
Preface 
 

Education is not preparation for life, education is life itself. 
 John Dewey 

 
Probability and Statistics are studied by most students of Tomsk Poly-

technic University, usually as a second- or third year course. The text will be 
useful for students with diverse backgrounds, and a broad range of interests: 
from freshmen to beginning graduate students, from the engineering to man-
agement departments. In essence, the secondary school mathematics is 
enough for understanding Probability I (excluding time series, but the parts 
involving this technique can be omitted for first reading). The textbook con-
tains the Review of Elementary Mathematical Prerequisites.  

The text does not emphasize an overly rigorous or formal view of prob-
ability. Some of the more mathematically rigorous analysis has been just 
sketched or intuitively explained in the text. The main objective for this 
course is to learn probabilistic and statistical thinking, to emphasize more on 
concepts and finally to foster active self-learning. Many current texts in the 
area are just cookbooks and, as a result, students do not know why they per-
form the methods they are taught, or why the methods work. This text is an 
attempt to readdresses these shortcomings. Numerous easy to more challeng-
ing exercises are provided, often from real life, to show how the fundamen-
tals of probabilistic and statistical theories arise intuitively. 

Plugging numbers into the formulas and crunching them have no value 
by themselves. You should continue to put effort into the concepts and con-
centrate on interpreting the results. 

The concept of probability occupies an important place in the decision-
making process under uncertainty, whether the problem is one faced in busi-
ness, in government, in sciences, or just in one's own everyday personal life. 
Most decisions are made in the face of uncertainty. In a broad sense probabil-
ity theory can be understood as a mathematical model for the intuitive notion 
of uncertainty. The statistician’s prime concern lies in drawing conclusions or 
making inferences from experiments which involve uncertainties. The con-
cepts of probability make it possible for the statistician to generalize from the 
known (sample) to the unknown (population) and to place a high degree of 
confidence in these generalizations. In essence, probability is the “machin-
ery” that allows us to draw conclusions from the sample to the population. 

This course introduces the basic notions of probability theory and devel-
ops them to the stage where one can begin to use probabilistic ideas in statis-
tical inference and modeling. Probability I. Discrete Distributions includes 

http://home.ubalt.edu/ntsbarsh/Business-stat/opre504.htm#rInferentiaStatist#rInferentiaStatist
http://home.ubalt.edu/ntsbarsh/Business-stat/opre504.htm#rstaexper#rstaexper


probability axioms and properties, conditional probability and independence, 
main discrete distributions. Probability II will be devoted to continuous dis-
tributions, which need more sophisticated mathematical technique. 

The text is not original one. It partly consists of materials thoroughly 
chosen from Internet resources, probability and statistics textbooks that will 
be of interest and useful for undergraduates. A lot of exercises and some 
theoretical topics were taken from “Lecture Notes. Probability” by Jan Vrbik 
from Brock University (Canada) and “Syllabus” by Joran Elias from Mon-
tana University (USA); a lot of materials (especially concerning puzzles, 
generalities, history of probability) − from the books by C.M. Grinstead 
(Swarthmore College, USA), and J.L. Snell (Dartmouth College, USA) “In-
troduction to Probability” (1997) and “Elementary Probability” by David 
Stirzaker (2003, Cambridge University Press). At the end of the text there are 
references to the resources and useful links.  

I’d be glad to have corrigenda and other suggestions 
(kit1157@yandex.ru). 

 
 

Anna Kitaeva 
December 2010 
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Introduction 
 

The most important questions of life are, 
 for the most part, really only problems of probability. 

Laplace, Pierre Simon 
 

Probability is the very guide of life. 
Cicero.  

 
Uncertainty and randomness are unavoidable aspects of our everyday 

life. Your income and spending are subject to erratic strokes of good or bad 
fortune. Your genetic makeup is a random selection from those of your par-
ents. The weather is notoriously fickle in many areas of the globe. You may 
decide to play cards, invest in shares, bet on horses, buy lottery tickets, or en-
gage in other forms of gambling; the results are necessarily uncertain (other-
wise, gambling could not occur). 

At a different level, society has to organize itself in the context of simi-
lar sorts of uncertainty. Engineers have to build structures to withstand stress-
ful events of unknown magnitude and frequency. The telephone network, call 
centers, and airline companies with their randomly fluctuating loads could 
not have been economically designed without calculations of chances what is 
the subject of the probability theory. Any system should be designed to have 
a small chance of failing and a high chance of performing as it was intended. 
Financial markets of any kind should function so as to share out risks in an 
efficient and transparent way, for example, when you insure your car or 
house, buy an annuity, or mortgage your house. The stock market, “the larg-
est casino in the world,” cannot do without probability theory. 

Everyone must have some internal concept of chance to live in the real 
world, although such ideas may be implicit or even unacknowledged. Con-
cepts of chance have long been incorporated into many cultures in mytho-
logical or religious form. The Romans, for example, had gods of chance 
named Fortuna and Fors, and even today Englishmen have Lady Luck. The 
casting of lots to make choices at random is widespread; we are all familiar 
with “the short straw” and the “lucky number”.  

The subject of probability can be traced back to the 17th century when it 
arose out of the study of gambles. And nowadays the range of applications 
extends beyond games into business decisions, insurance, law, medical tests, 
and the social sciences. Probabilistic modeling is used to control the flow of 
traffic through a highway system, a telephone interchange, or a computer 
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processor; find the genetic makeup of individuals or populations; quality con-
trol; investment; and other sectors of business and industry. 

Our task is to find a way of describing and analyzing the concepts of 
chance and uncertainty that we intuitively see are common to the otherwise 
remarkably diverse examples mentioned above. 

Uncertain things are susceptible to judgment and insight. We know that 
casinos invariably make profits; we believe that it does not really matter 
whether you call heads or tails when a coin is flipped; we learn not to be on 
top of the mountain during a thunderstorm; and so on. Most people would 
agree that in roulette, black is more likely than green (the zeros); a book-
maker is more likely to show a profit than a loss on a book; the chance of a 
thunderstorm is greater later in the day; and so on. The point is that because 
probabilities are often comparable in this way it is natural to represent them 
on a numerical scale. Agreeing that probability is a number is the first step on 
our path to constructing our model of chance. 

The advantage of modeling is concise description of otherwise incom-
prehensibly complicated systems. It provides not only a description of corre-
sponding systems, but also predictions about how they will behave in the fu-
ture. Adequate models may predict how the systems would behave in differ-
ent circumstances, or shed light on their (unobserved) past behavior. 

As mentioned above a primitive model for chance, used by many cul-
tures, represents it as a supernatural entity, or God. Unfortunately, it is use-
less for practical purposes, such as prediction and judgment. There is no evi-
dence to suggest that any of various techniques, such as augury or casting lots 
(sortilege) to discover Fortune’s inclination rate better than useless. 

Fortunately, our experience has shown that we can do much better by 
using a mathematical model. First, a useful model must be simpler than real-
ity. Mathematical models have this stripped-down quality in abundance. Sec-
ond, mathematical models are abstract and are therefore quite unconstrained 
in their applications. When we define the probabilities of events, and the 
rules that govern them, our conclusions will apply to all events of whatever 
kind (e.g., insurance claims, computer algorithms, crop failures, scientific 
experiments, games of chance and so on). Third, the great majority of practi-
cal problems about chance deal with questions that either are intrinsically 
numerical or can readily be rephrased in numerical terms. The use of a 
mathematical model becomes almost inescapable. Fourth, if you succeed in 
constructing a model in mathematical form, then all the power of mathemat-
ics developed over several thousand years is instantly available to help you 
use it. 

 7



It turns out that we can make great progress by using the simple fact that 
our ideas about probability are closely linked to the familiar mathematical 
ideas of proportion and ratio. 

 
1. Basic Concepts 

 
1.1. Random experiments. Events. 

 
Creativity is the ability  

to introduce order into the randomness of nature.  
Eric Hoffer 

 
We need to develop a language for construction the model. Let’s start. 
An experiment (random experiment) is a process leading to distinct, 

well-defined possibilities called outcomes (with uncertainty as to which out-
come will occur).  

For example, if our experiment is to roll one die, then there are six out-
comes corresponding to the number that shows on the top. The set of all out-
comes in this case is {1, 2, 3, 4, 5, 6}. It is called the sample space and is 
usually denoted by Ω. 

Things get a little more interesting when we roll two dice. We have a 
decision to make: do we want to consider the dice as indistinguishable (to us, 
they usually are) and have the sample space consist of unordered pairs of 
numbers, or should we mark the dice (red and green say) and consider an or-
dered pair of numbers as an outcome of the experiment (the first number for 
red, the second one for green die)? The choice is ours; we are allowed to con-
sider as much or as little detail about the experiment as we need, but there are 
two constraints: 
 (a) We have to make sure that our sample space has enough informa-
tion to answer the questions at hand (if the question is: what is the probability 
that the red die shows a higher number than the green die, we obviously need 
the ordered pairs). 
 (b) Subsequently, we learn how to assign probabilities to individual 
outcomes of a sample space. This task can quite often be greatly simplified 
by a convenient design of the sample space. It just happens that, when rolling 
two dice, the simple events (pairs of numbers) of the sample space have the 
same probability of 1/36 when they are ordered; assigning correct probabili-
ties to the unordered list would be difficult. 
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 That is why, for this kind of experiment (rolling a die any fixed num-
ber of times or rolling a few dice), we always choose the sample space to 
consist of an ordered set of numbers (whether the question requires it or not). 

We can write the outcomes of this experiment as (m, n), where m is the 
number on the red die and n is the number on the green die. To visualize the 
set of outcomes it is useful to make a little table (the table represents the 
sample space Ω ):  

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 
There are 36 = 6×6 outcomes since there are 6 possible numbers to 

write in the first slot and for each number written in the first slot there are 6 
possibilities for the second.  

The goal of probability theory is to compute the probability of various 
events of interest. Intuitively, an event is a statement about the outcome of an 
experiment. The formal definition is: an event is a subset of the sample 
space. We will denote events by capital letters A, B, C, . . . . 

For example, the event “The sum is 8” for the experiment of rolling two 
dice A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}. This event contains 5 of the 36 
possible outcomes. For a second example, consider B = “There is at least one 
six”. B consists of the last row and last column of the table so it contains 11 
outcomes.  

Correspondence between set terminology and probabilistic terminology:  
Set terminology   Probabilistic terminology 
Set     Event (random event) 
Universal set  Sample space Ω Ω  (the widest possible 

event, a sure (or certain) event)  
Elements of  Outcomes, or elementary events (the 

simplest possible events) 
Ω

Empty set φ     Impossible event 
Complement of A Opposite (complementary, or contrary) 

event 
Disjoint sets    Mutually exclusive events. 

I recommend you to look at Appendix 2 (Sets). 
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1.2. Probability 
 

All models are wrong but some are useful.  
George Box 

 
Many occurrences of probability appear in everyday statements such as: 
(1) The probability of a spade on cutting a pack of cards is 25 %. 
(2) The probability of red in (American) roulette is 18/38. 
(3) The probability of a head when you flip a coin is 50 %. 
Many other superficially different statements about probability can be 

reformulated to appear in the above format. This type of statement is in fact 
so frequent and fundamental that we use a standard abbreviation and notation 
for it. Anything of the form “the probability of A is p” will be written as: 
P(A) = p. 

In the examples above, A and p were, respectively, 
A = {spade}, p = 25 %; 
A = {red}, p = 18/38; 
A = {head}, p = 50 %. 
We can express probability using percentages, for everyday language it 

doesn’t matter, but in mathematics the probability is a number between 0 and 
1 inclusively. 

Abstractly, a probability is a function that assigns numbers to events, 
which satisfies: 

(i) For any event A, 0  P(A) ≤ ≤  1. 
(ii) If Ω  is the sample space then  
P( ) = 1 (completeness axiom or normalization requirement). Ω
(iii) If A and B are disjoint, i.e., P(A∩B) = φ ; then  
P(A B) = P(A) + P(B) (finite additivity axiom). ∪
(iv) If A1, A2, . . . is an infinite sequence of pairwise disjoint events (i.e., 

Ai  Aj = ; when i≠ j) then  ∩ φ

( )∑
∞

=

∞

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

11 i
i

i
i APAP ∪  (countable additivity axiom). 

These assumptions are motivated by the frequency interpretation of 
probability, which states that if we repeat an experiment a large number of 
times (provided the experiment was made under similar conditions) then the 
fraction of times the event A occurs will be close to P(A). To be precise, if we 
let N(A, n) be the number of times A occurs in the n trials then 

P(A) = ,lim
n

N(A  n) 
n→∞

.    (1.2.1) 

We will see this result as a theorem called the law of large numbers. 
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This (the existence of the limit above for some kinds of events) is an 
empirical fact (so called the fact of frequency stability). If it does not occur 
our world would be quite different. 

Thus, evaluating the ratio  (relative frequency) offers a way of 
estimating the probability P(A) of the event A. The larger the sample size n, 
the better will be the approximation to the truth. 

/N(A, n) n

A similar empirical observation was recorded by John Graunt in his 
book “Natural and Political Observations Made Upon the Bills of Mortality” 
published in 1662. He found that in a large number of births, the proportion 
of boys born was approximately 14/27. This came as something of a surprise 
at the time, leading to an extensive debate. We simply interpret the observa-
tion in this statement: the probability of a yet unborn child being male is ap-
proximately 14/27. Note that this empirical ratio varies slightly from place to 
place and time to time, but it always exceeds 1/2 in the long run. 

For the moment we will use the interpretation (1.2.1) of P(A) to moti-
vate the definition above. 

Given (1.2.1), (i) and (ii) are clear. The fraction of times that a given 
event A occurs must be between 0 and 1, and if Ω  has been defined properly 
(recall that it is the set of all possible outcomes), the fraction of times some-
thing in Ω  happens is 1. To explain (iii), note that if the A and B are disjoint 
then N(A B, n) = N(A, n) + N(B, n) since A B occurs if either A or B oc-
curs but it is impossible for both to happen. 

∪ ∪

Dividing by n and letting ∞→n , we arrive at (iii). 
Assumption (iv) is a little controversial. Some have argues passionately 

that it should not be imposed but we need the assumption for construction a 
mathematical model of chance (Kolmogorov’s axiomatics). In many cases 
the sample space is finite so (iv) is not relevant. 

In discrete case (countable or finite sample space) you can formulate the 
definition in short-and easy-to-remember way: 

a probability is a nonnegative additive function defined on some 
sample space  and satisfied the normalization requirement (P(Ω ) = 1). Ω

Note, that condition (i) will be follow from this definition.  
When the sample space is uncountable you need more complex con-

struction using subsets of  (events), called σ-field, to define probabilities. Ω
We can also assign probabilities speculatively. Return to (1) − (3) state-

ments. 
The question is where did those values for the probability p come from? 

Are they from monitoring the processes? Or, may be, we can receive the re-
sults from some theoretical considerations? Let’s try.  

(1) Let us consider what happens when we pick a card at random from a 
conventional pack. There are 52 cards, of which 13 are spades. The implica-
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tion of the words “at random” is that any card is equally likely to be selected, 
and the proportion of the pack comprising the spade suit is 13/52 = 1/4. Our 
intuitive feelings about symmetry suggest that the probability of picking a 
spade is directly proportional to this fraction, and by convention we choose 
the constant of proportionality to be unity. Hence, P(spade) = 1/4 = 25 %. 

Exactly the same intuitive interpretation comes into play for any random 
procedure having this kind of symmetry. 

(2) American Roulette: the wheels have 38 compartments, of which 18 
are red, 18 are black, and two are green (the zeros). If the wheel has been 
made with equal size compartments (and no hidden magnets, or subtle 
asymmetries), then the ball has 18 chances to land in red out of the 38 avail-
able.  

This suggests P(red) = 18/38.  
(3) In the case of a fair coin, of course, there are only two equally likely 

chances to P(head) = 50 % and P(tail) = 50 %. This particular case of equal 
probabilities has passed into the language in the expression a “fifty-fifty” 
chance. 

Return to experiment of rolling one (or two) die (dice). Symmetry dic-
tates that all outcomes are equally likely so each has probability 1/6 (or 1/36). 
In general the probability of an event C concerning the roll of one die (or two 
dice) is the number of outcomes in C divided by 6 (or 36). For example, for 
two dice P(The sum is 8) = 5/36, P(There is at least one six) = 11/36. 

In general, this argument (or expression of our intuition) leads to the fol-
lowing definition of probability. Suppose that an experiment has n distinct 
possible outcomes, and suppose further that by symmetry (or by construction 
or supposition) these outcomes are equally likely. Then if A is any collection 
of r of these outcomes ( rA = ), we define  

P(A) = number of outcomes in 
total number of outcomes

Ar A
n
= =
Ω

. 

This formula is called classical probability. Many students remember 
the formula but don’t think about the conditions under which it is true. 

Note that in this case conditions (i)−(iii) of the definition above are ful-
filled. 

This idea or interpretation of probability is very appealing to our com-
mon intuition. But it is crucial a finite number of outcomes there, it is not al-
ways the case (see examples 4 and 5 below).  

Also there are plenty of random procedures with no discernible symme-
try in the outcomes and there are many non-repeatable random events. Clas-
sic examples include horse races, football matches, and elections. When the 
theoretical and frequency approaches are not applicable, one can use subjec-
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tive probabilities assigned by experts. For example, performance of economic 
projects depends on overall macroeconomic conditions. In project evaluation 
the resulting statements sound like this: with probability 0.6 the economy will 
be on the rise, and then the profitability of the project will be this much and 
so on. 

There are indeed many other theories devised to explain uncertain phe-
nomena. Attempts have been made to construct more general theories with a 
smaller set of rules. So far, none of these is in general use.  

Note this remark of William Feller: “All definitions of probability fall 
short of the actual practice”. We deal with the model only, but this model can 
help us to make right decisions in everyday life and business. Most people’s 
intuition about problems in chance will often lead them grossly astray, even 
with very simple concepts. We mention a few examples here. 

1) The base rate fallacy. This appears in many contexts, but it is conven-
ient to display it in the framework of a medical test for a disease that affects 
statistically one person in 100,000. You have a test for the disease that is     
99 % accurate. (That is to say, when applied to a sufferer, it shows positive 
with probability 99 %; when applied to a non sufferer, it shows negative with 
probability 99 %.) What is the probability that you have the disease if your 
test shows a positive result? Most people’s untutored intuition would lead 
them to think the chance is high, or at least not small. 

In fact, the chance of having the disease, given the positive result, is less 
than one in a 1,000; indeed, it is more likely that the test was wrong. 

2) The Monty Hall Problem. You are a contestant in a game show. A 
nice car and two feral goats are randomly disposed behind three doors, one to 
each door. You choose a door to obtain the object it conceals. The presenter 
does not open your chosen door, but opens another door that turns out to re-
veal a goat. 

Then the presenter offers you the chance to switch your choice to the fi-
nal door. 

Do you gain by so doing? That is to say, what is the probability that the 
final door conceals the car? Many people’s intuition tells them that, given the 
open door, the car is equally likely to be behind the remaining two; so there is 
nothing to be gained by switching. In fact, this is wrong; you should switch.  

3) Coincidences. For many people, the famous birthday problem is an-
other example of contradiction with their own intuitions. Twenty-three ran-
domly selected people are listening to a lecture on chance. What is the prob-
ability that at least two of them were born on the same day of a year? Untu-
tored intuition leads most people to guess that the chances of this are rather 
small. In fact, in a random group of 23 people, it is more likely than not that 
at least two of them were born on the same day of a year. (See 
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http://www.newton.cam.ac.uk/wmy2kposters/july/ − poster in the London 
Underground, July 2000.) 

This list of counterintuitive results could be extended, but this should at 
least be enough to demonstrate that only mathematics can save people from 
their flawed intuition with regard to chance events. 

 
1.3. Historical Remarks 

 
It is remarkable that a science which began  

with the consideration of games of chance 
should have become the most important object of human knowledge. 

Laplace, Pierre Simon 
 
An interesting question in the history of science is: Why was probability 

not developed until the sixteenth century? We know that in the sixteenth cen-
tury problems in games of chance made people start to think about probabil-
ity. But gambling is almost as old as civilization itself. In ancient Egypt a 
game now called “Hounds and Jackals” was played. In this game the move-
ment of the hounds and jackals was based on the outcome of the roll of four-
sided dice made out of animal bones called astragali (the ankle bones of 
sheep.). Six-sided dice made of a variety of materials date back to the six-
teenth century B.C. Gambling was widespread in ancient Greece and Rome. 
Indeed, in the Roman Empire it was sometimes found necessary to invoke 
laws against gambling. 

Why, then, were probabilities not calculated until the sixteenth century? 
Several explanations have been advanced for this late development.  
One is that the relevant mathematics was not developed and was not 

easy to develop. The ancient mathematical notation made numerical calcula-
tion complicated, and our familiar algebraic notation was not developed until 
the sixteenth century. However, many of the combinatorial ideas needed to 
calculate probabilities were discussed long before the sixteenth century.  

Since many of the chance events of those times had to do with religious 
affairs, it has been suggested that there may have been religious barriers to 
the study of chance and gambling.  

Another suggestion is that a stronger incentive, such as the development 
of commerce, was necessary.  

However, none of these explanations seems completely satisfactory, and 
people still wonder why it took so long for probability to be studied seriously.  

The first person to calculate probabilities systematically was Gerolamo 
Cardano (1501–1576) in his book “Liber de Ludo Aleae”.  
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In the book Cardano dealt only with the special case that we have called 
the uniform distribution function. This restriction to equiprobable outcomes 
was to continue for a long time. In this case Cardano realized that the prob-
ability that an event occurs is the ratio of the number of favorable outcomes 
to the total number of outcomes. 

Many of Cardano’s examples dealt with rolling dice. Here he realized 
that the outcomes for two rolls should be taken to be the 36 ordered pairs     
(i,j) rather than the 21 unordered pairs. This is a subtle point that was still 
causing problems much later for other writers on probability. For example, in 
the eighteenth century the famous French mathematician d’Alembert, author 
of several works on probability, claimed that when a coin is tossed twice the 
number of heads that turn up would be 0, 1, or 2, and hence we should assign 
equal probabilities for these three possible outcomes. Cardano chose the cor-
rect sample space for his dice problems and calculated the correct probabili-
ties for a variety of events. 

Cardano’s mathematical work is interspersed with a lot of advice to the 
potential gambler in short paragraphs, entitled, for example: “Who Should 
Play and When,” “Why Gambling Was Condemned by Aristotle,” “Do Those 
Who Teach Also Play Well?” and so forth. In a paragraph entitled “The Fun-
damental Principle of Gambling” Cardano writes: “The most fundamental 
principle of all in gambling is simply equal conditions, e.g., of opponents, of 
bystanders, of money, of situation, of the dice box, and of the die itself. To 
the extent to which you depart from that equality, if it is in your opponent’s 
favor, you are a fool, and if in your own, you are unjust.” 

Cardano did make mistakes, and if he realized it later he did not go back 
and change his error. For example, for an event that is favorable in three out 
of four cases, Cardano assigned the correct odds 3 : 1 that the event will oc-
cur. But then he assigned odds by squaring these numbers (i.e., 9 : 1) for the 
event to happen twice in a row. Later, by considering the case where the odds 
are 1 : 1, he realized that this cannot be correct and was led to the correct re-
sult that when m out of n outcomes are favorable, the odds for a favorable 
outcome twice in a row are m2 : (n2 − m2). This is equivalent to the realization 
that if the probability that an event happens in one experiment is p, the prob-
ability that it happens twice is p2.  

