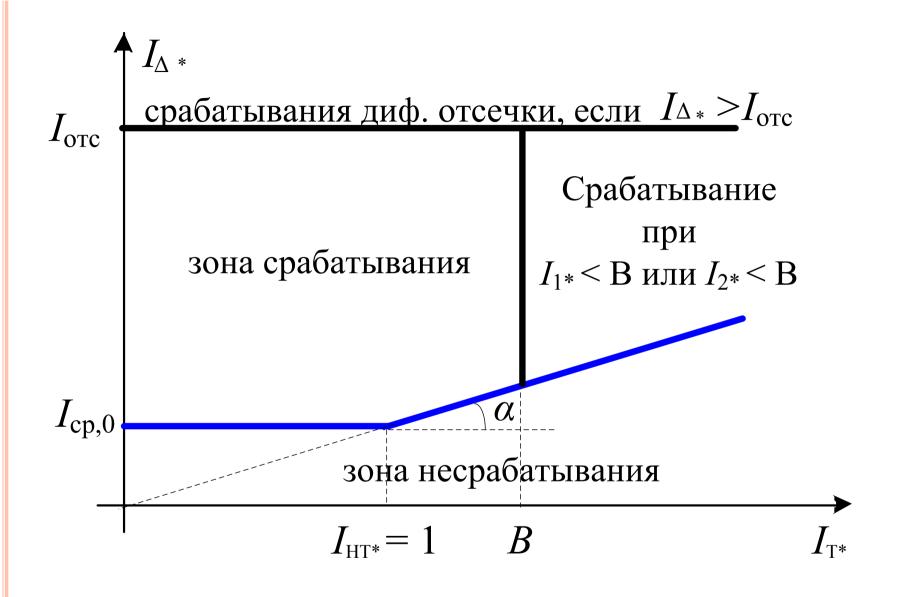

•2. Бросок тока намагничивания при включении Т или при восстановлении напряжения после отключения близкого КЗ

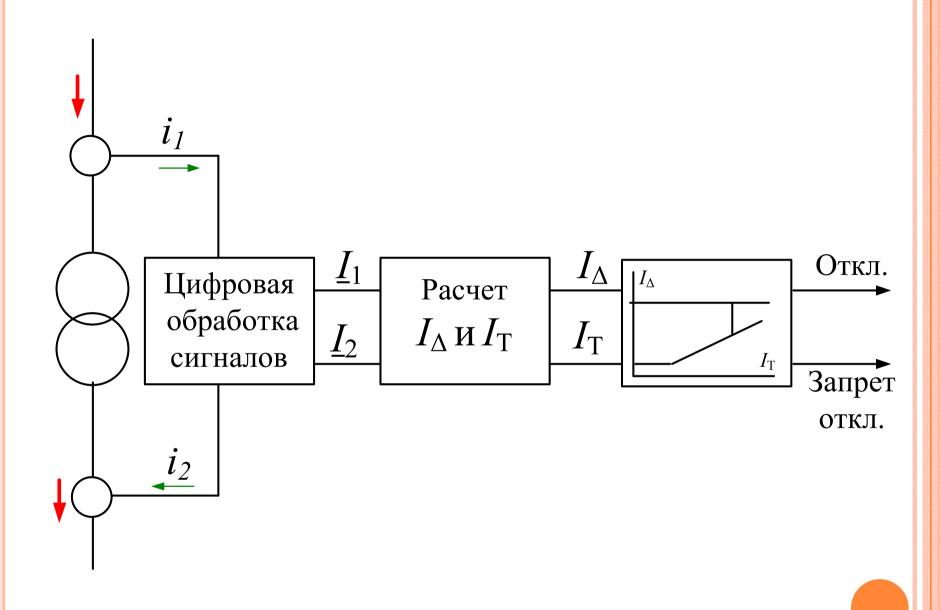
- 1. Практическая реализация первого способа состоит в том, что обмотка токового реле подключается к трансформаторам тока через специальный промежуточный трансформатор, называемый быстронасыщающимся трансформатором.
- За счет апериодической составляющей сердечник трансформатора насыщается и трансформации периодической составляющей в обмотку реле практически не происходит. Следовательно, на время существования броска тока намагничивания защита выводится из работы.
- В начальный момент возникновения короткого замыкания также возникает апериодическая составляющая, но время ее протекания составляет доли секунды и практически замедления срабатывания защиты не про-исходит;

• 2 способ - идентифицировать момент включения по наличию второй гармоники.

Использование данного признака предполагает введение дополнительного пускового элемента - реле отсечки, которое должно работать при больших кратностях первичного тока. При внутренних повреждениях, связанных с глубоким насыщением трансформаторов тока, во вторич-ном токе появляется вторая гармоника, что может привести к отказу защиты.

о3. Возможную неодинаковость схем соединения обмоток силового трансформатора.




Для устранения фазового сдвига ТТ на стороне Δ силового тр-ра соединяют в «звезду», а на стороне звезды в Δ . Т.е. выполняется обратный фазовый сдвиг вторичных І-ов

• Если элементная база защиты выполнена на микропроцессорной технике, то возникающую погрешность за счёт фазового сдвига компенсируется программным путём

3.2.7 Дифференциальная токовая защита трансформаторов блока комплекса IIIЭ 1111

Защита блочного трансформатора, входящая в комплекс ШЭ 1111, выполняется трехрелейной и включается на токи трех фаз. Защита подключается к трансформаторам тока, встроенным во вводы обмотки высшего напряжения блочного трансформатора и трансформатора собственных нужд и к трансформаторам тока в цепи генератора.

Рекомендуемый порядок расчета:

- Рассчитываются первичные токи для сторон защищаемого трансформатора при нулевом положении РПН, выбираются трансформаторы тока. Вторичные обмотки трансформаторов тока со всех сторон соединяются в схему звезды с нулевым проводом. Возможная неодинаковость модулей и фаз токов в плечах защиты из-за разной группы соединения обмоток защищаемого трансформатора устраняется в самом реле.
- 2. Определяются коэффициенты амплитудно-фазовой коррекции токов в плечах дифзащиты \dot{K}_1 , \dot{K}_2 , \dot{K}_3 как отношение номинального тока защищаемого силового трансформатора I_{TP} для каждой из сторон к первичному номинальному тока трансформатора тока .

Диапазон изменения K_1 , K_2 , K_3 от 0,1 до 1,0 с шагом 0,01.

- 3. Определяется начальный ток срабатывания реле $I_{CP,P\theta}$, который определяет чувствительность защиты при малых тормозных токах и выбирается с учетом:
- погрешностей трансформаторов тока;
- тока холостого хода трансформаторов напряжения при повышенном напряжении системы;
- изменения напряжения от $P\Pi H$. Типичное значение уставки принимается 0.3.
- 4.Определяется точка излома характеристики срабатывания. Типичное значение уставки $\mathbf{B} = 1,5$. При таком значении обеспечивается достаточная чувствительность к токам короткого замыкания в зоне рабочих токов.

5. Рассчитывается значение коэффициента торможения K_T , определяющим недействие защиты при внешних коротких замыканиях.

$$K_T > k_{OTC} I_{HE} / I_T$$
,

где

$$k_{otc} = 1.3$$

$$I_{HE} = k_{A\Pi EP} \times f_i \times k_{OZH} \times I_{MAKC}$$

$$k_{A\Pi EP} = 2$$

$$f_i = 0,1$$

$$f_i = 0.1$$
 $k_{O\!J\!H} = 0.5$

- коэффициент отстройки;
- расчетный ток небаланса при внешнем коротком замыкании;
- коэффициент, учитывающий наличие апериодической составляющей;
- допустимая погрешность трансформаторов тока в о.е.;
- коэффициент однотипности трансформаторов тока:

 \boldsymbol{I}_T

 $\dot{m{I}}_{1}$

 I_{Σ}

- максимальное значение тока внешнего короткого замыкания;
- ток торможения;

$$I_T = \sqrt{I_1 \times I_\Sigma \times \cos \alpha}$$
 - сквозное короткое замыкание;

$$I_T = 0$$
 - внутреннее короткое замы-
кание;

- ток первой обмотки трансформатора;
- для двух групп трансформаторов тока ток второй обмотки трансформатора;
- для трех групп трансформаторов тока геометрическая сумма токов второй и третьей обмоток трансформатора.

