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Part 1
DISCRETE PROBABILITY






Chapter 1 COUNTING AND RELATED
TOPICS

Permuting objects
In how many possible ways can we arrange

» n Distinct Objects«

(such as a, b, ¢, d,....) in a row?

We start with n empty boxes which we fill, one by one, from left to right. We
have n choices to fill the first box, once it’s done there are n — 1 choices of how to
fill the second box, n — 2 choices for the third box, .... until we come to the last
box, having only 1 object (letter) left to put in. The choices obviously multiply,
as each 'word’ created at any stage of the process is unique (no duplicates). Thus

the answer is n x (n —1) X (n —2) x ..... x3x2x1%np

What if some of these object are
» Indistinguishable <

such as, for example aaabbc. How many distinct permutations of these letters are
there, i.e. how many distinct words can we create by permuting aaabbc? We can
start by listing all 6! permutations, and then establishing how many times each
distinct word appears on this list (the amount of its "duplicity’ — one should really
say 'multiplicity’). Luckily enough, the ’duplicity’ of each distinct word proves to
be the same. We can thus simply divide 6! by this common duplicity to get the
final answer.

To get the duplicity of a particular word, such as, for example baacba we first
attach a unique index to each letter: bjajasciboas and then try to figure out the
number of permutations of these, now fully distinct, symbols, which keeps the
actual word (baacba) intact. This is obviously achieved by permuting the a’s
among themselves, the b’s among themselves, etc. We can thus create 3! (number
of ways of permuting the a’s) times 2! (permuting the b’s) combinations which
are distinct in the original 6!-item list, but represent the same word now. (We
have multiplied 3! by 2! since every permutation of the a’s combines with every
permutation of the b’s to provide a unique combination of the indexed letters).

The answer is thus 6l

(we have included 1! to indicate that there is only one permutation of the single
¢, to make the formula complete). The resulting expression is so important to us
that we introduce a new symbol

6! der. 6
31 3,21



which we read: 6 choose 3 choose 2 choose 1 (note that the bottom numbers must
add up to the top number). It is obvious that the same argument holds for any
other unique word of the aaabbc type.

It should now be obvious that, in the case of permuting n; a’s, ny b’s, ns
€Sy ny 2’s, we will get

N! def. ( N ) *)
nilng!na!....ny! N1, N2, NGy eevey N

k

distinct words (where N = > n; which is the total word length). These numbers
=1

are called MULTINOMIAL COEFFICIENTS (later, we will learn why).

Selecting objects
The basic question of this section is:
In how many ways can we select r out of n distinct objects (letters)?

This question is actually ambiguous, in two ways:

1. Are we allowed to select the same letter more than once?

2. Do we care about the order in which the selection is made? W
Depending on the answer, we end up with four distinct results.
EXAMPLE: Suppose n = 3 (letters a, b, c), and r = 2. Then, if:

e Order is important but we must not repeat letters — the answer is 6 (ab, ac,
ba, be, ca, cb).

e Unordered selection, without replicates — answer: 3 (ab = ba, ac = ca, bec =
ca) [note that unordered selections can be always arranged alphabetically;
insisting on that enables us to avoid accidental duplication)].

e Order is important, each letter can be selected repeatedly — answer: 9 (aa,
ab, ac, ba, bb, be, ca, cb, cc).

e Unordered selection, allowed duplicating letters — answer: 6 (aa, ab = ba,
ac = ca, bb, bc = ¢b, cc). B

Can we figure out the general formula (with any r and n) for each one of these
four possibilities? Let us try it.

» Ordered Selection, No Duplication«

(Selecting a chair, treasurer and secretary out of ten members of a club).

Since the result should be ordered, we can start with r empty boxes, and fill
them one by one, counting (and multiplying) the choices:

1% box | 2" box | 3" box | ........ (r-1)" box r'" box
nx =1 | (n—=2)X | cueee m—r+2)x | (n—r+1)




The result is thus

|
nx(n—l)><(n—2)x....x(n—r+1):ﬁde:f'Pﬁ (1)
called the NUMBER OF PERMUTATIONS

With n = 3 and r = 2 this gives = 6 (check).

(32

Just to practice: P{® =10 x 9 x 8 x 7= 5040 (start with 10, for the total of 4
factors).

