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Probability and Statistics Pre-course Survey 
 The purpose of this survey is to indicate what you already know and think about 
probability and statistics. 
If you are unsure of what you are being asked to do, please consult the teacher. 
 
Part I 
There are a series of statements concerning beliefs or attitudes about probability, 
statistics and mathematics. Following each statement is an "agreement" scale which ranges from 
1 to 5, as shown below. 
 
 1  2    3    4   5 
Strongly Disagree   Disagree    Neither Agree, nor Disagree     Agree      Strongly Agree 
 
If you strongly agree with a particular statement, circle the number 5 on the scale. If you strongly 
disagree with the statement, circle the number 1. 
 
_____________________________________________________________ 
1. I often use statistical information in forming my opinions or making decisions. 
1 2 3 4 5 
 
2. To be an intelligent consumer, it is necessary to know something about statistics. 
1 2 3 4 5 
 
3. Because it is easy to lie with statistics, I don't trust them at all. 
1 2 3 4 5 
 
4. Understanding probability and statistics is becoming increasingly important in our society, and 
may become as essential as being able to add and subtract. 
1 2 3 4 5 
 
5. Given the chance, I would like to learn more about probability and statistics. 
1 2 3 4 5 
 
6. You must be good at mathematics to understand basic statistical concepts. 
1 2 3 4 5 
 
7. When buying a new car, asking a few friends about problems they have had with their cars is 
preferable to consulting an owner satisfaction survey in a consumer magazine. 
1 2 3 4 5 
 
8. Statements about probability (such as what the odds are of winning a lottery) seem very clear 
to me. 
1 2 3 4 5 
 
9. I can understand almost all of the statistical terms that I encounter in newspapers or on 
television. 
1 2 3 4 5 
 
10. I could easily explain how an opinion poll works. 
1 2 3 4 5 



Part II 
 1. A small object was weighed on the same scale separately by nine students in a science 
class. The weights (in grams) recorded by each student are shown below. 
6.2   6.0   6.0   15.3   6.1   6.3   6.2   6.15   6.2 
The students want to determine as accurately as they can the actual weight of this object. Of the 
following methods, which would you recommend they use? 
_____ a. Use the most common number, which is 6.2. 
_____ b. Use the 6.15 since it is the most accurate weighing. 
_____ c. Add up the 9 numbers and divide by 9. 
_____ d. Throw out the 15.3, add up the other 8 numbers and divide by 8. 
 
 2. A marketing research company was asked to determine how much money teenagers 
(ages 13 -19) spend on recorded music (cassette tapes, CDs and records). The company 
randomly selected 80 malls located around the country. A field researcher stood in a central 
location in the mall and asked passers-by who appeared to be the appropriate age to fill out a 
questionnaire. A total of 2,050 questionnaires were completed by teenagers. On the basis of this 
survey, the research company reported that the average teenager in this country spends $155 
each year on recorded music. 
Listed below are several statements concerning this survey. Place a check by every statement 
that you agree with. 
_____ a. The average is based on teenagers' estimates of what they spend and therefore could be 
quite different from what teenagers actually spend. 
_____ b. They should have done the survey at more than 80 malls if they wanted an average 
based on teenagers throughout the country. 
_____ c. The sample of 2,050 teenagers is too small to permit drawing conclusions about the 
entire country. 
_____ d. They should have asked teenagers coming out of music stores. 
_____ e. The average could be a poor estimate of the spending of all teenagers given that 
teenagers were not randomly chosen to fill out the questionnaire. 
_____ f. The average could be a poor estimate of the spending of all teenagers given that only 
teenagers in malls were sampled. 
_____ g. Calculating an average in this case is inappropriate since there is a lot of variation in 
how much teenagers spend. 
_____ h. I don't agree with any of these statements. 
 
 3. Which of the following sequences is most likely to result from flipping a fair coin 5 
times? 
_____ a. H H H T T 
_____ b. T H H T H 
_____ c. T H T T T 
_____ d. H T H T H 
_____ e. All four sequences are equally likely. 
 
 4. Select the alternative below that is the best explanation for the answer you gave for the 
item above. 
_____ a. Since the coin is fair, you ought to get roughly equal numbers of heads and tails. 
_____ b. Since coin flipping is random, the coin ought to alternate frequently between 
landing heads and tails. 
_____ c. Any of the sequences could occur. 
_____ d. If you repeatedly flipped a coin five times, each of these sequences would occur about 
as often as any other sequence. 
_____ e. If you get a couple of heads in a row, the probability of a tails on the next flip increases. 
_____ f. Every sequence of five flips has exactly the same probability of occurring. 
 



 5. Listed below are the same sequences of Hs and Ts that were listed in Item 3. Which of 
the sequences is least likely to result from flipping a fair coin 5 times? 
_____ a. H H H T T 
_____ b. T H H T H 
_____ c. T H T T T 
_____ d. H T H T H 
_____ e. All four sequences are equally unlikely. 
 
 6. The Caldwells want to buy a new car, and they have narrowed their choices to a Buick 
or a Oldsmobile. They first consulted an issue of Consumer Reports, which compared rates of 
repairs for various cars. Records of repairs done on 400 cars of each type showed somewhat 
fewer mechanical problems with the Buick than with the Oldsmobile. 
The Caldwells then talked to three friends, two Oldsmobile owners, and one former Buick 
owner. Both Oldsmobile owners reported having a few mechanical problems, but nothing major. 
The Buick owner, however, exploded when asked how he like his car: “First, the fuel injection 
went out - $250 bucks. Next, I started having trouble with the rear end and had to replace it. I 
finally decided to sell it after the transmission went. I'd never buy another Buick.” 
The Caldwells want to buy the car that is less likely to require major repair work. Given what 
they currently know, which car would you recommend that they buy? 
_____ a. I would recommend that they buy the Oldsmobile, primarily because of all the trouble 
their friend had with his Buick. Since they haven't heard similar horror stories about the 
Oldsmobile, they should go with it. 
_____ b. I would recommend that they buy the Buick in spite of their friend's bad experience. 
That is just one case, while the information reported in Consumer Reports is based on many 
cases. And according to that data, the Buick is somewhat less likely to require repairs. 
_____ c. I would tell them that it didn't matter which car they bought. Even though one of the 
models might be more likely than the other to require repairs, they could still, just by chance, get 
stuck with a particular car that would need a lot of repairs. They may as well toss a coin to 
decide. 
 
 7. Half of all newborns are girls and half are boys. Hospital A records an average of 50 
births a day. Hospital B records an average of 10 births a day. On a particular day, which 
hospital is more likely to record 80% or more female births? 
_____ a. Hospital A (with 50 births a day) 
_____ b. Hospital B (with 10 births a day) 
_____ c. The two hospitals are equally likely to record such an event. 
 
 8. "Megabucks" is a weekly lottery played in many states. The numbers 1 through 36 are 
placed into a container. Six numbers are randomly drawn out, without replacement. In order to 
win, a player must correctly predict all 6 numbers. The drawing is conducted once a week, each 
time beginning with the numbers 1 through 36. 
The following question about the lottery appeared in The New York Times (May 22, 1990). 
Are your odds of winning the lottery better if you play the same numbers week after week or if 
you change the numbers every week? 
What do you think? 
______a. I think the odds are better if you play the same numbers week after week. 
______b. I think the odds are better if you change the numbers every week. 
______c. I think the odds are the same for each strategy. 
 
 9. For one month, 500 elementary students kept a daily record of the hours they spent 
watching television. The average number of hours per week spent watching television was 28. 
The researchers conducting the study also obtained report cards for each of the students. They 
found that the students who did well in school spent less time watching television than those 



students who did poorly. Listed below are several possible statements concerning the results of 
this research. Place a check by every statement that you agree with. 
_____ a. The sample of 500 is too small to permit drawing conclusions. 
_____ b. If a student decreased the amount of time spent watching television, his or her 
performance in school would improve. 
_____ c. Even though students who did well watched less television, this doesn't necessarily 
mean that watching television hurts school performance. 
_____ d. One month is not a long enough period of time to estimate how many hours the 
students really spend watching television. 
_____ e. The research demonstrates that watching television causes poorer performance in 
school. 
_____ f. I don't agree with any of these statements. 
 