Диапазон уставок K_T от 0,3 до 0,7.

Типичное значение уставки -0.5. Более высокие значения K_T принимаются в случае резко различных условий работы трансформаторов тока при внешних коротких замыканий.

6. Рассчитывается дифференциальный ток срабатывания отсечки.

Дифференциальная токовая отсечка предназначена для надежного срабатывания защиты при внутренних коротких замыканиях в случае больших токов, когда из-за насыщения трансформаторов тока их полная погрешность может возрасти до 50%.

Диапазон уставок отсечки от $6 \times I_{HOM}$ до $12 \times I_{HOM}$

7. Производится отстройка от броска тока намагничивания.

Бросок тока намагничивания фиксируется за счет появления второй гармоники, величина которой должна быть не менее 10% от значения основной гармоники. При обнаружении броска тока намагничивания начальный ток срабатывания принимает значение I_{CPBKT} . Рекомендуемая уставка

$$I_{CPBKT} = 0.8I_{HOM}$$
.

8. Чувствительность защиты можно не проверять.

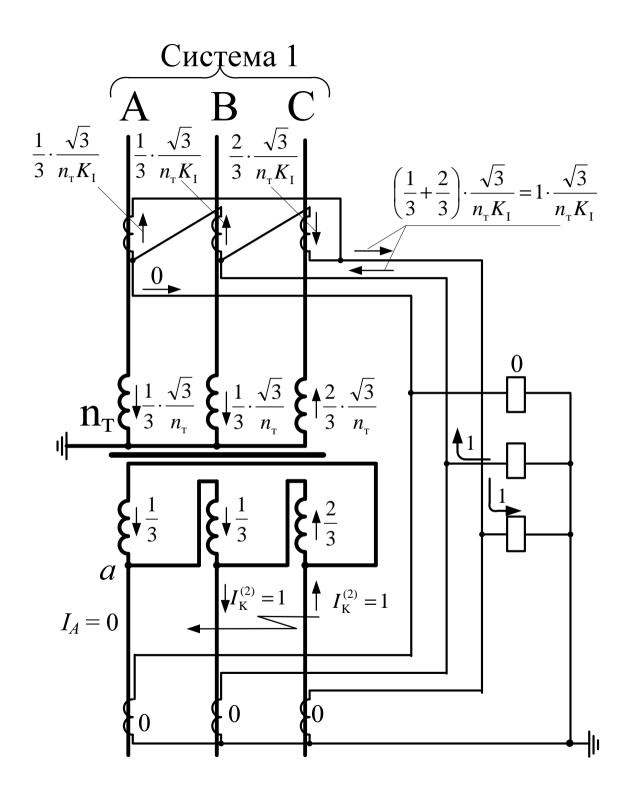
- 3. Параметры характеристики срабатывания цифровой дифференциальной защиты (рис. 2) трансформатора принимают согласно рекомендациям разработчика. Все величины определяются в относительных единицах от базисного тока Т с высшей стороны (номинальный ток трансформатора).
 - $I_{\text{ср,0*}} = 1,1 I_{\text{нб*}} \approx 0,3$ начальный ток срабатывания на первом горизонтальном участке характеристики. Определяется по условию отстройки от тока небаланса $I_{\text{нб}}$, можно изменять в диапазоне от 0,2 до 1,0. Причины возникновения тока небаланса: погрешности измерительных органов, разнотипные трансформаторы тока на сторонах ВН и НН, наличие РПН и т.д.
 - $I_{\text{HT*}} = 1$ уставку тока начала торможения (наклонного участка характеристики) примем равной единице.
 - B = 2 ток торможения блокировки, определяет переключение характеристики срабатывания ДТЗ с наклонного участка на вертикальный. Определяется исходя из отстройки от максимально возможного сквозного тока. Если $I_1 \ge B$ и $I_2 \ge B$ ДТЗ блокируется, так как это означает, что имеет место внешнее замыкание, при котором насыщаются трансформаторы тока, из-за чего дифференциальный ток через несколько миллисекунд после КЗ увеличивается, и точка попадает в зону срабатывания.

Если $I_1 \leq B$ или $I_2 \leq B$ — ДТЗ срабатывает.

Уставка B задаётся в диапазоне от 1,5 до 3,0 от $I_{\text{ном}}$.

- $I_{\text{отс}} = 7$ уставка тока дифференциальной отсечки предназначена для исключения замедления работы ДТЗ (около 0,03—0,04 с) при больших токах внутреннего повреждения. Отстраивается от броска тока намагничивания и от тока небаланса при внешнем КЗ.
 - Уставка задаётся в диапазоне от 6,5 до 12,0 от $I_{\text{ном}}$.
- $K = tg(\alpha) коэффициент торможения, равный отношению приращения дифференциального тока к приращению тормозного тока. Значение уставки рекомендуется рассчитывать по выражению$

$$K = K_{\text{orc}} \frac{I_{\Delta^*} - I_{\text{cp,0}}}{I_{T^*} - I_{\text{HT}^*}},$$

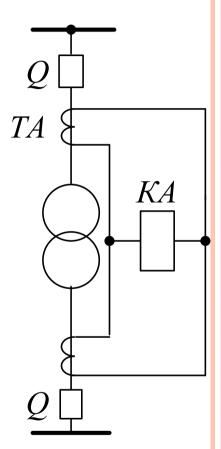

где $K_{\text{отс}}=1,1$ — коэффициент отстройки, $I_{\Delta^*}=0,4$ $I_{\text{скв}^*}$ — расчётный дифференциальный ток, вызванный протеканием по защищаемому T сквозного тока $I_{\text{скв}^*}$

$$I_{\text{скв*}} = \frac{I_{\text{K3}}^{(3)}}{I_{\text{номВН}}} -$$
 максимальное значение тока внешнего металлического К3, при-

ведённое к базисному току стороны внешнего КЗ. В данной работе примем, что это сторона обмотки ВН. $I_{\rm K3}^{(3)}-$ задан в таблице 1.

$$I_{T^*} = \sqrt{I_{_{\mathtt{CKB}^*}}(I_{_{\mathtt{CKB}^*}} - I_{_{\Delta^*}})\cos(15^\circ)}$$
 — расчётный тормозной ток.

<u>Уставка К</u> задается в относительных единицах в диапазоне от 0,2 до 0,7 от $I_{\text{баз}}$ с шагом 0,1.

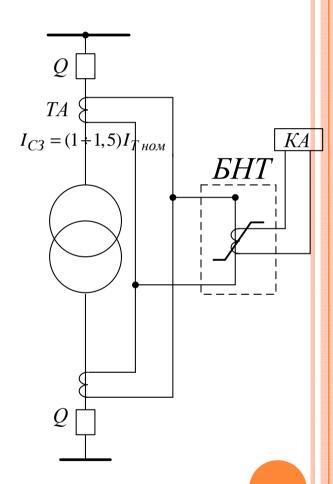

1. Дифференциальная токовая отсечка

• Выполняется посредством обычных токовых реле, включаемых непосредственно в дифференциальную цепь схемы без промежуточных устройств.

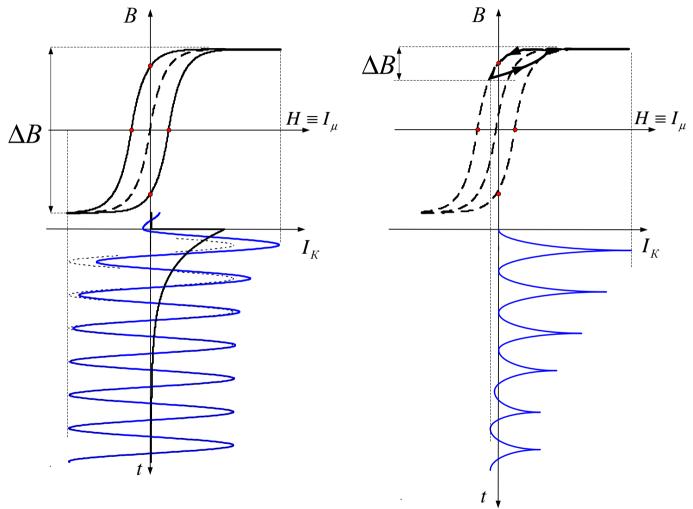
$$t_{CP} = (0,04 \div 0,06)c$$

Собственное время срабатывания реле.