» Unordered Selection, Without Duplication«

(Selecting a committee of three, out of ten members represented by 10 distinct
letters).

If we examine the previous list of possibilities (we did not really build it, but
we all must be able to visualize it), we notice that each unique selection of r letters
is repeated exactly r! times (it will be there with all its permutations, since these
were considered distinct). All we have to do is to remove this duplicity by dividing
the previous answer by 7!, obtaining

P! n!

_ def. ~n
rl (n—r)lr! = G (2)

(NUMBER OF COMBINATIONS). Later on, these will also be called BINOMIAL CO-
EFFICIENTS. Note the symmetry of this formula: selecting 7 people out of 10 can
be done in the same number of ways as Selecting 3 (and telling them: you did not

make it). With n = 3 and r = 2 we get 5 = 3 (check).
Just to practice: Cfs = C}7 = 1X18xxld (same number of factors, when you

include 1).
» Ordered Selection, Duplication of Letters Allowed«

(Building a five-letter word, using an alphabet of 26 letters).

Again, fill » empty boxes with one letter each. This time we have a choice of n
letters every time. So the answer isn X n xn X ..... x n (r times), namely

n’ (3)
With n = 3 and r = 2 we get 32 = 9 (check).
» Unordered Selection, Allowing Duplication«

(Choose ten pieces of fruit from a shelf full of apples, pears, oranges and ba-
nanas).

This is the most difficult case (we cannot use the previous list, as the duplicity
of a specific unordered selection varies from case to case), so we first solve our
specific example, and then generalize the result.
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We start with our 7 = 10 boxes (to contain one piece of fruit each), but to
assure an unordered selection, we insist that apples go first, pears second, and
so on. To determine how may boxes get an apple, we place a bar after the last
‘apple’ box, similarly with pears, etc. For example: 0O|O|00000|00 means
getting 2 apples, 1 pear, 5 oranges and 2 bananas. Note that we can place the bars
anywhere (with respect to the boxes), such as: OO0 |D000O000O| (we don’t like
pears and bananas). Also note that it will take exactly 3 = n — 1 bars to complete
our ’shopping list’. Thus any permutation of 3 = n — 1 bars and 10 = r boxes
corresponds to a particular selection (at the same time, a distinct permutation
represents a distinct choice = there is a one-to-one correspondence between these
permutations and a complete list of fruit selections). We have already solved the
problem of distinct permutations (the answer is C3% = 286), so that is the number
of options we have now. The general formula is obviously

Cri—n—l = C:—l—n—l (4)

n—1

With n = 3 and r = 2 this gives Cj = 6 (check).

We have thus derived a formula for each of the four possibilities. Your main task
is to be able to correctly decide which of these to use in each particular situation.

EXAMPLE: Let us re-derive (*) by taking the following approach: To build
an N-letter word out of nq a’s, ny b’s, ....n; 2’s, we start with N empty
boxes, then choose n; of these to receive the letter a, having done that we
choose (from the remaining N — n; boxes) ny boxes for the letter b, and so
on (multiplying the number of choices to get the final answer). Which of our
four formulas do we use (at each stage of the selection)? Well, we have to
select n; distinct boxes (i.e. duplication is not allowed), and we don’t care
about the order (selecting Boxes 1, 4 and 7 for the letter a is the same as
selecting Boxes 4, 7 and 1). We thus use Formula (2), to get:

() () ()

X X ...

ny o ng

How come this differs from our original answer (*). Only seemingly, when
expanded, the new formula gives

N! (N —nq)! N!
X1l heck
n!(N —ny)! % no!(N —ny — ny)! e X nilng!....ng! (check)

N
Note that < > yields the regular binomial coefficient, usually written
ny, Ng

N
as ( ) . This notational exception is allowed only in the case of k = 2. B
n1

Now, let us put these formulas to work, first to derive the so called
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Binomial expansion
You probably all know that

(r+y)? = 2°+2ay+y°
(z+y)® = 2°+32%y+32y” + ¢’

o = (o (et (o ()

the general (last-line) expansion usually written as
@y =3 (") (BE)
prd

We have to remember that 0! < 1, so that () = (') = 1. A whole row of these
coefficients can be easily constructed as follows (Pascal’s triangle):

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

=) =0 =06
To prove BE, we need only basic algebra:

(z+y)" =(x+y)(xr+y)...(r+y) [n times| = [distributive law]

= e This is a list of all n-letter words
1ixii made up of letters x and y.
Y- Formula (3) tells us that there are
""" 2" of them.
+yyy...y

Let us now combine the terms of this sum which are algebraically identical: x"
lonly one word will have all 2’s] +2" "'y x (') [this many words will have one ]
+....+ 2" "y" x (") [this many n-letter words have exactly i #7s] +.... 4 y". This is
the binomial expansion.