Cardano proceeded to establish that for three successes the formula 
should be p3 and for four successes p4, making it clear that he understood that 
the probability is pn for n successes in n independent repetitions of such an 
experiment. This will follow from the concept of independence that we intro-
duce later (or product rule for independent events). 

Cardano’s work was a remarkable first attempt at writing down the laws 
of probability, but it was not the spark that started a systematic study of the 

 15



subject. This came from a famous series of letters between Pascal and Fer-
mat. This correspondence was initiated by Pascal to consult Fermat about 
problems he had been given by Chevalier de Méré, a well-known writer, a 
prominent figure at the court of Louis XIV, and an ardent gambler.  

The first problem de Méré posed was a dice problem. The story goes 
that he had been betting that at least one six would turn up in four rolls of a 
die and winning too often, so he then bet that a pair of sixes would turn up in 
24 rolls of a pair of dice. The probability of a “six” with one die is 1/6 and, 
by the product rule for independent experiments, the probability of two 
“sixes” when a pair of dice is thrown is (1/6)×(1/6) = 1/36. A gambling rule 
of this time suggested that, since four repetitions was favorable for the occur-
rence of an event with probability 1/6, for an event six times as unlikely, 6×4 
= 24 repetitions would be sufficient for a favorable bet. Pascal showed, by 
exact calculation, that 25 rolls are required for a favorable bet for a pair of 
“sixes”. 

The second problem was a much harder one: it was an old problem and 
concerned the determination of a fair division of the stakes in a tournament 
when the series, for some reason, is interrupted before it is completed. This 
problem is now referred to as the problem of points. The problem had been a 
standard problem in mathematical texts; it appeared in Fra Luca Paccioli’s 
book “Summa de Arithmetica, Geometria, Proportioni et Proportionalitá”, 
printed in Venice in 1494, in the form: “A team plays ball such that a total of 
60 points are required to win the game, and each inning counts 10 points. The 
stakes are 10 ducats. By some incident they cannot finish the game and one 
side has 50 points and the other 20. One wants to know what share of the 
prize money belongs to each side. In this case I have found that opinions dif-
fer from one to another but all seem to me insufficient in their arguments, but 
I shall state the truth and give the correct way.” 

Reasonable solutions, such as dividing the stakes according to the ratio 
of games won by each player, had been proposed, but no correct solution had 
been found at the time of the Pascal-Fermat correspondence. The letters deal 
mainly with the attempts of Pascal and Fermat to solve this problem.  

Blaise Pascal (1623–1662) was a child prodigy, having published his 
treatise on conic sections at age sixteen, and having invented a calculating 
machine at age eighteen. At the time of the letters, his demonstration of the 
weight of the atmosphere had already established his position at the forefront 
of contemporary physicists.  

Pierre de Fermat (1601–1665) was a learned jurist in Toulouse, who 
studied mathematics in his spare time. He has been called by some the prince 
of amateurs and one of the greatest pure mathematicians of all times. 

In a letter dated Wednesday, 29th July, 1654, Pascal writes to Fermat: 
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“Sir, 
Like you, I am equally impatient, and although I am again ill in bed, I 

cannot help telling you that yesterday evening I received from M. de Carcavi 
your letter on the problem of points, which I admire more than I can possibly 
say. I have not the leisure to write at length, but, in a word, you have solved 
the two problems of points, one with dice and the other with sets of games 
with perfect justness; I am entirely satisfied with it for I do not doubt that I 
was in the wrong, seeing the admirable agreement in which I find myself 
with you now . . . . 

Your method is very sound and is the one which first came to my mind 
in this research; but because the labor of the combination is excessive, I have 
found a short cut and indeed another method which is much quicker and 
neater, which I would like to tell you here in a few words: for henceforth I 
would like to open my heart to you, if I may, as I am so overjoyed with our 
agreement. I see that truth is the same in Toulouse as in Paris. 

Here, more or less, is what I do to show the fair value of each game, 
when two opponents play, for example, in three games and each person has 
staked 32 pistoles. 

Let us say that the first man had won twice and the other once; now they 
play an other game, in which the conditions are that, if the first wins, he takes 
all the stakes; that is 64 pistoles; if the other wins it, then they have each won 
two games, and therefore, if they wish to stop playing, they must each take 
back their own stake, that is, 32 pistoles each. 

Then consider, Sir, if the first man wins, he gets 64 pistoles; if he loses 
he gets 32. Thus if they do not wish to risk this last game but wish to separate 
without playing it, the first man must say: “I am certain to get 32 pistoles, 
even if I lost I still get them; but as for the other 32, perhaps I will get them, 
perhaps you will get them, the chances are equal. Let us then divide these 32 
pistoles in half and give one half to me as well as my 32 which are mine for 
sure.” He will then have 48 pistoles and the other 16 . . . .” 

 
 
Number of games B  
has won 

 

Number of games A has won 

3 0 0 0  
2 8 16 32 64 
1 20 32 48 64 
0 32 44 56 64 
 0 1 2 3 

 
Figure 1.3.1. Pascal’s table 

 

 17



Pascal’s argument produces the table illustrated in Figure 1.3.1 for the 
amount due player A at any quitting point. Each entry in the table is the aver-
age of the numbers just above and to the right of the number. This fact, to-
gether with the known values when the tournament is completed, determines 
all the values in this table. If player A wins the first game, then he needs two 
games to win and B needs three games to win; and so, if the tournament is 
called off, A should receive 44 pistoles. 

The letter in which Fermat presented his solution has been lost; but for-
tunately, Pascal describes Fermat’s method in a letter dated Monday, 24th 
August, 1654. 

From Pascal’s letter: 
“This is your procedure when there are two players: If two players, play-

ing several games, find themselves in that position when the first man needs 
two games and second needs three, then to find the fair division of stakes, 
you say that one must know in how many games the play will be absolutely 
decided. 

It is easy to calculate that this will be in four games, from which you can 
conclude that it is necessary to see in how many ways four games can be ar-
ranged between two players, and one must see how many combinations 
would make the first man win and how many the second and to share out the 
stakes in this proportion. I would have found it difficult to understand this if I 
had not known it myself already; in fact you had explained it with this idea in 
mind.” 

Fermat realized that the number of ways that the game might be finished 
may not be equally likely. For example, if A needs two more games and B 
needs three to win, two possible ways that the tournament might go for A to 
win are WLW and LWLW. These two sequences do not have the same 
chance of occurring. To avoid this difficulty, Fermat extended the play, add-
ing fictitious plays, so that all the ways that the games might go have the 
same length, namely four. He was shrewd enough to realize that this exten-
sion would not change the winner and that he now could simply count the 
number of sequences favorable to each player since he had made them all 
equally likely. If we list all possible ways that the extended game of four 
plays might go, we obtain the following 16 possible outcomes of the play: 

WWWW  WLWW  LWWW  LLWW 
WWWL  WLWL  LWWL  LLWL 
WWLW  WLLW  LWLW  LLLW 
WWLL  WLLL  LWLL  LLLL. 
Player A wins in the cases where there are at least two wins (the 11 un-

derlined cases), and B wins in the cases where there are at least three losses 
(the other 5 cases). Since A wins in 11 of the 16 possible cases Fermat argued 
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that the probability that A wins is 11/16. If the stakes are 64 pistoles, A 
should receive 44 pistoles in agreement with Pascal’s result. Pascal and Fer-
mat developed more systematic methods for counting the number of favor-
able outcomes for problems like this. We see that these two mathematicians 
arrived at two very different ways to solve the problem of points. 

On the correspondence between Fermat and Pascal Huygens based a 
widely read textbook “On Calculating in Games of Luck” (1657), followed 
by the books of James Bernoulli (1713), Pierre de Montmort (1708), and 
Abraham de Moivre (1718, 1738, 1756). The probabilistic framework re-
mains in use today, much as in Huygens's book. 

The modern period of probability theory is connected with names like 
S.N. Bernstein (1880–1968), E. Borel (1871–1956), and A.N. Kolmogorov 
(1903–1987). The rigorous structure of the theory that is most in use today 
was codified by A. Kolmogorov in his book “Grundbegriffe der Wahr-
scheinlichkeitsrechnung” (1933).  

We note, however, that other systems have been, are being, and will be 
used to model probability. 

Historical information about mathematicians can be found in the Mac-
Tutor History of Mathematics Archive (http://www-history.mcs.st-
andrews.ac.uk/history/index.html). 

 
1.4. Examples  

 
1. Suppose we pick a letter at random from the word TENNESSEE. 

What is the sample space and what probabilities should be assigned to the 
outcomes? 

The sample space  = {T, E, N, S}. To describe the probability it is 
enough to give the values for the individual outcomes, since (iii) implies that 
P(A) is the sum of the probabilities of the outcomes in A. Since there are nine 
letters in TENNESSEE the probabilities are P({T}) = 1/9, P({E}) = 4/9, 
P({N}) = 2/9, and P({S}) = 2/9. 

Ω

2. Astragali. Board games involving chance were known in Egypt, 3000 
years before Christ. The element of chance needed for these games was at 
first provided by tossing astragali, the ankle bones of sheep. These bones 
could come to rest on only four sides, the other two sides being rounded. The 
upper side of the bone, broad and slightly convex counted four; the opposite 
side broad and slightly concave counted three; the lateral side flat and nar-
row, one, and the opposite narrow lateral side, which is slightly hollow, six. 

The outcomes of this experiment are {1, 3, 4, 6}. There is no reason to 
suppose that all four sides have the same probability so our model will have 
probabilities for the four outcomes p1, p3, p4, p6 > 0 that have p1 + p3 + p4      
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+ p6 = 1. To define the probability of an event A we let P(A) = . In 

words we add up the probabilities of the outcomes in A. With a little thought 
we see that any probability with a finite set of outcomes has this form. 

∑
∈Ai

ip

3. In English language text the 26 letters in the alphabet occur with the 
following frequencies: 

E  13.0 %     H  3.5 %      W  1.6 % 
T  9.3 %       L  3.5 %      V  1.3 % 
N  7.8 %       C  3.0 %      B  0.9 % 
R  7.7 %       F  2.8 %      X  0.5 % 
O  7.4 %       P  2.7 %      K  0.3 % 
I  7.4 %       U  2.7 %      Q  0.3 % 
A  7.3 %       M 2.5 %      J  0.2 % 
S  6.3 %       Y  1.9 %      Z  0.1 % 
D  4.4 %       G  1.6 %. 
From this it follows that vowels (A, E, I, O, U) are used 

(7.3+13.0+7.4+7.4+2.7) = 37.8 % of the time. 
3 (a)*(Riddle). This is an unusual paragraph. I'm curious as to just how 

quickly you can find out what is so unusual about it. It looks so ordinary and 
plain that you would think nothing was wrong with it. In fact, nothing is 
wrong with it! It is highly unusual though. Study it and think about it, but you 
still may not find anything odd. But if you work at it a bit, you might find 
out. Try to do so without any coaching! 

4. Design a sample space for an experiment: flipping a coin until a head 
appears.  

The new feature of this example (waiting for the first head (H)) is that 
the sample space is infinite: {H, TH, TTH, TTTH, TTTTH, TTTTTH, . . .}. 
Eventually, we must learn to differentiate between the discrete (countable) 
infinity, where the individual simple events can be labeled 1st, 2nd, 3rd, 4th, 
5th, . . . in an exhaustive manner, and the continuous infinity (real numbers in 
any interval). The current example is obviously a case of discrete infinity, 
which implies that the simple events cannot be equally likely (they would all 
have the probability of ∞/1 = 0, implying that their sum is 0, an obvious con-
tradiction). But we can easily manage to assign correct and meaningful prob-
abilities even in this case (try to do it or wait for part 6). 

5. Design a sample space for an experiment: rotating a wheel with a 
pointer. 

The rotating wheel has also an infinite sample space (an outcome is 
identified with the final position − angle − of the pointer, measured from 
some fixed direction), this time being represented by all real numbers from 
the interval [0, 2π) (assuming that angles are measured in radians). This infin-
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ity of simple events is of the continuous type, with some interesting conse-
quences. Firstly, from the symmetry of the experiment, all of its outcomes 
must be equally likely. But this implies that the probability of each single 
outcome is zero! 
 Isn’t this a contradiction as well? The answer is no; in this case the 
number of outcomes is no longer countable, and therefore the infinite sum 
(actually, an integral) of their zero probabilities can become nonzero (we 
need them to add up to 1). The puzzle is: how do we put all these zero prob-
abilities together to answer a simple question such as: what is the probability 
that the pointer will stop in the [0, 2/π ] interval? This can be simply solved 
by the concept of geometric probability (try to find it in the Internet). In 
general such kinds of problems will require introducing a new concept of the 
so called probability density. We will postpone this until the second part of 
the probability course (continuous probabilities). 
 Note that in this case we don’t assign probability for every simple out-
come (it is zero), but we can calculate probabilities of some subsets (events) 
of the sample space  [0, 2π), this set of subsets satisfied some rules is 
called an event space (it is σ -field). For finite sample space we can consider 
a set of all subsets of  as an event space. 

=Ω

Ω
 

1.5. Exercises  
 

N.B. Unless otherwise stated, coins are fair, dice are regular cubes and 
packs of cards are well shuffled with four suits of 13 cards for all exercises. 

All exercises marked * have answers. 
1. In New York City, the leading cause of death on the job is not construc-
tion accidents, machinery malfunctions, or car crashes – it is homicide! A 
federal Bureau of labor Statistics study revealed that of 177 New York City 
workers who died of injuries sustained on the job last year, 122 were homi-
cide victims. Use this information to estimate the probability that an on-the-
job death of a New York City worker is the result of a homicide. 
2. Give a possible sample space for each of the following experiments: 

(a) An election decides between two candidates A and B. 
(b) A two-sided coin is tossed. 
(c) A student is asked for the month of the year and the day of the week 

on which her birthday falls. 
(d) A student is chosen at random from a class of ten students. 
(e) You receive a grade in this course. 
For which of the cases would it be reasonable to assign the uniform dis-

tribution (equally likely outcomes)? 
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3. A man receives presents from his three children, Allison, Betty, and 
Chelsea. To avoid disputes he opens the presents in a random order. What are 
the possible outcomes? 
4. Let Ω = {a, b, c} be a sample space. Let P(a) = 1/2, P(b) = 1/3, and P(c) 
= 1/6. Find the probabilities for all eight subsets of Ω. 
5. Suppose we pick a number at random from the phone book and look at 
the last digit.  

(a) What is the set of outcomes and what probability should be assigned 
to each outcome?  

(b) Would this model be appropriate if we were looking at the first digit? 
6. Consider an experiment in which a coin is tossed three times. Describe 
in words the events specified by the following subsets of Ω= {HHH, HHT, 
HTH, HTT, THH, THT, TTH, TTT} (H (heads) and T (tails)): 
E = {HHH,HHT,HTH,HTT}, 
E = {HHH,TTT}, 
E = {HHT,HTH,THH}, 
E = {HHT,HTH,HTT,THH,THT,TTH,TTT}. 

What are the probabilities of the events? 
7. Suppose we roll a red die and a green die. What is the probability the 
number on the red die is larger than the number on the green die? 
8. Two dice are rolled. What is the probability the two numbers will  
 (a) differ by 1 or less,  
 (b) the maximum of the two numbers will be 5 or larger? 
9. If we flip a coin 5 times, what is the probability that the number of heads 
is an even number (i.e., divisible by 2)? 
10. In Las Vegas, a roulette wheel has 38 slots numbered 0, 00, 1, 2, . . . , 
36. The 0 and 00 slots are green and half of the remaining 36 slots are red and 
half are black. A croupier spins the wheel and throws in an ivory ball. If you 
bet 1 dollar on red, you win 1 dollar if the ball stops in a red slot and other-
wise you lose 1 dollar. Give a sample space for a player who makes 3 bets (1 
dollar each) on red. What probabilities should be assigned to the outcomes? 
11. A die is loaded in such a way that the probability of each face turning up 
is proportional to the number of dots on that face. (For example, a six is three 
times as probable as a two.) What is the probability of getting an even num-
ber in one throw? 
12. Two red cards and two black cards are lying face down on the table. You 
pick two cards and turn them over. What is the probability that the two cards 
are different colors? 
13. 20 families live in a neighborhood, 4 have 1 child, 8 have 2 children, 5 
have 3 children, and 3 have 4 children. If we pick a child at random what is 
the probability she comes from a family with 1, 2, 3, 4 children? 

 22



14. In Galileo’s time people thought that when three dice were rolled, a sum 
of 9 and a sum of 10 had the same probability since each could be obtained in 
6 ways: 
9:  1 + 2 + 6, 1 + 3 + 5, 1 + 4 + 4, 2 + 2 + 5, 2 + 3 + 4, 3 + 3 + 3, 
10:  1 + 3 + 6, 1 + 4 + 5, 2 + 4 + 4, 2 + 3 + 5, 2 + 4 + 4, 3 + 3 + 4. 
 Compute the probabilities of these sums and show that 10 is a more 
likely than 9. 
15. Suppose we roll three dice. Compute the probability that the sum is (a) 
3, (b) 4, (c) 5, (d) 6, (e) 7, (f) 8. 
16. An urn contains fifty balls numbered 1 to 50. Relating to the experiment 
of drawing a ball, what can you state about the following events (elementary, 
compound, relations between them): 

A – the number of the drawn ball is even; 
B – the number of the drawn ball is a multiple of 4; 
C – the number of the drawn ball is 5; 
D – the number of the drawn ball is a multiple of 5; 
E – the number of the drawn ball is a power of 5; 
F – the number of the drawn ball is a multiple of 10; 
G – the number of the drawn ball is a multiple of 3; 
H – the number of the drawn ball is a power of 3; 
 I – the number of the drawn ball is even. 
To do this exercise you need to read Appendix 2 (Recall that an event is 

a set).  
17. Two cards are drawn from a 52-card deck. Consider the events: 

A – two clubs are drawn; 
B – two cards having a value less than 5 each are drawn; 
C – a 7 and a Q are drawn. 
Decompose these events in elementary events and specify their numbers. 

18. Write the sample space for the following experiments: 
(a) drawing of a ball from an urn containing seven balls; 
(b) drawing of two balls from two urns (one ball from each), the first 

containing three green balls and the second two red balls; 
(c) drawing of a card from a 24-card deck (from the 9 card upward); 
(d) rolling two dice; 
(e) choosing three numbers from the numbers 1, 2, 3, 4, 5; 
(f) choosing seven letters from the letters a, b, c, d, e, f, g, h. 

19. An urn contains nine white balls and four black balls. Find the probabil-
ity of the following events: 

(a) A – drawing a white ball; 
(b) B – drawing a black ball. 

20. Find the number of all possible outcomes for the following experiments: 
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(a) rolling three dice; generalization: rolling n dice; 
(b) spinning a slot machine with four reels having eight symbols each; 

generalization: spinning a slot machine with n reels of m symbols each; 
(c) dealing a player three cards from a 52-card deck; 
(d) dealing two players two cards each from 50 cards; 
(e) a race with nine competitors. 
If the last exercise is difficult to you please read the next section. 
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2. Combinatorics 
 

Did you know that there are three kinds  
of statisticians − those that can count and those that can't. 

 
Many problems in classical probability can be solved by counting the 

number of outcomes in an event. Such counting often turns out to also be 
useful in more general contexts. Now we set out some simple methods of 
dealing with the commonest counting problems. 

The basic rules are easy and are perfectly illustrated in the following ex-
amples. 

Rule 1 (addition rule). If I have m garden forks and n fish forks, then I 
have m + n forks altogether. 

Rule 2 (multiplication rule). If I have m different spoons and n different 
forks, then there are m×n distinct ways of taking a spoon and fork. 

These rules can be rephrased in general terms, but the idea is already 
obvious. The important points are that in Rule 1, the two sets in question are 
disjoint; that is a fork cannot be both a garden fork and a fish fork. In Rule 2, 
my choice of spoon in no way alters my freedom to choose any fork (and 
vice versa). 

Real problems involve, for example, catching different varieties of fish, 
drawing various balls from a number of urns, and dealing hands at numerous 
types of card games. In the standard terminology for such problems, we say 
that a number n of objects or things are to be divided or distributed into r 
classes or groups. 

The number of ways in which this distribution can take place depends 
on whether 

(i) The objects can be distinguished or not. 
(ii) The classes can be distinguished or not. 
(iii) The order of objects in a class is relevant or not. 
(iv) The order of classes is relevant or not. 
(v) The objects can be used more than once (repetition) or not at all. 
(vi) Empty classes are allowed or not. 
We generally consider only the cases having frequently applications in 

probability problems. Other aspects are explored in books devoted to combi-
natorial theory. 

Permutations, Arrangements and Combinations. In how many possible 
ways can we range n distinct objects (such as a, b, c, d, . . ., z) in a row? 

When the first letter is freely chosen in 26 (the amount of letters in Eng-
lish alphabet) ways, the next letter can be freely chosen in 25 ways. The next 
may be freely chosen in 24 ways, and so on. Hence, by Rule 2, the answer is 
 25



26×25×24× . . . . ×3×2×1 = 26! – the number of permutations of 26 ob-
jects. The permutation is often called a rearrangement of the n objects and 
denote  (read “n down P,” or “n lower P”). nP

Note that n! grows very quickly since n! = n×(n − 1)!: 
1!=1   7! =5,040 
2! =2   8! =40,320 
3! =6   9! =362,880 
4! =24   10! =3,628,800 
5! =120  11! =39,916,800 
6! =720  12! =479,001,600. 
What if some of these objects are indistinguishable, such as, for exam-

ple, a, a, a, b, b, c? How many distinct permutations of these letters are there, 
i.e. how many distinct words can we create by permuting aaabbc? 

We can start by listing all 6! permutations, and then establishing how 
many times each distinct word appears on this list (the amount of its repeti-
tions). Luckily enough, the repetition of each distinct word proves to be the 
same. We can thus simply divide 6! by this common repetition to get the final 
answer. To get the repetition of a particular word, such as, for example 
baacba we first attach a unique index to each letter b1a1a2c1b2a3 and then try to 
figure out the number of permutations of these, now fully distinct, symbols, 
which keeps the actual word (baacba) intact. This is obviously achieved by 
permuting the a’s among themselves, the b’s among themselves, etc. We can 
thus create 3! (number of ways of permuting the a’s) times 2! (permuting the 
b’s) combinations which are distinct in the original 6!-item list, but represent 
the same word now. (We have multiplied 3! by 2! since Rule 2). The answer 
is thus 6!/(3!2!1!) = 60 (we have included 1! to indicate that there is only one 
permutation of the single c, to make the formula complete). The resulting ex-
pression is so important to us that we introduce a new symbol 

6 6!
3,2,1 3!2!1!
⎛ ⎞

=⎜ ⎟
⎝ ⎠

, which we read: 6 choose 3 choose 2 choose 1 (note that the 

bottom numbers must add up to the top number). It is obvious that the same 
argument holds for any other unique word of the aaabbc type. 

It should now be obvious that, in the case of permuting n1 a’s, n2 b’s, n3 

c’s, . . ., nk z’s, we will get =),...,( 1 kn nnM ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
!k.....nnnn

n
!!!

!

321

 distinct words 

(where n = , which is the total word length). These numbers knnn +++ ...21
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are called multinomial coefficients (see Multinomial Theorem in Appendix3 

for k = 3: (x + y + z)n = ).  ∑
>

=++
0 

),,(
a, b, c 

 n c  b a 

cba
n zyxcbaM

A particularly important case that arises frequently is when k = 2. This is 
binomial coefficients, and they have their own special notation: 

r
nn C

r
n

rnr
n

rnr
nrnrM =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
−

=−
,)!(!