$$I_{C3} = (3 \div 4, 5)I_{T HOM}$$

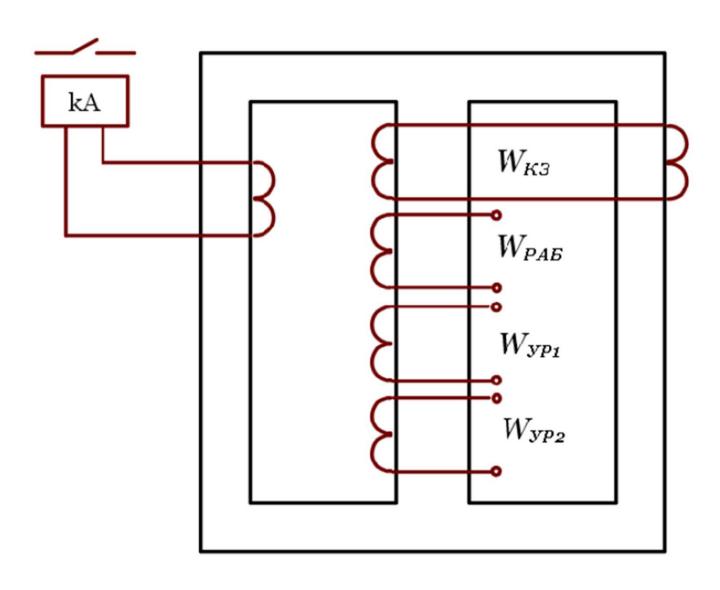


2. Дифференциальная токовая защита с промежуточными быстронасыщающимися трансформаторами тока, реле РНТ-565


Торможение – загрубление защиты.

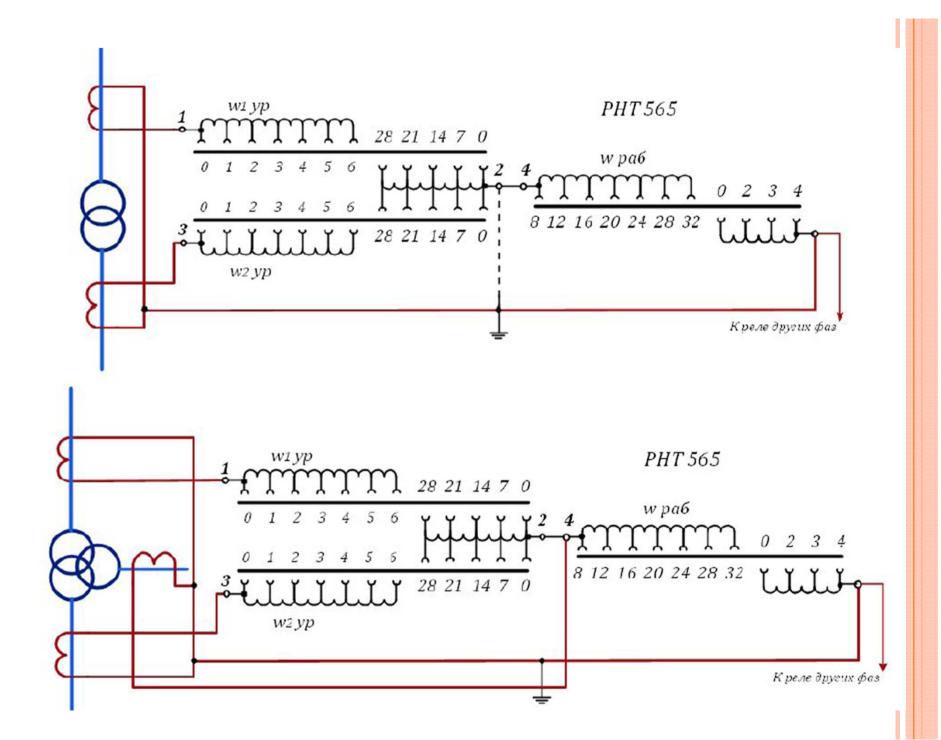
Принцип торможения реле РНТ-565

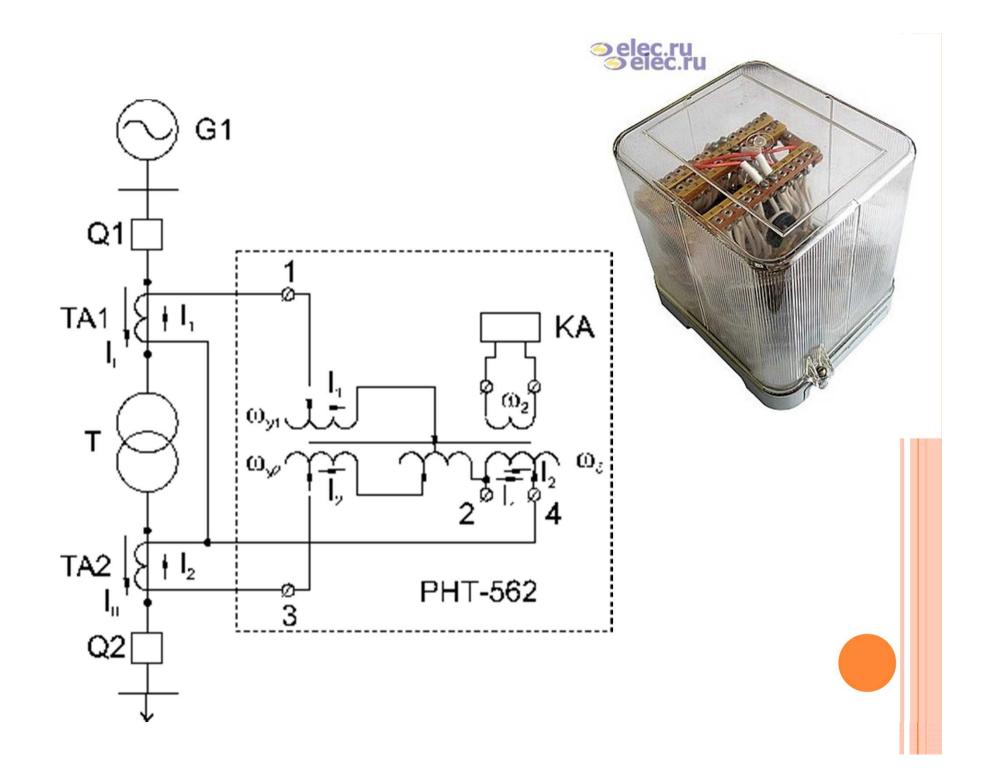
- В токе появляется апериодическая составляющая.
- Магнитопровод БНТ сильно насыщается. Сопротивление ветви намагничивания резко падает. Весь первичный ток замыкается через эту ветвь Чувствительность защиты уменьшается.
- Нормальная работа БНТ восстанавливается, как только исчезает апериодическая составляющая.
- При синусоидальном токе БНТ не оказывает влияния на работу реле.