In summary: the essential part of the proof was knowing how many n-letter
words have exactly ¢ #’s in them. Formula (*) with & = 2 supplied the answer. [J

» Binomial-Expansion Extras«<

When we need the binomial expansion, it is usually not with just z and y, but
with something like:

(1—32*)"=1-3nz®+9(5)z* —27(5)a% + ... + (—=32%)"

This indicates that all our formulas will be useful to us only when we learn how to
apply them (just memorizing them would be useless).
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The binomial expansion can be extended to a non-integer n (I will call it 3,
just to distinguish) when y = 1:

(1+2) =14 Bz + (D> + (§)a* + ...

where (7) = b 2_1), (g) = w, etc. This time the expansion is infinite

and its proof requires Maclaurin formula (not just simple algebra) — try it.

EXAMPLES:
(1+2)? = 1-3z+62°— 102" + ...

3 3 1 3
(1+a)2 = 1+-a+-a*— —=a*+ —a*+ ...

2 8 16 128

[S][e]

Understand the construction of the individual coefficients, such as (') =
31, =1.,=3

(3)(H(E5) 5\ o 2X9X7 X5 3

(0 10 g (1) = EE2E 1w
Multinomial expansion
is an extension of the binomial expansion, having more than 2 terms inside paren-
theses. We will derive it using three terms, the extension to any other number of
terms is then quite obvious.

We want to generalize the well known: (z+y+2)? = 22 +y?+22+2wy+222+2y2
to: (x+y+2)"=@+y+2)(r+y+2)..(r+y+z) [n factors] = [distributive
law] zzz..x + yrx..x + ... + zzz...z [all 3" n-letter words built out of z, y and
z] = [collecting algebraically identical contributions:] " + (,",)z" 'y + ... +

(, 54,)2"PyP2% + ...+ 2" [the coefficients representing the number of words with

the corresponding number of z’s, y’s and 2’s] =

n .
> < - > 'y’ 2
- i,k
,7,k>0
i+j+k=n

where the summation is over all possible selections of non-negative exponents which
add up to n.

How many terms are there in this summation? Our Formula (4) tells us that
it should be (";2) — the three exponents are chosen in the apple-pear-orange like
manner. This is because when choosing the z’s, y’s and 2z’ we don’t care about the

order, and we are allowed to duplicate.
Similarly
n_ n i gk, 0
(x+y+2z+w) —Z (i,j,k,é) 2y ZFw

where the summation is over all non-negative integers having the correct sum n.
There are altogether (") terms in the last expansion.

3
EXAMPLES:

o (x+y+2)?°=a3+1>+ 23+ 322y + 3222 + 3zy® + 3222 + 3y?2 + 3yz? + 6xyz

[has 10 = (*}?) terms — check].
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e Typical exam question: Find the coefficient of ut3 in the expansion of (u+2 —
4t)°.

Solution: The only term containing ut? is: (1’?73)(u)1(2)1(—4t)3 = —2560ut.
Answer: —2560.
e Another exam-like question: (1 + 2x — 522)17 is a 34-degree polynomial in .

When expressed as such (i.e. when expanded, and terms with like powers of
x are combined), what will be the coefficient of z4?

Solution: (le7k)(1)l(2x)3(—5x2)k is the general term of this expansion. Let us
make a table of the exponents which contribute to x*: 12 ;1 (1) . This
15102

translates to: ()(2z)* + (1417;1)(2x)2(—5$2) + () (—52?)? = 680z*.
Answer: 680. l

Related issues
Our formulas will enable us to settle yet another issue:

» Partitioning <«

of n distinct objects (people) into several groups (teams) of given size (not neces-
sarily the same for each group).