!),(  (Binomial Theorem: 

, see Appendix 3). Binomial coefficients (or , 

we will use both notations) is also called the number of combinations (com-
binations of n things taken k at a time). They give us the number of ways of 
choosing a set of r symbols (the order of objects is irrelevant) from a set of n 
distinct symbols without repetition. 

rnr
n

r

r
n

n baCba −

=
∑=+

0
)( r

nC
n
r
⎛ ⎞
⎜ ⎟
⎝ ⎠

For example, consider a problem of selecting a committee of three out 
of ten members of a club. We can treat the task the following way: dividing 
ten men arranged in a row into two groups (3 selected – denote them a’s and 
7 nonselected – denote them b’s). Thus, the task is equivalent the following − 
how many permutations can we create by permuting aaabbbbbbb? The an-

swer is 120
!7!3

!78910
!7!3
!103

10 =
⋅⋅⋅

==C . Note the symmetry of this formula 

( = ): selecting 3 people out of 10 can be done in the same number of 
ways as selecting 7 (and telling them: you did not make it). 

3
10C 7

10C

But what if you select a chair, treasurer and secretary out of ten mem-
bers of a club? Now the order of objects in the a’s class is important − every 
of three men holds different posts. Thus, the task is how many permutations 
can we create by permuting a1a2a3bbbbbbb? The answer is 

720
!7

!78910
!7
!10!3 3

10 =
⋅⋅⋅

==C . In general, given n distinct symbols, the 

number of permutations (without repetition) of length r ≤ n is 
! ( 1)...( 1

( )!
r r
n n

nA P n n n r
n r

= = = − − +
−

)  − the number of arrangements r ob-

jects over n places (permutations of n things taken r at a time).  
We nave considered the cases: (Ordered Selection, No Repetition) − The 

number of arrangements (permutation), (Unordered Selection, No Repetition) 
− The number of combinations. 

Consider the case (Ordered Selection, Allowing Repetition). 
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In how many possible ways can we build a five-letter word, using an al-
phabet of 26 letters? When the first letter is freely chosen in 26 ways, the 
next letter can be freely chosen in 26 ways again, and so on. This time we 
have a choice of 26 letters every time. So the answer is 26×26× . . . ×26 (5 
times), namely, . 526

In general, we can make an ordered selection with repetition r objects 
from n distinct objects in  different ways. rn

The case (Unordered Selection, Allowing Repetition), for example, 
choosing ten pieces of fruit from shelf full of apples, pears, oranges and ba-
nanas, is the most difficult one. 

We start with 10 empty boxes which we fill by fruit from the shelf (to 
contain one piece of fruit each), one by one, from left to right. To assure an 
unordered selection, we insist that apples go first, pears second, and so on. To 
determine how many boxes get an apple, we place a bar after the last “apple” 
box, similarly with pears, etc. For example: ||| means get-
ting 2 apples, 1 pear, 5 oranges and 2 bananas. Note that we can place the 
bars anywhere (with respect to the boxes), such as: | || (we 
don’t like pears and bananas). Also note that it will take exactly 3 = n − 1 
bars to complete our ’shopping list’. Thus any permutation of 3 = n − 1 bars 
and 10 = r boxes corresponds to a particular selection (at the same time, a 
distinct permutation represents a distinct choice, so there is a one-to-one cor-
respondence between these permutations and a complete list of fruit selec-
tions). We have already solved the problem of permutations (the answer is 

 = 286), so that is the number of options we have now. The general for-
mula is obviously  

3
13C

1
1

n
n rC −
+ − .     (2.1) 

Knowing the general formulas for permutations (arrangements and com-
binations) is very important but not sufficient: the practice has a decisive role 
in framing a combinatorial problem correctly and in the proper application of 
the formulas. Your main task is to be able to correctly decide which of the 
formulas to use in each particular situation. 

Poker game (from Bărboianu C. Understanding and calculations the 
odds). There are situations where a probability-based decision must be made 
− if wanted − in a relatively short time; these situations do not allow for thor-
ough calculus even for a person with a mathematical background. 

Assume you are playing a classical poker game with a 52-card deck. 
The cards have been dealt and you hold four suited cards (four cards with 
same symbol), but also a pair (two cards with same value). 
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For example, you hold 3♣ 5♣ 8♣ Q♣ Q♦. You must now discard and 
you ask yourself which combination of cards it is better to keep and which to 
replace. 

To achieve a valuable formation, you will probably choose from the fol-
lowing two variants:  

keep the four suited cards and replace one card (so that you have a 
flush);  

keep the pair and replace three cards (so that you have “three of a kind 
or better”). 

In this gaming situation, many players intuit that, by keeping the pair 
(which is a high pair in the current example), the chances for a Q (queen) to 
be drawn or even for all three replaced cards to have same value, are bigger 
than the chance for one single drawn card to be ♣ (clubs). 

And so, they choose the “safety” and play for “three of a kind or better”. 
Other players may choose to play the flush, owing to the psychological im-
pact of those four suited cards they hold. 

In fact, the probability of getting a flush is about 19 % and the probabil-
ity of getting three of a kind or better is about 6.3 %, which is three times 
lower. 

In case you are aware of these figures beforehand, they may influence 
your decision and you may choose a specific gaming variant which you con-
sider to have a better chance of winning. 

But if you are in a similar gaming situation (you hold four suited cards 
and a pair) in a 24-card deck draw poker game, the order of those probabili-
ties is reversed: the probability of getting a flush is about 10.5 % and the 
probability of getting three of a kind or better is almost 50 percent and may 
help you to determine to keep the pair. 

This is a typical example of a decision based on probabilities in a rela-
tively short time. It is obvious that, even assuming you have probability cal-
culus skills, it is impossible to calculate all those figures in the middle of the 
game. 

But you may use results memorized in anticipation obtained through 
your own calculations or picked from tables of guides containing collections 
of applied probabilities. 

In games of chance, most players make probability-based decisions as 
part of their strategy, especially regular players. 

In the game of poker the following hands are possible; they are listed in 
increasing order of desirability. In the definitions the word value refers to A, 
K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, or 2. This sequence also describes the relative 
ranks of the cards, with one exception: an Ace may be regarded as a 1 for the 
purposes of making a straight. (See the example in (d) below.) 
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(a) one pair: two cards of equal value plus three cards with different 
values 

J♠ J♦ 9♥ Q♣ 3♠ 
(b) two pair: two pairs plus another card with a different value 
J♠ J♦ 9♥ 9♣ 3♠ 
(c) three of a kind: three cards of the same value and two with different 

values 
J♠ J♦ J♥ 9♣ 3♠ 
(d) straight: five cards with consecutive values 
5♥ 4♠ 3♠ 2♥ A♣ 
(e) flush: five cards of the same suit 
K♣ 9♣ 7♣ 6♣ 3♣ 
(f) full house: a three of a kind and a pair 
J♠ J♦ J♥ 9♣ 9♠ 
(g) four of a kind: four cards of the same value plus another card 
J♠ J♦ J♥ J♣ 9♠ 
(h) straight flush: five cards of the same suit with consecutive values 
A♣ K♣ Q♣ J♣ 10♣ 
This example is called a royal flush. 
To compute the probabilities of these poker hands we begin by observ-

ing that there are  = 52×515
52C ×50×49×48/(1×2×3×4×5) = 2,598,960 ways 

of picking 5 cards out of a deck of 52, so it suffices to compute the number of 
ways each hand can occur. We will do three cases to illustrate the main ideas 
and then leave the rest to the reader. 

(d) straight: 10×45. 
A straight must start with a card that is 5 or higher, 10 possibilities. 

Once the values are decided on, suits can be assigned in 45 ways. This count-
ing regards a straight flush as a straight. If you want to exclude straight 
flushes, suits can be assigned in 45 − 4 ways. 

(f) full house: 13× 123
4C × × 2

4C . 
We start with choosing the value for three of a kind, 13 possibilities, 

then assign suits to those three cards (  ways), then pick the value for the 
pair (12 ways), then we assign suits to the last two cards (  ways). 

3
4C

2
4C

(a) one pair: 13× 2
4C × 3

12C ×43. 
We first pick the value for the pair (13 ways), next pick the suits for the 

pair (  ways), then pick three values for the other cards (  ways) and as-
sign suits to those cards (in 43 ways). 

2
4C 3

12C

A common incorrect answer to this question is 13× 2
4C ×48×44×40. 
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The faulty reasoning underlying this answer is that the third card must 
not have the same value as the cards in the pair (48 choices), the fourth must 
be different from the third and the pair (44 choices),.... However, this reason-
ing is flawed since it counts each outcome 3! = 6 times. (Note that 
48×44×40/3! = 43.) 2

4C ×
The numerical values of the probabilities of all poker hands are given 

below: 
(a) one pair .422569, 
(b) two pair .047539, 
(c) three of a kind .021128, 
(d) straight .003940, 
(e) flush .001981, 
(f) full house .001441, 
(g) four of a kind .000240, 
(h) straight flush .000015. 
The probability of getting none of these hands can be computed by 

summing the values for (a) through (g) (recall that (d) includes (h)) and sub-
tracting the result from 1. However, it is much simpler to observe that we 
have nothing if we have five different values that do not make a straight or a 
flush. So the number of nothing hands is (  − 10)5

13C ×(45 − 4) and the prob-
ability of a nothing hand is 0.501177. 

 
2.1. Exercises  

 
When dealing with combinations of large numbers, it is useful not to un-

fold the combinatorial calculus until the end, to allow for factoring out and 
eventual reductions. 
1. How many possible batting orders are there for nine baseball players? 
2. A tire manufacturer wants to test four different types of tires on three 
different types of roads at five different speeds. How many tests are required? 
3. A school gives awards in five subjects to a class of 30 students but no 
one is allowed to win more than one award. How many outcomes are possi-
ble? 
4. A tourist wants to visit six of America’s ten largest cities. In how many 
ways can she do this if the order of her visits is (a) important, (b) not impor-
tant? 
5. Five businessmen meet at a convention. How many handshakes are ex-
changed if each shakes hands with all the others? 
6. In a class of 19 students, 7 will get A’s. In how many ways can this set 
of students be chosen? 
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7. How many license plates are possible if the first three places are occu-
pied by letters and the last three by numbers? Assuming all combinations are 
equally likely, what is the probability the three letters and the three numbers 
are different? 
8. How many four-letter “words” can you make if no letter is used twice 
and each word must contain at least one vowel (A, E, I, O or U)? 
9. Assuming all phone numbers are equally likely, what is the probability 
that all the numbers in a seven-digit phone number are different? 
10. A domino is an ordered pair (m, n) with 0 ≤  m ≤  n ≤  6. How many 
dominoes are in a set if there is only one of each? 
11. A person has 12 friends and will invite 7 to a party.  

(a) How many choices are possible if Al and Bob are feuding and will 
not both go to the party?  

(b) How many choices are possible if Al and Betty insist that they both 
go or neither one goes? 
12. A basketball team has 5 players over six feet tall and 6 who are under 
six feet. How many ways can they have their picture taken if the 5 taller 
players stand in a row behind the 6 shorter players who are sitting on a row of 
chairs? 
13. Six students, three boys and three girls, lineup in a random order for a 
photograph. What is the probability that the boys and girls alternate? 
14. Seven people sit at a round table. How many ways can this be done if 
Mr. Jones and Miss Smith  

(a) must sit next to each other,  
(b) must not sit next to each other?  
(Two seating patterns that differ only by a rotation of the table are con-

sidered the same). 
15. How many ways can four rooks be put on a chessboard so that no rook 
can capture any other rook?  

The next tasks (16*−23*) have answers (see Answers and Solutions).  
16.* A college team plays a series of 10 games which they can either win 
(W), lose (L) or tie (T). 
 (a) How many possible outcomes can the series have (differentiating 
between WL and LW, i.e. order is important). 
 (b) How many of these have exactly 5 wins, 4 losses and 1 tie? 
 (c) Same as (a) if we don’t care about the order of wins, losses and 
ties? 
17.* A student has to answer 20 true-false questions. 
 (a) In how many distinct ways can this be done? 
 (b) How many of these will have exactly 7 correct answers? 
 (c) At least 17 correct answers? 
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 (d) Fewer than 3? (exclude 3). 
18.* In how many ways can 3 Americans, 4 Frenchmen, 4 Danes and 2 Ca-
nadians be seated (here we are particular about nationalities, but not about 
individuals) 
 (a) in a row. 
 (b) In how many of these will people of the same nationality sit to-
gether? 
 (c) Repeat (a) with circular arrangement. 
 (d) Repeat (b) with circular arrangement. 
19.* In how many ways can we put 12 books into 3 shelves? 

Remark. This question is somehow ambiguous: do we want to treat the 
books as distinct or identical, and if we do treat them as distinct, do we care 
about the order in which they are placed within a shelf? The choice is ours, 
let’s try it each way (the shelves are obviously distinct, and large enough to 
accommodate all 12 books if necessary). 
20.* Twelve men can be seated in a row in 12! = 479001600 number of 
ways. 

(a) How many of these will have Mr. A and Mr. B sit next to each 
other? 

(b) How many of the original arrangements will have Mr. A and Mr. B 
sitting apart? 
 (c) How many of the original arrangements will have exactly 4 people 
sit between Mr. A and Mr. B? 
21.* Consider the standard deck of 52 cards (4 suits: hearts, diamonds, 
spades and clubs, 13 “values”: 2, 3, 4, . . ., 10, Jack, Queen, King, Ace). Deal 
5 cards from this deck. This can be done in 2598960 distinct ways. 
 (a) How many of these will have exactly 3 diamonds? 
 (b) Exactly 2 aces? 
 (c) Exactly 2 aces and 2 diamonds? 
22.* In how many ways can we deal 5 cards each to 4 players? 
 (b) So that each gets exactly one ace? 
 (c) None gets any ace. 
 (d) Mr. A gets 2 aces, the rest get none. 
 (e) (Any) one player gets 2 aces, the other players get none. 
 (f) Mr. A gets 2 aces. 
 (g) Mr. C gets 2 aces. 
23.* Roll a die five times. The number of possible (ordered) outcomes is 
7776. How many of these will have: 
 (a) One pair of identical values (and no other duplicates). 
 (b) Two pairs. 

(c) A triplet. 
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 (d) “Full house” (a triplet and a pair).  
 (e) “Four of a kind”. 

(f) “Five of a kind”. 
 (g) Nothing. 
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3. Properties of Probability 
 

Probability theory is nothing 
but common sense reduced to calculation.  

Laplace, Pierre Simon 
 

The true logic of this world is the calculus of probabilities. 
James Clerk Maxwell 

 
From the definition we can derive many important and useful relation-

ships, for example, for any sets A and B 
(I) P(Ac) = 1 − P(A) − the complement rule, 
(II) P(A\B) = P(A) − P(A∩B), 
(III) P(A∪B) = P(A) + P(B) − P(A∩B) ) − the sum rule. 
Formula (I) follows from 1 = P(Ω ) = P(A∪Ac) = P(A) + P(Ac) (we use 

the additivity of probability). For an example consider A = “at least one six” 
in the experiment of rolling two dice. In this case Ac = “no six”. There are 
5×5 outcomes with “no six” so P(Ac) = 25/36 and P(A) = 1 − 25/36 = 11/36 
as we computed before. Now, setting A = Ω , establishes 0)( =φP .  

Finally, using additivity repeatedly, we obtain P(B) = P(B∩A) + 
P(B∩Ac), and P(A B) = P(A (B∩Ac)) = P(A) + P(B∩Ac) = P(A) + P(B) − 
P(B∩A), which proves (3). (Intuitively, P(A) + P(B) counts A B twice so we 
have to subtract P(A B) to make the net number of times A∩B is counted 
equal to 1.) To illustrate this rule let A = “red die shows six”, B = “green die 
shows six” in the experiment of rolling two dice. In this case A∪B = “at least 
one 6”, and A∩B = {(6, 6)} so we have P(A∪B) = P(A) + P(B) − P(A B) = 
1/6 + 1/6 − 1/36 = 11/36. 

∪ ∪
∩

∩

∩

The same principle applies to counting outcomes in sets. (See formula 
(A3.1) in Appendix 3) 

Example. A survey of 1000 students revealed that 750 owned iPads, 450 
owned cars, and 350 owned both. How many own either a car or a stereo? 

Letting |S| denote the number of students with iPads, and |C| the number 
with cars, the reasoning that led to (III) tells us that |S C| = |S| + |C| − |S 

C| = 750 + 450 − 350 = 850. 
∪

∩
We can confirm this by drawing a picture: 
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We can extend (III) to: P(A B C) = P(A) + P(B C) − 

P(A∩(B C)) = P(A) + P(B) + P(C) − P(B∩C) − P((A∩B) (A∩C)) = P(A) 
+ P(B) + P(C) − P(A∩B) − P(A∩C) − P(B∩C) + P(A∩B∩C). 

∪ ∪ ∪
∪ ∪

And, by induction, we can get the fully general 
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(the plus sign for n odd, the minus sign for n even). The formula computes 
the probability that at least one of the Ai events happens. 

You should now prove (II) as an exercise. From (II) it follows that if 
AB ⊂  then )()( APBP ≤  (monotonicity of probability). 
Note, that probability of any (Boolean) expression involving events A, 

B, C, ... can be always converted into probabilities involving the individual 
events and their simple (non-complemented) intersections (A∩B, A∩B∩C, 
etc.) only. For example,  

1) P{(A∩B) (B∩C)c} = P(A∩B) + P{(B∩C)c} − P{A∩B∩(B∩C)c} = 
P(A∩B) +1− P(B∩C) − P(A∩B) + P(A∩B∩B∩C) =1− P(B∩C) + 
P(A∩B∩C). This can be also deduced from the corresponding Venn diagram, 
bypassing the algebra. 

∪

2) P{(A∩B) (C D)c} = P(A∩B) + P{(C D)c} − 
P{(A∩B)∩(C∪D)c} = P(A∩B) +1 − P(C∪D) − P(A∩B) + 
P{(A∩B)∩(C∪D)} =1 − P(C∪D) + P{(A∩B∩C) (A∩B D)} =1− P(C) 
− P(D) + P(C∩D) + P(A∩B∩C) + P(A∩B∩D) − P(A∩B∩C∩D). 

∪ ∪ ∪

∪ ∪

Note that intersections are usually easy to deal with, unions are hard but 
can be converted to intersections as shown above. 

 
3.1. Examples  

 
1. Four players are dealt 5 cards each. What is the probability that at 

least one player gets exactly 2 aces. 
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Solution: let A1 be the event that the first player gets exactly 2 aces, A2 
means that the second player has exactly 2 aces, etc. The question amounts to 
finding P(A1 A2 A3∪A4). By our formula, this equals 

 (the intersection of 3 or more of 

these events is empty − there are only 4 aces). For P(A1) we get 

∪ ∪

( ) ( ) 0
44
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3.993 % (the denominator counts the total number of five-card hands, the 
numerator counts only those with exactly two aces) with the same answer for 
P(A2), P(A3), P(A4) (the four players must have equal chances). Similarly 

P(A1∩A2) =  = 0.037 % (the denominator represents 

the number of ways of dealing 5 cards each to two players, the numerator 
counts only those with 2 aces each), and the same probability for any other 
pair of players. 
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Final answer: 4P(A1) − 6P(A1∩A2) = 15.75 %. 
2. There are 100,000 lottery tickets marked 00000 to 99999. One of 

these is selected at random. What is the probability that the number on it con-
tains 84 (consecutive, in that order) at least once. 

Solution: let’s introduce four events: A means that the first two digits of 
the ticket are 84 (regardless of what follows), B: 84 is found in the second 
and third position, C: 84 in position three and four, and D: 84 in the last two 
positions. Obviously we need P(A B∪C D) =P(A) + P(B) + P(C) + P(D) 
− P(A∩C) − P(A∩D) − P(B∩D)+0 (the remaining possibilities are all impos-
sible events − the corresponding conditions are incompatible). 

∪ ∪

The answer is 4×1000/100,000 − 3×10/100,000 = 0.04 − 0.0003 =    
3.97 % (the logic of each fraction should be obvious − there are 1000 tickets 
which belong to A, 10 tickets which meet conditions A and C, etc.). 

3. Suppose that k distinct letters (to different friends) have been written, 
each with a corresponding (uniquely addressed) envelope. Then, for some 
strange reason, the letters are placed in the envelopes purely randomly (after 
a thorough shuffling). 

(a) What is the probability of all letters being placed correctly? 
(b) What is the probability that none of the k letters are placed correctly? 
(c) What is the probability of exactly one letter being placed correctly?  
The sample space of this experiment is thus a list of all permutations of k 

objects (123, 132, 213, 231, 312, 321), when k = 3 (we will assume that 123 
represents the correct placement of all three letters). In general, there are k! of 
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these, all of them equally likely (due to symmetry, i.e. none of these ar-
rangements should be more likely than any other). 

(a) Solution (fairly trivial): only one out of k! random arrangements 
meets the criterion, thus the answer is 1/k! (very small for k beyond 10). 

(b) Solution is this time a lot more difficult. First we have to realize that 
it is relatively easy to figure out the probability of any given letter being 
placed correctly, and also the probability of any combination (intersection) of 
these, i.e. two specific letters correctly placed, three letters correct . . ., etc.  

We use the following notation: A1 means that the first letter is placed 
correctly (regardless of what happens to the rest of them), A2 means the sec-
ond letter is placed correctly, etc.  

Probability P(A1) is computed by counting the number of permutations 
which have 1 in the correct first position, and dividing this by k!. The number 
of permutations which have 1 fixed is obviously (k − 1)! (we are permuting 2, 
3, ... ,k, altogether k − 1 objects). P(A1) is thus equal to (k − 1)!/k!.  

The probability of A2, A3, etc. can be computed similarly, but it should 
be clear from the symmetry of the experiment that all these probabilities must 
be the same, and equal to P(A1) = 1/k (why should any letter have a better 
chance of being placed correctly than any other?).  

Similarly, let us compute P(A1∩A2), i.e. probability of the first and sec-
ond letter being placed correctly (regardless of the rest). By again counting 
the corresponding number of permutations (with 1 and 2 fixed), we arrive at 
(k − 2)!/k!=

)1(
1
−kk

.  

This must be the same for any other pair of letters, e.g. P(A3∩A7) = 

)1(
1
−kk

, etc.  

In this manner we also get P(A1∩A2∩A3) = P(A3∩A7∩A11) = 

)2)(1(
1

−− kkk
, etc.  

So now we know how to deal with any intersection. All we need to do is 
to express the event “all letters misplaced” using intersections only, and 
evaluate the answer, thus: P( 1A ∩ 2A ∩...∩ kA ) (all letters misplaced) = (De 

Morgan’s law)P( kAAA ∪∪∪ ...21 ) =1 − P(A1∪A2∪ ...∪Ak) =1−∑ P(Ai) 

+∑ P(Ai∩Aj) + . . . +(−1)kP(A1∩A2∩. . .∩Ak) =1− 
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For k = 3 this implies 1 − 1 + 1/2−1/6 = 1/3 (check, only 231 and 312 
out of six permutations). For k = 1, 2, 4, 5, 6, and 7 we get: 0 (one letter can-
not be misplaced), 50 % for two letters (check), 37.5 % (four letters),      
36.67 % (five), 36.81 % (six), 36.79 % (seven), after which the probabilities 
do not change practically (i.e., surprisingly, we get practically the same an-
swer for 100 letters, a million letters, etc.). 