 10. An experiment is conducted to test the efficiency of a new drug on curing a disease. 
The experiment is designed so that the number of patients who are cured using the new drug is 
compared to the number of patients who are cured using the current treatment. The percentage of 
patients who are cured using the current treatment is 50% and 65% are cured who have used the 
new drug. A P-value of 5% (.05) is given as an indication of the statistical significance of these 
results. The P-value tells you: 
______a. There is a 5% chance that the new drug is more effective than the current treatment. 
______b. If the current treatment and the new drug were equally effective, then 5% of the times 
we conducted the experiment we would observe a difference as big or bigger than the 15% we 
observed here. 
______c. There is a 5% chance that the new drug is better than the current treatment by at least 
15%. 
 
 11. Gallup* reports the results of a poll that shows that 58% of a random sample of adult 
Americans approve of President Clinton's performance as president. The report says that the 
margin of error is 3%. What does this margin of error mean? 
______a. One can be 95% "confident" that between 55% and 61% of all adult Americans 
approve of the President's performance. 
______b. One can be sure that between 55% and 61% of all adult Americans approve of the 
President's performance. 
______c. The sample percentage of 58% could be off by 3% in either direction due to 
inaccuracies in the survey process. 
______d. There is a 3% chance that the percentage of 58 is an inaccurate estimate of the 
population of all Americans who approve of President Clinton's performance as president. 
 
 
*Gallup Poll - a sampling by the American Institute of Public Opinion or its British counterpart 
of the views of a representative cross section of the population, used as a means of forecasting 
voting. Etymology: named after George Horace Gallop (1901-84), US statistician. 
 Gallup Poll - опрос Гэллапа, опрос общественного мнения (анкетный опрос населения по 
различным вопросам, политическим и социальным. Проводится с 1938 Британским 
институтом общественного мнения [British Institute of Public Opinion], а с 1952 институтом 
"Социальные исследования (опросы Гэллапа)" [Social Surveys (Gallup Polls) Ltd]) назван 
по имени основателя американского Института общественного мнения Дж. Гэллапа 
[George Horace Gallup, 1901-84]. 
 
 
 
 
 
 



General conditions for succeeding in your professional life:  

• Work hard: Hard work is the best investment a man can make. If the power 
to do hard work is not talent, it is the best possible substitute for it. 
Ambition by itself never gets anywhere until it forms a partnership with 
work.  

• Study hard: Knowledge enables a man to work more intelligently and 
effectively.  

• Love your work: Then you will find pleasure in mastering it.  
• Have initiative: Ruts often deepen into graves.  
• Be exact: Slipshod methods bring slipshod results.  
• Have the spirit of conquest: Thus you can successfully battle and 

overcome difficulties.  
• Cultivate personality: Personality is to a man what perfume is to the 

flower.  
• Be fair: Unless you feel right towards your fellow men you can never be a 

successful leader.  
• Help and share with others: The real test of life greatness lies in giving 

opportunity to others.  
• In all things do your best: The man who has done his best has done 

everything. The man who has done less than his best has done nothing. If 
you do the best you can then you will find that you have done as well as or 
better than anyone else. 

To Educe means to bring out a potential existence. Education, therefore, is a 
process of intellectual growth. Education is essential to change, for education 
creates both new wants and the ability to satisfy them. A student must be curious, 
open-minded, reflective, strategic, skeptical, and must learn for deep 
understanding. Education is a progressive discovery of our own ignorance. To 
discover your potentiality, think for yourself.  

Formal education must teach you how to think. The hard facts you learn are 
secondary to that. Education is not how much you have committed to memory, or 
even how much you know. It is being able to differentiate between what you 
know and what you do not. Teaching should be such that what is offered by the 
teacher will be perceived as a valuable gift and not as a hard duty.  

The big thing you take away from school is how to induct and deduct in a 
constructive way. The object of education is to prepare the students to educate 
themselves throughout their lives. Critical thinking, self-examination, and the 
questioning of assumptions are all widely genuflected to as part of any good 
education. … students are active participants creating knowledge and developing 
skills rather than passive recipients of information. Students appreciate a teacher 
who gives them something to take home to think about besides homework. One 
often forgets what one was taught. However, one only can make use of what one 
has learnt.  

All the interest of education should come together to make students responsible 
decision makers. Our highest endeavor must be to develop free human beings 
who, of themselves, are able to give purpose and direction to their lives. It is the 
ability to decide for yourself and the responsibility for making a self for yourself; 
the educator is merely a mid-wife in this process. A professor should never 
measure students intelligence with his/her own, otherwise there is no progress for 



the new generation. Moreover, there is no such thing as being intelligent in 
everything and all the time.  

Problem Solving in Mathematics: When we think of having the ability 'to do' 
math, we think numbers. However, math is more than computations and numbers; 
it's about being able to solve problems. Applying what you know to the situation 
presented. Here are a few tips on becoming successful at problem solving.  

The main reason for learning all about math is to become better problem solvers 
in all aspects of life. Many problems are multi step and require some type of 
systematic approach. Most of all, there are a couple of things you need to do when 
solving problems. Ask yourself exactly what type of information is being asked 
for. Then determine all the information that is being given to you in the question. 
When you clearly understand the answers to those two questions, you are then 
ready to devise your plan. Some key questions as you approach the problem may 
be:  

What are my key words?  

Do I need a diagram? List? Table?  

Is there a formula or equation that I'll need? Which one?  

Will I use a calculator? Is there a pattern I can use and or follow?  

Remember: Read the problem carefully, decide on a method to solve the problem, 
solve the problem.  

 

"And happiness too swiftly flies 
Thought would destroy their paradise 

No more; where ignorance is bliss, 'tis folly to be wise." 
 (‘Ode on a Distant Prospect of Eton College’) 

 
 

About style 
 
“I realized another thing, that in this world fast runners do not always win the race, 
and the brave do not always win the battle. 
Wise men do not always earn a living, intelligent man do not always get rich, and 
capable men do not always rise to high positions. Bad luck happens to everyone.” 
 
“I returned and saw under the sun that the race is not to the swift, nor the battle to 
the strong, neither yet bread to the wise, nor yet riches to men of understanding, 
not yet favor to men of skill; but time and chance happeneth to them all.” 
 
“Objective consideration of contemporary phenomena compels the conclusion that 
success or failure in competitive activities exhibits no tendency to be 
commensurate with innate capacity, but that a considerable element of the 
unpredictable must invariably be taken into account.” 



What are the names of the operands in common operations?  

• addend + addend = sum     (also:   term + term = sum)  
• minuend - subtrahend = difference  
• multiplier × multiplicand = product     (also:   factor × factor = product)  
• dividend / divisor = quotient  
• base exponent = power  
• index√radicand = root  

(multiplier and multiplicand can be used  for noncommutative multiplications. ) 

Note the consistent use of the suffixes, which are of Latin origin:  

• Dividend= "That which is to be divided" (the orator Cato ended all of its 
speeches with the famous quote "Carthago delenda est": Catharge is to 
be destroyed). In a nonmathematical context, dividends are profits that are 
to be divided among all shareholders.  

• Divisor = "That which is to do the dividing". A director does the directing, 
an advisor does the advising, etc. In ancient Rome, the Emperor was the 
"Imperator", the one supposed to issue the orders (Latin: "Imperare")  

How native speakers pronounce formulas in English?  

 Here are the basics:  

• x+y :  "x plus y".  
• x-y :  "x minus y".  
• x y :  "x times y" or "x into y"  (the latter is more idiomatic).  
• x/y :  "x over y".  

o If x and y are both integers, y is pronounced as an ordinal: 3/4 = "three 
fourth".  

• xy  : "x to the power of y".  
o Longer version (elementary level): "x raised to the power of y".  
o Shorter version (when x is easy to pronounce): "x to the y".  
o If y is an integer, "x to the yth [power]" ("power" is often dropped).  
o If y is 2 or 3, "x square[d]" or "x cube[d]" are most common.  

There's also the issue of indicating parentheses and groupings when pronouncing 
expressions.  If the expression is simple enough, a parenthesis is adequately pronounced 
by marking a short pause.  For example,  x (y+z) / t  could be spoken out "x times ... y 
plus z ... over t" (pronouncing "y plus z" very quickly).  When dictating more complex 
expressions involving parentheses, it's best to indicate open parent' and close parent', 
whenever needed.  

 
 
 
 
 
 
 
 
 



Sample space 
is a collection of all possible outcomes of an experiment. The individual 
(complete) outcomes are called simple events. 
 
A few examples: 
 1. Rolling a die 
 2. Rolling 2 (n in general) dice (or, equivalently, one die twice, or n times) 
 3. Selecting 2 people out of 4 (k objects out of n in general) 
 4. Flipping a coin until a head appears 
 5. Rotating a wheel with a pointer 
 6. Flipping a tack  . 
 