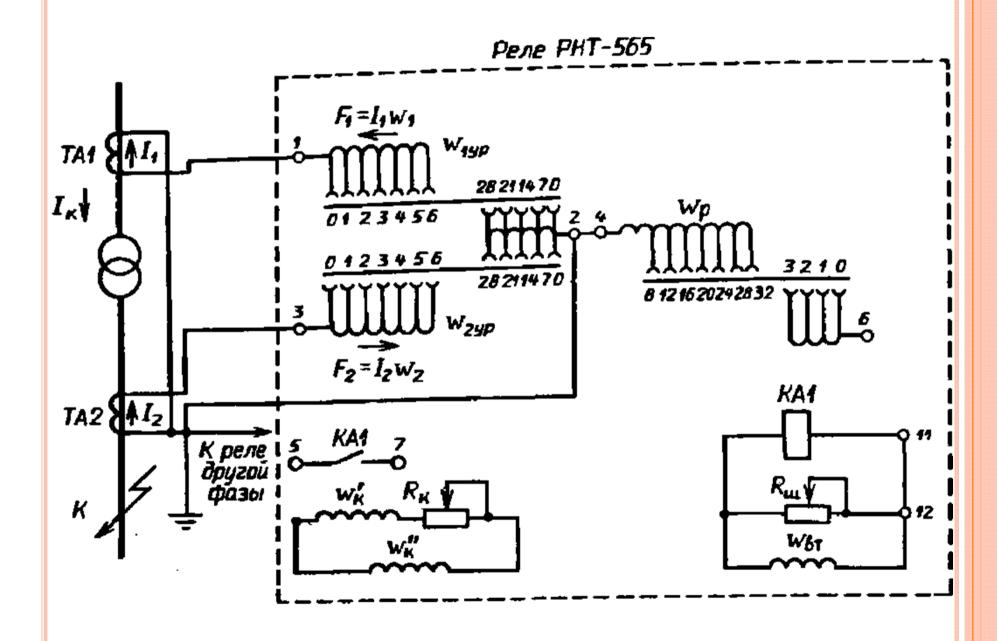

Принцип действия быстронасыщающихся ТА

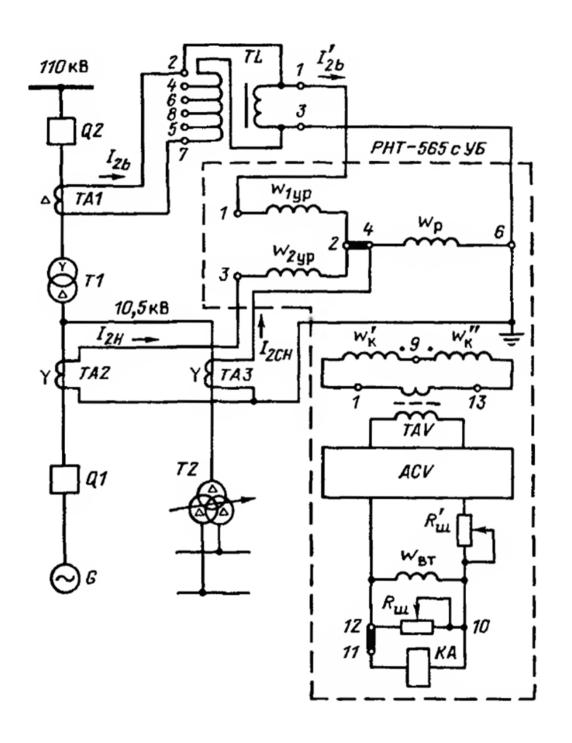
Процесс перемагничивания БНТ при КЗ в защищаемой зоне

Процесс перемагничивания БНТ При включении защищаемого трансформатора под напряжение

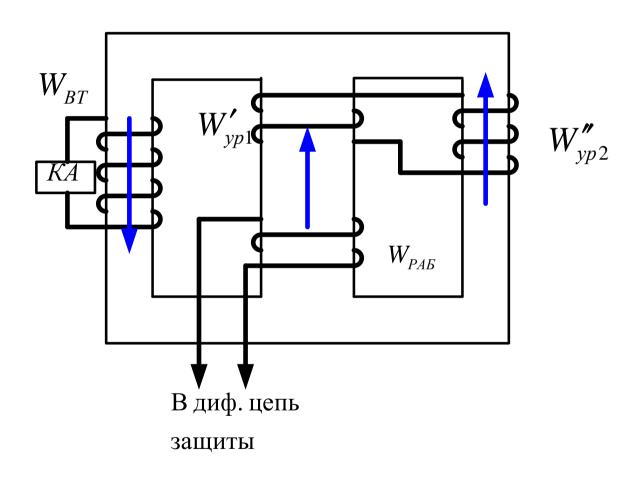

Принцип выполнения реле РНТ

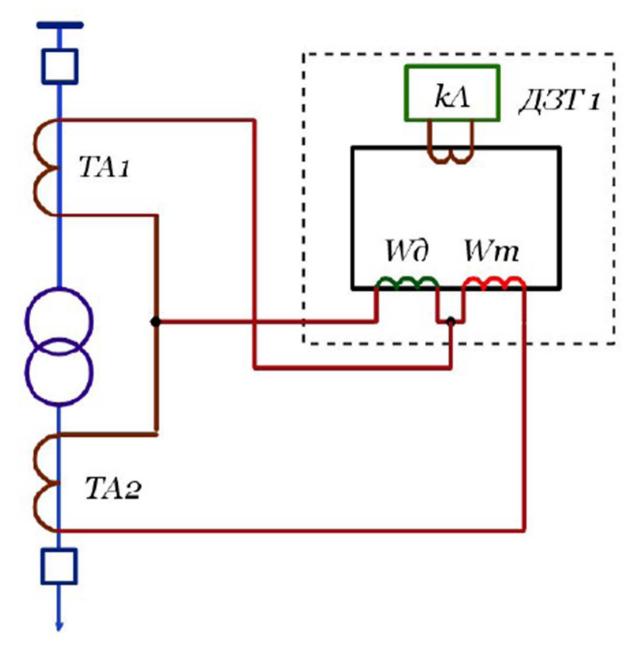



- Принцип работы ДЗ с таким ИО предусматривает подключение реле тока к плечам защиты через специальный промежуточный Тр, называемый быстронасыщающимся ТА.
- Принцип включения реле тока через этот Тр обеспечивает отстройку от броска тока намагничивания
- Отстройка обеспечивается за счёт того, что постоянная составляющая, входящая в состав броска тока насыщает стальной сердечник и трансформация переменного тока резко ухудшается, т.е. на время броска тока действие защиты блокируется.
- ТА подключены через уравнительные обмотки
- Для 3х обмоточных Тр используется третья обмотка рабочая
- Каждая обмотка имеет ответвления.
- В результате выбора числа витков обмоток удаётся уменьшить влияние неравенства вторичных токов
- Защита отличается невысокой чувствительностью и на вновь устанавливаемой оборудовании реализуется в микропроцессорном исполнении


- Обмотки Wp и Wyp образуют насыщающийся трансформатор
- Первая из них включается по дифференциальной схеме, а вторая питает токовое реле.
- Уравнительные обмотки включаются в плечи защит и служат для выравнивания вторичных токов
- Число её витков регулируется с помощью отпаек и подбирается так, чтобы при внешнем КЗ ток в реле, а следовательно, и в уравнительной обмотке отсутствовал. Для обеспечения такого условия сумма намагничивающих сил во всех трёх обмотках д.б. равна нулю.

равна нулю.
$$\dot{I}_{1e} w_{\mathrm{yp1}} - \dot{I}_{2e} w_{\mathrm{yp2}} + \left(\dot{I}_{1e} - \dot{I}_{2e}\right) w_{\mathrm{д1}} = 0$$

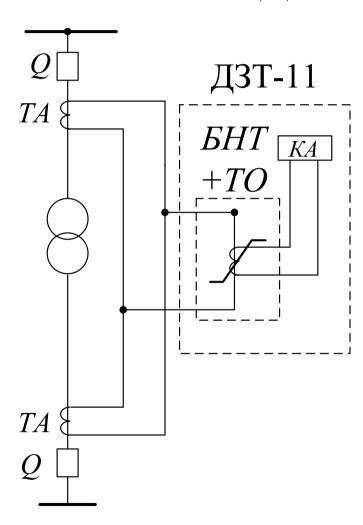



• Короткозамкнутая обмотка ограничивает периодический ток, возникающий во вторичной обмотке РНТ, но не изменяет действие апериодической составляющей

Принцип выполнения реле РНТ

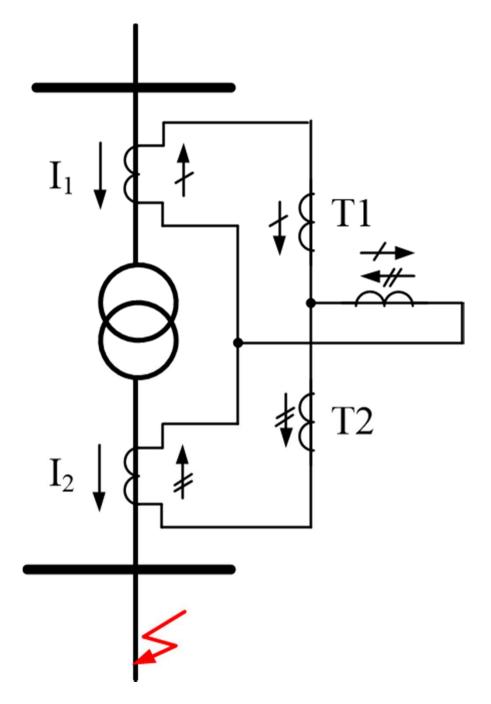
$$E_{CP} = W_{\rm BT} f S \Delta B$$

о Для повышения чувствительности защиты применяют принцип торможения



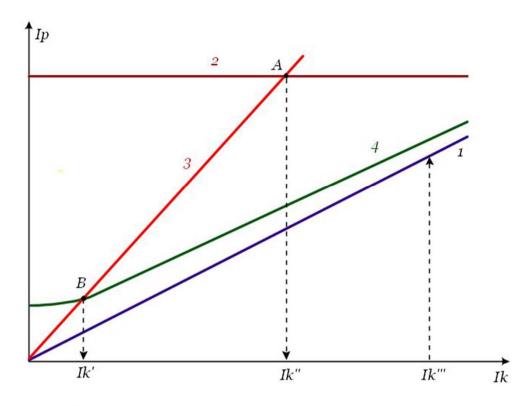
Принцип действия защиты с торможением

- \circ При к2 в реле протекает ток только I_1
- Наличие тока I₂ признак внешнего КЗ
- \circ При внут. КЗ ток I_2 отсутствует, в ИО протекает ток, равный току I_1 , т.е. происходит автоматическая отстройка от токов небаланса, тем самым увеличивается чувствительность зашиты.


