ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Л.С. Удут, О.П. Мальцева, Н.В. Кояин

ПРОЕКТИРОВАНИЕ И ИССЛЕДОВАНИЕ АВТОМАТИЗИРОВАННЫХ ЭЛЕКТРОПРИВОДОВ

Часть 8 Асинхронный частотно-регулируемый электропривод

Допущено УМО по образованию в области энергетики и электротехники в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности 140604 — «Электропривод и автоматика промышленных установок и технологических комплексов» направления подготовки 140600 — «Электротехника, электромеханика и электротехнологии»

Издательство Томского политехнического университета 2009 УДК 62-83-52(075.8) ББК 31.291я73 У31

Удут Л.С.

У31

Проектирование и исследование автоматизированных электроприводов. Ч. 8. Асинхронный частотно-регулируемый электропривод: учебное пособие / Л.С. Удут, О.П. Мальцева, Н.В. Кояин; Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2009. — 448 с.

В учебном пособии рассмотрены вопросы применения асинхронных двигателей с короткозамкнутым ротором в системах частотно-регулируемого электропривода. Даны рекомендации по выбору электродвигателя и преобразователя, приведена методика определения параметров силовой цепи электропривода. Представлены структурные схемы замкнутых систем, методика оптимизации контуров регулирования и исследования систем. Приведены технические параметры и характеристики электрических машин переменного тока общего назначения.

Предназначено для студентов, обучающихся по направлению 140600 «Электротехника, электромеханика и электротехнологии», специальности 140604 «Электропривод и автоматика промышленных установок и технологических комплексов» и магистерской программе 140611 «Электроприводы и системы управления электроприводов».

УДК 62-83-52(075.8) ББК 31.291я73

Рецензенты

Доктор технических наук, профессор ТУСУР В.А. Бейнарович

Кандидат технических наук, доцент СГТА С.Н. Кладиев

ISBN 978-5-98298-542-2

- © ГОУ ВПО «Томский политехнический университет», 2009
- © Удут Л.С., Мальцева О.П., Кояин Н.В., 2009
- © Оформление. Издательство Томского политехнического университета, 2009

Список литературы к разделу 1

- 1. Поздеев А.Д. Электромагнитные и электромеханические процессы в частотно-регулируемых асинхронных электропроводах. Чебоксары: Изд-во Чуваш. ун-та, 1998. 172 с.
- 2. Ключев В.И. Теория электропривода: учебник для вузов. М.: Энергоатомиздат, 1985. 560 с.
- 3. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием: учебник для студ. высш. учеб. заведений / Г.Г. Соколовский. М.: Издательский центр "Академия", 2006. 272 с.
- 4. Терехов В.М. Системы управления электроприводов: учебник для студ. высш. учеб. заведений / В.М. Терехов, О.И. Осипов; под ред. В.М. Терехова. М.: Издательский центр "Академия", 2005. 304 с.
- 5. Бабаков Н.А., Воронов А.А и др. Теория автоматического управления: учеб. для вузов. Ч. 1. Теория линейных систем автоматического управления / под ред. А.А. Воронова. М.: Высшая школа, 1986. 367 с.
 - 6. http://www.ABB.com
 - 7. http://www.SIEMENS.de

Список литературы к разделу 2

- 1. Асинхронные сервомоторы ST. Руководство по использованию, 2004. http://www.servotechnica.ru/catalog/servo-motor.
- 2. Low-voltage three-phase motors. Squirrel-cage motors. Catalogue M11. Germany, Erlangen, 2003/2004 http://www.siemens.com/motors.
- 3. Асинхронные двигатели серии 4A: справочник / А. Э. Кравчик, М. М. Шлаф, В. И. Афонин, Е. А. Соболенская. М.: Энергоиздат, 1982. 504 с.
- 4. Справочник по электрическим машинам: в 2 т. /под общ. ред. И.П. Копылова и Б.К. Клокова. Т.1. М.: Энергоатомиздат, 1988. 456 с. (ч. 2, разд. 9).
- 5. Мощинский Ю. А., Беспалов В. Я., Кирякин А. А. Определение параметров схемы замещения асинхронной машины по каталожным данным // Электричество. 1998. № 4. С. 38–42.
- 6. Шрейнер Р. Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УРО РАН, 2000. 654 с.