  For the examples above, we get: 
 
 1. The outcomes can be uniquely represented by the number of dots shown 
on the top face. The sample space is thus the following set of six elements: 
{1, 2, 3, 4, 5, 6}. 
 
 2. With two dice, we have a decision to make: do we want to consider the 
dice as indistinguishable (to us, they usually are) and have the sample space consist 
of unordered pairs of numbers, or should we mark the dice (red and green say) and 
consider an ordered pair of numbers as an outcome of the experiment (the first 
number for red, the second one for green die)? The choice is ours; we are allowed 
to consider as much or as little detail about the experiment as we need, but there 
two constraints: 
 (a) We have to make sure that our sample space has enough information to 
answer the questions at hand (if the question is: what is the probability that the red 
die shows a higher number than the green die, we obviously need the ordered 
pairs). 
 (b) Subsequently, we learn how to assign probabilities to individual 
outcomes of a sample space. This task can quite often be greatly simplified by a 
convenient design of the sample space. It just happens that, when rolling two dice, 
the simple events (pairs of numbers) of the sample space have the same simple 
probability of 1/36 when they are ordered; assigning correct probabilities to the 
unordered list would be extremely difficult. 
 That is why, for this kind of experiment (rolling a die any fixed number 
of times), we always choose the sample space to consist of an ordered 
set of numbers (whether the question requires it or not). 
 In the case of two dice, we will thus use the following (conveniently 
organized) sample space: 
1,1  1,2  1,3  1,4  1,5  1,6 
2,1  2,2  2,3  2,4  2,5  2,6 
3,1  3,2  3,3  3,4  3,5  3,6 
4,1  4,2  4,3  4,4  4,5  4,6 
5,1  5,2  5,3  5,4  5,5  5,6 
6,1  6,2  6,3  6,4  6,5  6,6 



and correspondingly for more than 2 dice (we will no longer be able to write it 
down explicitly, but we should be able to visualize the result). Note that a single 
simple event consists of two (or more) numbers. As explained earlier, we will 
never try to simplify this sample space by removing the order; there is one 
simplification one can make though, if the question is concerned only with sixes 
versus non-sixes: we can reduce the sample space of 36 simple events to: {66, 6O, 
O6, OO} where O stands for any other number but 6. 
 Assigning probabilities will be a touch more difficult now, but it will prove 
to be manageable. 
 
 3. Selecting 2 (distinct) people out of 4. Here (unless the question demands 
it), we can ignore the order of the selection, and simplify the sample space to: 

{AB, AC, AD, BC, BD, CD} [unordered pairs], with  = 6 equally likely ⎟
⎠
⎞⎜

⎝
⎛

2
4

outcomes (simple events). Selecting k out of n objects will similarly result 

in  equally likely possibilities. Another typical experiment of this kind is ⎟
⎠
⎞⎜

⎝
⎛

k
n

dealing 5 cards out of 52. 
 
 4. The new feature of this example (waiting for the first head) is that the 
sample space is infinite: {H, T H, T T H, T T T H, T T T T H, T T T T T H, ...}. 
Eventually, we must learn to differentiate between the discrete (countable) infinity, 
where the individual simple events can be labeled 1st, 2nd, 3rd, 4th, 5th, .... in an 
exhaustive manner, and the continuous infinity (real numbers in any interval). The 
current example is obviously a case of discrete infinity, which implies that the 
simple events cannot be equally likely (they would all have the probability of 
∞/1 = 0, implying that their sum is 0, an obvious contradiction). But we can easily 

manage to assign correct and meaningful probabilities even in this case (as 
discussed at the lecture). 
 
 5. The rotating wheel has also an infinite sample space (an outcome is 
identified with the final position − angle − of the pointer, measured from some 
fixed direction), this time being represented by all real numbers from the interval 
[0, 2π) [assuming that angles are measured in radians]. This infinity of simple 
events is of the continuous type, with some interesting consequences. Firstly, from 
the symmetry of the experiment, all of its outcomes must be equally likely. But this 
implies that the probability of each single outcome is zero! 
 Isn’t this a contradiction as well? The answer is no; in this case the number 
of outcomes is no longer countable, and therefore the infinite sum (actually, an 
integral) of their zero probabilities can become nonzero (we need them to add up to 
1). The final puzzle is: how do we put all these zero probabilities together to 
answer a simple question such as: what is the probability that the pointer will stop 
in the [0, 2/π ] interval? This will require introducing a new concept of the so 
called probability density (probability of an interval, divided by the length of the 
interval). We will postpone this until the second part of this course (random 
variables). 



 
 6. What exactly is new about the tack and its two simple outcomes: 

. 
Here, for the first time, we will not be able to introduce probabilities based on any 
symmetry argument, these will have to be established empirically by flipping the 
tack many times, finding the proportion of times it lands in the   position and 
calling this the probability of  (to be quite correct, the exact probability of 

 is the limit of these experiments, when their number approaches infinity). 
That effectively implies that the probability of any such event can never be known 
exactly; we deal with this by replacing it by a parameter p, which we substitute for 
the exact probability in all our formulas. Eventually we may learn (if we manage to 
reach those chapters) how to test hypotheses concerning the value of p (such as, for 
example, p = 0.7). 
 

Give a possible sample space for each of the following experiments: 
(a) An election decides between two candidates A and B. 
(b) A two-sided coin is tossed. 
(c) A student is asked for the month of the year and the day of the week on which 
her birthday falls. 
(d) A student is chosen at random from a class of ten students. 
(e) You receive a grade in this course. 

For which of the cases would it be reasonable to assign the uniform 
distribution function? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PARADOXES 
 

The main reason for learning all about math is to become better problem solvers in all 
aspects of life. 

 
 One must be very careful in dealing with problems involving conditional 
probability. 
 You will recall that in the Monty Hall problem, if the contestant chooses the 
door with the car behind it, then Monty has a choice of doors to open. We made an 
assumption that in this case, he will choose each door with probability 1/2. We 
then noted that if this assumption is changed, the answer to the original question 
changes. In this section, we will study other examples of the same phenomenon. 
 Example 1. Consider a family with two children. Given that one of the 
children is a boy, what is the probability that both children are boys? 
 One way to approach this problem is to say that the other child is equally 
likely to be a boy or a girl, so the probability that both children are boys is 1/2. 
 The “textbook” solution would be to draw the tree diagram and then form 
the conditional tree by deleting paths to leave only those paths that are consistent 
with the given information. The result is shown in the Figure. 
 

 
 We see that the probability of two boys given a boy in the family is not 1/2 
but rather 1/3.  
 This problem and others like it are discussed in Bar-Hillel and Falk.1 These 
authors stress that the answer to conditional probabilities of this kind can change 
depending upon how the information given was actually obtained. For example, 
they show that 1/2 is the correct answer for the following scenario. 
 Example 2. Mr. Smith is the father of two. We meet him walking along the 
street with a young boy whom he proudly introduces as his son. What is the 
probability that Mr. Smith’s other child is also a boy? 
 As usual we have to make some additional assumptions. For example, we 
will assume that if Mr. Smith has a boy and a girl, he is equally likely to choose 
either one to accompany him on his walk. In the Figure we show the tree analysis 
of this problem and we see that 1/2 is, indeed, the correct answer. 
1M. Bar-Hillel and R. Falk, “Some teasers concerning conditional probabilities,” Cognition, vol. 
11 (1982), pgs. 109-122. 



 

 
 Example 3. It is not so easy to think of reasonable scenarios that would lead 
to the classical 1/3 answer. An attempt was made by Stephen Geller in proposing 
this problem to Marilyn vos Savant.2 Geller’s problem is as follows: A shopkeeper 
says she has two new baby beagles to show you, but she doesn’t know whether 
they’re both male, both female, or one of each sex. You tell her that you want only 
a male, and she telephones the fellow who’s giving them a bath. “Is at least one a 
male?” she asks. “Yes,” she informs you with a smile. What is the probability that 
the other one is male? The reader is asked to decide whether the model which gives 
an answer of 1/3 is a reasonable one to use in this case.  
 In these examples, the apparent paradoxes could easily be resolved by 
clearly stating the model that is being used and the assumptions that are being 
made.  
2M. vos Savant, “Ask Marilyn,” Parade Magazine, 9 September; 2 December; 17 February 1990, 
reprinted in Marilyn vos Savant, Ask Marilyn, St. Martins, New York, 1992.  

Math is more than computations and numbers; it's about being able to solve problems. 