Can we identify the limit of the 1 −1+ 1/2! − 1/3! + . . . sequence? Yes, 
of course, this is the expansion of ≈−1e 0.36788 (See Appendix 3). 

(c) Similarly, the probability of exactly one letter being placed correctly 

is 1 11 1
2! 3!

− + − +  
)!1(

1...
−k

∓  (the previous answer short of its last term!). 

This equals to 1, 0, 50 %, 37.5 %, . . . for k = 1, 2, 3, 4, . . . respectively, and 
has the same limit. 
 

3.2. Exercises  
 

1. An experiment has 5 possible outcomes (simple events) with the follow-
ing probabilities: 
Simple Event   Probability 
S1     .15 
S2     .20 
S3     .20 
S4     .25 
S5     .20 
 a) Find the probability of each of the following events: 
A: Outcome S1, S2, or S4 occurs. 
B: Outcome S2, S3, or S5 occurs. 
C: Outcome S4 does not occur. 
 b) List the simple events in the complements of events A, B and C. 

c) Find the probabilities of Ac, Bc∩Cc. 
2. In the freshman class, 62 % of the students take math, 49 % take science, 
and 38 % take both science and math. What percentage takes at least one sci-
ence or math course? 
3. 24 % of people have American Express Cards, 61 % have VISA cards 
and 8 % have both. What percentage of people have at least one abovemen-
tioned credit card? 
4. Tversky and Kahneman asked a group of subjects to carry out the fol-
lowing task. They are told that: Linda is 31, single, outspoken, and very 
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bright. She majored in philosophy in college. As a student, she was deeply 
concerned with racial discrimination and other social issues, and participated 
in anti-nuclear demonstrations. 

The subjects are then asked to rank the likelihood of various alternatives, 
such as: 
 (1) Linda is active in the feminist movement. 
 (2) Linda is a bank teller. 
 (3) Linda is a bank teller and active in the feminist movement. 

Tversky and Kahneman found that between 85 and 90 percent of the 
subjects rated alternative (1) most likely, but alternative (3) more likely than 
alternative (2). Is it? They call this phenomenon the conjunction fallacy, and 
note that it appears to be unaffected by prior training in probability or statis-
tics. Is this phenomenon a fallacy? If so, why? 
5. Suppose Ω = {a, b, c}, P({a, b}) = 0.7, and P({b, c}) = 0.6. Compute the 
probabilities of {a}, {b}, and {c}. 
6. Suppose A and B are disjoint with P(A) = 0.3 and P(B) = 0.5. What is 
P(Ac∩Bc)? 
7. Given two events A and B with P(A) = 0.4 and P(B) = 0.7. What are the 
maximum and minimum possible values for P(A∩B)? 
8. Two cards are drawn successively from a deck of 52 cards. Find the 
probability that the second card is higher in rank than the first card.  
 Hint: Show that 1 = P(higher)+P(lower)+P(same) and use the fact that 
P(higher) = P(lower). 
9.* Within the next hour 4 people in a certain town will call for a cab. They 
will choose, randomly, out of 3 existing (equally popular) taxi companies. 
What is the probability that no company is left out (each gets at least one 
job)? 
10.* Consider a 10 floor government building with all floors being equally 
likely to be visited. If six people enter the elevator (individually, i.e. inde-
pendently) what is the probability that they are all going to (six) different 
floors? 
11.* Jim, Joe, Tom and six other boys are randomly seated in a row. What is 
the probability that at least two of the three friends will sit next to each other? 
12.* There are 10 people at a party (no twins). Assuming that all 365 days of 
a year are equally likely to be someone’s birth date (not quite, say the statis-
tics, but we will ignore that) and also ignoring leap years, what is the prob-
ability of: 

(a) All these ten people having different birth dates? 
(b) Exactly two people having the same birth date (and no other duplica-

tion). 
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13.* (Extension of the exercise 10*). What if the floors are not equally likely 
(they issue licenses on the 4th floor, which has therefore a higher probability 
of 1/2 to be visited by a “random” arrival − the other floors remain equally 
likely (with the probability of 1/16 each). 
14.* (Quality control). A shipment of 50 precision parts including 4 that are 
defective is sent to an assembly plant. The quality control division selects 10 
at random for testing and rejects the entire shipment if 1 or more are found 
defective. What is the probability this shipment passes inspection? 
15. Probability of which event is higher: that tomorrow’s temperature at 
noon will not exceed 19°C or that it will not exceed 25°C? 
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4. Conditional Probability, Independence 
 

Patient: Will I survive this risky operation? 
 Surgeon: Yes, I'm absolutely sure that you will survive the operation. 

Patient: How can you be so sure?  
Surgeon: Well, 9 out of 10 patients die in this operation,  

and yesterday my ninth patient died.  
 

Mathematical knowledge adds vigor to the minds, 
frees it from prejudice, credulity, and superstition.  

John Arbuthnot 
 

Suppose you have a well-shuffled conventional pack of cards. Obviously 
(by symmetry), the probability P(T) of the event T that the top card is an ace 
is P(T) = 4/52 = 1/13. 

However, suppose you notice that the bottom card is the ace of spades 
(event SA). What now is the probability that the top card is an ace? There are 
51 possibilities and three of them are aces, so by symmetry again the required 
probability is 3/51. To distinguish this from the original probability, we de-
note it by P(T/SA) and call it the conditional probability of T given SA. 

Similarly, had you observed that the bottom card was the king of spades 
SK, you would conclude that the probability that the top card is an ace is    
P(T/SK) = 4/51. 

Here is a less trivial example. 
Example (Poker). Suppose you are playing poker. As the hand is dealt, 

you calculate the chance of being dealt a royal flush R, assuming that all 
hands of five cards are equally likely. (A royal flush comprises 10, J, Q, K, A 
in a single suit.) The probability P(R) = 4/  = 1/649,740. The dealer deals 
your last card face up. It is the ace of spades, SA. If you accept the card, what 
now is your chance of picking up a royal flush? 

5
52C

Intuitively, it seems unlikely still to be P(R) above, as the conditions for 
getting one have changed. Now you need your first four cards to be the ten to 
king of spades precisely. (Also, had your last card been the two of spades, S2, 
your chance of a royal flush would definitely be zero.) As above, to distin-
guish this new probability, we call it the conditional probability of R given SA 
and denote it by P(R/SA). 

Is it larger or smaller than P(R)? At least you do have an ace, which is a 
start, so it might be greater. But you cannot now get a flush in any suit but 
spades, so it might be smaller. To resolve the uncertainty, you assume that 
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any set of four cards from the remaining 51 cards is equally likely to com-
plete your hand and calculate that P(R/SA) =  = 4

51/1 C
5

13  P(R). 

Your chances of a royal flush have more than doubled. 
Let us investigate these ideas in a more general setting. As usual we are 

given a sample space, and a probability function P( ). We suppose that some 
event B occurs, and denote the conditional probability of any event A, given 
B, by P(A/B). As we did for P( ), we observe that P( |B) is a function of 
events, which takes values in [0, 1]. But what function is it? 

Clearly, P(A) and P(A/B) are not equal in general, because even when 
P(Bc)  0 we always have P(Bc/B) = 0. ≠

Second, we note that given the occurrence of B, the event A can occur if 
and only if A∩B occurs. This makes it natural to require that P(A/B) is pro-
portional to P(A∩B). Finally, it is obvious that P(B/B) = 1. 

After a thought about these three observations, it appears that a candi-
date to play the role of P(A/B) is P(A∩B)/P(B). Note that this follows also 
from classical definition of probability. Let the event B occur. This is as if the 
whole sample space has shrunk to B only, and we can consider B as the new 
“reduced” sample space. Let mB = , and rAB = , than 

)(
)(

/
/)/(

BP
BAP

nm
nr

m
rBAP ∩

=== . Not surprisingly, all formulas which hold 

true in the original sample space are still valid in the new sample space B, i.e. 
conditionally, e.g.: P(A/B) = 1 − P(Ac/B), P(A∪C/B) = P(A/B) + P(C/B) − 
P(A∩C/B), etc. (make all probabilities of any old formula conditional on B).  

In formal (constructed from axioms) theory of probability conditional 
probability introduced by definition: 

Let A and B be events with P(B) > 0. Given that B occurs, the condi-
tional probability that A occurs is denoted by P(A/B) and defined by  

P(A/B) = P(A∩B)/P(B).    (4.1) 
When P(B) = 0, the conditional probability P(A/B) is not defined by 

(4.1). However, it is convenient to adopt the convention that, even when  
P(B) = 0, we may still write P(A∩B) = P(A/B) P(B), both sides having the 
value zero. Thus, whether P(B) > 0 or not, it is true that P(A∩B) = P(A/B) 
P(B). 

Try to see the probabilistic meaning of this equation. Denote M the event 
that you obtain a passing grade in Math and by S the event that you obtain a 
passing grade in Stats. Suppose that Math is a prerequisite for Stats. Then the 
equation P(S∩M) = P(S/M)P(M) basically tells us that to obtain a passing 
grade in both Math and Stats you have to pass Math first and, with that pre-
requisite satisfied, to obtain a passing grade in Stats. The fact that you have 
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not failed Math tells something about your abilities and increases the chance 
of passing Stats. 

The rule which was used to compute the probability of the intersection is 
called the product rule and it can be generalized to any three, four etc. 
events: P(A∩B) = P(A/B) P(B), P(A∩B∩C) = P(A)P(B/A)P(C/A∩B),  
P(A∩B∩C∩D) = P(A)P(B/A)P(C/A∩B)P(D/A∩B∩C). 

Example. (Coincidence). If you randomly choose twenty four persons, 
what do you think of the probability of two or more of them having the same 
birthday (this means the same month and the same day of the year)? 

Solution. A simple method of calculus to use here is the step by step one 
(in fact, we use the product rule): the probability for the birthday of two arbi-
trary persons not to be the same is 364/365 (because we have one single 
chance from 365 for the birthday of the first person to match the birthday of 
the second). The probability for the birthday of a third person to be different 
from those of the other two is 363/365; for the birthday of a fourth person is 
362/365, and so on, until we get to the last person, the 24th, with a 342/365 
probability. 

We have obtained twenty three fractions, which all must be multiplied to 
get the probability of all twenty four birthdays to be different. The product is 
a fraction that remains as 23/50 after reduction. 

The probability we are looking for is the probability of the contrary 
event, and this is 1 – 23/50 = 27/50. 

This calculus does not take February 29 into account, or that birthdays 
(according to statistics) have a tendency to concentrate higher in certain 
months rather than in others. The first circumstance diminishes the probabil-
ity, while the second increases it. 

If you bet on the coincidence of birthdays of twenty four persons, on av-
erage you would loose twenty three and win twenty seven of each fifty bets 
over time. 

Of course, the more persons considered, the higher the probability. With 
over sixty persons, probability gets very close to certitude. For 100 persons, 
the chance of a bet on a coincidence is about 3,000,000 : 1. Obviously, abso-
lute certitude can be achieved only with 366 persons or more. 

Intuitively, two events A and B are independent if the occurrence of A 
has no influence on the probability of occurrence of B and vice versa, i.e. 
P(A/B) = P(A) and P(B/A) = P(B). From this and the product rule it follows 
for independent events A and B that P(A∩B) = P(A)P(B) (and vice versa: 
P(A∩B) = P(A)P(B)  P(A/B) = P(A) and P(B/A) = P(B)). Thus, P(A∩B) = 
P(A)P(B) P(A/B) = P(A) and P(B/A) = P(B). 

⇒
⇔

The formal definition is: A and B are independent if  
P(A∩B) = P(A)P(B). 
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We now give three classic examples of independent events. In each case 
it should be clear that the events are intuitively independent, and we will 
check the formal definition occurring. 

1) Flip two coins. A = “The first coin shows Head”, B = “The second 
coin shows Head”. P(A) = 1/2, P(B) = 1/2, P(A∩B) = 1/4. 

2) Roll two dice. A = “The first die shows 5”, B = “The second die 
shows 2”. P(A) = 1/6, P(B) = 1/6, P(A∩B) = 1/36. 

3) Pick a card from a deck of 52. A = “The card is an ace”, B = “The 
card is a spade”, P(A) = 1/13, P(B) = 1/4, P(A∩B) = 1/52. 

Two examples of events that are not independent are 
1) Draw two cards from a deck. A = “The first card is a spade”, B = 

“The second card is a spade”. P(A) = 1/4, P(B) = 1/4, but P(A∩B) = /  

= 

2
13C 2

52C
2
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1

5152
1213

⎟
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⎞

⎜
⎝
⎛<

⋅
⋅ . Please, explain why P(B) = 1/4. 

Intuitively, these two events are not independent, since getting a spade 
the first time reduces the fraction of spades in the deck and makes it harder to 
get a spade the second time.  

2) Roll two dice. A = “The sum of the two dice is 9”, B = “The first die 
is 2”. A = {(6,3), (5,4), (4,5), (3,6)}, so P(A) = 4/36. P(B) = 1/6, but P(A∩B) 
= 0 since (2,7) is impossible. 

In general if A and B are disjoint events that have positive probability, 
they are not independent since P(A)P(B) > 0 = P(A∩B). 

The events A1, . . ., An are said to be independent if for any 1≤ i1<i2…<ik 
we have P(n≤

kiii AAA ∩∩∩ ...
21

) = P( )
1i

A ×. . .×P( ). 
ki

A
Likewise (4.1), P(A∩Bc) = P(A|Bc)P(Bc) and hence, for any events A and 

B, we have proved the following partition rule: 
P(A) = P(A∩B) + P(A∩Bc) = P(A/B)P(B) + P(A/Bc)P(Bc). 

We often have occasion to use the following elementary generalization 
of the rule (the extended partition rule or formula of total probability): 

∑
=

=
n

i
ii BPBAPAP

1
)()/()(       (4.2) 

whenever A  and Bi∩Bj = ∪
n

i
iB

1=

⊂ φ  for i≠ j. 

Example. Two players are dealt 5 cards each. What is the probability 
that they will have the same number of aces? 

Solution. We partition the sample space according to how many aces the 
first player gets, calling the events A0, A1, . . ., A4. Let B be the event of our 
question (both players having the same number of aces). Then, by the for-
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mula of total probability: P(B) = P(A0)P(B/A0) + P(A1)P(B/A1) + 
P(A2)P(B/A2) + P(A3)P(B/A3) + P(A4)P(B/A4) = 

4 48 52 4 43 47 4 48 52 3 44 47
/ / / /

0 5 5 0 5 5 1 4 5 1 4 5

4 48 52 2 45 47
/ / 0 0.49 .

2 3 5 2 3 5

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
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+

 

We may write P(Bj/A) = P(Bj∩A)/P(A) = P(A/Bj)P(Bj)/P(A), and expand-
ing the denominator using (4.2), we have proved the following celebrated re-
sult; also known as Bayes’s Rule (or Theorem): 

Bayes’s Theorem. If A  and Bi∩Bj = ∪
n

i
iB

1=

⊂ φ  for i≠ j, then 

P(Bj/A) = P(A/Bj)P(Bj)/P(A) = P(A/Bj)P(Bj)/ . ∑
=

n

i
ii BPBAP

1
)()/(

Interpretation Bayes’s Rule in terms of subjective probabilities. Before 
occurrence of the event A, an expert forms an opinion about likelihood of the 
event B. That opinion, embodied in P(B), is called a prior probability. After 
occurrence of A, the expert’s belief is updated to obtain P(B/A), called a pos-
terior probability. By the Bayes’s Theorem, updating is accomplished 
through multiplication of the prior probability by the factor P(A/B)/P(A). 

The following is a typical example of the rule application in practice. 
Example. You have a blood test for some rare disease that occurs by 

chance in 1 in every 100,000 people. The test is fairly reliable; if you have 
the disease, it will correctly say so with probability 0.95; if you do not have 
the disease, the test will wrongly say you do with probability 0.005. If the test 
says you do have the disease, what is the probability that this is a correct di-
agnosis? 

Solution. Let D be the event that you have the disease and T the event 
that the test says you do. Then, we require P(D/T), which is given by P(D/T ) 
= P(T/D)P(D)/{P(T/D)P(D) + P(T/Dc)P(Dc)} =  
(0.95)(0.00001)/{(0.95)(0.00001) + (0.99999)(0.005)} = 0.002. 

Despite appearing to be a pretty good test, for a disease as rare as this 
the test is almost useless. 

It will be useful and, hope, interesting to read following articles concern-
ing the topic http://plus.maths.org/issue9/news/banks/index.html and  
http://plus.maths.org/issue21/features/clark/index.html. 
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4.1. Exercises  
 

1. Prove that if A and B are independent, then their complements are also 
independent. 
2. You are going to meet a friend at the airport. Your experience tells you 
that the plane is late 70 % of the time when it rains, but is late only 20 % of 
the time when it does not rain. The weather forecast that morning calls for a 
40 % chance of rain. What is the probability the plane will be late? 
3. A student is taking a multiple-choice test in which each question has 
four possible answers. She knows the answers to 50 % of the questions, can 
narrow the choices down to two 30 % of the time, and does not know any-
thing about 20 % of the questions. What is the probability she will correctly 
answer a question chosen at random from the test? 
4. Two hunters shoot at a deer, which is hit by exactly one bullet. If the 
first hunter hits his targets with probability 0.3 and the second with probabil-
ity 0.6, what is the probability the second hunter killed the deer? 
5. 5 % of men and 0.25 % of women are colorblind. What is the probability 
that a colorblind person is a man? 
6. A reader of Marilyn vos Savant’s column wrote in with the following 
question: 

“My dad heard this story on the radio. At Duke University, two students 
had received A’s in chemistry all semester. But on the night before the final 
exam, they were partying in another state and didn’t get back to Duke until it 
was over. Their excuse to the professor was that they had a flat tire, and they 
asked if they could take a make-up test. The professor agreed, wrote out a test 
and sent the two to separate rooms to take it. The first question (on one side 
of the paper) was worth 5 points, and they answered it easily. Then they 
flipped the paper over and found the second question, worth 95 points: 
‘Which tire was it?’ What was the probability that both students would say 
the same thing? My dad and I think it’s 1 in 16. Is that right?” 

(a)  Is the answer 1/16? 
(b)  The following question was asked of a class of students. “I was driv-

ing to school today, and one of my tires went flat. Which tire do you think it 
was?” The responses were as follows: right front, 58 %, left front, 11 %, right 
rear, 18 %, left rear, 13 %. Suppose that this distribution holds in the general 
population, and assume that the two test-takers are randomly chosen from the 
general population. What is the probability that they will give the same an-
swer to the question? 
7. Suppose the experiment consists of rolling two dice (red and green), the 
event A is: “the total number of dots equals 6”, B is: “the red die shows an 
even number”. Compute P(B/A). 
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8. Consider the following data on traffic accidents:  
age group    % of drivers  accident probability 
16 to 25           15                 0.10 
26 to 45           35                 0.04 
46 to 65           35                  0.06 
over 65            15                  0.08 
Calculate  
(a) the probability a randomly chosen driver will have an accident this 

year,  
(b) the probability a driver is between 46 and 65 given that she had an 

accident. 
9.* Let P(A) = 0.1, P(B) = 0.2, P(C) = 0.3 and P(D) = 0.4; A, B, C, D – in-
dependent events. Compute P{(A B)∩∪ DC ∪ }. 
10.* Out of 10 dice, 9 of which are regular but one is “crooked” (6 has a 
probability of 0.5), a die is selected at random (we cannot tell which one, 
they all look identical). Then, we roll it twice. We will answer three ques-
tions: 

(a) Given that the first roll resulted in a six (event S1), what is the (con-
ditional) probability of getting a six again in the second roll (event S2)? 

(b) Are S1 and S2 independent? 
(c) Given that both rolls resulted in a six, what is the (conditional) prob-

ability of having selected the crooked die? 
11.* Let us return to the second example in Examples 3 (lottery with 100,000 
tickets) and compute the probability that a randomly selected ticket has an 8 
and a 4 on it (each at least once, in any order, and not necessarily consecu-
tive). 
12.* The same question, but this time we want at least one 8 followed (sooner 
or later) by a 4 (at least once). What makes this different from the original 
question is that 8 and 4 now don’t have to be consecutive. 
13.* Ten people have been arrested as suspects in a crime one of them must 
have committed. A lie detector will (incorrectly) incriminate an innocent per-
son with a 5 % probability, it can (correctly) detect a guilty person with a    
90 % probability. 

(a) One person has been tested so far and the lie detector has its red light 
flashing (implying: “that’s him”). What is the probability that he is the crimi-
nal? 

(b) All 10 people have been tested and exactly one incriminated. What is 
the probability of having the criminal now? 
14.* Two men take one shot each at a target. Mr. A can hit it with the prob-
ability of 1/4, Mr. B’s chances are 2/5 (he is a better shot). What is the prob-
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ability that the target is hit (at least once)? Here, we have to (on our own) as-
sume independence of the two shots. 
15.* A, B, C are mutually independent, having (the individual) probabilities 
of 0.25, 0.35 and 0.45, respectively. Compute P{(A∩B )∪C}. 
16.* Two coins are flipped, followed by rolling a die as many times as the 
number of heads shown.  

(a) What is the probability of getting fewer than 5 dots in total?  
(b) Given that there were exactly 3 dots in total, what is the conditional 

probability that the coins showed exactly one head? 
17.* What is more likely, getting at least one 6 in four rolls of a die, or get-
ting at least one double 6 in twenty four rolls of a pair of dice? 
18.* Four people are dealt 13 cards each. You (one of the players) got one 
ace. What is the probability that your partner has the other three aces?  
19.* A simple padlock is made with only ten distinct keys (all equally likely). 
A thief steals, independently, 5 of such keys, and tries these to open your 
lock. What is the probability that he will succeed? 
20. A man has five coins in his pocket. Two are double-headed, one is dou-
ble-tailed, and two are normal. They can be distinguished only by looking at 
them. 

(a) The man shuts his eyes, chooses a coin at random, and tosses it. 
What is the probability that the lower face of the coin is a head? 

(b) He opens his eyes and sees that the upper face is a head. What is the 
probability that the lower face is a head? 
21. Binary digits, i.e., 0’s and 1’s, are sent down a noisy communications 
channel. They are received as sent with probability 0.9 but errors occur with 
probability 0.1. Assuming that 0’s and 1’s are equally likely, what is the 
probability that a 1 was sent given that we received a 1? 
22. To improve the reliability of the channel described in the last exercise, 
we repeat each digit in the message three times. What is the probability that 
111 was sent given that  

(a) we received 101?  
(b) we received 000? 