- 7. Сыромятников И. А. Режимы работы асинхронных и синхронных двигателей / И. А. Сыромятников; под ред. Л. Г. Мамиконянца.— М.: Энергоатомиздат, 1984. 240 с.
- 8. Алиев И. И. Справочник по электротехнике и электрооборудованию: учебное пособие для вузов / И. И. Алиев. М.: Высшая школа, 2000. 255 с.
- 10. Баклин В. С., Гимпельс А. С. Математическая модель частотно-регулируемого асинхронного двигателя // Известия ТПУ. -2005. Т. 308. № 7. С. 148–153.
- 11. Копылов И. П. Математическое моделирование электрических машин: учебник / И. П. Копылов. М.: Высшая школа, 2001. 327 с.
- 12. Алиев И. И. Электротехнический справочник. М.: ИП Радио Софт, 2000. — 384 с.

Список литературы к разделу 3

- 1. Удут Л.С., Мальцева О.П., Кояин Н.В. Проектирование и исследование автоматизированных электроприводов. Ч. 7. Теория оптимизации непрерывных многоконтурных систем управления электроприводов: учебное пособие. Томск: Изд-во ТПУ, 2007. 164 с.
- 2. Мальцева О.П., Удут Л.С., Кояин Н.В. Системы управления электроприводов: учебное пособие. Томск: Изд-во ТПУ, 2007. 152 с.
- 3. Кояин Н.В., Удут Л.С., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Часть 5. Применение программы DORA-FUZZY в расчетах электроприводов постоянного тока: учебное пособие. Изд. 2-е, перераб. и дополн. Томск: Изд-во ТПУ, 2007. 180 с.
- 4. Удут Л.С., Кояин Н.В., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Ч. 6. Механическая система электропривода постоянного тока: учебное пособие. Изд. 2-е, перераб. и дополн. Томск: Изд-во ТПУ, 2007. 148 с.
- 5. Удут Л.С., Мальцева О.П., Кояин Н.В. Проектирование и исследование автоматизированных электроприводов. Часть 1. Введение в технику регулирования линейных систем. Часть 2. Оптимизация контура регулирования: учебное пособие. Изд. 2-е, перераб. и дополн. Томск: Изд-во ТПУ, 2007. 156 с.

Список литературы к подразделу 4.1

- 1. www.veza.ru
- 2. Сахарнов Ю.В. Регулируемый электропривод эффективное энергосберегающее оборудование. http://www.mtu-net.ru
- 3. Асинхронные двигатели серии 4A: справочник/ А.Э. Кравчик, М.М. Шлаф и др. М.: Энергоиздат, 1982. 502 с.
- 4. Браславский И.Я., Ишматов З.Ш., Поляков В.Н. Энергосберегающий асинхронный электропривод. М.: "Академия", 2004.
- 5. Онищенко Г.В., Юньков М.Г. Электропривод турбомеханизмов. М.: 1972.
- 6. Удут Л.С., Кояин Н.В., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Ч. 6. Механическая система электропривода постоянного тока: учебное пособие. Издание 2-е, перераб. и дополн. Томск: Изд-во ТПУ, 2007. 148 с.
 - 7. VLT 2800. Design guide. http://www.danfoss.com
- 8. Калинушкин М.П. Насосы и вентиляторы: учеб. пособие для вузов по спец. «Теплогазоснабжение и вентиляция», 6-е изд., перераб. и дополн. М.: Высшая школа, 1987. 176 с.
- 9. Мальцева О.П., Удут Л.С., Кояин Н.В. Системы управления электроприводов: учебное пособие. Томск: Изд-во Томского политехнического университета, 2007. 152 с.
- 10. Кояин Н.В., Удут Л.С., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Часть 5. Применение программы DORA-FUZZY в расчетах электроприводов постоянного тока: учебное пособие. Издание 2-е, перераб. и дополн. Томск: Изд-во Томского политехнического университета, 2007. 180 с.