The Monty Hall problem 
 
 
Conditional probabilities are the sources of many “paradoxes” in probability. 
 We consider now a problem called the Monty Hall problem. This has long 
been a favorite problem but was revived by a letter from Craig Whitaker to 
Marilyn vos Savant for consideration in her column in Parade Magazine. Craig 
wrote: 
Suppose you’re on Monty Hall’s Let’s Make a Deal! You are given the choice of 
three doors, behind one door is a car, the others, goats. You pick a door, say 1, 
Monty opens another door, say 3, which has a goat. Monty says to you “Do you 
want to pick door 2?” Is it to your advantage to switch your choice of doors? 
 Marilyn gave a solution concluding that you should switch, and if you do, 
your probability of winning is 2/3. Several irate readers, some of whom identified 
themselves as having a PhD in mathematics, said that this is absurd since after 
Monty has ruled out one door there are only two possible doors and they should 
still each have the same probability 1/2 so there is no advantage to switching. 
Marilyn stuck to her solution and encouraged her readers to simulate the game and 
draw their own conclusions from this. Other readers complained that Marilyn had 
not described the problem completely. 
 In particular, the way in which certain decisions were made during a play of 
the game were not specified. We will assume that the car was put behind a door by 
rolling a three-sided die which made all three choices equally likely. Monty knows 
where the car is, and always opens a door with a goat behind it. Finally, we assume 
that if Monty has a choice of doors (i.e., the contestant has picked the door with the 
car behind it), he chooses each door with probability 1/2. Marilyn clearly expected 
her readers to assume that the game was played in this manner. As is the case with 
most apparent paradoxes, this one can be resolved through careful analysis. 
 
 We begin by describing a simpler, related question. We say that a contestant 
is using the “stay” strategy if he picks a door, and, if offered a chance to switch to 
another door, declines to do so (i.e., he stays with his original choice). Similarly, 
we say that the contestant is using the “switch” strategy if he picks a door, and, if 
offered a chance to switch to another door, takes the offer. 
  Now suppose that a contestant decides in advance to play the “stay” strategy. 
His only action in this case is to pick a door (and decline an invitation to switch, if 
one is offered).  
 What is the probability that he wins a car? The same question can be asked 
about the “switch” strategy. 
 Using the “stay” strategy, a contestant will win the car with probability 1/3, 
since 1/3 of the time the door he picks will have the car behind it. On the other 
hand, if a contestant plays the “switch” strategy, then he will win whenever the 
door he originally picked does not have the car behind it, which happens 2/3 of the 
time. 



 This very simple analysis, though correct, does not quite solve the problem 
that Craig posed. Craig asked for the conditional probability that you win if you 
switch, given that you have chosen door 1 and that Monty has chosen door 3.  
 To solve this problem, we set up the problem before getting this information 
and then compute the conditional probability given this information. 
  This is a process that takes place in several stages; the car is put behind a 
door, the contestant picks a door, and finally Monty opens a door.  
 Thus it is natural to analyze this using a tree measure. Here we make an 
additional assumption that if Monty has a choice of doors (i.e., the contestant has 
picked the door with the car behind it) then he picks each door with probability 
1/2. The assumptions we have made determine the branch probabilities and these 
in turn determine the tree measure. 
 The resulting tree and tree measure are shown in the Figure.  
 It is tempting to reduce the tree’s size by making certain assumptions such 
as: “Without loss of generality, we will assume that the contestant always picks 
door 1.” We have chosen not to make any such assumptions, in the interest of 
clarity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Monty Hall problem 
 

 
 
 
Now the given information, namely that the contestant chose door 1 and Monty 
chose door 3, means only two paths through the tree are possible (see the next 
Figure). 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Conditional probabilities for the Monty Hall problem 
 

 
 
 For one of these paths, the car is behind door 1 and for the other it is behind 
door 2. The path with the car behind door 2 is twice as likely as the one with the 
car behind door 1. Thus the conditional probability is 2/3 that the car is behind 
door 2 and 1/3 that it is behind door 1, so if you switch you have a 2/3 chance of 
winning the car, as Marilyn claimed. 
 
Two court cases 

1. A cab was involved in a hit and run accident at night.  Two cab companies, 
the Green and the Blue, operate in the city.  Here is some data: 
a)  Although the two companies are equal in size, 85% of cab accidents in 
the city involve Green cabs and 15% involve Blue cabs. 
b)  A witness identified the cab in this particular accident as Blue. The court 
tested the reliability of the witness under the same circumstances that existed 
on the night of the accident and concluded that the witness correctly 
identified each one of the two colors 80% of the time and failed 20% of the 
time. 
What is the probability that the cab involved in the accident was Blue rather 
than Green? If it looks like an obvious problem in statistics, then consider 
the following argument: The probability that the color of the cab was Blue is 
80%!  After all, the witness is correct 80% of the time, and this time he said 
it was Blue! What else need be considered? Nothing, right? If we look at 
Bayes theorem (pretty basic statistical theorem) we should get a much lower 
probability.  But why should we consider statistical theorems when the 
problem appears so clear cut?  Should we just accept the 80% figure as 
correct? 

2. People vs. Collins. In 1964 the purse of an elderly woman shopping in Los 
Angeles was snatched by a young white female with a blond ponytail. The 
thief fled on foot but soon after was seen getting into a yellow car driven by 



a black man who had a mustache and beard. A police investigation 
subsequently turned up a suspect who was blond, wore a ponytail, and lived 
with a black man who had a mustache, beard, and a yellow car. None of the 
eyewitnesses were able to identify the suspects so the police turned to 
probability 
Characteristic Probability 
Yellow car 0.1 
Man with mustache 0.25 
Black man with beard 0.01 
Woman with ponytail 0.1 
Woman with blond hair 0.33 
Interracial couple in car 0.01 
Multiplying the probabilities as if they were independent gives an overall 
probability of 1/12 000 000. This impressed the jury who handed down a 
verdict of second degree robbery. The Supreme Court of California later 
disagreed and reversed the conclusion based on the fact that… 

 
 

Let’s Make a Deal! 
 

Here are two variations of the Monty Hall problem.  
 (a) Suppose that everything is the same except that Monty forgot to 
find out in advance which door has the car behind it. In the spirit of “the 
show must go on,” he makes a guess at which of the two doors to open 
and gets lucky, opening a door behind which stands a goat. Now should 
the contestant switch? 
 (b) You have observed the show for a long time and found that the 
car is put behind door A 45% of the time, behind door B 40% of the 
time and behind door C 15% of the time. Assume that everything else 
about the show is the same. Again you pick door A. Monty opens a door 
with a goat and offers to let you switch. Should you? Suppose you knew 
in advance that Monty was going to give you a chance to switch. Should 
you have initially chosen door A? 
 
You solve this problems (writing form, in detail; Russian or English – it 
doesn’t matter) – I take it into consideration (at least you haven’t to do 
Задачи 1)  
 
 
 
 
 
 
 



The National Lottery (Frank Duckworth. The Royal Statistical Society Schools 
Lecture 2004)  
 
What advice can I give you as a statistician? 

Let us get one thing quite clear. There is nothing that I or anyone else can do 
to help you to increase your chances of picking the right numbers. So take no 
notice at all of any claims to help you pick the winning numbers. 

But there is something I can do for you. I can’t help you to win, but I can 
help you to win more if you win. 

The key to this lies in people’s selection of random numbers. If everyone 
who bought a ticket picked their six numbers from the numbers 1 to 49 completely 
at random, then there would be about two or three jackpot winners every draw, the 
number of winners would hardly ever exceed 15 and there should have been no 
more than about 40 roll-overs since the lottery started about 10 years ago [when 
there are no jackpot winners, the prize money rolls over to the next draw]. In fact, 
there have been over 130 roll-overs, there have been several instances of more than 
20 winners, and on one occasion during the lottery’s first year there were no fewer 
than 133 winners.  

What we find is that in most draws there are either many fewer winners or 
many more winners than would be expected if every selection were made purely at 
random. So most people who win a share in the jackpot are having to share it with 
many others. The reason is that people in general are not very good at picking 
random numbers. 

 
Item 1. There are four numbers written in a square: 1, 2, 3 and 4. Will you 

please select one of these numbers at random, 1, 2, 3 or 4, and put a cross over the 
number you have selected.  

Item 2. Below this you have an empty square and I want you to pick a 
single-digit figure at random. 
 Item 3. I want you to make a random National Lottery selection of six 
different numbers between 1 and 49; put them in order and write them in the 
spaces provided.  