23. A cab was involved in a hit and run accident at night. Two cab compa-
nies green and blue operate 85 % and 15 % of the cabs in the city respec-
tively. A witness identified the cab as blue. However, in a test 80 % of wit-
nesses were able to correctly identify the cab color. Given this what is the 
probability that the cab involved in the accident was blue? 
24. A student goes to class on a snowy day with probability 0.4, but on a no 
snowy day attends with probability 0.7. Suppose that 20 % of the days in 
February are snowy. What is the probability it snowed on February 7th given 
that the student was in class on that day? 
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25. You are a serious student who studies on Friday nights but your room-
mate goes out and has a good time. 40 % of the time he goes out with his 
girlfriend; 60 % of the time he goes to a bar. 30 % of the times when he goes 
out with his girlfriend he spends the night at her apartment. 40 % of the times 
when he goes to a bar he gets in a fight and gets thrown in jail. You wake up 
on Saturday morning and your roommate is not home. What is the probability 
he is in jail? 
26. Two masked robbers try to rob a crowded bank during the lunch hour 
but the teller presses a button that sets off an alarm and locks the front door. 
The robbers, realizing they are trapped, throw away their masks and disap-
pear into the chaotic crowd. Confronted with 40 people claiming they are in-
nocent, the police give everyone a lie detector test. Suppose that guilty people 
are detected with probability 0.95, and innocent people appear to be guilty 
with probability 0.01. What is the probability Mr. Jones is guilty given that 
the lie detector says he is? 
27. At a slot machine with three reels and seven symbols, find the probabil-
ity of getting the same symbol on all reels in one spin.  
28. Two shooters are shooting two shots each at a target. The probability of 
the event “the first shooter hits the target” is 0.7 for each shot and the prob-
ability for the second shooter is 0.8. What is the probability of both shooters 
missing the target? 
29.* Probability theory was used in a famous court case: People vs. Collins. 
In this case a purse was snatched from an elderly person in a Los Angeles 
suburb. 

A couple seen running from the scene were described as a black man 
with a beard and a mustache and a blond girl with hair in a ponytail. Wit-
nesses said they drove off in a partly yellow car. Malcolm and Janet Collins 
were arrested. 

He was black and though clean shaven when arrested had evidence of 
recently having had a beard and a mustache. She was blond and usually wore 
her hair in a ponytail. They drove a partly yellow Lincoln. The prosecution 
called a professor of mathematics as a witness who suggested that a conser-
vative set of probabilities for the characteristics noted by the witnesses would 
be as shown below 

man with mustache   1/4, 
girl with blond hair   1/3, 
girl with ponytail   1/10, 
black man with beard  1/10, 
interracial couple in a car  1/1000, 
partly yellow car   1/10. 
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The prosecution then argued that the probability that all of these charac-
teristics are met by a randomly chosen couple is the product of the probabili-
ties or 1/12,000,000, which is very small. He claimed this was proof beyond 
a reasonable doubt that the defendants were guilty. The jury agreed and 
handed down a verdict of guilty of second-degree robbery. 

If you were the lawyer for the Collins couple how would you have coun-
tered the above argument?  
30. A person A receives information and transmits it to another person B. 
Person B transmits it to a third person C, who transmits it to a fourth person 
D. Knowing that each person tells the truth in one case out of three, find the 
probability that A told the truth, given that D told the truth. 
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5. The Monty Hall problem and other puzzles 
 

The mind has its illusions as the sense of sight; 
and in the same manner that the sense of feeling 

 corrects the latter, reflection and calculation correct the former. 
Pierre-Simon Laplace 

 
Math is more than computations and numbers; 

it's about being able to solve problems. 
 

Conditional probabilities are the sources of many “paradoxes” in prob-
ability. One must be very careful in dealing with problems involving condi-
tional probability. 

The Monty Hall problem. We consider now a problem called the Monty 
Hall problem. This has long been a favorite problem but was revived by a let-
ter from Craig Whitaker to Marilyn vos Savant for consideration in her col-
umn in Parade Magazine. Craig wrote: Suppose you’re on Monty Hall’s Let’s 
Make a Deal! You are given the choice of three doors, behind one door there 
is a car, the others, goats. You pick a door, say 1, Monty opens another door, 
say 3, which has a goat. Monty says to you “Do you want to pick door 2?” Is 
it to your advantage to switch your choice of doors? 

Marilyn gave a solution concluding that you should switch, and if you 
do, your probability of winning is 2/3. Several irate readers, some of whom 
identified themselves as having a PhD in mathematics, said that this is absurd 
since after Monty has ruled out one door there are only two possible doors 
and they should still each have the same probability 1/2 so there is no advan-
tage to switching. Marilyn stuck to her solution and encouraged her readers 
to simulate the game and draw their own conclusions from this. Other readers 
complained that Marilyn had not described the problem completely. 

In particular, the way in which certain decisions were made during a 
play of the game was not specified. We will assume that the car was put be-
hind a door by rolling a three-sided die which made all three choices equally 
likely. Monty knows where the car is, and always opens a door with a goat 
behind it. Finally, we assume that if Monty has a choice of doors (i.e., the 
contestant has picked the door with the car behind it), he chooses each door 
with probability 1/2. Marilyn clearly expected her readers to assume that the 
game was played in this manner. 

As in the case with most apparent paradoxes, this one can be resolved 
through careful analysis. 
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We begin by describing a simpler related question. We say that a con-
testant is using the “stay” strategy if he picks a door, and, if offered a chance 
to switch to another door, declines to do so (i.e., he stays with his original 
choice). Similarly, we say that the contestant is using the “switch” strategy if 
he picks a door, and, if offered a chance to switch to another door, takes the 
offer. 

Now suppose that a contestant decides in advance to play the “stay” 
strategy. His only action in this case is to pick a door (and decline an invita-
tion to switch, if one is offered).  

What is the probability that he wins a car? The same question can be 
asked about the “switch” strategy. 

Using the “stay” strategy, a contestant will win the car with probability 
1/3. On the other hand, if a contestant plays the “switch” strategy, then he 
will win whenever the door he originally picked does not have the car behind 
it, which happens with probability 2/3. 

This very simple analysis, though correct, does not quite solve the prob-
lem that Craig posed. Craig asked for the conditional probability that you win 
if you switch, given that you have chosen door 1 and that Monty has chosen 
door 3. To solve this problem, we compute the conditional probability given 
the information. 

This is a process that takes place in several stages: the car is put behind 
a door, the contestant picks a door, and finally Monty opens a door.  

Thus it is natural to analyze this using a probability tree. The resulting 
tree and the probabilities are shown in the Figure 5.1.  

It is tempting to reduce the tree’s size by making certain assumptions 
such as: “Without loss of generality, we will assume that the contestant al-
ways picks door 1.” We have chosen not to make any such assumptions, in 
the interest of clarity. 

Now the given information, namely that the contestant chose door 1 and 
Monty chose door 3, means only two paths through the tree are possible (see 
the Figure 5.2). 

For one of these paths, the car is behind door 1 and for the other it is be-
hind door 2. The path with the car behind door 2 is twice as likely as the one 
with the car behind door 1. Thus the conditional probability is 2/3 that the car 
is behind door 2 and 1/3 that it is behind door 1, so if you switch you have a 
2/3 chance of winning the car, as Marilyn claimed. 

At this point, you may think that the two problems above are the same, 
since they have the same answers. 

Recall that we assumed in the original problem if the contestant chooses 
the door with the car, so that Monty has a choice of two doors, he chooses 
each of them with probability 1/2. Now suppose instead that in the case that  
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Figure 5.1. The Monty Hall problem 

 
he has a choice, he chooses the door with the larger number with probability 
3/4. In the “switch” vs. “stay” problem, the probability of winning with the 
“switch” strategy is still 2/3. However, in the original problem, if the contest-
ant switches, he wins with probability 4/7. You can check this by noting that 
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the same two paths as before are the only two possible paths in the tree. The 
path leading to a win, if the contestant switches, has probability 1/9, while the 
path which leads to a loss, if the contestant switches (i.e. a win, if the con-
testant doesn’t switch), has probability 1/12. 

You can read the article devoted to the theme 
http://plus.maths.org/issue32/features/wilson/index.html) 

You might have the impression at this stage that the first step towards 
the solution of a probability problem is always a specification of a sample 
space. In fact one seldom needs an explicit listing of the sample space; an as-
signment of (conditional) probabilities to well chosen events is usually 
enough to set the probability machine in action. Only in cases of possible 
confusion, or great mathematical precision, do I find a list of possible out-
comes worthwhile to contemplate. Construction of a sample space is a non-
trivial exercise as a rule. 

 
Figure 5.2. Conditional probabilities for the Monty Hall problem 

 
Study more puzzles concerning conditional probability. 
1) Consider a family with two children. Given that one of the children is 

a boy, what is the probability that both children are boys? 
One way to approach this problem is to say that the other child is 

equally likely to be a boy or a girl, so the probability that both children are 
boys is 1/2. 
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The “textbook” solution would be to draw the tree diagram and then 
form the conditional tree by deleting paths to leave only those paths that are 
consistent with the given information. The result is shown in the Figure 5.3. 

We see that the probability of two boys given a boy in the family is not 
1/2 but rather 1/3.  

Figure 5.3. A family with two children (“textbook” solution) 
 

The answer to conditional probabilities of this kind can change depend-
ing upon how the information given was actually obtained. For example, 1/2 
is the correct answer for the following scenario. 

Mr. Smith is the father of two. We meet him walking along the street 
with a young boy whom he proudly introduces as his son. What is the prob-
ability that Mr. Smith’s other child is also a boy? 

As usual we have to make some additional assumptions. For example, 
we will assume that if Mr. Smith has a boy and a girl, he is equally likely to 
choose either one to accompany him on his walk. In the Figure 5.4 we show 
the tree analysis of this problem and we see that 1/2 is, indeed, the correct an-
swer. 
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Figure 5.4. A family with two children 

 
It is not so easy to think of reasonable scenarios that would lead to the 

classical 1/3 answer. An attempt was made by Stephen Geller in proposing 
this problem to Marilyn vos Savant. Geller’s problem is as follows:  

A shopkeeper says she has two new baby beagles to show you, but she 
doesn’t know whether they’re both male, both female, or one of each sex. 
You tell her that you want only a male, and she telephones the fellow who’s 
giving them a bath. “Is at least one a male?” she asks. “Yes,” she informs you 
with a smile.  

 57



What is the probability that the other one is male? The reader is asked to 
decide whether the model which gives an answer of 1/3 is a reasonable one to 
use in this case.  

In these examples, the apparent paradoxes could easily be resolved by 
clearly stating the model that is being used and the assumptions that are being 
made.  

2) Two envelopes each contain a certain amount of money. One enve-
lope is given to Ali and the other to Baba and they are told that one envelope 
contains twice as much money as the other. However, neither knows who has 
the larger prize. Before anyone has opened their envelope, Ali is asked if she 
would like to trade her envelope with Baba. She reasons as follows: Assume 
that the amount in my envelope is x. If I switch, I will end up with x/2 with 
probability 1/2, and 2x with probability 1/2. If I were given the opportunity to 
play this game many times, and if I were to switch each time, I would, on av-
erage, get xxx 25.1)2(5.0)2/(5.0 =×+× . 

This is greater than my average winnings if I didn’t switch. 
Of course, Baba is presented with the same opportunity and reasons in 

the same way to conclude that he too would like to switch. So they switch 
and each thinks that his/her net worth just went up by 25 %. 

Since neither has yet opened any envelope, this process can be repeated 
and so again they switch. Now they are back with their original envelopes 
and yet they think that their fortune has increased 25 % twice. By this reason-
ing, they could convince themselves that by repeatedly switching the enve-
lopes, they could become arbitrarily wealthy. Clearly, something is wrong 
with the above reasoning, but where is the mistake? 

One of the tricks of making paradoxes is to make them slightly more 
difficult than is necessary to further befuddle us. In this paradox we could 
just have well started with a simpler problem. Suppose Ali and Baba know 
that I am going to give then either an envelope with $5 or one with $10 and I 
am going to toss a coin to decide which to give to Ali, and then give the other 
to Baba. 
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Figure 5.5. Two envelopes problem 

Then Ali can argue that Baba has 2x with probability 1/2 and x/2 with 
probability 1/2. This leads Ali to the same conclusion as before. But now it is 
clear that this is nonsense, since if Ali has the envelope containing $5, Baba 
cannot possibility have half of this, namely $2.50, since that was not even 
one of the choices. Similarly, if Ali has $10, Baba cannot have twice as 
much, namely $20. In fact, in this simpler problem the possibly outcomes are 
given by the tree diagram in the Figure 5.5. 

From the diagram, it is clear that neither is made better off by switching.  
In the above example, Ali’s reasoning is incorrect because he infers that 

if the amount in his envelope is x, then the probability that his envelope con-
tains the smaller amount is 1/2, and the probability that her envelope contains 
the larger amount is also 1/2. In fact, these conditional probabilities depend 
upon the distribution of the amounts that are placed in the envelopes. 

3) Simpson's paradox refers to the phenomenon whereby an event C in-
creases the probability of E in a given population p and, at the same time, 
decreases the probability of E in every subpopulation of p. In other words, 

P(E/C) > P(E/Cc),              (5.1) 

P(E/C,F) < P(E/Cc,F),              (5.2) 
P(E/C,F) < P(E/Cc,Fc).    (5.3) 

if F and Fc are two complementary properties describing two subpopulations. 
Although such order reversal might not surprise students of probability, 

it is paradoxical when given causal interpretation. For example, if we associ-
ate C (connoting cause) with taking a certain drug, E (connoting effect) with 
recovery, and F with being a female then − under the causal interpretation of 
(5.2)−(5.3) the drug seems to be harmful to both males and females yet 

 59



beneficial to the population as a whole (equation (5.1)). Intuition deems such 
a result impossible, and correctly so. 

The tables in Figure 5.6 represent Simpson's reversal numerically. We 
see that, overall, the recovery rate for patients receiving the drug (C) at      
50 % exceeds that of the control (Cc) at 40 % and so the drug treatment is 
apparently to be preferred. However, when we inspect the separate tables 
for males and females, the recovery rate for the untreated patients is 10 % 
higher than that for the treated ones, for males and females both. 

Combined           E     Ec              Recovery Rate 
(a)         Drug (C)            20     20      40 50 % 

No Drug (Cc)     16      24      40 40 % 
   36     44      80 

Males            E Ec     Recovery Rate 
(b)         Drug (C)           18     12   30 60 % 

No Drug (Cc)    7       3   10 70 % 
        25      15       40 

                 Females             E Ec      Recovery Rate 
        (c)         Drug (C)             2      8    10 20 % 
                    No Drug (Cc)      9      21    30 30 % 
                                                           11     29       40 
Figure 5.6. Recovery rates under treatment (C) and control (Cc) for 

males, females, and combined 
The conditioning operator in probability calculus stands for the eviden-

tial conditional “given that we see”. Accordingly, the inequality P(E/C) > 
P(E/Cc) is not a statement about C being a positive causal factor for E, but 
rather about C being positive evidence for E, which may be due to spurious 
confounding factors that cause both C and E. In our example, the drug ap-
pears beneficial overall because the males, who recover (regardless of the 
drug) more often than the females, are also more likely than the females to 
use the drug. Indeed, finding a drug-using patient (C) of unknown gender, 
we would do well inferring that the patient is more likely to be a male and 
hence more likely to recover, in perfect harmony with (5.1) − (5.3). 

The standard method for dealing with potential confounders of this kind 
is to “hold them fixed,” namely, to condition the probabilities on any factor 
that might cause both C and E. In our example, if being a male (Fc) is per-
ceived to be a cause for both recovery (E) and drug usage (C), then the effect 
of the drug needs to be evaluated separately for men and women (as in 
(5.2)−(5.3)) and averaged accordingly. 
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Thus, assuming F is the only confounding factor, (5.2) − (5.3) properly 
represent the efficacy of the drug in the respective populations while (5.1) 
represents merely its evidential weight in the absence of gender information, 
and the paradox dissolves. 

 
5.1. Exercises  

 
1. The Prisoner’s Dilemma. Three prisoners, Al, Bob, and Charlie, with 
apparently equally good records have applied for parole. The parole board 
has decided to release two of the three, and the prisoners know this but not 
which two. A warder friend of prisoner Al knows who are to be released. 
Prisoner Al realizes that it would be unethical to ask the warder if he, Al, is to 
be released, but thinks of asking for the name of one prisoner other than him-
self who is to be released. 

He thinks that before he asks, his chances of release are 2/3. He thinks 
that if the warder says “Bob will be released,” his own chances have now 
gone down to 1/2, because either Al and Bob or B and Charlie are to be re-
leased. And so Al decides not to reduce his chances by asking. However, Al 
is mistaken in his calculations. Please, criticize Al’s reasoning. 

Assume the warder says that Bob to be released and prisoner Charlie 
overhears the conversation between Al and the warder. The warder might 
have nominated Charlie as a prisoner to be released. The fact that he didn’t 
do so conveys some information to Charlie. Do you see why Al and Charlie 
can infer different information from the warder’s reply? What is the condi-
tional probability for Charlie to be released? 
2. Here are three variations of the Monty Hall problem.  

(a) Suppose that everything is the same except that Monty forgot to find 
out in advance which door has the car behind it. In the spirit of “the show 
must go on,” he makes a guess at which of the two doors to open and gets 
lucky, opening a door behind which stands a goat. Now should the contestant 
switch? 

(b) You have observed the show for a long time and found that the car is 
put behind door 1 45 % of the time, behind door 2 40 % of the time and be-
hind door 3 15 % of the time. Assume that everything else about the show is 
the same. Again you pick door 1. Monty opens a door with a goat and offers 
to let you switch. Should you? Suppose you knew in advance that Monty was 
going to give you a chance to switch. Should you have initially chosen     
door 1? 

(c)* Devise a variant game in which the contestant is presented with 10 
doors. Again behind one of them is a car, behind the others booby prizes. Af-
ter the contestant picks a door, Monty (or his avatar) opens just seven of the 
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remaining nine unopened doors, but is careful never to open the door hiding 
the car. There are now three unopened doors − the one that the contestant 
originally picked and two others. Which strategy works best, switching to 
one of the other two unopened doors or sticking with the original pick? Fur-
thermore, what is the probability of winning by following these two strate-
gies? 

One more question: Can you think of any real-world situations − crime 
mysteries, world politics, administrative deceptions − which might be mod-
eled on some close variant of the Monty Hall problem? That is, are there 
situations in which the "contestant," say, a reporter, must choose among vari-
ous alternatives and the "host," say, an official, knows the true answer, but is 
evasive about it and instead answers a question different from the one the 
contestant asks?  

3. Box Paradox. A cabinet has three drawers. In the first drawer there are 
two gold balls, in the second drawer there are two silver balls, and in the third 
drawer there is one silver and one gold ball. A drawer is picked at random 
and a ball chosen at random from the two balls in the drawer. Given that a 
gold ball was drawn, what is the probability that the drawer with the two gold 
balls was chosen? 
4. The following problem is called the two aces problem. This problem 
was also submitted to Marilyn vos Savant by the master of mathematical puz-
zles Martin Gardner, who remarks that it is one of his favorites. 

A bridge hand has been dealt, i.e. thirteen cards are dealt to each of four 
player. 

Given that your partner has at least one ace, what is the probability that 
he has at least two aces? Given that your partner has the ace of hearts, what is 
the probability that he has at least two aces? Answer these questions for a 
version of bridge in which there are eight cards, namely four aces and four 
kings, and each player is dealt two cards. (You may wish to solve the prob-
lem with a 52-card deck.) 

It is natural to ask “How do we get the information that the given hand 
has an ace?” Consider two different ways that we might get this information. 
(Again, assume the deck consists of eight cards.) 

(a) Assume that the person holding the hand is asked to “Name an ace in 
your hand” and answers “The ace of hearts.” What is the probability that he 
has a second ace? 

(b) Suppose the person holding the hand is asked the more direct ques-
tion “Do you have the ace of hearts?” and the answer is “yes”. What is the 
probability that he has a second ace? 
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5. For a real life example, consider the average SAT (Standardized Apti-
tude Test) verbal score. It was 504 in 1981 and 21 years later in 2002 it was 
again 504.  However when we break things down by ethnic groups, we see 
that all of them increased their scores: 

   1981     2002 
non-Hispanic whites       519       527 
African Americans       412       431 
Mexican Americans      438       446 
Asian Americans        474       501 
 Can you explain the result? What additional information you need to 
take into consideration? 
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6. Discrete random variables 
 
The excitement that a gambler feels  

when making a bet is equal to the amount  
he might win times the probability of winning it. 

Blaise Pascal 
 
In many experiments, outcomes are defined in terms of numbers or may 

be associated with numbers, if we so choose. In either case, we want to as-
sign probabilities directly to these numbers, as well as to the underlying 
events. 

A random variable is a numerical value determined by the outcome of 
a random experiment.  

This is important to be able to use arithmetic operations.  
A random variable is a variable whose values cannot be predicted for 

sure. On the other hand, to know the value of sin x it suffices to plug the ar-
gument x in sin x, or the number of days in a year are not random variables. 

Capital X is used for the variable and lower-case x’s for its values. 
Formally, X( ) is a function with domain Ω and range D R, and so for each 
ω , X(ω) = x∈D. 

⊂
Ω∈
We have seen a number of examples of random variables. 

• Roll two dice and let X = the sum of the two numbers that appear. 
• Roll a die until a 4 appears and let X = the number of rolls we need. 
• Flip a coin 10 times and let X = the number of Heads we get. 
• Draw 13 cards out of a deck of 52 and let X = the number of Hearts we 

get. 
• (Darts). You throw one dart at a conventional dartboard. A natural 

sample space is the set of all possible points of impact. This is of 
course uncountable because it includes every point of the dartboard, 
much of the wall, and even parts of the floor or ceiling if you are not 
especially adroit. However, your score X(ω) is one of a finite set of in-
tegers lying between 0 and 60, inclusive. 

In these five cases X is a discrete random variable. That is, there is a 
finite or countable sequence of possible values. In contrast, the height of a 
randomly chosen person or the time they spent waiting for the bus this morn-
ing are continuous random variables. 
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6.1. Distributions 
 

The distribution (or probability mass function) of a discrete random 
variable, is described by giving the value of P(X = x) for all values of x. In 
each case, we will only give the values of P(X = x) when P(X = x) > 0. The 
other values we do not mention are 0. The distribution of a discrete random 
variable is defined by following way: 

Discrete random variable with n values 
Values of X (all possible)    Probabilities 
  x1     p1 
  x2     p2 

…………………………… 
  xn     pn 
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Example 1 (Discrete Uniform Distribution). Roll a die and let X = the 
number that appear. 

X  1      2     3     4     5     6           

P(X = x)  
6
1     

6
1    

6
1     

6
1    

6
1     

6
1       . 

If X is a random variable which represents the outcome of an experiment 
of this type, we say that X is uniformly distributed.  

In general, if the sample space Ω is of size n, where 0 < n < ∞, then the 
distribution is defined to be 1/n for all Ω∈ω . 

Consider five examples above. 
Example 2. Roll two dice and let X = the sum of the two numbers that 

appear. 
We have computed the distribution before: 
X  2     3     4      5      6     7     8      9     10    11     12 

P(X = x)       
36
1   

36
2   

36
3   

36
4   

36
5   

36
6   

36
5   

36
4   

36
3    

36
2     

36
1 . 

Example 3 (Geometric distribution). If we repeat an experiment with 
probability p of success until a success occurs then the number of trials re-
quired N has the following distribution P(N = n) = (1 − p)n−1p for n = 1, 2, . . .  

In words, N has a geometric distribution with parameter p, a phrase we 
will abbreviate as N = geometric (p). 
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To check the formula note that in order to first have success on trial n, 
we must have n −1 failures followed by a success, which has probability (1 
−p)n−1p. In the example at the beginning of the section, success is rolling a 4, 
so p = 1/6. 