ЛЕКЦИЯ №

3. Дифференциальная токовая защита с реле, имеющими торможение ДЗТ-11


В тормозных обмотках создается дополнительный поток, который насыщает сталь сердечника и загрубляет защиту.


$$I_{C3} = (1 \div 1, 5)I_{T_{HOM}}$$

- ТО вкл. в плечи защиты т.о.,
- чтобы при любом внеш. КЗ, хотя бы одна обмотка обтекалась током, под её влиянием ток в рабочей обмотке возрастает,
- что повышает надёжность и ↓Ісз

Принцип выполнения реле ДЗТ

 ${\it 1}$ - ток небаланса защиты в зависимости от величины тока короткого замыкания ;

2 - зависимость тока срабатывания защиты без торможения ;

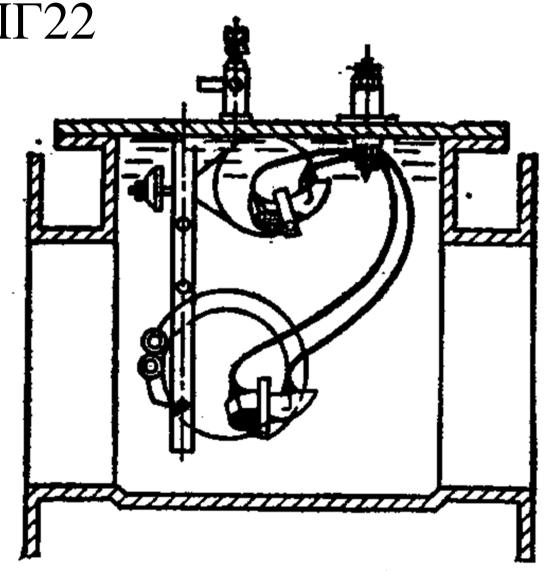
3 - ток в реле при внутреннем коротком замыкании ;

4 - зависимость тока срабатывания защиты с торможением;

 $I_k^{'''}$ - максимально возможное значение тока внешнего короткого замыкания;

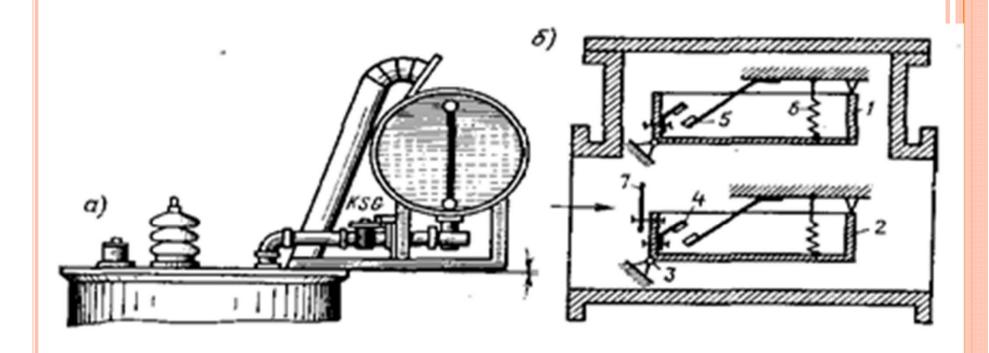
 $I_k^{''}$ - значение тока короткого замыкания, при котором сработает защита без торможения;

 $I_k^{'}$ - значение тока короткого замыкания, при котором сработает защита с торможением.

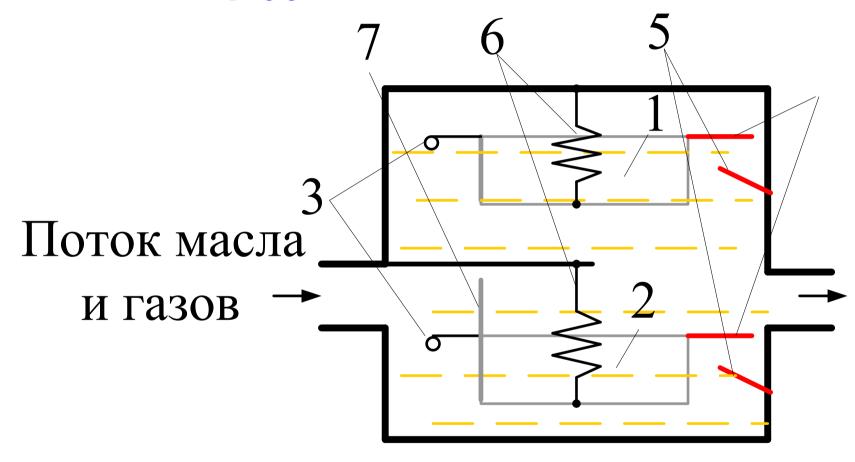

Таким образом,

- о реле РНТ позволяет отстроиться от тока небаланса, содержащего большую апериодическую составляющую.
- Реле ДЗТ позволяет отстроиться от тока небаланса, содержащего большую периодическую составляющую.

Газовая защита трансформаторов


- Ставится на трансформаторах с масляной системой охлаждения
- Обязательна к установке для Тр > 1000кВА
- Для внутрицеховых > 630кВА.

Устройство поплавкового газового реле типа ПГ22 • .



- Конструктивно защита представляет собой чугунный корпус внутри которого находится поплавок, внутри камеры расположен подвижный контакт
- В нормальном режиме работы масло находится в устойчивом неподвижном состоянии и поплавок не колеблется.
- При возникновении внутреннего повреждения в стали или меди трансформатора за счёт увеличения температуры активных частей в месте повреждения масло начинает разлагаться.
- Выделяющиеся при разложении газы поступают в расширитель.
- За счёт движения газов масло в патрубке, где он установлен переходит в колебательное состояние.
- За счёт колебаний охлаждающей среды в поплавок начинает колебаться что приводит к замыканию контактов.
- Изобретена в начале прошлого века 100% надёжность.

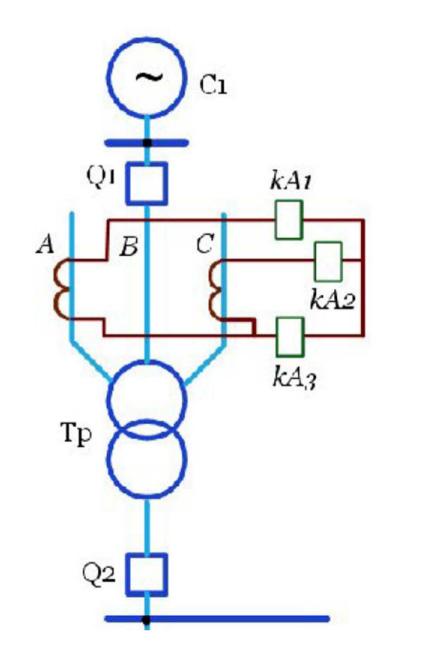
газового реле чашечного типа

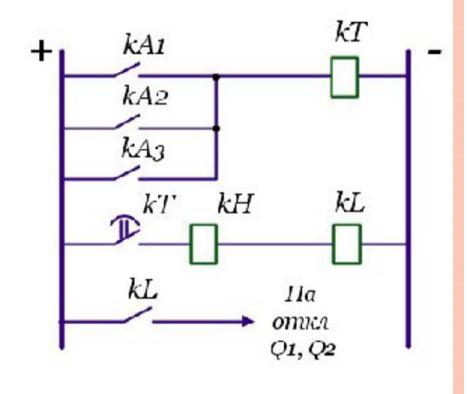
РЕЛЕ РГЧ3-66

- Принцип действия основан на использовании явления газообразования в баке трансформатора (разложение масла при выделении тепла сопровождается выделением газа). Устанавливается в маслопровод между баком и расширителем трансформатора.
- Обязательна для T с S >= 6,3 MBA с масляной системой охлаждения.
- Реагирует на все виды повреждений внутри бака (пожар стали, витковые замыкания) и при недопустимом понижении уровня масла. В зависимости от степени повреждения действует на сигнал или на отключение.
- о Возможны ложные срабатывания при попадании воздуха в бак Т (а также при землетрясениях).