 
What I have to tell you is that with truly random selections there will be two 

consecutive numbers in very nearly one-half of the draws. Indeed, from the 845 
draws since the lottery started in November 1994 until the end of January 2004, 
there were consecutive numbers in 402 of them, which is about 48% of the draws. 
Examination of the numbers of winners tells us that when there are consecutive 
numbers there are fewer people sharing the jackpot. So there is the first piece of 
advice I can give you; make sure you have two consecutive numbers. 

What you want to do to make sure you win a lot, if you win, is to pick 
numbers or combinations of numbers that few others pick. Camelot, who runs the 
UK National Lottery, does not reveal any information on the numbers people 
select, so we cannot look for the most popular numbers or combinations of 
numbers. But there are other identical lotteries in the world, notably in Switzerland 
and Canada, and these do make the details of selections available, and they tell us 



some very interesting things. First of all, the most popular number is 7; next comes 
11. Odd numbers are more popular than even, and fewer than expected pick 
numbers over 40.  

There are also interesting results from looking at combinations of numbers. 
Did anyone here pick the numbers 1, 2, 3, 4, 5 and 6? What I have to tell you is 
that if you had picked these numbers and they had come up, the indications are that 
you would probably have had to share your jackpot winnings with about 10,000 
others! 
 
 So here is my advice. First of all, you must pick your six numbers at 
random. The best way of doing this is to measure out a 7-inch by 7-inch square, 
rule this into 49 squares, write the numbers 1 to 49 in the squares, cut them out 
separately and fold each one twice. Then put them in a hat, mix them thoroughly 
and draw out six numbers. But here is the trick. Put them in ascending order and 
examine them. To accept them they must satisfy each of the following four criteria:  

1. there must be at least one instance of two or more consecutive numbers 
2. there must not be a 7 or an 11 
3. there must be no more than three odd numbers 
4. there must be at least one number of 41 or over. 

Otherwise, put all six numbers back, mix them thoroughly again, and redraw; and 
keep doing this until all four conditions are satisfied.  

This will not make any difference to your chances of winning. You are still 
facing odds of nearly 14 million to one against, but in the very unlikely event that 
you do win, at least you probably won’t have to share your winnings with very 
many others.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fair or unfair games - "Expectation"  
One of the most valuable uses to which a gambler can put his knowledge of 
probabilities is to decide whether a game or proposition is fair, or equitable. To do 
this a gambler must calculate his 'expectation'. A gambler's expectation is the 
amount he stands to win multiplied by the probability of his winning it. A game is 
a fair game if the gambler's expectation equals his stake. If a gambler is offered 10 
units each time he tosses a head with a true coin, and pays 5 units for each toss is 
this a fair game? The gambler's expectation is 10 units multiplied by the 
probability of throwing a head, which is 1/2. His expectation is 10 units = 5 units, 
which is what he stakes on the game, so the game is fair.  
Suppose a gambler stakes 2 units on the throw of a die. On throws of 1, 2, 3 and 6 
he is paid the number of units shown, on the die. If he throws 4 or 5 he loses. Is 
this fair? This can be calculated as above. The probability of throwing any number 
is 1/6, so his expectation is 6/6 on number 6, 3/6 on number 3, 2/6 on number 2 
and 1/6 on number 1.  
His total expectation is therefore 6/6+3/6+2/6+1/6, which equals 2, the stake for a 
throw, so the game is fair.  
Prospects of ruination 
When we talk of fair games, there is another aspect to the question which 
experienced gamblers know about, and which all gamblers must remember. If a 
game is fair by the above criterion, it nevertheless is still true that if it is played 
until one player loses all his money, then the player who started with most money 
has the better chance of winning. The richer man's advantage can be calculated.  
The mathematics required to arrive at the full formula are complex, but it can be 
shown that if one player's capital is c and another player's is C, then the probability 
that the player who began with c is ruined in a fair game played to a conclusion is 
C/(c + C) and therefore that the probability that he will ruin his opponent is 
c/(C + c).  
Suppose player X, with 10 units, plays another player, Y, with 1,000 units. A coin 
is tossed and for each head player X pays player Y one unit, and for each tail 
player Y pays player X one unit. The probability of player X ruining player Y is 
10/(1000+10) or 1/101. Player Y has a probability of 100/101 of ruining his 
opponent. An advantage is over 99%.  
This overwhelming advantage to the player with the larger capital is based on a fair 
game. When a player tries to break the bank at a casino, he is fighting the house 
edge as well as an opponent with much larger resources. Even a small percentage 
in favour of the casino reduces the probability of the player ruining the casino to 
such an extent that his chance of profiting is infinitesimal. If you are anticipating 
playing a zero sum game then make sure you are aware of the prospect of ruin. 
 

The law of large numbers / "The law of averages"  

The theory of probability becomes of enhanced value to gamblers when it is used 
with the law of large numbers.  The law of large numbers states that:  



“If the probability of a given outcome to an event is P and the event is repeated N 
times, then the larger N becomes, so the likelihood increases that the closer, in 
proportion, will be the occurrence of the given outcome to N*P.”  

For example:-  

If the probability of throwing a double-6 with two dice is 1/36, then the more times 
we throw the dice, the closer, in proportion, will be the number of double-6s 
thrown to of the total number of throws. This is, of course, what in everyday 
language is known as the law of averages. The overlooking of the vital words 'in 
proportion' in the above definition leads to much misunderstanding among 
gamblers. The 'gambler's fallacy' lies in the idea that “In the long run” chances will 
even out. Thus if a coin has been spun 100 times, and has landed 60 times head 
uppermost and 40 times tails, many gamblers will state that tails are now due for a 
run to get even. There are fancy names for this belief. The theory is called the 
maturity of chances, and the expected run of tails is known as a 'corrective', which 
will bring the total of tails eventually equal to the total of heads. The belief is that 
the 'law' of averages really is a law which states that in the longest of long runs the 
totals of both heads and tails will eventually become equal.  

In fact, the opposite is really the case.  As the number of tosses gets larger, the 
probability is that the percentage of heads or tails thrown gets nearer to 50%, but 
that the difference between the actual number of heads or tails thrown and the 
number representing 50% gets larger.  

Let us return to our example of 60 heads and 40 tails in 100 spins, and imagine that 
the next 100 spins result in 56 heads and 44 tails. The 'corrective' has set in, as the 
percentage of heads has now dropped from 60 per cent to 58 per cent. But there are 
now 32 more heads than tails, where there were only 20 before. The 'law of 
averages' follower who backed tails is 12 more tosses to the bad. If the third 
hundred tosses result in 50 heads and 50 tails, the 'corrective' is still proceeding, as 
there are now 166 heads in 300 tosses, down to 55-33 per cent, but the tails backer 
is still 32 tosses behind.  

Put another way, we would not be too surprised if after 100 tosses there were 60 
per cent heads.  We would be astonished if after a million tosses there were still 60 
per cent heads, as we would expect the deviation from 50 per cent to be much 
smaller. Similarly, after 100 tosses, we are not too surprised that the difference 
between heads and tails is 20. After a million tosses we would be very surprised to 
find that the difference was not very much larger than 20. 

A chance event is uninfluenced by the events which have gone before. If a true die 
has not shown 6 for 30 throws, the probability of a 6 is still 1/6 on the 31st throw. 
One wonders if this simple idea offends some human instinct, because it is not 
difficult to find gambling experts who will agree with all the above remarks, and 
will express them themselves in books and articles, only to advocate elsewhere the 
principle of 'stepping in when a corrective is due'.  



It is interesting that despite significant statistical evidence and proof of all of the 
above people will go to extreme lengths to fulfill there belief in the fact that a 
corrective is due. The number 53 in an Italian lottery had failed to appear for some 
time and this lead to an obsession with the public to bet ever larger amounts on the 
number. People staked so much on this corrective that the failure of the number 53 
to occur for two years was blamed for several deaths and bankruptcies. It seems 
that a large number of human minds are just simply unable to cope with the often 
seemingly contradictory laws of probability. If only they had listened to their 
maths teacher.  

An understanding of the law of the large numbers leads to a realisation that what 
appear to be fantastic improbabilities are not remarkable at all but, merely to be 
expected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Gambling 

“No one can possibly win at roulette unless he steals money from the 
table while the croupier isn't looking.”  

Albert Einstein  

“No betting system can convert a subfair game into a profitable 
enterprise...”  

Patrick Billingsley (“Probability and Measure”, page 94, second edition) 

 

In Las Vegas, a roulette wheel has 38 slots numbered 0, 00, 1, 2,.., 36. The 
0 and 00 slots are green and half of the remaining 36 slots are red and half are 
black. A croupier spins the wheel and throws in an ivory ball. If you bet 1 dollar 
on red, you win 1 dollar if the ball stops in a red slot and otherwise you lose 1 
dollar. 
Another form of bet for roulette is to bet that a specific number (say 17) will turn 
up. If the ball stops on your number, you get your dollar back plus 35 dollars. If 
not, you lose your dollar. 
 