Suppose, for example, that nine people are to be divided into three teams
of 2, 3, and 4 members. In how many ways can this be done? This is solved by
realizing that there is a one-to-one correspondence between these and permutations
of aabbbccee. Let us look at one such case:

1({21314|5]|6|7]|8
blalclclalblc|b]ec

where the position of each letter correspond to a specific person, and the letter
itself indicates which team he joins. Our table would thus assign Persons 2 and
5 to the first team (of two people), Persons 1, 6 and 8 to the second team (of
three people), and Persons 3, 4, 7 and 9 to the third team (of four people). The
number of possible assignments must be therefore equal to the number of such

permutations, which is (3 ,) = 1260.

There is a bit of a problem when some groups are of the same size, such as
dividing 9 people into three groups of 3 people each. The routine answer gives
( 3’273) = 1680, but does this consider the following two assignments distinct or
identical: 1,2,3 | 4,5,6 | 7,8,9 and 4,5,6 | 1,2,3 | 7,8,97 Anyone who is
following our line of reasoning should clearly see that the formula does consider
these two as distinct (because aaabbbece and bbbaaacce are two distinct words, and

that’s how the formula works). If, for whatever reason, we want to consider such
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team assignments identical (and the choice is ours), we have to ’fix’ the formula,

thus:
( ; >
ﬁ — 9280

3!
Or, in the more general case:

( 20 )
2,223,344/ 1108047000

312121

I hope everyone understands the logic of the last answer.
Finally, a »Circular Arrangement«

means placing n distinct objects (people) around a circular table (rather than in a
row). If we only care about who sits next to whom (differentiating left and right),
but not about the orientation of the whole arrangement within the room, we have
(n — 1)! possible ways of seating the people. We can see this by starting with n
empty chairs, placing Mr. A in one of them (he has no neighbors yet) and then
having n — 1 choices to fill the chair to his right, n — 2 choices to fill the next chair,
.. until we have one person waiting to become his left-hand neighbor..

End-of-chapter examples
1. A college team plays a series of 10 games which they can either win (W),
lose (L) or tie (7).

(a) How many possible outcomes can the series have (differentiating be-
tween WL and LW, i.e. order is important).

Answer: 310 = 59049.

(b) How many of these have exactly 5 wins, 4 losses and 1 tie?

Answer: (5}21) = 1260.

(c) Same as (a) if we don’t care about the order of wins, losses and ties?

Answer: (122) = 66 (only one of these will have 5 wins, 4 losses and 1

tie).
2. A student has to answer 20 true-false questions.

(a) In how many distinct ways can this be done?
Answer: 220 = 1048576.

(b) How many of these will have exactly 7 correct answers?
Answer: (270) = 77520.

(c) At least 17 correct answers?
(Here, these is no ’shortcut’ formula, we have to do this individually,
one by one, adding the results): (?2) + (?g) + (38) + (gg) = (230) + (220) +
(210) + (200) = 1351.
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(d) Fewer than 37 (excludes 3): (%) + (¥) + (%) = 211.

3. In how many ways can 3 Americans, 4 Frenchmen, 4 Danes and 2 Cana-
dians be seated (here we are particular about nationalities, but not about
individuals)

(a) in a row.
Answer (same as the number of permutations of AAAFFFFDDDDCC):
13 13) (10\ (6
(5.002) = (5) () (3) = 900900.

(b) In how many of these will people of the same nationality sit together?

Answer: We just have to arrange the four nationalities, say a, f, d and
c: 41 =24,

(c) Repeat (a) with circular arrangement:
Answer (13 of the original arrangements are duplicates now, as

AAAFFFFDDDDCC, AAFFFFDDDDCCA, ..., CAAAFFFFDDDDC
are identical): 20950 — 69300.

(d) Repeat (b) with circular arrangement:

Answer (circular arrangement of nationalities): 3! = 6.
4. Four couples (Mr&Mrs A, Mr&Mrs B, ...) are to be seated at a round table.

(a) In how many ways can this be done?
Answer: 7! = 5040.

(b) How many of these have all spouses sit next to each other?

Solution: First we have to arrange the families with respect to each
other. This can be done in 3! ways. Then, having two seats reserved
for each couple, we have to decide the mutual position of every wife and
husband (2 x 2 x 2 x 2).

Answer: 3!x2% = 96. (Later on, our main task will be converting these to
probabilities. If the seating is done randomly, the probability of keeping

the spouses together will be then -3o- = 1.905%).