Список литературы к подразделу 4.2

- 1. Петров А.В., Татаринцев Н.И. Применение частотнорегулируемых приводов на питателях сырого угля // Автоматизация и современные технологии. $-2005. - \mathbb{N}_{2} 6.$
- 2. Алиев И.И. Электротехнический справочник. М.: ИП Радио-Софт, 2000. – 384 с.
- 3. Инвертор частоты SYSDrive 3G3RV. Технические характеристики. Omron on Trascon Technology. 15 с.

- 4. Variable Torque Frequency Inverter VARISPEED E7. User's Manual. Omron on Trascon Technology. 291 c.
- 5. Мальцева О.П., Удут Л.С., Кояин Н.В. Системы управления электроприводов: учебное пособие. Томск: Изд-во ТПУ, 2007. 152 с.
- 6. Кояин Н.В., Удут Л.С., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Часть 5. Применение программы DORA-FUZZY в расчетах электроприводов постоянного тока: учебное пособие. Издание 2-е перераб. и дополн. Томск: Изд-во ТПУ, 2007. 180 с.

Список литературы к подразделу 4.3

- 1. Алиев И.И. Электротехнический справочник. М.: ИП Радио-Софт, 2000. 384 с.
- 2. Удут Л.С., Мальцева О.П., Кояин Н.В. Проектирование и исследование автоматизированных электроприводов. Ч. 7. Теория оптимизации непрерывных многоконтурных систем управления электроприводов: учебное пособие Томск: Изд-во ТПУ, 2007. 164 с.
- 3. Мальцева О.П., Удут Л.С., Кояин Н.В. Системы управления электроприводов: учебное пособие. Томск: Изд-во ТПУ, 2007. 152 с.
- 4. Кояин Н.В., Удут Л.С., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Часть 5. Применение программы DORA-FUZZY в расчетах электроприводов постоянного тока: учебное пособие. Издание 2-е, перераб. и дополн. Томск: Изд-во. ТПУ, 2007. 180 с.
- 5. Удут Л.С., Кояин Н.В., Мальцева О.П. Проектирование и исследование автоматизированных электроприводов. Ч. 6. Механическая система электропривода постоянного тока: учебное пособие. Издание 2-е, перераб. и дополн.— Томск: Изд-во ТПУ, 2007. 148 с.
- 6. Дьяконов В. Simulink 4. Специальный справочник. СПб: Питер, 2002. 528 с.
- 7. Черных, И.В. Моделирование электрических устройств в MATLAB, SimPowerSystems и Simulink СПб. ; М. : Питер : ДМК Пресс, 2008. 288 с.
- 8. Дьяконов В. П. MATLAB 6/6.1/6.5 + Simulink 4/5 : Основы применения : Полное руководство пользователя М. : СОЛОН-Пресс, 2002. 768 с.

Список литературы к разделу 5

- 1. Асинхронные двигатели серии 4A: справочник / А.Э. Кравчик, М.М. Шлаф, В.И. Афонин, Е.А. Соболенская. М.: Энергоиздат, 1982. 504 с.
- 2. Алиев И.И. Справочник по электротехнике и электрооборудованию: учебное пособие для вузов / И.И. Алиев. М.: Высшая школа, $2000.-255~\rm c.$
- 3. Catalogue D81.1, 2006. http://www.siemens.de/Low-voltage motors.
- 4.Преобразователи частоты для одно- и многодвигательного электропривода мощностью от 2.2 кВт до 2300 кВт. Каталог DA 65.10, 2001. http://www.siemens.de/Simovert Masterdrives vector control
- 5. Преобразователи частоты для двигателей переменного тока до 90 кВт. Каталог *DA* 64, 1999. http://www.siemens.de/Micromaster, Micromaster Vector, Midimaster Vector, Combinaster.
 - 6. http://www.servotechnica.ru/Catalog/Frequency drive.
 - 7. http://www.danfoss.com/Products/Literature/Technical+Documentation.
 - 8. http://KEBco.com/ Combivert motors