The Labouchere system for roulette is played as follows. Write down a list 
of numbers, usually 1, 2, 3, 4. Bet the sum of the first and last, 1 + 4 = 5, on red. If 
you win, delete the first and last numbers from your list. If you lose, add the 
amount that you last bet to the end of your list. Then use the new list and bet the 
sum of the first and last numbers (if there is only one number, bet that amount). 
Continue until your list becomes empty. Show that, if this happens, you win the 
sum, 1 + 2 + 3 + 4 = 10, of your original list. Simulate this system and see if you 
do always stop and, hence, always win. If so, why is this not a foolproof gambling 
system? 

 (This system is also called the 'Cancellation' system. There are many variations. In its 
simplest form, you write down a series or a set of numbers; say, 1 2 3 4 5 6. The series can be 
short or long and not necessarily sequential such as 1 1 1 3 3 5 7. The choice of a particular 
series depends on the type of game you want to apply it to and the odds of the bet. Each number 
represents the amount in units or chips to bet. You bet the first and last of these numbers. In this 
example 1 and 6, which totals 7 units.  

If you win, you cross out the two numbers and bet the next two 'ends' (the outside 
numbers). In this instance 2 and 5. If you win again you bet on the next two remaining numbers 
3 and 4, and if you win that too, you would have made a 'coup' or completed one game. Then 
you start all over again.  

If you lose, then you add that one number to the end of the series. Say you lost your first 
bet of 7 units (1+ 6). Then you add number 7 to the end of the series to look like this: 1 2 3 4 5 
6 7 and your next bet would be 8 units (1+ 7). If you won the first bet but lost the second 2 and 
5, then the series of numbers would look like this: 2 3 4 5 7.  

If you work it out, you will see that when the series is completed or when you make a 
'coup', there is always a profit. The negative side of this system is that you could end up betting 
large sums of money even if your initial bet is small. ) 



 
 

Another well-known gambling system is the martingale doubling system. 
Suppose that you are betting on red to turn up in roulette. Every time you win, bet 
1 dollar next time. Every time you lose, double your previous bet. Suppose that 
you use this system until you have won at least 5 dollars or you have lost more 
than 100 dollars. In his book “The Newcomes”, W. M. Thackeray remarks “You 
have not played as yet? Do not do so; above all avoid a martingale if you do.” 
Was this good advice? 

 
http://www.fortunepalace.co.uk – may look for others gambling system. 

 

Not only do betting systems fail to beat casino games with a house 
advantage, they can't even dent it. Roulette balls and dice simply have no 
memory. Every spin in roulette and every toss in craps is independent of all 
past events. In the short run you can fool yourself into thinking a betting 
system works, by risking a lot to win a little. However, in the long run no 
betting system can withstand the test of time. Furthermore, the longer you 
play, the ratio of money lost to money bet will get closer to the expectation for 
that game.  

The Gambler's Fallacy 

The biggest gambling myth is that an event that has not happened recently 
becomes overdue and more likely to occur. This is known as the "gambler's 
fallacy." Thousands of gamblers have devised betting systems that attempt to 
exploit the gambler's fallacy by betting the opposite way of recent outcomes. For 
example, waiting for three reds in roulette and then betting on black. Hucksters sell 
"guaranteed" get-rich-quick betting systems that are ultimately based on the 
gambler's fallacy. None of them work.  

A common gamblers' fallacy called 'the doctrine of the maturity of the 
chances' (or 'Monte Carlo fallacy') falsely assumes that each play in a game of 
chance is not independent of the others and that a series of outcomes of one sort 
should be balanced in the short run by other possibilities. A number of 'systems' 
have been invented by gamblers based largely on this fallacy; casino operators are 
happy to encourage the use of such systems and to exploit any gambler's neglect of 
the strict rules of probability and independent plays. -- Encyclopedia Britannica 
(look under "gambling.")  

The number of 'guaranteed' betting systems, the proliferation of myths and 
fallacies concerning such systems, and the countless people believing, propagating, 
venerating, protecting, and swearing by such systems are legion. Betting systems 
constitute one of the oldest delusions of gambling history. Betting systems votaries 
are spiritually akin to the proponents of perpetual motion machines, butting their 

http://www.fortunepalace.co.uk/


heads against the second law of thermodynamics. -- The Theory of Gambling and 
Statistical Logic (page 53) by Richard A. Epstein 

The Martingale 

This system is generally played with an even money game such as the 
red/black bet in roulette or the pass/don't pass bet in craps and is known as the 
Martingale. The idea is that by doubling your bet after a loss, you would always 
win enough to cover all past losses plus one unit. For example if a player starts at 
$1 and loses four bets in a row, winning on the fifth, he will have lost 
$1+$2+$4+$8 = $15 on the four losing bets and won $16 on the fifth bet. The 
losses were covered and he had a profit of $1. The problem is that it is easier than 
you think to lose several bets in a row and run out of betting money after you've 
doubled it all away. 

 In order to prove this point a program was created that simulated two 
systems, the Martingale and flat betting, and applied each by betting on the pass 
line in craps (which has a 49.29% probability of winning). The Martingale bettor 
would always start with a $1 bet and start the session with $255 which is enough to 
cover 8 losses in a row. The flat bettor would bet $1 every time. The Martingale 
player would play for 100 bets, or until he couldn't cover the amount of a bet. In 
that case he would stop playing and leave with the money he had left. In the event 
his 100th bet was a loss, he would keep betting until he either won a bet or couldn't 
cover the next bet. The person flat betting would play 100 bets every time. This 
experiment was repeated for 1,000,000 sessions for both systems and tabulated the 
results. The graph below shows the results: 

 

As you can see, the flat bettor has a bell curve with a peak at a loss of $1, 
and never strays very far from that peak. Usually the Martingale bettor would show 
a profit represented by the bell curve on the far right, peaking at $51; however, on 
the far left we see those times when he couldn't cover a bet and walked away with 
a substantial loss. That happened for 19.65% of the sessions. Many believers in the 
Martingale mistakenly believe that the many wins will more than cover the few 
loses.  In this experiment the average session loss for the flat bettor was $1.12, but 
was $4.20 for the Martingale bettor. In both cases the ratio of money lost to money 



won was very close to 7/495, which is the house edge on the pass line bet in craps. 
This is not coincidental. No matter what system is used in the long run, this ratio 
will always approach the house edge. To prove this point consider the Martingale 
player on the pass line in craps who only desires to win $1, starts with a bet of $1, 
and has a bankroll of $2,047 to cover as many as 10 consecutive losses. The table 
below shows all possible outcomes with each probability, expected bet, and return. 

Possible outcomes of Martingale up to ten losing bets 
Number 

of 
losses 

Final 
outcome 

Highest 
bet 

Total
bet 

Net 
outcome Probability Expected 

bet 
Expected 

return 

0 Win 1 1 1 0.49292929 0.49292929 0.49292929
1 Win 2 3 1 0.24995001 0.74985002 0.24995001
2 Win 4 7 1 0.12674233 0.88719628 0.12674233
3 Win 8 15 1 0.06426732 0.96400981 0.06426732
4 Win 16 31 1 0.03258808 1.01023035 0.03258808
5 Win 32 63 1 0.01652446 1.04104089 0.01652446
6 Win 64 127 1 0.00837907 1.06414175 0.00837907
7 Win 128 255 1 0.00424878 1.08343900 0.00424878
8 Win 256 511 1 0.00215443 1.10091479 0.00215443
9 Win 512 1023 1 0.00109245 1.11757574 0.00109245

10 Win 1024 2047 1 0.00055395 1.13393379 0.00055395

10 Loss 1024 2047 -2047 0.00056984 1.16646467 -
1.16646467

Total 1.00000000 11.81172639 -
0.16703451

The expected bet is the product of the total bet and the probability. Likewise, 
the expected return is the product of the total return and the probability. The last 
row shows this Martingale bettor to have had an average total bet of 11.81172639 
and an average loss of 0.16703451. Dividing the average loss by the average bet 
yields .01414141. We now divide 7 by 495 ( the house edge on the pass line) and 
we again get 0.01414141! This shows that the Martingale is neither better nor 
worse than flat betting when measured by the ratio of expected loss to expected 
bet. All betting systems are equal to flat betting when compared this way, as they 
should be. In other words, all betting systems are equally worthless. 