(c) How many of these have the men and women alternate?

Solution: Place Mr A into one chair, then select his right-hand neighbor
(must be a woman) in 4 ways, select her extra neighbor (3 ways), and
so on.

Answer: 4 x 3 X 3 x 2 x 2x 1x1=144 (corresponds to 2.86%).

(d) How many of these have the men (and women) sit together?

Solution: This is analogous to (b). We have to arrange the two groups
(men and women) with respect to each other first. But, in the circular
arrangement, this can be done in one way only! Then, we have to take
care of arranging the 4 men and four women within the four chairs
allocated to them. This can be done in 4! ways each.

Answer: (4!)? = 576 (correspond to 11.43%).
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5. In how many ways can we put 12 books into 3 shelves? This question is
somehow ambiguous: do we want to treat the books as distinct or identical,
and if we do treat them as distinct, do we care about the order in which they
are placed within a shelf? The choice is ours, let’s try it each way:

(a) It the books are treated as 12 identical copies of the same novel, then the
only decision to be made is: how many books do we place on each shelf
(the shelves are obviously distinct, and large enough to accommodate
all 12 books if necessary).

The answer follows from Formula (4) with n = 3 and r = 12 - for each
book we have to select a shelf, but the order does not matter (1,3 and
3,1 puts one book each on Shelf 1 and 3), and duplication is allowed:
(3) =91

(b) If we treat the books as distinct and their order within each shelf im-
portant, we solve this in two stages:

First we decide how many books we place in each shelf, which was done
in (a), then we choose a book to fill, one by one, each allocated slot
(here we have 12 x 11 x 10 X .... X 2 X 1 choices).

Answer: 91 x 12! = 43, 589, 145, 600.

(c) Finally, if the books are considered all distinct, but their arrangement
within each shelf is irrelevant, we simply have to decide which shelf will
each book go to [similar to (a), order important now].

This can be done in 3 x 3 X 3 x .... x 3 = 3'2 = 531441 number of ways.

6. Twelve men can be seated in a row in 12! = 479001600 number of ways
(trivial).

(a) How many of these will have Mr A and Mr B sit next to each other?

Solution: Mr A and Mr B have to be first treated as a single item, for
a total of 11 items. These can be permuted in 11! number of ways.
Secondly, we have to place Mr A and Mr B in the two chairs already
allocate to them, in 2! ways.

Answer: 2 x 11! = 79833600.

(b) How many of the original arrangements will have Mr A and Mr B sit
apart?
This set consists of those which did not have them sit next to each other,
i.e. (a)— (b) = 12! — 2 x 11! = 399168000.

(c) How many of the original arrangements will have exactly 4 people sit
between Mr A and Mr B?
Solution: First, we allocate two chairs for Mr A and Mr B, thus: ROOOOROCOOOO,
OROOOOROO0O00,...., 0000000000 N, altogether in 7 possi-
ble ways (here we count using our fingers — no fancy formula). Sec-
ondly, we seat the people. We have 10! choices for filling the ...
chairs, times 2 choices for how to fill B and H.

Answer: 7 x 2 x 10! = 50803200.
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7. Security council of the UN has 15 permanent members, US, Russia, GB,
France and China among them. These can be seated in a row in 15! possible
arrangements.

(a)

How many of these have France and GB sit together but (at the same
time) US and Russia sit apart?

Solution: We break the problem into two parts:

i. France and GB sit together in 2 x 14! = 174,356, 582,400 of the
original 15! arrangements (we understand the logic of this answer
from the previous question).

ii. France and GB sit together and (at the same time) US and Russia
sit together in 2 x 2 x 13! = 24,908, 083, 200 arrangements (similar
logic: first we create two groups of two, one for France/GB, the
other for US/Russia and permute the resulting 13 items, then we
seat the individual people).

The answer is obviously the difference between the two: 2 x 14! — 22 x
13! = 149, 448,499, 200. (To make the answer more meaningful, convert
it to probability).

8. Consider the standard deck of 52 cards (4 suits: hearts, diamonds, spades
and clubs, 13 ’values’ 2, 3, 4...10, Jack, Queen, King, Ace). Deal 5 cards
from this deck. This can be done in () = 2598960 distinct ways (trivial).