Устройство газового реле РГЧЗ-66

- 1, 2 плоскодонные алюминиевые чашки,
- о 3 − неподвижные оси,
- о 4 − подвижные контакты,
- о 5 − неподвижные контакты,
- о 6 − пружины.
- Масса чашки с маслом достаточна для преодоления силы пружины при отсутствии масла.
- Опускание верхней чашки действует на сигнал, нижней на отключение.

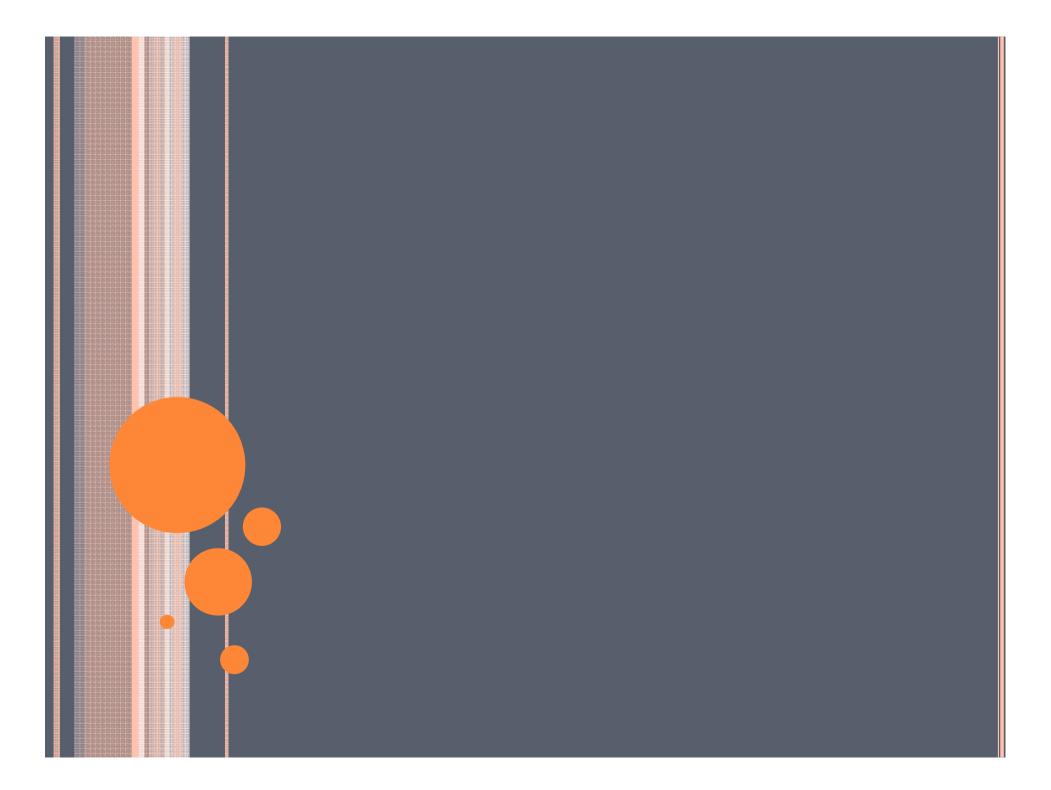

Защита от внешних замыканий

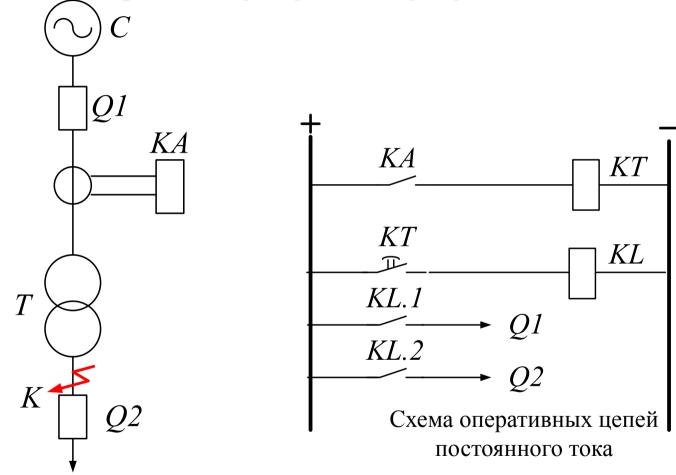

Могут применяться:

- MT3,
- МТЗ с блокировкой по напряжению,
- токовая защита обратной последовательности,
- токовая защита нулевой последовательности ТЗНП,
- дистанционная защита.
- В основном защита от внешних замыканий устанавливается со стороны источников питания.
- Защита от внешних однофазных замыканий устанавливается со стороны обмотки, соединенной в звезду с заземленной нейтралью.

• Превалирующим фактором является обеспечении треб чув к КЗ на отх линиях, поэтому в случ недост чув З уст со стороны НН, в этом случ она обесп только ф дал рез.

Пример МТЗ на эл. мех реле




- Расчёт защиты закл. в опред. тока сраб. и расч. выд. времени.
- Iс.з. отстраивается от макс. нагрузочного режима с учётом пусковых режимов
- Выдержка времени отстр. от от времени наиболее медленно действующей 3 отх. Л

$$t_{C3} = t_{\text{H max}} + \Delta t$$

 \circ Чувствительность 3 проверяется по $\mathbf{I}^{(2)}$ в конце наиб. Протяжённой Л.

Схемы МТЗ трансформаторов

Двухобмоточный понижающий трансформатор с односторонним питанием

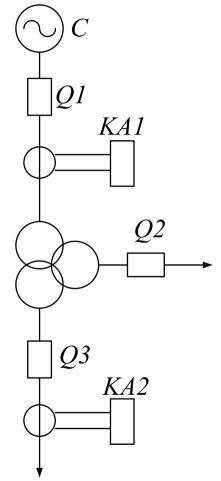
Токовая ступенчатая защита Т и АТ

- Первая ступень токовая отсечка без выдержки времени.
- Вторая ступень МТЗ с блокировкой по напряжению.

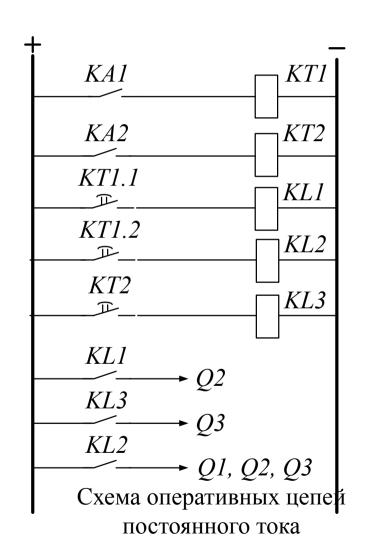
МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА ТРАНСФОРМАТОРОВ

- о Дополняет токовую отсечку. Действует при КЗ на выводах и в соединениях с выключателем.
- Защищает трансформатор от перегрузок при внешних КЗ.
- Недостаток МТЗ: недостаточная чувствительность к витковым замыканиям, недостаточное быстродействие при многофазных повреждениях в обмотке.