For an example of the use of the geometric distribution, we consider 
Birthday problem (II). How large must the group be so that there is a 

probability > 0.5 that someone will have the same birthday as you do? 
In our first encounter with the birthday problem it was surprising that the 

size needed to have two people with the same birthday was so small. This 
time the surprise goes in the other direction. Assuming 365 equally likely 
birthdays, a naive guess is that 183 people will be enough. However in a 
group of n people the probability all will fail to have your birthday is 
(364/365)n. Setting this equal to 0.5 and solving n = ln(0.5)/ln(364/365) = 
−0.69314/(−0.0027435) = 252.7. 

So we need 253 people. The “problem” is that many people in the group 
will have the same birthday so the number of different birthdays is smaller 
than the size of the group. 

Consider an experiment with only two possible outcomes (we call them 
success and failure) which happen with the probability of p and q ≡ 1 − p re-
spectively (examples: flipping a coin, rolling a die and being concerned only 
with obtaining a six versus any other number, a team winning or losing a 
game, drawing a marble from a box with red and blue marbles, shooting 
against a target to either hit or miss, etc.) 

We define a random variable X as the number of successes one gets in 
one round (or trial) of this experiment (also called an indicator variable of the 
success). Its distribution is obviously 

X  0     1      
P(X = x)  q     p  . 
In this case we say that X has Bernoulli Distribution with parameter p. 

Consider a generalization of this distribution.  
Example 4 (Binomial distribution).  
If we perform an experiment n times independently (the results of any 

previous trials don’t reflect to the results of following ones) and on each trial 
there is a probability p of success then the number of successes S has the dis-
tribution P(S = k) = = pk(1 − p)n−k for k = 0, . . . ,n. )(kpn

k
nC

In words, S has a binomial distribution with parameters n and p, a phrase 
we will abbreviate as S = binomial (n, p). 

The third example mentioned at the beginning is the special case: n = 10 
and p = 1/2. 
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Example 5 (Hypergeometric distribution). Consider an urn with M red 
balls and N black balls. If we draw out n balls then the number of red balls 

we get, R, has P(R = r) = n
NM

rn
N

r
M

C
CC

+

−

 for r = 0, . . .  ,n. 

Here the denominator gives the number of ways of picking n of the M+N 
balls and the numerator gives the number of ways of picking r of the M red 
balls and n − r of the N black balls. (By convention = 0 if k > n or k < 0.)  k

nC
For the forth example above M = 13 Hearts, N = 39 other cards and we 

draw n = 13. 
Our new example is: 
Example 6 (Poisson distribution). X is said to have a Poisson distribu-

tion with parameter λ if P(X = k) = e-λλk/k! for k = 0, 1, 2, . . .. 
Here λ > 0 is a parameter. To see that this is a distribution we recall 

, so the proposed probabilities are nonnegative and sum to 1.  λλ ek
k

k =∑
∞

=0
!/

The Poisson distribution arises in a number of situations because of the 
next result. 

Poisson approximation to the binomial. Suppose Sn has a binomial 
distribution with parameters n and pn. If pn →  0 and npn →  λ as n  then ∞→

 
P(Sn = k)  e-λλk/k!     (6.1) →

 
In words, if we have a large number of independent events with small 

probability then the number that occur has approximately a Poisson distribu-
tion. The key to the proof is the following fact: If pn  0 and npn  λ as 
n  then ( )  as n

→ →
∞→ λ−→− ep n

n1 ∞→ .   
To illustrate the use of this we return to the probability in People vs. 

Collins (see 29* in Exercises 4). There n = 1,000,000 and pn = 1/12,000,000 
so (1 −1/12,000,000)1,000,000  e−1/12 = 0.9200. →

When we apply (6.1) we think, “If Sn = binomial (n, p) and p is small 
then Sn is approximately Poisson (np).” The next example also illustrates the 
use of this approximation and shows that the number of trials does not have 
to be very large for us to get accurate answers. 

Example. Suppose we roll two dice 12 times and we let D be the number 
of times a double 6 appears. Here n = 12 and p = 1/36, so np = 1/3. We will 
now compare P(D = k) with the Poisson approximation for k = 0, 1, 2. 

k = 0 exact answer: P(D = 0) = (1 − 1/36)12 = 0.7132, 
Poisson approximation: P(D = 0) = e−1/3 = 0.7165, 
k = 1 exact answer: P(D = 1) = (1/36)(1 – 1/36)11 = 0.2445, 1

12C
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Poisson approximation: P(D = 1) = e−1/3 (1/3) = 0.2388, 
k = 2 exact answer: P(D = 2) = (1/36)2(1 – (1/36))10 = 0.0384, 2

12C
Poisson approximation: P(D = 2) = e−1/3(1/3)2/2! = 0.0398. 
Some early data showing a close approximation to the Poisson distribu-

tion was the number of German soldiers kicked to death by cavalry horses 
between1875 and 1894.  

The Poisson distribution can be used for births as well as for deaths. 
There were 63 births in Ithaca, NY between March 1 and April 8, 2005, a to-
tal of 39 days, or 1.615 per day. The next table gives the observed number of 
births per day and compares with the prediction from the Poisson distribution 

0 1     2       3       4        5     6 
observed  9  12      9       5       3        0     1 
Poisson  7.75  12.52      10.11  5.44   2.19   .71  .19 

The Poisson distribution is often used as a model for the number of peo-
ple who go to a fast-food restaurant between 12 and 1, the number of people 
who make a cell phone call between 1:45 and 1:50, or the number of traffic 
accidents in a day. To explain the reasoning in the last case we note that any 
one person has a small probability of having an accident on a given day, and 
it is reasonable to assume that the events Ai = “The ith person has an acci-
dent” are independent. Now it is not reasonable to assume that the probabili-
ties of having an accident pi = P(Ai) are all the same, nor is it reasonable to 
assume that all women have the same probability of giving birth, but fortu-
nately the Poisson approximation does not require this. 

Example (Lottery Double Winner). The following item was reported in 
the February 14, 1986 edition of the New York Times: A New Jersey woman 
won the lottery twice within a span of four months. She won the jackpot for 
the first time on October 23, 1985 in the Lotto 6/39. Then she won the jack-
pot in the new Lotto 6/42 on February 13, 1986. Lottery officials calculated 
the probability of this as roughly one in 17.1 trillion. What do you think of 
this statement? 

It is easy to see where they get this from. The probability of a person 
picked in advance of the lottery getting all six numbers right both times is 
(1/ )×(1/ ) =1/(17.1×1012).  6

39C 6
42C

One can immediately reduce this number by noting that the first lottery 
had some winner, who if they played only one ticket in the second lottery had 
a 1/  chance. 6

42C
The odds drop even further when you consider that there are a large 

number of people who submit more than one entry for each weekly draw and 
that wins on October 23, 1985 and February 13, 1986 is not the only combi-
nation. Suppose for concreteness that each week 50 million people play the 
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lottery and buy five tickets. The probability of one person winning on a given 
week is p1 = 5/  = 9.915×10−7. 6

42C
The number of times one person will win a jackpot in the next 200 draw-

ings is roughly Poisson with mean λ1 = 200p1 = 1.983×10−4. (Below we will 
see that the parameter λ1 represents the average number of times one person 
wins a jackpot in the next 200 drawings.) 

The probability that a given player wins the jackpot two or more times is 
p0 = 1−  − λ1  = 1.965×10−8. 1λ−e 1λ−e

The number of double winners in a population of 50 million players is 
Poisson with mean λ0 = 50,000,000p0 = 0.9825 so the probability of no dou-
ble winner is e−0.9825 = 0.374. 

 
6.2. Moments, Mean, Variance 

 
Climate is what you expect, weather is what you get. 

Robert Heinlein 
 

The expected value of X is defined to be 

EX = . ∑
∈Dx

ii
i

px

In words, we multiply each possible value by its probability and sum. 
This is also known as the expectation, or mean, or average or first 

moment of X. 
Note that the series (if D is infinite) above is absolutely convergent, oth-

erwise the expected value doesn’t exist (by definition). 
Example. Roll one die and let X be the number that appears. P(X = x) = 

1/6 for x = 1, 2, 3, 4, 5, 6 so 

EX = 1
6
1

× + 2
6
1

× + 3
6
1

× + 4
6
1

× + 5
6
1

× + 6
6
1

× =
2
13

6
21

= . 

In this case the expected value is just the “usual” average of the six pos-
sible values. 

Example (Roulette). If you play roulette and bet $1 on black then you 
win $1 with probability 18/38 and you lose $1 with probability 20/38, so the 
expected value of your winnings X is EX = 1×18/38 + (−1)×20/38 = 
−0.0526. 

If you play n times and let Xi be your winnings on the ith play then the 
law of large numbers implies that (X1 + . . . + Xn)/n will be close to −0.0526. 
In words, in the long run you will lose about 5.26 cents per play. 
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Example (Bernoulli distribution). Suppose P(X = 1) = p and P(X =0) = 
1 − p. Compute EX. 

EX = pP(X = 1) + (1 − p)P(X = 0) = p    (6.2) 
It is obvious that if X and Y are discrete random variables such that Y = 

g(X) then EY = . ( )∑
∈Dx

ii
i

pxg

Let g(x) = xk, E(Xk) is the kth moment of X. When k = 1 this is the first 
moment or mean of X. 

Example. Suppose X is the result of rolling one die. Compute EX2 – the 
second moment of X. 

EX2 = (1 + 4+9 + 16+ 25 + 36)/6 = 91/6 = 15.1666. 
Now we establish some important properties of the expected value. 
Let X be a random variable with the mean E(X), and let a and b be con-

stants. Then: 
              E(X + b) = EX +b  

E(aX) = aEX       (6.3) 
In words, if we add 5, for example, to a random variable then we add 5 

to its expected value. If we multiply a random variable by 3, for example, we 
multiply its expected value by 3. 

If X and Y are two discrete random variables, and if E(X) and E(Y) exist, 
then the mean E(X + Y) exists and we have  

E(X + Y) = E(X) + E(Y).    (6.4) 
From (6.3) and (6.4) it follows  

E(c1X1 + · · · + cnXn) = c1EX1 + . . . + cnEXn    (6.5) 
(linearity of the expected value). 

Example (Binomial distribution). When P(S = k) = pk(1 − p)n−k for k 
= 0, . . . ,n we have ES = np. 

k
nC

This answer is intuitive clear – each trial brings a probability p of suc-
cess so the expected number of successes in n trials is np. It is not easy to get 
the answer directly from the definition of the distribution so we will take a 
different approach. 

Let Xi = 1 if there is a success on the ith trial of n independent trials and 
0 otherwise, so that  

S = X1 +·. . . + Xn.     (6.5*) 
The fact that ES = np now follows from (6.4). 
Example (Hypergeometric distribution). If we draw out n balls from an 

urn with M red balls and N black balls, then the number of red balls, R, has 

P(R = r) = n
NM

rn
N

r
M

C
CC

+

−

 for r = 0, . . . ,n. 

 70



In this case ER = nM/(M + N). 
Let Xi = 1 if a red ball is drawn on the ith trial and 0 otherwise, so that R 

= X1 + . . . + Xn. Each ball drawn has probability M/(M + N) of being red, so 
EXi = M/(M + N), and it follows from (6.4) that ER = nM/(M + N). 

Example (Poisson distribution). If P(X = k) = e-λλk/k! for k = 0, 1, 2, . . . 
then EX =λ. 

To see that this is the right answer, remember that Poisson implies Bi-
nomial (n, λ/n) approaches Poisson (λ) as n ∞→  and the Binomial have 
mean n(λ/n) = λ. To get this directly from the formula, note that since the k = 
0 term makes no contribution to the sum, EX = 

1! !

k k

k o k k o
ke ke e

k k k

∞ ∞ ∞
−λ −λ −λ

= = =

λ λ λ
= = λ∑ ∑ ∑ !

k

= λ , since 
!

k

k o
e

k

∞
−λ

=

λ∑ =1. 

Consider two more examples concerning to Poisson distribution. 
(a) The distribution of V-2 rocket hits in south London during World 

War II. The area under study was divided into 576 area of equal size. There 
were a total of 537 hits or an average of 0.9323 per subdivision. Using the 
Poisson distribution the probability a subdivision is not hit is e−.9323 = .3936. 
Multiplying by 576 we see that the expected number not hit was 226.71 
which agrees well with the 229 that were observed not to be hit.  

(b) A typesetter makes, on the average, one mistake per 1000 words. 
Assume that he is setting a book with 100 words to a page. Let S100 be the 
number of mistakes that he makes on a single page. Then the exact probabil-
ity distribution for S100 would be obtained by considering S100 as a result of 
100 Bernoulli trials with p = 1/1000. The expected value of S100 is   
100(1/1000) = 0.1. The exact probability that S100 = j is p100(j) and the Pois-

son approximation is 1.0

!
1.0 −e
j

j
. 

Example (Geometric distribution). When P(N = n) = (1 − p)n−1p, 
for n = 1, 2, 3, . . . we have EN = 1/p. 

This answer is intuitive. We have an average of p successes per trial, so 
in n trials we have an average of np successes and if we want np = 1 we need 
n = 1/p. 

To get this from the definition, we begin with the sum of the geometric 

series 
0

1
1

k

k

x
x

∞

=

=
−∑  and differentiate with respect to x to get 

( )
1

2
0

1
1

k

k

kx
x

∞
−

=

=
−

∑ . Dropping the k = 0 term from the left since it is 0 and set-
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ting x = 1− p we receive ( ) 1
2

0

11 k

k

k p
p

∞
−

=

− =∑ . Multiplying each side by p we 

have ( ) 1

0

11 k

k

kp p
p

∞
−

=

− =∑ . 

Example (China’s one child policy). In order to limit the growth of its 
population, the Chinese government decided to a limit a family to having just 
one child. An alternative that was suggested was the “one son” policy: as 
long a woman has only female children she is allowed to have more children. 
One concern voiced about this policy was that no family would have more 
than one son but many families would have several girls. This concern leads 
to our question: How would the one son policy affect the ratio of male to fe-
male? 

To simplify the problem we assume that a family will keep having chil-
dren until it has a male child. Assuming that male and female children are 
equally likely and the sexes of successive children are independent, he total 
number of children has a geometric distribution with success probability 1/2, 
so by the previous example the expected number of children is 2. There is 
always one male child, so the expected number of female children is 2 −1 = 
1. 

Does this continue to hold if some families stop before they have a male 
child? Consider for simplicity the case in which a family will stop when they 
have a male child or a total of three children. There are four outcomes 
P(M) = 1/2 
P(FM) = 1/4 
P(FFM) = 1/8 
P(FFF) = 1/8. 

The average number of male children is 1/2+1/4+1/8 = 7/8 while the av-
erage number of female children is 1(1/4) + 2(1/8) + 3(1/8) = 7/8. 

The last calculation makes the equality of the expected values look like 
a miracle, but it is not and the claim holds true if a family with k female chil-
dren continues with probability pk and stops with probability 1−pk. To explain 
this intuitively, if we replace M by +1 and F by −1, then childbirth is a fair 
game. 

For the stopping rules under consideration the average winnings when 
we stop have mean 0, i.e., the expected number of male children equals the 
expected number of female children. 

Fair and unfair games. One of the most valuable uses to which a gam-
bler can put his knowledge of probabilities is to decide whether a game or 
proposition is fair, or equitable. To do this a gambler must calculate his “ex-
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pectation”. A gambler's expectation is the amount he stands to win multiplied 
by the probability of his winning it.  

A game is a fair game if the gambler's expectation equals his stake.  
If a gambler is offered 10 units each time he tosses a head with a true 

coin, and pays 5 units for each toss is this a fair game? The gambler's expec-
tation is 10 units multiplied by the probability of throwing a head, which is 
1/2. His expectation is 10 units×(1/2) = 5 units, which is what he stakes on 
the game, so the game is fair.  

Suppose a gambler stakes 2 units on the throw of a die. On throws of 1, 
2, 3 and 6 he is paid the number of units shown on the die. If he throws 4 or 5 
he loses. Is this fair? This can be calculated as above. The probability of 
throwing any number is 1/6. His expectation is therefore 6/6+3/6+2/6+1/6, 
which equals 2, the stake for a throw, so the game is fair.  

Petersburg paradox (D. Bernoulli). In the Petersburg casino, you pay an 
entrance fee c and you get the prize 2T , where T is the number of times, the 
casino flips a coin until ”head” appears (inclusive). For example, if the se-
quence of coin experiments would give ”tail, tail, tail, head”, you would win 
24 − c = 16 − c, the win minus the entrance fee. Fair would be an entrance fee 
which is equal to the expectation of the win, which is 

. ( ) ∞=== ∑∑
∞

=

∞

= 11
12

kk

k kTP

The paradox is that nobody would agree to pay even an entrance fee c = 
10. What do you think about? Some discussion of the problem you can see in 
Solutions and Answers, but in general the problem is rather complicated one. 

Now we will be interested in the expected values of various functions of 
random variables. The most important of these are the variance and the stan-
dard deviation which give an idea about how spread out the distribution is. 

If EX2 < ∞ then the variance of X is defined to be var (X) = E(X − EX)2. 
To illustrate this concept we will consider some examples. But first, we 

need a formula that enables us to more easily compute var (X): 
var (X) = EX2 − (EX)2.    (6.6) 

Proof. Letting μ = EX to make the computations easier to see, we have 
var (X) = E(X − μ)2 = E{X2 − 2μX + μ2} = EX2 − 2μEX + μ2 by (6.5) and the 
facts that E(−2μX) = −2μEX, E(μ2) = μ2. Substituting μ = EX now gives the 
result. 

The reader should note that EX2 means the expected value of X2 and in 
the proof E(X − μ)2 means the expected value of (X − μ)2. When we want the 
square of the expected value we will write (EX)2. This convention is designed 
to cut down on parentheses. 

The variance measures how spread-out  the distribution of X is.  

 73



We will show that 
    var(X + b) = var(X) 

var(aX) = a2 var (X).     (6.7) 
In words, the variance is not changed by adding a constant to X, but 

multiplying X by a multiplies the variance by a2. 
Proof. If Y = X + b then the mean of Y, EY = EX + b by (6.3) so 
var (X + b) = E{(X + b) − (EX + b)}2 = E{X − EX}2 = var(X). 
If Y = aX then EY = aEX by (6.3) so var (aX) = E{(aX − aEX)2} = a2E(X 

− μX)2 = a2var (X). 
The scaling relationship (6.7) shows that if X is measured in feet then 

the variance is measured in feet2. This motivates the definition of the stan-
dard deviation (X) =σ ( )Xvar , which is measured in the same units as X 
and has a nicer scaling property. 

σ (aX) = |a|σ (X)                                (6.8) 
We get the absolute value here since 2a  = |a|. 
Example. Roll one die and let X be the resulting number. Find the vari-

ance and standard deviation of X. 
EX = 7/2 and EX2 = 91/6 so var(X) = EX2 − (EX)2 = 91/6 − 49/4 = 105/36 

= 2.9166 and σ (X) = ( )Xvar  = 1.7078. The standard deviation σ (X) gives 
the size of the “typical deviation from the mean”.  

Example (New York Yankees 2004 salaries). Salaries are in units of M, 
millions of dollars per year and for convenience have been truncated at the 
thousands place. 
A. Rodriguez  21.726   D. Jeter   18.6 
M. Mussina   16    K. Brown   15.714 
J. Giambi   12.428   B. Williams   12.357 
G. Sheffield  12.029   M. Rivera   10.89 
J. Posada   9    J. Vazquez   9 
J. Contreras   9    J. Olerud   7.7 
H. Matsui   7    S. Karsay   6 
E. Loazia   4    T. Gordon   3.5 
P. Quantrill   3    K. Lofton   2.985 
J. Lieber   2.7    T. lee    2 
G. White   1.925    F. Heredia   1.8 
R. Sierra   1    M. Cairo .  9 
J. Falherty   .775    T. Clark   .75 
E. Wilson   .7    O. Hernandez  .5 
D. Osborne   .45    C.J. Nitowski  .35 
J. DePaula   .302    B. Crosby   .301 
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The total team salary is 183,355,513. Dividing by 32 players gives a 
mean of 6.149 M dollars. The second moment is 73.778 M2 so the variance is 
73.778 − (6.149)2 = 35.961M2 and the standard deviation is 5.996 M. 

Example (Geometric distribution). Suppose P(N = n) = (1−p)n−1p for n = 
1, 2, . . . and 0 otherwise. Compute the variance and standard deviation of X. 

We learned that EN = 1/p. By formulae (6.6) variance var(N) 
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(X) = σ pp /1− . 
Example (Poisson distribution). Suppose P(X = k) = e-λλk/k! for k = 0, 1, 

2,... and 0 otherwise. Compute the variance and standard deviation of X. 
We learned that EX =λ . To compute EX2 we begin by observing that 

the k = 0 and 1 terms make no contribution to the sum, so E{X(X − 1)} = 
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e λλ . From this it follows that EX2 = E{X(X − 1)} + 

EX = λ 2 + λ , var (X) = EX2 − (EX)2 = λ 2 + λ  − λ 2 = λ . 
Example (Bernoulli distribution). Suppose X = 1 with probability p and 

0 with probability (1 − p). Compute the variance of X. 
As we observed EX = p. To compute var (X) = EX2 − (EX)2 we note 

that EX2 = p×12 + (1 − p) ×02 = p so var (X) = p − p2 = p(1 − p). 
To receive the variance of the Binomial distribution by simple way we 

need the following definition that is designed analogous to the case of ran-
dom events. 

Random variables X and Y being independent means that so called 
joint probability P(X = I ∩ Y = j) = P(X = i)P(Y = j) for every possible com-
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bination of i and j (in words, each joint probability is a product of the two 
corresponding marginal probabilities). 

Example (Binomial distribution). It is not difficult to prove that the 
variance of the sum of n independent random variables is the sum of the vari-
ances. Combining this with the previous example and (6.5*) we see that the 
variance of the Binomial (n, p) is np(1 − p).  