(a)

(b)

5

How many of these will have exactly 3 diamonds?

Solution: First select 3 diamonds and two 'non-diamonds’, then combine

these together, in (133) X (329) = 211926 number of ways.

Exactly 2 aces?
Same logic: (5) x (%) = 103776.

2
Exactly 2 aces and 2 diamonds?

This is slightly more complicated because there is a card which is both
an ace and a diamond. The deck must be first divided into four parts,
the ace of diamonds (1 card) the rest of the aces (3), the rest of the
diamonds (12), the rest of the cards (36). We then consider two cases,
either the ace of diamonds is included, or not. The two individual
answers are added, since they are mutually incompatible (no ’overlap’):

B ) E)+ 66 G)(F) = 20808,

9. In how many ways can we deal 5 cards each to 4 players?

(a)
(b)

()

Answer: (7) x (V) x () x (%) = 1.4783 x 10*
So that each gets exactly one ace?

Answer (consider dealing the aces and the non-aces separately): (11) (:1)’) (f) (
() () () (5) = 34127 x 10

None gets any ace:

Answer: (7)) () (%) () = 1.9636 x 10%

5 5 5

1
1

) %
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(d)

(e)

Mr A gets 2 aces, the rest get none.

Answer: (3) x (¥)(2) () (?) = 2.7084 x 1022

(Any) one player gets 2 aces, the other players get none.

Solution: The previous answer is correct whether it is Mr A, B, C or
D who gets the 2 aces (due to symmetry), all we have to do is to add
the four (identical) numbers, because the four corresponding sets cannot
overlap, i.e. are mutually incompatible or EXCLUSIVE).

Answer: 4 x 2.7084 x 10*2 = 1.0834 x 10?3

Mr. A gets 2 aces.

Answer: (5) (%) x (7)) (¥) (¥) = 5.9027x10?2. Note that when computing
the probability of this happening, the (457) (452) (357) part cancels out (we

can effectively deal 5 cards to him and stop).

Mr. C' gets 2 aces.

Solution: If he is the third player to be dealt his cards, we can either do
this to long and impractical way (taking into account how many aces
have been dealt to Mr A and Mr B), thus: (458) (453) X (338) (;1) X (357) +
Q) () G G) < )+ (5) () G) x (3) 6) > () + () () () (0)
(5) < (5)+ (G ) < (5)x () + (5)(5) () > (5) x (5) =5.9027
10?2, or be smart and argue that, due to the symmetry of the experiment,
the answer must be the same as for Mr. A.

At least one player gets 2 aces (regardless of what the others get).

This is quite a bit more difficult, to the extend that we must postpone
solving it.

10. (Game of Poker): 5 cards are dealt from an ordinary deck of 52. The total
number of possible outcomes (5-card hands) is (552) = 2598960 (trivial). How
many of these contain exactly

(a)

(b)

(c
(d
(e

)
)
)
(f)

One pair, i.e. two identical values (and no other duplication of values).

Solution: This is done in two stages, first we select the suit to be repre-
sented by a pair and three distinct suits to be represented by a singlet
each: (113) X (132), then we select two individual cards from the first suit:
(3) and one card each from the other 3 suits: 43.

Answer: () (17)(3)4® = 1098240.
Two pairs.

Following the same logic: (123) (111) X (;")2 x 4 = 123552

A triplet: (1) (%) x (5) x 4% = 54912

Full house (a pair and a triplet): () ('?) x (3) x () = 3744

Four of a kind: (13) (12) X (i) (le) =624

1 1

A straight (five consecutive values — ace can be considered both as the
highest and the lowest value, i.e. Ace, 2, 3, 4, 5 is a straight).
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Solution: There are 10 possibilities as to the sequence of values (starting
from Ace...5, up to 10...Ace), once this is chosen, one has to select the
individual cards: 4 x 4 x 4 x 4 x 4.

Answer: 10 x 45 = 10240.

Flush (five cards of the same suit).

Solution: 4 ways of selecting the suit, (153) ways of selecting the individual
cards from it.

Answer: 4 x (153) = 5148.

We should note that a hand can be both a straight and a flush (a first
overlap encountered so far).

We have again 10 possibilities for the values, but only 4 ways of selecting
the cards (they must be of the same suit). The number of these hands
is thus 10 x 4 = 40.