ОГЛАВЛЕНИЕ

введение	3
1. ТРЕХФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ	
КАК ОБЪЕКТ УПРАВЛЕНИЯ	4
1.1. Представление трехфазной машины	
пространственными векторами	4
1.2. Схемы замещения асинхронного двигателя	
с короткозамкнутым ротором	11
1.3. Механические и электромеханические	
характеристики асинхронного двигателя	18
1.4. Математическое описание и структурные схемы	
асинхронного двигателя с короткозамкнутым ротором	21
1.4.1. Математическое описание и структурная схема	
асинхронного двигателя с короткозамкнутым ротором	
в неподвижной системе координат α, β	21
1.4.2. Математическое описание и структурная схема	
асинхронного двигателя с короткозамкнутым ротором	
во вращающейся произвольно ориентированной	
системе координат x, y	23
1.4.3. Математическое описание и структурная схема	
асинхронного двигателя с короткозамкнутым	
ротором во вращающейся системе координат $d, q,$	
ориентированной по вектору потокосцепления ротора	25
1.5. Принципы реализации систем управления	
частотно-регулируемых электроприводов	30
Список литературы к разделу 1	46
2. СИЛОВАЯ ЧАСТЬ ЧАСТОТНО-РЕГУЛИРУЕМОГО	
АСИНХРОННОГО ЭЛЕКТРОПРИВОДА	47
2.1.Выбор асинхронного электродвигателя	
для частотно-регулируемого электропривода	47
2.1.1. Области работы регулируемого электропривода	47
2.1.2. Типовые характеристики допустимых моментов	
асинхронных электродвигателей	49

2.3. Выбор типа преобразователя и способа регулирования	
скорости	75
2.3.1. Рекомендации по предварительному выбору	
преобразователя частоты	76
2.3.2. Выбор способа управления скоростью двигателя в системе	
преобразователь частоты – асинхронный двигатель	78
2.3.3. Выбор несущей частоты инвертора	79
2.4. Силовой канал электропривода	80
2.4.1. Схема реализации силовой части регулируемого	
электропривода с преобразователем частоты	80
2.4.2. Структурные схемы силового канала электропривода	84
2.4.3. Расчет параметров элементов структурной схемы	
силового канала электропривода	89
2.4.4. Расчет предельных характеристик разомкнутой системы	
ПЧ-АД и оценка выполнения заданной области	
работы электропривода	90
2.4.5. Расчет характеристик разомкнутой системы ПЧ-АД	
с учетом эффекта вытеснения тока в обмотке ротора	
и насыщения магнитной системы	106
2.5. Определение мощности торможения	117
писок литературы к разделу 2	120
ЧАСТОТНО-РЕГУЛИРУЕМЫЙ АСИНХРОННЫЙ	
ЭЛЕКТРОПРИВОД С ВЕКТОРНЫМ УПРАВЛЕНИЕМ	12 1
3.1. Линеаризованная САУ частотно-регулируемого	
асинхронного электропривода с векторным управлением	121
3.1.1. Структурная схема линеаризованной САУ	
частотно-регулируемого асинхронного электропривода	
с векторным управлением	121
3.1.2. Определение характеристики блока формирования	
задания на управление потокосцеплением	124
2.1.2.0	125
3.1.3. Оптимизация контуров регулирования	12.
3.1.3. Оптимизация контуров регулирования	12.