 

 



Don't waste your money 

The Internet is full of people selling betting systems with promises of 
beating the casino at games of luck. Those who sell these systems are the present 
day equivalent of the 19th century snake oil salesmen. Under no circumstances 
should you waste one penny on any gambling system. Every time one has been put 
to a computer simulation it failed and showed the same ratio of losses to money bet 
as flat betting. If you ask a system salesman about this you likely will get a reply 
such as, "In real life nobody plays millions of trials in the casino." You're likely to 
also hear that his/her system works in real life, but not when used against a 
computer simulation. It is interesting that professionals use computers to model 
real life problems in just about every field of study, yet when it comes to betting 
systems computer analysis becomes "worthless and unreliable", as the salesman of 
one system put it. In any event, such an excuse misses the point; the computer runs 
billions of trials simply to prove that a system is unsound. If it won't work on a 
computer, it won't work in the casino. 

Gambling systems have been around for as long as gambling has. No 
system has ever been proven to work. System salesmen go from selling one 
kind of system to another. It is a dirty business by which they steal ideas from 
each other, and are always attempting to rehash old systems as something 
new. 

 

 

 

 

 

 

 

 

 



 

The law of large numbers / "The law of 
averages"  

The theory of probability becomes of enhanced value to gamblers when it is used with the law of 
large numbers.  The law of large numbers states that:  

“If the probability of a given outcome to an event is P and the event is repeated N times, then the 
larger N becomes, so the likelihood increases that the closer, in proportion, will be the 
occurrence of the given outcome to N*P.”  

For example:-  

If the probability of throwing a double-6 with two dice is 1/36, then the more times we throw the 
dice, the closer, in proportion, will be the number of double-6s thrown to of the total number of 
throws. This is, of course, what in everyday language is known as the law of averages. The 
overlooking of the vital words 'in proportion' in the above definition leads to much 
misunderstanding among gamblers. The 'gambler's fallacy' lies in the idea that “In the long run” 
chances will even out. Thus if a coin has been spun 100 times, and has landed 60 times head 
uppermost and 40 times tails, many gamblers will state that tails are now due for a run to get 
even. There are fancy names for this belief. The theory is called the maturity of chances, and the 
expected run of tails is known as a 'corrective', which will bring the total of tails eventually equal 
to the total of heads. The belief is that the 'law' of averages really is a law which states that in the 
longest of long runs the totals of both heads and tails will eventually become equal.  

In fact, the opposite is really the case.  As the number of tosses gets larger, the probability is that 
the percentage of heads or tails thrown gets nearer to 50%, but that the difference between the 
actual number of heads or tails thrown and the number representing 50% gets larger.  

Let us return to our example of 60 heads and 40 tails in 100 spins, and imagine that the next 100 
spins result in 56 heads and 44 tails. The 'corrective' has set in, as the percentage of heads has 
now dropped from 60 per cent to 58 per cent. But there are now 32 more heads than tails, where 
there were only 20 before. The 'law of averages' follower who backed tails is 12 more tosses to 
the bad. If the third hundred tosses result in 50 heads and 50 tails, the 'corrective' is still 
proceeding, as there are now 166 heads in 300 tosses, down to 55-33 per cent, but the tails 
backer is still 32 tosses behind.  

Put another way, we would not be too surprised if after 100 tosses there were 60 per cent heads.  
We would be astonished if after a million tosses there were still 60 per cent heads, as we would 
expect the deviation from 50 per cent to be much smaller. Similarly, after 100 tosses, we are not 
too surprised that the difference between heads and tails is 20. After a million tosses we would 
be very surprised to find that the difference was not very much larger than 20. 

A chance event is uninfluenced by the events which have gone before. If a true die has not 
shown 6 for 30 throws, the probability of a 6 is still 1/6 on the 31st throw. One wonders if this 
simple idea offends some human instinct, because it is not difficult to find gambling experts who 
will agree with all the above remarks, and will express them themselves in books and articles, 
only to advocate elsewhere the principle of 'stepping in when a corrective is due'.  



It is interesting that despite significant statistical evidence and proof of all of the above people 
will go to extreme lengths to fulfill there belief in the fact that a corrective is due. The number 53 
in an Italian lottery had failed to appear for some time and this lead to an obsession with the 
public to bet ever larger amounts on the number. People staked so much on this corrective that 
the failure of the number 53 to occur for two years was blamed for several deaths and 
bankruptcies. It seems that a large number of human minds are just simply unable to cope with 
the often seemingly contradictory laws of probability. If only they had listened to their maths 
teacher. 

An understanding of the law of the large numbers leads to a realization that what appear to be 
fantastic improbabilities are not remarkable at all but, merely to be expected. 

Law of Large Numbers (Law of Averages) 
0>∀ε  (under some conditions) 

  
 

 
 

 

 
 



 
 
 
Bernoulli trials distributions (p = 1/2) 
 
 

 
Uniform case 
 
“Whence, finally, this one thing seems to follow: that if observations of all events 
were to be continued throughout all eternity, (and hence the ultimate probability 
would tend toward perfect certainty), everything in the world would be perceived 
to happen in fixed ratios and according to a constant law of alternation, so that 
even in the most accidental and fortuitous occurrences we would be bound to 
recognize, as it were, a certain necessity and, so to speak, a certain fate. 
I do now know whether Plato wished to aim at this in his doctrine of the universal 
return of things, according to which he predicted that all things will return to their 
original state after countless ages have past.” (J. Bernoulli, The Art of Conjecturing IV, 
trans. Bing Sung, Technical Report No. 2, Dept. of Statistics, Harvard Univ., 1966) 
 



 
 

"That is just the name of a well-known technique for graphing a random series. Suppose that a 
man starts from a point in front of you and attempts to walk north, along the dotted line. However, 
after every step he tosses a coin and then takes an additional side step left or right, depending on 
whether the coin falls heads or tails. Thus, he progresses in a series of diagonals, like the man we 
saw below, and his track records the sequence of heads and tails. At a given moment, we can easily 
tell from his position whether the heads have exceeded the tails or vice versa. If he is standing on 
the dotted line, the number of heads has exactly equaled the number of tails at that point; if he is 
three paces to the left of the dotted line, there have been three more heads than tails." 

Holmes's eyes narrowed. "Now, we shall assume the man cannot even see the line. There is no 
certainly no mystic force drawing him back toward it! As you might expect, the farther he walks 
north, the farther he is likely to stray from the line. Nevertheless, from our point of view, the 
farther he walks, the more nearly he will come to being exactly northward of our position. This is 
because the ratio between his distance north of us and the distance he has veered to east or west is 
likely to diminish. So by the time he is but a dot on the horizon, we will see him very close to due 
north." 

"I think I grasp what you are saying, Holmes. But I am still not sure I understand why the ratio 
should diminish." 

"Well, consider for example a moment when the man is ten steps to the west of the dotted line. 
When he takes the next step, will his distance to the east or west of you have increased or 
decreased, on the average?" 

He is just as likely to veer east as west, so the average change will be none." 
And yet his distance north of you will definitely have "creased by one pace. So—on the average—
the ratio of his sideways distance to his northward distance from you will be just a little bit 
reduced. Of course there is one counter-example: if he is actually on the dotted line, a step either 
way will take him farther from it. But nevertheless, the farther he goes, the less the ratio of his total 
sideways to his total forward progress is likely to be, because the forward motion is always 
cumulative, and the sideways motion often cancels. 

"Suppose that he starts out, by chance, with three consecutive paces all to the left. That starting 
bias will never be consciously corrected: a thousand paces later, he will still be six paces to the left 
of where he would have been, had those first paces been instead to the right, and the rest of the 
sequence the same. But by the time he has made a thousand paces, and is hull-down on the 
horizon, the difference those six paces make to the angle at which you see him will be negligible. 
In terms of direction, you will see him in the long term converge inevitably upon the northward." 



I looked out of the window at the flakes still tumbling past the panes. Below, the deepening 
snow was steadily covering the features of the street. Already, you could not tell where the road 
ended and the pavement began. 

"I am satisfied, Holmes," I said. "Any advantage of heads over tails, or of red over black on the 
roulette wheel, is smoothed out in the longer term, not by any kind of active cancellation, but by a 
more gentle and undirected happening, a kind of washing out. That is, the effect of any flukish run 
gradually becomes ever more negligible relative to the whole. At last I understand the matter, 
perfectly and in full!" 
 
 
 
Central Limit Theorem for Bernoulli Trials 
 

 
In fact, our version of the Central Limit Theorem says that the distribution function 
of the random variable 

 
is approximated by the standard normal density. 
 