None of the above.

Solution: First we select five distinct values, disallowing the 10 cases
resulting in a straight: (153) — 10, then we select one card of each chosen
value, disallowing a flush, which happens in only 4 of these cases: 4° —4.

Answer: ((*?) —10) x (4°> — 4) = 1302540.
One can verify that adding all these answers, except for (h) which needs
to be subtracted (why?), results in the correct total of 2598960 (check).

11. Roll a die five times. The number of possible (ordered) outcomes is 6° = 7776
(trivial). How many of these will have:

(a) One pair of identical values(and no other duplicates).

(b

(c
(d
(e
(f
(8

)

)
)
)
)
)

Solution: First we choose the value which should be represented twice

and the three values to go as singles: (?) X (g), then we decide how to

place the 5 selected numbers in the five blank boxes, which can be done

in (2 151 1) ways (equal to the number of aabed permutations).
AnSV\’/eyr:’ (?) X (g) X (271?171) = 3600.

Two pairs.

The same logic gives: (g) (‘11) X (2;71) = 1800.

A triplet: (?) (g) X (331) = 1200.

"Full house’ (a triplet and a pair): ((15) (f) X (3?2) = 300.

"Four of a kind’: (6) (5) X (4?1) = 150.

1/ \1
Five of a kind: (}) x (7) = 6.
Nothing.

Solution: We again fill the empty boxes, one by one, avoiding any du-
plication: 6 x 5 x 4 x 3 x 2 = 720.

Note that all these answers properly add up to 7776 (check).
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12. Let us try the same thing with 15 rolls of a die (6! = 4.7018 x 10'! outcomes

in total). How many of these will have:

(a) A quadruplet, 2 triplets, 2 pairs and 1 singlet:
DG O) % (1255,) = 65108 x 101

1/ \2/\2/ 1 4,3,3,2,2,1

(b) 3 triplets and 3 pairs: (3)(2) X (554345,) = 1.5135 x 10%°.

3/ \3 3,3,3,2,2,2

We will not try to complete this exercise; the full list would consist of 110
possibilities.



Chapter 2 RANDOM EXPERIMENTS

A few examples

1.

Rolling a die

. Rolling 2 (n in general) dice (or, equivalently, one die twice, or n times)

Selecting 2 people out of 4 (k objects out of n in general)

Flipping a coin until a head appears

. Rotating a wheel with a pointer

. Flipping a tack (L)

Sample space

is a collection of all possible outcomes of an experiment. The individual (complete)
outcomes are called simple events. For the six examples above, we get:

1. The outcomes can be uniquely represented by the number of dots shown on
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the top face. The sample space is thus the following set of six elements:

{1,2,3,4,5,6}.

. With two dice, we have a decision to make: do we want to consider the

dice as indistinguishable (to us, they usually are) and have the sample space
consist of unordered pairs of numbers, or should we mark the dice (red and

green say) and consider an ordered pair of numbers as an outcome of the

experiment (the first number for red, the second one for green die)? The
choice is ours; we are allowed to consider as much or as little detail about

the experiment as we need, but there two constraints:

(a) We have to make sure that our sample space has enough information to

answer the questions at hand (if the question is: what is the probability
that the red die shows a higher number than the green die, we obviously

need the ordered pairs).

(b) Subsequently, we learn how to assign probabilities to individual out-
comes of a sample space. This task can quite often be greatly simplified
by a convenient design of the sample space.. It just happens that, when
rolling two dice, the simple events (pairs of numbers) of the sample space
have the same simple probability of % when they are ordered; assigning
correct probabilities to the unordered list would be extremely difficult.
That is why, for this kind of experiment (rolling a die any fixed number

of times), we always choose the sample space to consist of an ordered

set of numbers (whether the question requires it or not).
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In the case of two dice, we will thus use the following (conveniently organized)
sample space:

111213 14]15]16
2112223242526
3113133343536
414243444546
5115253 ]|54]55]56
6,1162]63]|64]65]6,6

and correspondingly for more than 2 dice (we will no longer be able to write
it down explicitly, but we should be able to visualize the result). Note that a
single simple event consists of two (or more) numbers. As explained earlier,
we will never try to simplify this sample space by removing the order; there
is one simplification one can make though, if the question is concerned only
with sixes versus non-sixes: we can reduce the sample space of 36 simple
events to: {66,60,06,00} where O stands for any other number but 6.
Assigning probabilities will be a touch more difficult now, but it will prove
to be manageable.