	асинхронного электропривода с векторным управлением .
	3.2.1. САР потокосцепления
	3.2.2. Расчет статических характеристик однозонного асинхронного
	электропривода с векторным управлением
	3.2.3. Расчет статических характеристик двухзонного асинхронного
	электропривода с векторным управлением
	и независимым регулированием потокосцепления
3.3.	Линеаризованная САУ следящего электропривода
	3.3.1. Структурная схема следящего электропривода
	3.3.2. Оптимизация контура положения с инерционной
	обратной связью
	3.3.3. Оптимизация контура положения с безынерционной
	обратной связью
	3.3.4 Оптимизация контура положения с безынерционной
	обратной связью и задатчиком интенсивности скорости
	Нелинейная САУ регулируемого электропривода
	3.4.1. Структурная схема нелинейной САУ регулируемого
	асинхронного электропривода с векторным управлением
	3.4.2. Расчет динамических и статических характеристик
	регулируемого электропривода с использованием
	нелинейной модели
	3.4.3. Учет квантования сигналов управления по уровню в контурах
	регулирования САУ регулируемого электропривода
	Нелинейная САУ следящего электропривода
	3.5.1. Структурная схема нелинейной САУ следящего
	асинхронного электропривода с векторным управлением
	3.5.2. Учет квантования сигналов управления по уровню в контуре
	положения следящего электропривода
Списс	ок литературы к разделу 3

4.1.2. Выоор приводного двигателя	
4.1.3. Расчетные параметры электродвигателя	21
4.1.4. Расчетные параметры схемы замещения электродви	гателя 21
4.1.5. Механические характеристики вентилятора	21
4.1.6. Предельные характеристики разомкнутой сист	емы
преобразователь – двигатель	
4.1.7. Выбор преобразователя частоты	
4.1.8. Выбор закона частотного регулирования	
4.1.9. Расчет статических характеристик системы	
преобразователь – двигатель при частотном регулир	овании 22
4.1.10. Структурная схема асинхронного двигателя	
с короткозамкнутым ротором и вентиляторно	ой
нагрузкой	
4.1.11. Имитационная модель двухфазного АД	
с короткозамкнутым ротором в неподвижной	
системе координат и вентиляторной нагрузко	
4.1.12. Имитационная модель силового канала электроп	
4.1.13. Примеры моделирования системы преобразов	-
частоты - асинхронный электродвигатель	
4.1.14. Функциональная схема частотно-регулируемо	
асинхронного электропривода вентилятора	
со скалярным управлением	25
4.1.15. Имитационная модель асинхронного электропри	
вентилятора со скалярным управлением	
4.1.16. Имитационные исследования частотно-регулиру	
асинхронного электропривода вентилятора	
со скалярным управлением	25
4.1.17. Сравнение энергетических показателей часто	
регулируемого асинхронного электропривода венти	
Список литературы к разделу 4.1	
4.2. Электропривод шнекового питателя сырого угля	ı 26
4.2.1. Кинематическая схема механизма питателя	
4.2.2. Обоснование применения частотно-регулируем	
электропривода для питателя сырого угля	
	_

4.2.3. Особенности выбора частотно-регулируемого	
привода ПСУ	
4.2.4. Выбор приводного двигателя питателя	
4.2.5. Механическая система электропривода и её парамет	гры
4.2.6. Определение параметров схемы замещения	
асинхронного двигателя по каталожным данным	
4.2.7. Расчет естественных характеристик электродвига	теля
4.2.8. Выбор способа частотного регулирования скорост	ТИ
вращения приводного электродвигателя питателя	
4.2.9. Выбор преобразователя частоты	
4.2.10. Расчет механических и электромеханических	
характеристик системы преобразователь частоть	л —
асинхронный электродвигатель	
4.2.11. Функциональная схема частотно-регулируемого	ı
асинхронного электропривода питателя со скалярн	IЫM
управлением	
4.2.12. Структурная схема асинхронного двигателя	
с короткозамкнутым ротором и реактивной нагрузн	кой
4.2.13. Имитационная модель двухфазного АД	
с короткозамкнутым ротором во вращающейся	
системе координат и реактивной нагрузкой	
4.2.14. Имитационная модель силового канала электроприв	вода
4.2.15. Имитационные исследования частотно-регулируем	40ГО
асинхронного электропривода питателя	
Список литературы к разделу 4.2	• • •
4.3. Следящий асинхронный электропривод	
приемного устройства	
4.3.1. Описание технологического процесса	
экструзионной линии	.
4.3.2. Кинематическая схема механизма приёмника	
4.3.3. Технические требования к электроприводу	
экструзионной линии	
4.3.4. Справочные параметры асинхронного электродвигат	
4.3.5. Расчетные параметры электродвигателя	
4.3.6. Параметры механической системы электропривод	ца