 
6.3. Exercises  

 
1. Suppose we roll three tetrahedral dice that have 1, 2, 3, and 4 on their 
four sides. Find the distribution for the sum of the three numbers. 
2. Suppose we draw 3 balls out of an urn with 5 red and 4 black balls. Find 
the distribution for the number of red balls drawn. 
3. How many children should a family plan to have so that the probability 
of having at least one child of each sex is at least 0.95? 
4. Use the Poisson approximation to compute the probability that you will 
roll at least one double 6 in 24 trials of rolling two dice. How does this com-
pare with the exact answer? 
5. The probability of a three of a kind in poker is approximately 1/50. Use 
the Poisson approximation to compute the probability you will get at least 
one three of a kind if you play 20 hands of poker. 
6. In one of the New York state lottery games, a number is chosen at ran-
dom between 0 and 999. Suppose you play this game 250 times. Use the 
Poisson approximation to estimate the probability you will never win and 
compare this with the exact answer. 
7. Suppose 1 % of a certain brand of Christmas lights is defective. Use the 
Poisson approximation to compute the probability that in a box of 25 there 
will be at most one defective bulb. 
8. In February 2000, 2.8 % of Colorado’s labor force was unemployed. 
Calculate the probability that in a group of 50 workers exactly one is unem-
ployed. 
9. An insurance company insures 3000 people, each of whom has a 1/1000 
chance of an accident in one year. Use the Poisson approximation to compute 
the probability there will be at most 2 accidents. 
10. Books from a certain publisher contain an average of 1 misprint per 
page. What is the probability that on at least one page in a 300 page book 
there are five misprints? 
11. You want to invent a gambling game in which a person rolls two dice 
and is paid some money if the sum is 7, but otherwise he loses his money. 
How much should you pay him for winning a $1 bet if you want this to be a 
fair game, that is, to have expected value 0? 
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12. A bet is said to carry 3 to 1 odds if you win $3 for each $1 you bet. What 
must the probability of winning be for this to be a fair bet? 
13. A lottery has one $100 prize, two $25 prizes, and five $10 prizes. What 
should you be willing to pay for a ticket if 100 tickets are sold? 
14. In a popular gambling game, three dice are rolled. For a $1 bet you win 
$1 for each six that appears (plus your dollar back). If no six appears you lose 
your dollar. What is your expected value? 
15. In the Las Vegas game Wheel of Fortune, there are 54 possible out-
comes. One is labeled “Joker”, one “Flag”, two “20”, four “10”, seven “5”, 
fifteen “2”, and twenty-four “1”. If you bet $1 on a number you win that 
amount of money if the number comes up (plus your dollar back). If you bet 
$1 on Flag or Joker you win $40 if that symbol comes up (plus your dollar 
back). What bets have the best and worst expected value here? 
16. In blackjack the dealer gets two cards, one of which you can see and one 
of which you cannot. When the dealer’s visible card is an Ace, she offers you 
a chance to take out “insurance”. You can bet $1 that the invisible card is a 
face card or a 10. If it is, you win $2, otherwise you lose $1. What is the ex-
pected value of this bet  
 (a) if we assume that the dealer’s other card was chosen at random from 
a second deck of 52?  
 (b) if we use the information that the dealer’s Ace and our two cards, 
which are a 6 and an 8, came from the same deck of 52? 
17. Twelve ducks fly overhead. Each of 6 hunters picks one duck at random 
to aim at and kills it with probability 0.6.  
 (a) What is the mean number of ducks that are killed?  
 (b) What is the expected number of hunters who hit the duck they aim 
at? 
18. Suppose we pick 3 students at random from a class with 10 boys and 15 
girls. Let X be the number of boys selected and Y be the number of girls se-
lected. Find E(X − Y). 
19. A random variable has P(X = x) = x/15 for x = 1, 2, 3, 4, 5 and 0 other-
wise. Find the mean and variance of X. 
20. In a group of five items, two are defective. Find the distribution of N the 
number of draws we need to find the first defective item. Find the mean and 
variance of N.  
21. Suppose X and Y are independent with EX = 1, EY = 2, var (X) = 3 and 
var (Y) = 1. Find the mean and variance of 3X + 4Y − 5. 
22. In a class with 18 boys and 12 girls, boys have probability 1/3 of know-
ing the answer and girls have probability 1/2 of knowing the answer to a 
typical question the teacher asks. Assuming that whether or not the students 
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know the answer are independent events, find the mean and variance of the 
number of students who know the answer. 
23. Can we have a random variable with EX = 3 and EX2 = 8? 
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Answers and Solutions 
 

Exercises 1.5 
3a.* The letter E, which is the most commonly used letter in the English 

language, does not appear even once in the paragraph. 
Exercises 2.1 

16.* (a) Answer: 310 = 59049. 

(b) Answer: = 1260. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,4,5

10

(c) Answer:  = 66 (only one of these will have 5 wins, 4 losses and 

1 tie). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

12

 
17.* (a) Answer: 220= 1048576. 

(b) Answer: = 77520. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
7
20

(c) (Here, there is no “shortcut” formula, we have to do this individu-
ally, one by one, adding the results): 

+ + + = + + + = 1351. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
17
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
18
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
19
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
20
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
20

(d) + + = 211. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
20

18.* (a) Answer (same as the number of permutations of AAAFFFF 

DDDDCC): = 900,900. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2,4,4,3

13

(b) Answer: we just have to arrange the four nationalities, say A, F, D 
and C: 4! = 24. 

(c) Answer (13 of the original arrangements are duplicates now, as 
AAAFFFFDDDDCC, AAFFFFDDDDCCA,...,CAAAFFFFDDDDC are 
identical): 900,900/13 = 69300. 

(d) Answer (circular arrangement of nationalities): 3! = 6. 
19.* (a) If the books are treated as 12 identical copies of the same novel, then 
the only decision to be made is: how many books do we place on each shelf. 

The answer follows from (Unordered Selection, Allowing Repetition) 
with n = 3 and r = 12 − for each book we have to select a shelf, but the order 

does not matter, and repetition is allowed: = 91. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

14
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(b) If we treat the books as distinct and their order within each shelf im-
portant, we solve this in two stages: 

First we decide how many books we place in each shelf, which was 
done in (a), then we choose a book to fill, one by one, each allocated slot 
(here we have 12×11×10×. . .×2×1 choices). 

Answer: 91×12! = 43,589,145,600. 
(c) Finally, if the books are considered all distinct, but their arrangement 

within each shelf is irrelevant, we simply have to decide which shelf each 
book will go to (similar to (a), order important now). 

This can be done in 3×3×3×...×3 = 312 = 531,441 number of ways. 
20.* (a) Solution: Mr. A and Mr. B have to be first treated as a single item, 
for a total of 11 items. These can be permuted in 11! number of ways. 

Secondly, we have to place Mr. A and Mr. B in the two chairs already 
allocate to them (2! ways). 

Answer: 2×11! = 79,833,600. 
(b) This set consists of those which did not have them sit next to each 

other, i.e. 12! − 2×11! = 399,168,000. 
(c) Solution: First, we allocate two chairs for Mr. A and Mr. B, thus: 

M¤¤¤¤M¤¤¤¤¤¤, ¤M¤¤¤¤M¤¤¤¤¤, . . .,¤¤¤¤¤¤M¤¤¤¤M, altogether in 7 pos-
sible ways (here we count using our fingers − no fancy formula). Secondly, 
we seat the people. We have 10! choices for filling the ¤¤...¤ chairs, times 2 
choices for how to fill the two reserved chairs (for Mr. A and Mr. B). 

Answer: 7×2×10! = 50,803,200. 
21.* (a) Solution: first select 3 diamonds and two “non-diamonds”, then com-

bine these together, in = 211,926 number of ways. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

39
3

13

(b) Same logic: = 103,776. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
48

2
4

(c) This is slightly more complicated because there is a card which is 
both an ace and a diamond. The deck must be first divided into four parts, the 
ace of diamonds (1 card) the rest of the aces (3), the rest of the diamonds 
(12), the rest of the cards (36). We then consider two cases, either the ace of 
diamonds is included, or not. The two individual answers are added, since 
they are mutually incompatible (no “overlap”): 

= 29,808. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
36

2
12

2
3

0
1

2
36

1
12

1
3

1
1

22.* Answer: = 1.4783×1024.    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5

37
5
42

5
47

5
52
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(b) Answer (consider dealing the aces and the non-aces separately): 

= 3.4127 × 1021. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4

36
4
40

4
44

4
48

!4

(c) Answer: = 1.9636 × 1023. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5
33

5
38

5
43

5
48

(d) Answer: = 2.7084×1022. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5
35

5
40

5
45

3
48

2
4

(e) Solution: the previous answer is correct whether it is Mr. A, B, C or 
D who gets the 2 aces (due to symmetry), all we have to do is to add the four 
(identical) numbers, because the four corresponding sets cannot overlap, i.e. 
are mutually incompatible or exclusive). 

Answer: 4×2.7084×1022= 1.0834×1023. 

(f) Answer: = 5.9027×1022. Note that when com-

puting the probability of this happening, the  part cancels out 

(we can effectively deal 5 cards to him and stop). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5

37
5
42

5
47

3
48

2
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5

37
5
42

5
47

(g) Solution: if he is the third player to be dealt his cards, we can either 
do this to long and impractical way (taking into account how many aces have 
been dealt to Mr. A and Mr. B), thus: =5.9027×1022, or be smart and argue 
that, due to the symmetry of the experiment, the answer must be the same as 
for Mr. A. 
23.* (a) Solution: first we choose the value which should be represented twice 

and the three values to go as singles: , then we decide how to place 

the 5 selected numbers in the five blank boxes, which can be done in  

ways (equal to the number of aabcd permutations). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
5

1
6

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,1,1,2

5

Answer: = 3600. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
5

1
6

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,1,1,2

5

(b) The same logic gives: = 1800. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
4

2
6

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,2,2

5

(c) = 1200. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
5

1
6

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,1,3

5
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(d) = 300. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
5

1
6

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2,3

5

(e) = 150. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
5

1
6

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,4

5

(f) = 6. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5
5

1
6

(g) Solution: we again fill the empty boxes, one by one, avoiding any 
duplication: 6×5×4×3×2 = 720. 

Note that all these answers properly add up to 7776 = 65 (check). 
Exercises 3.2 

9.* Solution: this is a roll-of-a-die type of experiment (this time we roll 4 
times − once for each customer − and the die is 3-sided − one side for each 
company). The sample space will thus consist of 34 equally likely possibili-
ties, each looking like this: 1 3 2 1. How many of these contain all three num-
bers? 

To achieve that, we obviously need one duplicate and two singles. There 
are 3 ways to decide which company gets two customers. Once this decision 

has been made (say 1 2 2 3), we simply permute the symbols (getting  

distinct “words”). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,1,2

4

Answer: 3 /34 = 4/9 = 44.44 %. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1,1,2

4

10.* Solution: the experiment is in principle identical to rolling a 9-sided die 
(there are nine floors to be chosen from, exclude the main floor!) six times 
(once for each person − this corresponds to selecting his/her floor). The sam-
ple space thus consists of 96 equally likely outcomes (each looking like this: 2 
4 8 6 9 4 − ordered selection, repetition allowed). Out of these, only 9×8 
×7×6×5×4 =  consist of all distinct floors. 6

9P
Answer: /96 = 11.38 %. 6

9P
11.* Solution: let’s introduce A: “Jim and Joe sit together”, B: “Jim and Tom 
sit together”, C: “Joe and Tom sit together”. We need P(A∪B∪C) = P(A) + 
P(B) + P(C) − P(A∩B) − P(A∩C) − P(B∩C) + P(A∩B∩C). There are 9! ar-
rangements of the boys, 2×8! meet condition A (same with B and C), 2×7! 
meet both A and B (same with A∩C and B∩C), none will meet all three. 

Answer: 3×(2×8!)/9! − 3×(2×7!)/9! = 58.33 %. 
12.* (a) Solution: This, in principle, is the same as choosing 6 different floors 
in an elevator. 

 82



Answer:  = 88.31 %. 1010
365 365/P

(b) Solution: this is similar to the exercise 9* where we needed exactly 
one duplicate. By a similar logic, there are 365 ways to choose the date of the 

duplication,  ways of placing these into 2 of the 10 empty slots, and  

of filling out the remaining 8 slot with distinct birth dates. 

⎟
⎠
⎞⎜

⎝
⎛

2
10 8

364P

Answer: 365 /36510 = 11.16 %. ⎟
⎠
⎞⎜

⎝
⎛

2
10 8

364P

These two answers account for 99.47 % of the total probability. Two or 
three duplicates, and perhaps one triplicate would most likely take care of the 
rest; try it! 
13.* Solution: the sample space will be the same, but the individual probabili-
ties will no longer be identical; they will now equal to (1/2)i(1/16)6-i where i 
is how many times 4 appears in the selection (2 4 8 6 9 4 will have the prob-
ability of (1/2)2(1/16)4, etc.). We have to single out the outcomes with all six 
floors different and add their probabilities. Luckily, there are only two types 
of these outcomes: (i) those without any 4 − we have  of these, each hav-
ing the probability of (1/16)6, and (ii) those with a single 4 − there are 6×  
of these, each having the probability of (1/2)(1/16)5. 

6
8P

8
5P

Answer: (1/16)6 + 6  = 2.04 % (the probability is a lot 
smaller now). 

6
8P 55

8 )16/1)(2/1(P

14.* There are  ways of choosing the test sample, and  ways of 
choosing all good parts so the probability is 

10
50C 10

46C

396.0
47484950
37383940

36!10!50!
46!40!10!/ 10

50
10
46 =

⋅⋅⋅
⋅⋅⋅

==CC . 

Using almost identical calculations a company can decide on how many 
bad units they will allow in a shipment and design a testing program with a 
given probability of success. 

Exercises 4.1 
9.* Solution: . . . = P(A B)×(1 − P(C∪D)) = (0.1 + 0.2 − 0.02)×(1 − 0.3 − 
0.4 + 0.12) = 11.76 %. 

∪

10.* The sample space of the complete experiment, including probabilities (c 
− crooked die, r − regular die), is 
r6 6 0.9(1/6)(1/6) ■○ 
r6 6  0.9(1/6)(5/6) ■ 
r 6  6 0.9(5/6)(1/6)   ○ 
r 6 6  0.9(5/6)(5/6) 
c6 6 0.1(1/2)(1/2) ■○ 
c6 6  0.1(1/2)(1/2) ■ 
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c 6  6 0.1(1/2)(1/2)   ○ 
c 6 6  0.1(1/2)(1/2). 

(a) Solution: in our sample space we mark off the simple events contrib-
uting to S1 (by ■) and to S2 (by ○) and compute P(S1∩S2)/P(S1) (by adding the 
corresponding probabilities). 

Answer: 25 %. 

(b) Let us check it out: P(S1∩S2) 
?
=  P(S1)P(S2). 

Solution: 18/360 (=1/20)≠ (72/360)2 (=1/25). 
Answer: No. 
(c) Answer: 50 %. 

11.* Solution: define A: no 8 at any place, B: no 4. We need P( A ∩B ) (at 
least one 8 and at least one 4) = P( BA∪ ) (De Morgan’s law) = 1− P(A B) 
= 1 − P(A) − P(B) + P(A∩B). Clearly A = A1∩A2∩. . .∩A5, where A1: “no 8 in 
the first place”, A2: “no 8 in the second place”, etc. A1, A2, . . ., A5 are mutu-
ally independent (selecting a random 5 digit number is like rolling an 10-
sided die five times), thus P(A) = P(A1)P(A2). . .P(A5) = (9/10)5. 

∪

Similarly, P(B) = (9/10)5. Now, A∩B ≡ C1∩C2∩. . .∩C5 where C1: not 8 
nor 4 in the first spot, C2: not 8 nor 4 in the second, etc.; these of course are 
also independent, which implies P(A∩B) = (8/10)5 . 

Answer: 1 − 2(9/10)5 + (8/10)5 = 14.67 %. 
12.* Solution: we partition the sample space according to the position at 
which 8 appears for the first time: B1, B2, . . ., B5, plus B0 (which means there 
is no 8). Verify that this is a partition. Now, if A is the event of our question 
(8 followed by a 4), we can apply the formula of total probability thus: P(A) 
= P(A/B1)P(B1) + P(A/B2)P(B2) + P(A/B3)P(B3) + P(A/B4)P(B4) + 
P(A/B5)P(B5) + P(A/B0)P(B0). Individually, we deal with these in the follow-
ing manner (we use the third term as an example): P(B3) = (9/10)2 (1/10) (no 
8 in the first slot, no 8 in the second, 8 in the third, and anything after that; 
then multiply due to independence), P(A/B3) = 1−(9/10)2 (given the first 8 is 
in the third slot, get at least one 4 after; easier through complement: 1 − P(no 
4 in the last two slots)). 

Answer: P(A) =[1 −(9/10)4](1/10) + [1 −(9/10)3](9/10)(1/10) + [1 
−(9/10)2](9/10)2(1/10) + [1 −(9/10)](9/10)3(1/10)+0(9/10)4(1/10) = 8.146 %. 
13.* (a) Solution: using C for “criminal”, I for “innocent” R for “red light 
flashing” and G for “green”, we have the following sample space: 
CR (1/10)(9/10)=0.090 ٧ ○ 
CG (1/10)(1/10)=0.010 
IR (9/10)(1/20)=0.045 ٧ 
IG (9/10)(19/20)=0.855 

Answer: P(C/R) = 0.090/(0.090+0.045)=2/3 (far from certain!). 
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(b) A simple event consists now of a complete record of these tests (the 
sample space has of 210 of these), e.g. RGGRGGRGGG. Assuming that the 
first item represents the criminal (the sample space must “know” who the 
criminal is) we can assign probabilities by simply multiplying since the tests 
are done independently of each other. Thus, the simple event above will have 
the probability of 0.9×0.952×0.05×0.952×0.05×0.953, etc. Since only one test 
resulted in R, the only simple events of relevance (the idea of a “reduced” 
sample space) are: 
RGGGGGGGGG  0.9×0.959 
GRGGGGGGGG  0.1×0.958×0.05 
………………………………………… 
GGGGGGGGGR  0.1×0.958×0.05 

Given that it was one of these outcomes, what is the probability it was 
actually the first one? 

Answer: (0.9×0.959)/(0.9×0.959 + 9×0.1×0.958×0.05) = 95 % (now we 
are a lot more certain − still not 100 % though!). 
14.* Solution (using an obvious notation): P(A∪B) = P(A) + P(B) − P(A∩B) 
= 1/4 + 2/5 −1/10 = 55 %. 

Alternately: P(A B) = 1 − P(∪ BA∪ ) = 1 − P( A ∩B ) = 1 −(3/4)(3/5) = 
55 % (replacing P(at least one hit) by 1 − P(all misses)). 
15.* Solution: . . . = P(A∩B ) + P(C) − P(A∩B ∩C) =0.25×0.65+0.45 − 
0.25×0.65×0.45 =53.94 %. 
16.* Solution: (a) Introduce a partition A0, A1, A2 according to how many 
heads are obtained. If B stands for “getting fewer than 5 dots”, the total prob-
ability formula gives: P(B) = P(A0)P(B/A0)+P(A1)P(B/A1)+P(A2)P(B/A2) =  
(1/4)·1+(2/4)·(4/6)+(1/4)·(6/36) = 62.5 %. 

The probabilities of A0, A1, and A2 followed from the sample space of 
two flips: {HH, HT, TH, TT}; the conditional probabilities are clear for 
P(B/A0) and P(B/A1), P(B/A2) requires going back to 36 outcomes of two rolls 
of a die and counting those having a total less than 5: {1 1, 1 2, 1 3, 2 1, 2 2, 
3 1}. 

(b) We are given the outcome of the second stage to guess at the out-
come of the first stage. We need the Bayes’s rule, and the following (simpli-
fied) sample space: 
0 3  (1/4)·0 ٧ 
0 3   (1/4)·1 
1 3  (1/2)·(1/6) ٧ ○ 
1 3   (1/2)·(5/6) 
2 3  (1/4)·(2/36) ٧ 
2 3   (1/4)·(34/36), 
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where the first entry is the number of heads, and the second one is the result 
of rolling the die, simplified to tell us only whether the total dots equaled 3, 
or did not ( 3 ).  

Answer:P(1/3) = (1/12)/(1/12+1/72) = 85.71 %.  
17.* Solution: let’s work it out. The first probability can be computed as 1 − 
P(no sixes in 4 rolls) = 1 − (5/6)4 (due to independence of the individual 
rolls) = 51.77 %. The second probability, similarly, as 1 − P(no double six in 
24 rolls of a pair) = 1− (35/36)24 = 49.14 % (only one outcome out of 36 re-
sults in a double six). 

Answer: getting at least one 6 in four rolls is more likely. 
18.* We can visualize the experiment done sequentially with you being the 
first player and your partner the second one (even if the cards were actually 
dealt in a different order, this cannot change probabilities). The answer is a 
natural conditional probability, i.e. the actual condition (event) is decided in 
the first stage (consider it completed accordingly). The second stage then 
consists of dealing 13 cards out of 39, with 3 aces remaining. 

Answer: = 3.129 %. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
13
39

/
10
36

3
3

19.* Solution: again, a roll-of-a-die type of experiment (10 sides, 5 rolls). The 
question is in principle identical to rolling a die to get at least one six. This is 
easier through the corresponding complement. 

Answer: 1 − (9/10)5 = 40.95 %. 
29.* The counsel for the defense argued as follows: Suppose, for example, 
there are 5,000,000 couples in the Los Angeles area and the probability that a 
randomly chosen couple fits the witnesses’ description is 1/12,000,000. Then 
the probability that there are two such couples, given that there is at least one, 
is not at all small. Find this probability. (The California Supreme Court over-
turned the initial guilty verdict.) 

Exercises 5.1 
2.* (c) Answer: The chance the prize is behind the door originally chosen 

by the contestant is 1/10 and remains 1/10. The chance it's behind one of the 
nine other unopened doors is 9/10. Since the host opens seven of these nine 
other unopened doors, the 9/10 probability that it's behind one of them is di-
vided between two of these nine doors. So the contestant should switch to 
one of these two. Doing so raises his probability of winning from 1/10 to 
one-half of 9/10 or 45 %.  

Section 6 
Petersburg paradox. The problem with this Casino is that it is not quite 

clear, what is ”fair”. For example, the situation T = 20 is so improbable that 
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practically it never occurs in the life-time of a person. Therefore, for any 
practical reason, one has not to worry about large values of T. This, as well 
as the finiteness of money resources is the reason, why Casinos do not have 
to worry about the following bullet proof martingale strategy in roulette. Bet 
c dollars on red. If you win, stop, if you lose, bet 2c dollars on red. If you 
win, stop. If you lose, bet 4c dollars on red. Keep doubling the bet. Eventu-
ally after n steps, red will occur and you will win 2nc − (c + 2c + . . .·+        
2n − 1c) = c dollars. In his book “The Newcomes”, W.M. Thackeray remarks 
“You have not played as yet? Do not do so; above all avoid a martingale if 
you do.” This was a good advice. 

“A common gamblers’ fallacy called “the doctrine of the maturity of the 
chances” (or “Monte Carlo fallacy”) falsely assumes that each play in a game 
of chance is not independent of the others and that a series of outcomes of 
one sort should be balanced in the short run by other possibilities. A number 
of “systems” have been invented by gamblers based largely on this fallacy; 
casino operators are happy to encourage the use of such systems and to ex-
ploit any gambler’s neglect of the strict rules of probability and independent 
plays.” (Encyclopedia Britannica). 

Not only do betting systems fail to beat casino games with a house ad-
vantage, they can’t even dent it. Roulette balls and dice simply have no 
memory. Every spin in roulette and every toss in craps are independent of all 
past events. In the short run you can fool yourself into thinking a betting sys-
tem works, by risking a lot to win a little. However, in the long run no bet-
ting system can withstand the test of time.  

“No one can possibly win at roulette unless he steals money from the ta-
ble while the croupier isn’t looking.” (Albert Einstein). 
(You can read the article http://plus.maths.org/issue29/features/haigh/) 
 But on the other hand “Certainly the game is rigged. Don't let that stop 
you; if you don't bet, you can't win.” (Robert Heinlein). 

The decision is up to you.
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Appendix 1  
Probability and Statistics Pre-course Survey 

(http://www.dartmouth.edu/~chance/course/Evaluation/pre-
course_survey.html) 

 
The purpose of this survey is to indicate what you already know and 

think about probability and statistics. 
 
Part I 
There are a series of statements concerning beliefs or attitudes about 

probability, statistics and mathematics. Following each statement is an 
"agreement" scale which ranges from 1 to 5, as shown below. 

 
1   2    3     4   

Strongly Disagree     Disagree    Neither Agree, nor Disagree           Agree     
5 

Strongly Agree 
 
If you strongly agree with a particular statement, circle the number 5 on 

the scale. If you strongly disagree with the statement, circle the number 1. 
__________________________________________________________ 
1. I often use statistical information in forming my opinions or making 

decisions. 1 2 3 4 5 
2. To be an intelligent consumer, it is necessary to know something 

about statistics. 1 2 3 4 5 
3. Because it is easy to lie with statistics, I don't trust them at all.  