РАСЧЕТ УСТАВОК МТЗ ТРАНСФОРМАТОРА

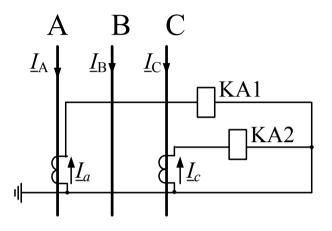

$$I_{C3} = \frac{k_H k_{C3}}{k_B} I_{p.\text{max}} \qquad t_{C3} = t_{\text{H max}} + \Delta t$$

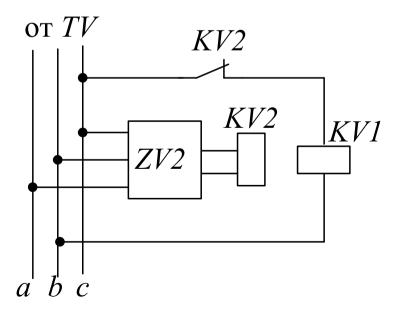
$$K_{Y} = \frac{I_{K}^{(2)}}{I_{C3}}$$
 в режиме ближнего резервирования

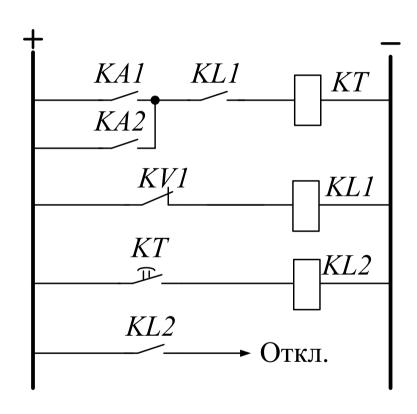

$$K_{Y} = \frac{I_{KW}^{(2)}}{I_{C3}}$$
 в режиме дальнего резервирования

Превалирующим фактором является обеспечение требуемой чувствительности при КЗ на отходящих линиях, поэтому в случае недостаточной чувствительности защита устанавливается со стороны НН, в этом случае она обеспечивает только функции дальнего резервирования.

Схемы МТЗ трансформаторов


Трехобмоточный понижающий трансформатор с односторонним питанием




МТЗ ТРАНСФОРМАТОРОВ С БЛОКИРОВКОЙ ПО НАПРЯЖЕНИЮ

- Позволяет повысить чувствительность защиты в случае протяжённых и сильно нагруженных линий со стороны потребителя
- ПО содержат элементы, учитывающие следующие признаки:
- Ув. I выше номинального
- Ум. U ниже номинального
- Появление напряжения обратной последовательности (U₂)
 в случае несимметричных замыканий

Принципиальная схема МТЗ с блокировкой по U при реал. на э.м реле

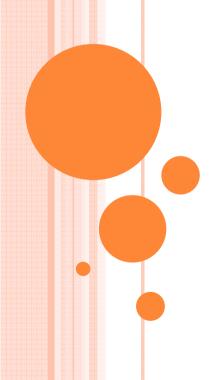
- о При возникновении внешнего симметричного замыкания за счёт ув. І срабатывает реле тока
- \circ За счёт \downarrow U срабатывает рале напряжения KV1 (min U)
- KV1 подаёт питание на KL, тем самым разрешает действие защиты
- При внешнем несимметричном КЗ ↓U может оказаться недостаточным для обесп. сраб. З — в этих режимах предназначена приставка — фильтр реле токов обр. п-ти

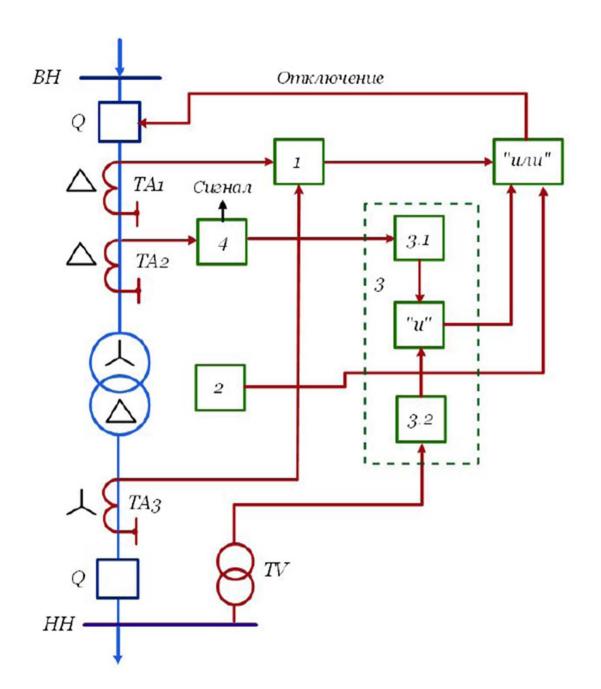
- При внешнем несимметричном КЗ, ↓U может оказаться недостаточным и для обеспечения срабатывания защиты в этих режимах предназначена приставка – фильтр токов обратной последовательности.
- о Это реле работает сл. об.:
- За счёт наличия несимметрии в сети и появления U_2 на выходе фильтра ZV2 появляется напряжение, что приводит в срабатыванию KV2, которое размыкает свой контакт, снимает питание с KV1 и защита запускается.

РАСЧЁТ ПАРАМЕТРОВ

• Отстраивается от номинального рабочего тока

$$I_{\rm C3} = \frac{k_{\rm H}}{l_{\rm r}} I_{\rm HOM}$$

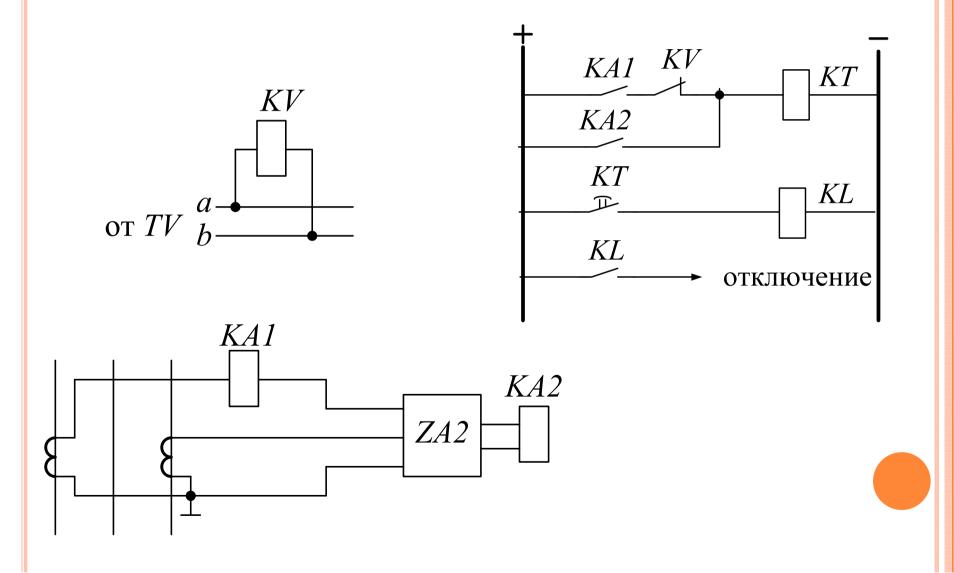

 $I_{\rm C3} = \frac{k_{\rm H}}{k} I_{\rm HOM}$ о От минимального рабовего напряжения и от $\downarrow \! U$ пусковых режимах


$$U_{C3\,KV1}=\frac{U_{\min}}{k}\approx 0,85U_{nom}$$
 о От несимметрии напряжения в нагрузочном

режиме и от напряжения небаланса на выходе фильтра

$$U_{C3\,KV2} = 0.06U_{HOM}$$

ПРИМЕР ВЫПОЛНЕНИЯ СХЕМЫ ЗАЩИТЫ ТРАНСФОРМАТОРА

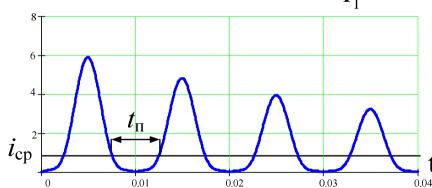

Схема защиты понижающего трансформатора 110-220/6,6-11кВ мощностью 6.3 МВА и более:

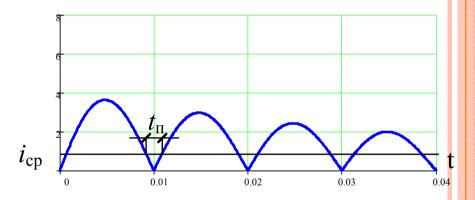
- 1-дифференциальная защита;
- 2 –газовая защита;
- 3- максимальная токовая защита с блокировкой по напряжению;
 - 3.1 ПО по току,
 - 3.2 ПО по напряжению
- 4- защита от перегрузки

Токовая защита обратной последовательности трансформаторов

• Устанавливается на повышающих трансформаторах и автотрансформаторах для обеспечения дальнего резервирования при несимметричных КЗ.