One frequently reads that a poll has been taken to estimate the proportion of  
people in a certain population who favor one candidate over another in a race with 
two candidates. Clearly, it is not possible for pollsters to ask everyone for their 
preference. What is done instead is to pick a subset of the population, called a 
sample, and ask everyone in the sample for their preference. Let p be the actual 
proportion of people in the population who are in favor of candidate A and let q = 
1−p. If we choose a sample of size n from the population, the preferences of the 
people in the sample can be represented by random variables X1, X2, . . . , Xn, where 
Xi = 1 if person i is in favor of candidate A, and Xi = 0 if person i is in favor of 
candidate B. Let Sn = X1 +X2 + · · · +Xn. If each subset of size n is chosen with the 
same probability, then Sn is hypergeometrically distributed. If n is small relative to 
the size of the population (which is typically true in practice), then Sn is 
approximately binomially distributed, with parameters n and p. 
The pollster wants to estimate the value p. An estimate for p is provided by the 
value  = Sn/n, which is the proportion of people in the sample who favor 
candidate B. The Central Limit Theorem says that the random variable  is 
approximately normally distributed. (In fact, our version of the Central Limit 
Theorem says that the distribution function of the random variable  

p̂
p̂

 
is approximated by the standard normal density.) 
 

 
Since the distribution of the standardized version of  is approximated by the 
standard normal density, we know, for example, that 95% of its values will lie 
within two standard deviations of its mean, and the same is true of . So we have 

p̂

p̂



 
Now the pollster does not know p or q, but he can use  and  = 1 −  in their 
place without too much danger. With this idea in mind, the above statement is 
equivalent to the statement 

p̂ q̂ p̂

 
The resulting interval 

 
is called the 95 percent confidence interval for the unknown value of p. The name 
is suggested by the fact that if we use this method to estimate p in a large number 
of samples we should expect that in about 95 percent of the samples the true value 
of p is contained in the confidence interval obtained from the sample.  The pollster 
has control over the value of n. Thus, if he wants to create a 95% confidence 
interval with length 6%, then he should choose a value of n so that 

 
Using the fact that 1/4, no matter what the value of  is, it is easy to show 
that if he chooses a value of n so that 

p̂ q̂ ≤ p̂

 
he will be safe. This is equivalent to choosing 

 

 
Polling simulation 
 
So if the pollster chooses n to be 1200, say, and calculates  using his sample of 
size 1200, then 19 times out of 20 (i.e., 95% of the time), his confidence interval, 
which is of length 6%, will contain the true value of p. This type of confidence 
interval is typically reported in the news as follows: this survey has a 3% margin of 
error. 

p̂

In fact, most of the surveys that one sees reported in the paper will have sample 
sizes around 1000. A somewhat surprising fact is that the size of the population has 
apparently no effect on the sample size needed to obtain a 95% confidence interval 



for p with a given margin of error. To see this, note that the value of n that was 
needed depended only on the number .03, which is the margin of error. In other 
words, whether the population is of size 100,000 or 100,000,000, the pollster needs 
only to choose a sample of size 1200 or so to get the same accuracy of estimate of 
p. (We did use the fact that the sample size was small relative to the population 
size in the statement that Sn is approximately binomially distributed.) 
In Figure, we show the results of simulating the polling process. The population is 
of size 100,000, and for the population, p = .54. The sample size was chosen to be 
1200. The spike graph shows the distribution of  for 10,000 randomly chosen 
samples. For this simulation, the program kept track of the number of samples for 
which  was within 3% of .54. This number was 9648, which is close to 95% of 
the number of samples used. 

p̂

p̂

Another way to see what the idea of confidence intervals means is shown in 
Figure 2. In this figure, we show 100 confidence intervals, obtained by computing 

 for 100 different samples of size 1200 from the same population as before. You 
can see that most of these confidence intervals (96, to be exact) contain the true 
value of p. 

p̂

 
Figure 2. Confidence interval simulation. 
 
The Gallup Poll has used these polling techniques in every Presidential election 
since 1936 (and in innumerable other elections as well). Table shows the results of 
their efforts. 



 
Gallup Poll accuracy record 
 
You will note that most of the approximations to p are within 3% of the actual 
value of p. The sample sizes for these polls were typically around 1500. (In the 
table, both the predicted and actual percentages for the winning candidate refer to 
the percentage of the vote among the “major” political parties. In most elections, 
there were two major parties, but in several elections, there were three.) 
This technique also plays an important role in the evaluation of the effectiveness of 
drugs in the medical profession. For example, it is sometimes desired to know what 
proportion of patients will be helped by a new drug. This proportion can be 
estimated by giving the drug to a subset of the patients, and determining the 
proportion of this sample who are helped by the drug. 
Gallup reports the results of a poll that shows that 58% of a random sample of 
adult Americans approve of President Clinton's performance as president. The 
report says that the margin of error is 3%. What does this margin of error mean? 
______a. One can be 95% "confident" that between 55% and 61% of all adult 
Americans 
approve of the President's performance. 
______b. One can be sure that between 55% and 61% of all adult Americans 
approve of the President's performance. 
______c. The sample percentage of 58% could be off by 3% in either direction due 
to inaccuracies in the survey process. 
______d. There is a 3% chance that the percentage of 58 is an inaccurate estimate 
of the 
population of all Americans who approve of President Clinton's performance as 
president. 
 
 
Gallup Poll - a sampling by the American Institute of Public Opinion or its British 
counterpart of the views of a representative cross section of the population, used as 
a means of forecasting voting. Etymology: named after George Horace Gallop 
(1901-84), US statistician. 
 



Gallup Poll - опрос Гэллапа, опрос общественного мнения (анкетный опрос 
населения по различным вопросам, политическим и социальным). 
Проводится с 1938 Британским институтом общественного мнения [British 
Institute of Public Opinion], а с 1952 институтом "Социальные исследования 
(опросы Гэллапа)" [Social Surveys (Gallup Polls) Ltd]) назван по имени 
основателя американского Института общественного мнения Дж. Гэллапа [George 
Horace Gallup, 1901-84]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

О счастье мы всегда лишь вспоминаем.  
А счастье всюду. Может быть, оно  
Вот этот сад осенний за сараем  
И чистый воздух, льющийся в окно”. 
  

И. Бунин 

 

The Happy Planet Index (HPI) is an index of human well-being and environmental 

impact, introduced by the NEF, in July 2006.  

The Happy Planet Index: What it reveals 

On a scale of 0 to 100 for the HPI, we have set a reasonable target for nations to aspire to 

of 83.5. This is based on attainable levels of life expectancy and well-being and a reasonably 

sized ecological footprint. 

At this point in time, the highest HPI is only 68.2, scored by the Pacific archipelago of 

Vanuatu. The lowest, and perhaps less surprising than some other results, is Zimbabwe’s at 16.6. 

No country achieves an overall high score and no country does well on all three indicators. 

Vanuatu, for example, has only a moderate level of life expectancy at 69 years. 

The message is that when we measure the efficiency with which countries 

enable the fundamental inputs of natural resources to be turned into the ultimate 

ends of long and happy lives, all can do better. 

This conclusion is less surprising in the light of our argument that 

governments have been concentrating on the wrong indicators for too long. If you 

have the wrong map, you are unlikely to reach your destination. 

Some of the most unexpected findings of the HPI concern the marked differences 

between nations, and the similarities among some groups of nations: 

Island nations score well above average in the Index: They have higher life satisfaction, 

higher life expectancy and marginally lower Footprints than other states. Yet incomes (by GDP 

per capita) are roughly equal to the world average. Even within regions, islands do well. Malta 

tops the Western world with Cyprus in seventh place (out of 24); the top five HPI nations in 



Africa are all islands; as well as two of the top four in Asia. Perhaps a more acute awareness of 

environmental limits has sometimes helped their societies to bond better and to adapt to get more 

from less. Combined with the enhanced well-being that stems from close contact with nature, the 

world as a whole stands to learn much from the experience of islands. 

It is possible to live long, happy lives with a much smaller environmental impact: For 

example, in the United States and Germany people’s sense of life satisfaction is almost identical 

and life expectancy is broadly similar. Yet Germany’s Ecological footprint is only about half that 

of the USA. This means that Germany is around twice as efficient as the USA at generating 

happy long lives based on the resources that they consume. 

 

 

 

Happy Planet Index, highest rank to lowest rank . 

 

 



The Satisfaction with Life Index shows life satisfaction scores from the HPI without adjusting 

for ecological footprint and life expectancy. 

green = most happy 

blue 

purple 

orange 

red = least happy 
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