4.3.7. Справочные параметры преобразователя частоты	ı 311
4.3.8. Расчетные параметры преобразователя	312
4.3.9. Выбор способа регулирования скорости	312
4.3.10. Расчетные параметры структурной схемы	
электродвигателя	313
4.3.11. Предельные характеристики системы преобразовато	ель —
двигатель и проверка обеспечения заданной обл	асти
работы электропривода	
4.3.12. Структурная схема силового канала системы	
преобразователь частоты – асинхронный электродвига	тель 320
4.3.13. Линеаризованная САУ электропривода приемно	ОГО
устройства	320
4.3.14. Оптимизация контуров регулирования САР	
электропривода	324
4.3.15. Имитационные исследования работы следящего)
электропривода приемного устройства	335
Список литературы к разделу 4.3	361
5. ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ АСИНХРОННЫХ	
ЭЛЕКТРОДВИГАТЕЛЕЙ И ПРЕОБРАЗОВАТЕЛЕЙ	
ЧАСТОТЫ ДЛЯ РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОД	ĮA 362
5.1. Асинхронные электродвигатели с короткозамкнути	ЫM
ротором	362
5.1.1. Асинхронные электродвигатели общего назначен	RИF
серии 4А	362
5.1.2. Асинхронные электродвигатели общего назначен	RИF
серии АИ	363
5.1.3. Асинхронные электродвигатели общего назначен	RИF
фирмы <i>Siemens</i>	363
5.1.4. Асинхронные серводвигатели серии ST	
5.2. Преобразователи частоты с инвертором напряжени	367
c.z. Hpcoopusobatem factorbi e mibeproposi nanpassem	367
5.2.1. Преобразователи частоты фирмы <i>Danfoss</i>	367
	367 ія 368
5.2.1. Преобразователи частоты фирмы <i>Danfoss</i>	367 ія 368
5.2.1. Преобразователи частоты фирмы <i>Danfoss</i> 5.2.2. Преобразователи частоты <i>Simovert Masterdrives</i>	367 зя 368 368

Учебное издание

УДУТ Леонид Степанович МАЛЬЦЕВА Ольга Павловна КОЯИН Николай Вадимович

ПРОЕКТИРОВАНИЕ И ИССЛЕДОВАНИЕ АВТОМАТИЗИРОВАННЫХ ЭЛЕКТРОПРИВОДОВ

Часть 8 Асинхронный частотно-регулируемый электропривод

Учебное пособие

Научный редактор доктор технических наук, профессор Р.Ф. Бекишев Редактор О.Н. Свинцова Компьютерная верстка Н.В. Кояин Дизайн обложки Т.А. Фатеева

Подписано к печати . .2009. Формат 60х84/16. Бумага «Снегурочка». Печать RISO. Усл. печ. л. 26.04. Уч.-изд. л. 23.58. Заказ . Тираж экз.

Томский политехнический университет Система менеджмента качества Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2000

ИЗДАТЕЛЬСТВО ТПУ . 634050, г. Томск, пр. Ленина, 30. Тел/факс:+7(3822) 56-35-35, www.tpu.ru