Схемы токовой защиты обратной последовательности трансформаторов




4. Дифференциальная защита с реле ДЗТ-21

• Торможение осуществляется за счет время-импульсного принципа — анализ длительности пауз t_{Π} в дифференциальном токе в сочетании с торможением от составляющей второй гармоники тока

намагничивания:

$$k_b = \frac{I_{2f}}{I_1}$$

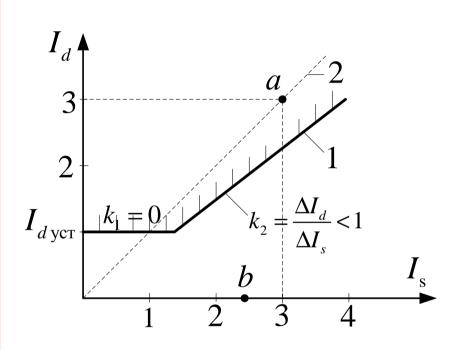
Выпрямленный рабочий ток при броске тока намагничивания

Выпрямленный рабочий ток при внутреннем КЗ

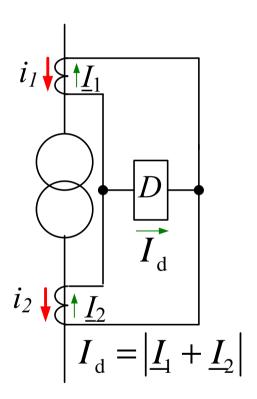
$$I_{\rm C3} = 0, 3I_{\rm Tnom}$$

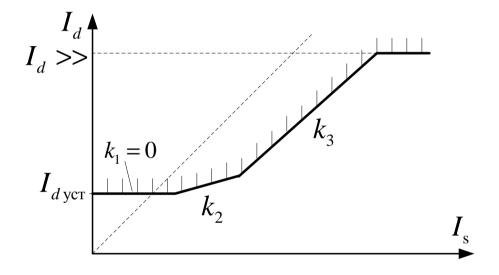
Цифровые дифференциальные защиты ТРАНСФОРМАТОРОВ С ТОРМОЖЕНИЕМ ОТ СРАВНИВАЕМЫХ ТОКОВ

Торможение – загрубление уставки при увеличении сравниваемых токов.


 \circ Из сравниваемых токов по концам объекта \underline{I}_1 ... \underline{I}_n формируется дифференциальный ток

$$I_{\mathrm{d}} = |\underline{I}_{1} + \underline{I}_{2} + \dots + \underline{I}_{n}|$$


и тормозной ток


$$I_s = |\underline{I}_1| + |\underline{I}_2| + \dots + |\underline{I}_n|$$

Тормозные характеристики Срабатывания дифференциальной защиты

Тормозная характеристика срабатывания дифференциальной защиты

Комбинированная тормозная характеристика дифференциальной защиты

уставка $I_d >> \frac{-\,$ это достаточно большое значение тока, который позволяет однозначно выявить внутреннее повреждение.

 $I_{d\,{
m yc}_{
m T}}$ - определяется небалансом токов в нагрузочном режиме.

Наклон участка 2 характеристики определяется насыщением TT.

При внутреннем КЗ рабочая точка лежит на прямой 2.

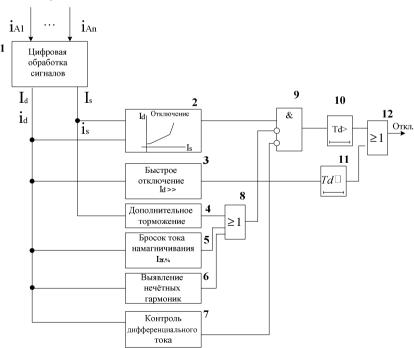
При внешнем КЗ в идеальном случае рабочая точка лежит в области несрабатывания на оси абсцисс.

Участок 3 соответствует значительному насыщению ТТ при больших токах, поэтому участок 3 имеет больший наклон.

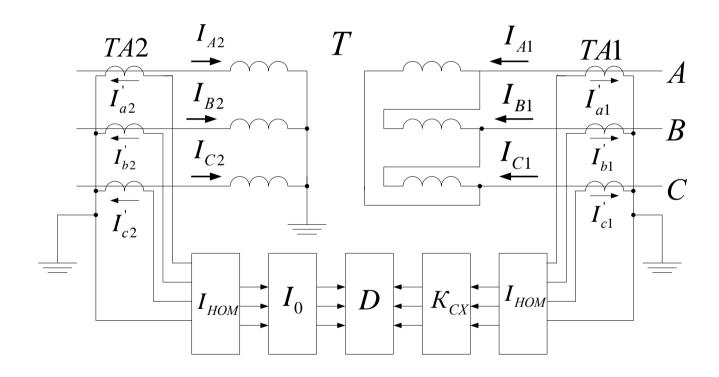
ОСНОВНЫЕ ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ

Блок 1. Формирование цифровых значений I_d и I_s .

Блок 2. Формирование основной характеристики отключения.


Блок 3. Быстрое отключение внутреннего К3 по условию $I > I_{d>>}$.

Блок 4. Доп. торможение при внешних K3, когда TA еще не насыщены.


Блок 5. Гармонический анализ I_d и блокировка отключения T при броске I_μ .

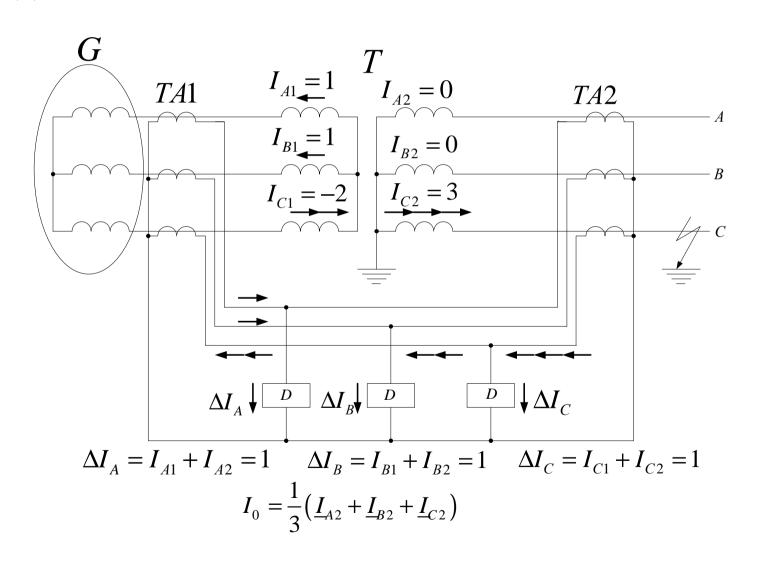
Блок 6. Контроль в I_d нечетных (3 и 5) гармоник, блокировка отключения при повышенном содержании нечетных гармоник из-за повышения U на Tp-pe .

Блок 7. Контроль исправности токовых цепей.

Цифровая корректировка измеряемых фазных токов в дифференциальной защите

Цифровая корректировка измеряемых фазных токов в дифференциальной защите

Блоки $I_{\text{ном}}$ устраняют различие номинальных токов по сторонам Т и неодинаковость номинальных токов Т и ТА умножением токов I_{α} I_{b} I_{c} с обоих сторон на корректирирующие коэффициенты $k_{\text{ном}1}$ и $k_{\text{ном}2}$


$$k_{nom1} = \frac{\sqrt{3}I_{nomTA1}U_{nom1}}{S_{nom}}, k_{nom2} = \frac{\sqrt{3}I_{nomTA2}U_{nom2}}{S_{nom}}$$

Блок I_0 устраняет небаланс при внешних однофазных КЗ (см. далее).

D – измерительный элемент.

Блок $K_{\rm ex}$ учитывает сдвиг по фазе и изменения по модулю сравниваемых токов, вносимые различием схем включения обмоток силового трансформатора.

УСТРАНЕНИЕ НЕБАЛАНСА В ДИФ. ЦЕПИ ПРИ ВНЕШНЕМ ОДНОФАЗНОМ **КЗ**