1 2 3 4 5 
4. Understanding probability and statistics is becoming increasingly im-

portant in our society, and may become as essential as being able to add and 
subtract. 1 2 3 4 5 

5. Given the chance, I would like to learn more about probability and 
statistics. 1 2 3 4 5 

6. You must be good at mathematics to understand basic statistical con-
cepts. 1 2 3 4 5 

7. When buying a new car, asking a few friends about problems they 
have had with their cars is preferable to consulting an owner satisfaction sur-
vey in a consumer magazine. 1 2 3 4 5 

8. Statements about probability (such as what the odds are of winning a 
lottery) seem very clear to me. 1 2 3 4 5 
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9. I can understand almost all of the statistical terms that I encounter in 
newspapers or on television. 1 2 3 4 5 

10. I could easily explain how an opinion poll works. 1 2 3 4 5 
 
Part II 
1. A small object was weighed on the same scale separately by nine stu-

dents in a science class. The weights (in grams) recorded by each student are 
shown below. 

6.2   6.0   6.0   15.3   6.1   6.3   6.2   6.15   6.2 
The students want to determine as accurately as they can the actual 

weight of this object. Of the following methods, which would you recom-
mend they use? 

_____a. Use the most common number, which is 6.2. 
_____b. Use the 6.15 since it is the most accurate weighing. 
_____c. Add up the 9 numbers and divide by 9. 
_____d. Throw out the 15.3, add up the other 8 numbers and divide     

by 8. 
2. A marketing research company was asked to determine how much 

money teenagers (ages 13–19) spend on recorded music (cassette tapes, CDs 
and records). The company randomly selected 80 malls located around the 
country. A field researcher stood in a central location in the mall and asked 
passers-by, which appeared to be the appropriate age to fill out a question-
naire. A total of 2,050 questionnaires were completed by teenagers. On the 
basis of this survey, the research company reported that the average teenager 
in this country spends $155 each year on recorded music. 

Listed below are several statements concerning this survey. Place a 
check by every statement that you agree with. 

_____a. The average is based on teenagers' estimates of what they spend 
and therefore could be quite different from what teenagers actually spend. 

_____b. They should have done the survey at more than 80 malls if they 
wanted an average based on teenagers throughout the country. 

_____c. The sample of 2,050 teenagers is too small to permit drawing 
conclusions about the entire country. 

_____d. They should have asked teenagers coming out of music stores. 
_____e. The average could be a poor estimate of the spending of all 

teenagers given that teenagers were not randomly chosen to fill out the ques-
tionnaire. 

_____f. The average could be a poor estimate of the spending of all 
teenagers given that only teenagers in malls were sampled. 

_____g. Calculating an average in this case is inappropriate since there 
is a lot of variation in how much teenagers spend. 

 89



_____h. I don't agree with any of these statements. 
3. Which of the following sequences is most likely to result from flip-

ping a fair coin 5 times? 
_____a. H H H T T 
_____b. T H H T H 
_____c. T H T T T 
_____d. H T H T H 
_____e. All four sequences are equally likely. 
4. Select the alternative below that is the best explanation for the answer 

you gave for the item above. 
_____a. Since the coin is fair, you ought to get roughly equal numbers 

of heads and tails. 
_____b. Since coin flipping is random, the coin ought to alternate fre-

quently between landing heads and tails. 
_____c. Any of the sequences could occur. 
_____d. If you repeatedly flipped a coin five times, each of these se-

quences would occur about as often as any other sequence. 
_____e. If you get a couple of heads in a row, the probability of a tails 

on the next flip increases. 
_____f. Every sequence of five flips has exactly the same probability of 

occurring. 
5. Listed below are the same sequences of Heads and Tails that were 

listed in Item 3. Which of the sequences is least likely to result from flipping 
a fair coin 5 times? 

_____a. H H H T T 
_____b. T H H T H 
_____c. T H T T T 
_____d. H T H T H 
_____e. All four sequences are equally unlikely. 
6. The Caldwells want to buy a new car, and they have narrowed their 

choices to a Buick or an Oldsmobile. They first consulted an issue of Con-
sumer Reports, which compared rates of repairs for various cars. Records of 
repairs done on 400 cars of each type showed somewhat fewer mechanical 
problems with the Buick than with the Oldsmobile. 

The Caldwells then talked to three friends, two Oldsmobile owners, and 
one former Buick owner. Both Oldsmobile owners reported having a few 
mechanical problems, but nothing major. 

The Buick owner, however, exploded when asked how he likes his car: 
“First, the fuel injection went out − $250 bucks. Next, I started having trouble 
with the rear end and had to replace it. I finally decided to sell it after the 
transmission went. I'd never buy another Buick.” 
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The Caldwells want to buy the car that is less likely to require major re-
pair work. Given what they currently know, which car would you recom-
mend that they buy? 

_____a. I would recommend that they buy the Oldsmobile, primarily 
because of all the trouble their friend had with his Buick. Since they haven't 
heard similar horror stories about the Oldsmobile, they should go with it. 

_____b. I would recommend that they buy the Buick in spite of their 
friend's bad experience. That is just one case, while the information reported 
in Consumer Reports is based on many cases. And according to that data, the 
Buick is somewhat less likely to require repairs. 

_____c. I would tell them that it didn't matter which car they bought. 
Even though one of the models might be more likely than the other to require 
repairs, they could still, just by chance, get stuck with a particular car that 
would need a lot of repairs. They may as well toss a coin to decide. 

7. Half of all newborns are girls and half are boys. Hospital A records an 
average of 50 births a day. Hospital B records an average of 10 births a day. 
On a particular day, which hospital is more likely to record 80 % or more fe-
male births? 

_____a. Hospital A (with 50 births a day). 
_____b. Hospital B (with 10 births a day). 
_____c. The two hospitals are equally likely to record such an event. 
8. "Megabucks" is a weekly lottery played in many states. The numbers 

1 through 36 are placed into a container. Six numbers are randomly drawn 
out, without replacement. In order to win, a player must correctly predict all 6 
numbers. The drawing is conducted once a week, each time beginning with 
the numbers 1 through 36. 

The following question about the lottery appeared in The New York 
Times (May 22, 1990). Are your odds of winning the lottery better if you 
play the same numbers week after week or if you change the numbers every 
week? What do you think? 

______a. I think the odds are better if you play the same numbers week 
after week. 

______b. I think the odds are better if you change the numbers every 
week. 

______c. I think the odds are the same for each strategy. 
9. For one month, 500 elementary students kept a daily record of the 

hours they spent watching television. The average number of hours per week 
spent watching television was 28. The researchers conducting the study also 
obtained report cards for each of the students. They found that the students 
who did well in school spent less time watching television than those students 
who did poorly.  
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Listed below are several possible statements concerning the results of 
this research. Place a check by every statement that you agree with. 

_____a. The sample of 500 is too small to permit drawing conclusions. 
_____b. If a student decreased the amount of time spent watching tele-

vision, his or her performance in school would improve. 
_____c. Even though students who did well watched less television, this 

doesn't necessarily mean that watching television hurts school performance. 
_____d. One month is not a long enough period of time to estimate how 

many hours the students really spend watching television. 
_____e. The research demonstrates that watching television causes 

poorer performance in school. 
_____f. I don't agree with any of these statements. 
10. An experiment is conducted to test the efficiency of a new drug on 

curing a disease. The experiment is designed so that the number of patients 
who are cured using the new drug is compared to the number of patients who 
are cured using the current treatment. The percentage of patients who are 
cured using the current treatment is 50 % and 65 % are cured who have used 
the new drug. A P-value of 5 % (0.05) is given as an indication of the statis-
tical significance of these results.  

The P-value tells you: 
______a. There is a 5 % chance that the new drug is more effective than 

the current treatment. 
______b. If the current treatment and the new drug were equally effec-

tive, then 5 % of the times we conducted the experiment we would observe a 
difference as big, or bigger than the 15 % we observed here. 

______c. There is a 5 % chance that the new drug is better than the cur-
rent treatment by at least 15 % 

11. Gallup* reports the results of a poll that shows that 58 % of a ran-
dom sample of adult Americans approve of President Clinton's performance 
as president. The report says that the margin of error is 3 %.  

What does this margin of error mean? 
______a. One can be 95 % "confident" that between 55 % and 61 % of 

all adult Americans approve of the President's performance. 
______b. One can be sure that between 55 % and 61 % of all adult 

Americans approve of the President's performance. 
______c. The sample percentage of 58 % could be off by 3 % in either 

direction due to inaccuracies in the survey process. 
______d. There is a 3 % chance that the percentage of 58 is an inaccu-

rate estimate of the population of all Americans who approve of President 
Clinton's performance as president. 
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*Gallup Poll − a sampling by the American Institute of Public Opinion 

or its British counterpart of the views of a representative cross section of the 
population, used as a means of forecasting voting.  

Etymology: named after George Horace Gallop (1901-1984), US statis-
tician. 
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Appendix 2 
Sets 

 
A set is a collection of things that are called the elements of the set. Re-

call that the notion of a set is not defined. We just use equivalent names (col-
lection, family, or array) and hope that, with practice, the right intuition will 
develop. The elements can be any kind of entity: numbers, people, poems, 
blueberries, points, lines, and so on, endlessly. Upper case letters are usually 
used to denote sets. If the set S includes some element denoted by x, then we 
say x belongs to S and write x∈S. If x does not belong to S, then we write 
x∉S. 

There are two ways of describing a set, either by a list or by a rule. 
Example. If S is the set of numbers shown by a conventional die, then 

the rule is that S comprises the integers lying between 1 and 6 inclusive. This 
may be written formally as follows: S = {x: 1 ≤ x ≤ 6 and x is an integer}. Al-
ternatively, S may be given as a list: S = {1, 2, 3, 4, 5, 6}.  

We distinguish a number 2 from a set {2}. Arithmetic operations apply 
to numbers, while for sets we use set operations. 

One important special case arises when the set is empty (there are no 
elements belonging to it); for example, consider the set of elephants playing 
football on Mars. We denote the empty set by φ . The empty set (or null set) 

 contains no element. φ
If S and T are two sets such that every element of S is also an element of 

T, then we say that T includes S and write either S T or T⊃ S. If S⊂ T and 
T⊂ S, then S and T are said to be equal and we write S = T. 

⊂

Combining Sets. Given any nonempty set, we can divide it up, and given 
any two sets, we can join them together and so on.  

Let A and B be sets. Their union, denoted by A∪B, is the set of ele-
ments that are in A or B, or in both. Their intersection, denoted by A∩B, is 
the set of elements in both A and B.  

Note that the union may be referred to as the join or sum; the intersec-
tion may be referred to as the meet or product.  

Example (probabilistic). In Kazakhstan the profits of wheat producers 
critically depend on weather conditions during summer (a lot of rain results 
in an abundant crop; there is always a lot of sun) and the weather during the 
harvesting time (just three rainy days in September are enough for the quality 
of wheat to plunge). Let us denote by S the event that the weather is good in 
summer and by H the event that it is good during the harvesting time. The 
farmers are happy when P(S∩H) is high. 
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We use the obvious notation  and  

.  

n

n

i
i AAAA ∪∪∪=

=

...21
1
∪

n

n

i
i AAAA ∩∩∩=

=

...21
1
∩

Clearly, A∩B = B∩A and A∪B = B A; A∪ (B C) = (A∪B) C and 
A∩(B∩C) = (A∩B)∩C.  

∪ ∪ ∪

But we must be careful when making more intricate combinations of 
larger numbers of sets. For example, we cannot write down simply A B∩C; 
this is not well defined because in general (A B)∩C 

∪
∪ ≠  A∪ (B∩C).  

Intersection is distributive over union: A∩(B C) = (A∩B)∪ (A∩C) (try 
to prove it through Venn diagrams).  

∪

Similarly, union is distributive over intersection: A∪ (B∩C) = 
(A B)∩(A C) (try to proof). This is unlike the regular algebra of adding 
and multiplying numbers (addition is not distributive over multiplication: 
a+(b×c)  (a+b)

∪ ∪

≠ ×(a+c)), obviously the two algebras (the second is Boolean 
Algebra (algebra of sets)) “behave” differently. 

Note the following 
If A∩B =  (i.e. there is no overlap between the two sets, they have no 

elements in common), then A and B are said to be disjoint.  
φ

We can also remove bits of sets, giving rise to set differences, as fol-
lows. 

Let A and B be sets. That part of A that is not also in B is denoted by 
A\B, called the difference of A and B. Elements that are in A or B but not 
both, comprise the symmetric difference, denoted by A∆B.  

Finally, we can combine sets in a more complicated way by taking ele-
ments in pairs, one from each set. 

Let A and B be sets, and let C = {(a, b): a∈A, b∈B} be the set of or-
dered pairs of elements from A and B. Then C is called the direct product of 
A and B and denoted by A×B.  

Example. Let A be the interval [0, a] of the x-axis, and B the interval   
[0, b] of the y-axis. Then C = A×B is the rectangle of base a and height b with 
its lower left vertex at the origin, when a, b > 0.  

In probability problems, all sets of interest A lie in a universal set Ω  (the 
universal set  contains all needed elements), so that AΩ Ω⊂  for all A. That 
part of  that is not in A is called the complement of A and denoted by Ac or Ω
A . 

Formally, Ac = \A = {x: xΩ Ω∈ , x∉A}. 
Obviously, from the diagram or by consideration of the elements  
A∪Ac = , A∩Ac = , (Ac)c = A. Ω φ
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If Aj∩Ak =  for j  k, 1≤ k ≤ n, 1≤ j ≤ n, and , then the collec-

tion (Ai, 1≤ i ≤ n) is said to form a partition of 

φ ≠ Ω=
=
∪

n

i
iA

1

Ω . 
De Morgan’s Laws: BABA ∪=∩ , and BABA ∩=∪ .  
These can be verified easily by Venn diagrams; both can be extended to 

any number of events, for example: CBACBA ∪∪=∩∩ , 
CBACBA ∩∩=∪∪ . 

 Usually, Venn diagrams are used to represent sets. These provide very 
expressive pictures, which are often so clear that they make algebra redun-
dant:  

 
• union: A∪B = A or B or both; 

 
• intersection: A B = A and B; ∩

 
• difference of A and B (relative complement): A\B = in A but not in B; 

 
• (absolute) complement: Ac = not A = Ω \A. 

  http://www.combinatorics.org/Surveys/ds5/VennEJC.html − an article 
on Venn diagrams with history and many nice pictures. 
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Appendix 3 
Review of Elementary Mathematical Prerequisites 

 
Mathematics is not primarily a matter of plugging numbers into  

formulae and performing rote computations. It is a way of questioning  
and thinking that may be unfamiliar to many of us, but is available to almost all of us. 

John Allen Paulos 
 

It is difficult to make progress in any branch of mathematics without us-
ing the ideas and notation of sets and functions. We therefore give a brief 
synopsis of what we need here for completeness (as to sets see Appendix 2), 
although it is likely that the reader will already be familiar with this. 

Notation. We use a good deal of familiar standard mathematical notation 
in this text. The basic notation is set out below. More specialized notation for 
probability theory is introduced as required throughout the text.  

We list some fundamental notation: 
e − the base of natural logarithms; Euler’s number; 
ln x − the logarithm of x to base e; 
log2x − the logarithm of x to base 2; 
π − the ratio of circumference to diameter for a circle; 
Ω  − the universal set; 
n! = n×(n − 1)×…3×2×1 − factorial n; note that 0! = 1, by convention;  
|x| − modulus or absolute value of x; 
[x] − the integer part of x; 
R − the real line; 
Z − the integers; 

n

n

i
i aaaa +++=∑

=

...21
1

 − summation symbol; 

n

n

i
i aaaa ×××=∏

=

...21
1

 − product symbol 

(in which the three points mean “and so on”). 
What do you think grows faster (as n increases): en, n! or nn? 
 
Size. When sets have a finite number of elements, it is often useful to 

consider the number of elements they contain; this is called their size or car-
dinality.  

For any set A, we denote its size by |A|; it is easy to see that size has the 
following properties. 

If sets A and B are disjoint, then |A∪B| = |A| + |B|, and more generally, 
when A and B are not necessarily disjoint,  
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|A B| + |A∩B| = |A| + |B|.     (A3.1) ∪
Naturally, |φ | = 0, and if A⊂B, then |A| ≤ |B|. 
Finally, for the product of two finite sets A×B, we have |A×B| = |A|×|B|. 
When sets are infinite, a great deal more care and subtlety is required in 

dealing with the idea of size.  
However, we intuitively see that we can consider the length of subsets of 

a line, or areas of sets in a plane, or volumes in space, and so on. It is easy to 
see that if A and B are two subsets of a line, with lengths |A| and |B|, respec-
tively, then in general |A∪B| + |A∩B| = |A| + |B|. Therefore |A∪B| = |A| + |B| 
when A∩B = . We can define the product of two such sets as a set in the 
plane with area |A×B|, which satisfies the well-known elementary rule for ar-
eas and lengths |A×B| = |A|×|B| and is thus consistent with the finite case 
above. Volumes and sets in higher dimensions satisfy similar rules. 

φ

 
Functions. Suppose we have sets A and B, and a rule that assigns to each 

element a in A a unique element b in B. Then this rule is said to define a 
function from A to B; for the corresponding elements, we write b = f (a). 

Here the symbol f (·) denotes the rule or function; often we just call it f. 
The set A is called the domain of f, and the set of elements in B that can be 
written as f (a) for some a is called the range of f; we may denote the range 
by R. 

Anyone who has a calculator is familiar with the idea of a function. For 
any function key, the calculator will supply f (x) if x is in the domain of the 
function; otherwise, it says “error”. 

If f is a function from A to B, we can look at any b in the range R of f 
and see how it arose from A. This defines a rule assigning elements of A to 
each element of R, so if the rule assigns a unique element a to each b this de-
fines a function from R to A. It is called the inverse function and is denoted 
by f −1(·): a = f −1(b). 

Example. Let A  and define the following function I(·) on : ⊂ Ω Ω
I(ω) =1 if ω∈A, 
I(ω) =0 if ω∉A. 
Then I is a function from Ω  to {0, 1}; it is called the indicator of A be-

cause by taking the value 1 it indicates that ω∈A. Otherwise, it is zero.  
This is about as simple a function as you can imagine, but it is surpris-

ingly useful. For example, note that if A is finite you can find its size by 

summing I(ω) over all ω: |A| = . ∑
Ω∈ω

ω)(I

Sums. Consider the sum . n

n

i
i aaaa +++=∑

=

...21
1
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The variable i is a dummy variable or index of summation, so any sym-

bol will suffice: . n

n

i
i

n

r
r aaaaa +++== ∑∑

==

...21
11

In general, . ( )∑ ∑∑
= ==

+=+
n

i

n

i
i

n

i
iii bdacdbca

1 11

In particular,  ∑
=

=
n

i
n

1
1 ; ∑

=

+
=

n

i

nni
1 2

)1(  − the arithmetic sum; 

6
)1)(12(

1

2 nnni
n

i

++
=∑

=

; 
4
)1( 222

11

3 nnii
n

i

n

i

+
=⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

==

; 
q

qq
nn

i

i

−
−

=
+

=
∑ 1

1 1

1
 − the 

geometric sum. 
 
Binomial expansion. You probably all know that 
(x + y)2 = x2 + 2xy + y2, 
(x + y)3 = x3 + 3x2y + 3xy2 + y3, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(x + y)n = , nn

n
nn

n
n

n
n

n
n

n xCxyCxyCxyCyC +++++ −−−− 11222110 ...

the general (last-line) expansion usually written as (x + y)n = . rnr
n

r

r
n yxC −

=
∑

0

We discuss !
!( )!

r
n

n nC
r r n r
⎛ ⎞

= =⎜ ⎟ −⎝ ⎠
 in Part 2 (Combinatorics) in detail. 

We have to remember that 0!= 1 by definition so that  =  = 1. 0
nC n

nC
A whole row of these coefficients can be easily constructed as follows 

(Pascal’s triangle): 
                                             1 
                                      1           1 
                                 1          2            1 
                            1        3            3           1 
                        1       4          6            4          1 
                 1         5       10          10          5          1 

            =   =   =      =   =    = . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
5

Each number is the sum of the ones on the row above on its immediate 
left and right. To get the 1’s on the edges to work correctly we consider the 
blanks to be zeros. In symbols  = . k

nC k
n

k
n CC 1

1
1 −
−
− +
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Multinomial expansion is an extension of the binomial expansion, hav-
ing more than 2 terms inside parentheses. We will derive it using three terms, 
the extension to any other number of terms is then quite obvious. 

We want to generalize the well known: (x+y+z)2 = 
x2+y2+z2+2xy+2xz+2yz to: (x + y + z)n = (x + y + z)(x + y + z) . . . (x + y + z) 
(n factors) = (distributive law) xxx...x + yxx...x + . . . + zzz...z (all 3n n-letter 
words built out of x, y and z) = (collecting algebraically identical contribu-

tions) xn + xn-1y − xn-5y3z2 + . . . + zn (the coefficients repre-

senting the number of words with the corresponding number of x’s, y’s and 

z’s) = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2,3,5n

n

 0

( , , ) i j k
n

i  j  k  n
i, j, k 

M i j k x y z
+ + =

≥

∑ , where the summation is over all possible se-

lections of non-negative exponents which add up to n. 

We discuss  in Part 2 (Combinatorics) in detail. ( , , )
, ,n

n
M i j k

i j k
⎛ ⎞

= ⎜
⎝ ⎠

⎟

How many terms are there in this summation? Our formula (2.1) tells us 

that it should be  − the three exponents are chosen in the apple-pear-

orange like manner. This is because when choosing the x’s, y’s and z’s we 
don’t care about the order, and we are allowed to repeat. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
2

2n

 
Limits. Often, we have to deal with “infinite sums” (series). A funda-

mental concept in this context is that of the limit of a sequence. 
Definition. Let (sn, n ≥ 1) be a sequence of real numbers. If there is a 

number s such that |sn − s| may ultimately always be as small as we please, 
then s is said to be the limit of the sequence sn. Formally, we write ssnn

=
∞→

lim  

if and only if for any ε > 0, there is a finite n0 such that |sn − s| < ε for all       
n > n0.  

Notice that sn need never actually take the value s, it must just get closer 
to it in the long run (e.g., let xn = n−1). 

 
Series. Let (ar, r ≥ 1) be a sequence of terms, with partial sums 

. 1,
1

≥=∑
=

nas
n

i
in
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If sn has a finite limit s as n→∞, then the series ∑  is said to converge 

with s (we note this as s ). Otherwise, it diverges. If 

∞

=1i
ia

a
i

i =∑
∞

=1
∑
∞

=1i
ia  converges, 

then ∑  is said to be absolutely convergent. 
∞

=1i
ia

For example, in the geometric sum above, if |q| < 1, then |q|n → 0 as   

n→ ∞. Hence 1,
1

1
1

<
−

=∑
∞

=

q
q

q
i

i , and the series is absolutely convergent 

for |q| < 1. For example, 
( )

1,
1

1)1( 2
1

<
−

=+∑
∞

=

q
q

qi
i

i ; 
6

1 2

1
2

π
=∑

∞

=i i
; 

90
1 4

1
4

π
=∑

∞

=i i
. 

Also for all x, where e is the base of natural logarithms, exp x = ex = 

0 !

i

i

x
i

∞

=
∑  (we can consider this as a definition). 

An important property of ex is the exponential limit theorem: 
( )1 / n xx n+ → e  as n→ ∞. 
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