. Selecting 2 (distinct) people out of 4. Here (unless the question demands it),

we can ignore the order of the selection, and simplify the sample space to:
{AB,AC,AD, BC,BD,CD} [unordered pairs|, with (;1) = 6 equally likely
outcomes (simple events). Selecting k& out of n objects will similarly result
in (Z) equally likely possibilities. Another typical experiment of this kind is
dealing 5 cards out of 52.

. The new feature of this example (waiting for the first head) is that the sam-

ple space is infinite: {H, TH,TTH,TTTH,TTTTH,TTTTTH,....}. Even-
tually, we must learn to differentiate between the DISCRETE (countable) infin-
ity, where the individual simple events can be labeled 1, 274, 37 4th 5th
in an exhaustive manner, and the CONTINUOUS infinity (real numbers in
any interval). The current example is obviously a case of discrete infinity,
which implies that the simple events cannot be equally likely (they would
all have the probability of é = 0, implying that their sum is 0, an obvious
contradiction). But we can easily manage to assign correct and meaningful
probabilities even in this case (as discussed later).

. The rotating wheel has also an infinite sample space (an outcome is identified

with the final position — angle — of the pointer, measured from some fixed
direction), this time being represented by all real numbers from the interval
[0, 27) [assuming that angles are measured in radians]. This infinity of simple
events is of the continuous type, with some interesting consequences. Firstly,
from the symmetry of the experiment, all of its outcomes must be equally
likely. But this implies that the probability of each single outcome is zero!
Isn’t this a contradiction as well? The answer is no; in this case the number
of outcomes is no longer countable, and therefore the infinite sum (actually,
an integral) of their zero probabilities can become nonzero (we need them to
add up to 1). The final puzzle is: how do we put all these zero probabilities
together to answer a simple question such as: what is the probability that the
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pointer will stop in the [0, 7] interval? This will require introducing a new
concept of the so called PROBABILITY DENSITY (probability of an interval,
divided by the length of the interval). We will postpone this until the second
part of this course.

6. What exactly is new about the tack and its two simple outcomes: {1, <}7
Here, for the first time, we will not be able to introduce probabilities based
on any symmetry argument, these will have to be established empirically by
flipping the tack many times, finding the proportion of times it lands in the
L position and calling this the probability of L (to be quite correct, the
exact probability of L is the limit of these experiments, when their number
approaches infinity). That effectively implies that the probability of any
such event can never be known exactly; we deal with this by replacing it
by a PARAMETER p, which we substitute for the exact probability in all our
formulas. Eventually we may learn (if we manage to reach those chapters)
how to test HYPOTHESES concerning the value of p (such as, for example,
p=0.7).

Events

The technical definition of an event is: any SUBSET of the sample space. These are
usually denoted by capital letters from the beginning of the alphabet: A, B, C....

EXAMPLES (using the experiment of rolling two dice):

1. Let A be the event that the total number of dots equal 8.
This of course consists of the subset: {(2,6),(3,5),(4,4),(5,3),(6,2)} [five
simple events].

2. B defined by requiring that neither of the two numbers be a six.
This correspond to the subset:

11213 14]15
21122232425
3131333435
1142434445
5152535455

3. C: first number smaller than second.

Subset:
12 1,3 14 15 16
23 24 25 26
34 35 3.6
45 4.6
5,6
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Set Theory (review)

Our definition of events as subsets of the sample space indicates that it may help to
recall what we already know about sets, subsets, etc. Unfortunately, on occasion
Statistics uses its own, different terminology for some of the set-theory definitions;
it may help to build the corresponding 'dictionary’:

| The old notion of: | is (are) now called: |
Universal set €2 Sample space
Elements of Q (its individual ’points’) | Simple events (complete outcomes)
Subsets of (2 Events
Empty set () Null event

We continue to use the word INTERSECTION (notation: A N B, representing
the collection of simple events common to both A and B ), UNION (AU B, simple
events belonging to either A or B or both), and COMPLEMENT (A, simple events
not in A ). One should be able to visualize these using Venn diagrams, but when

dealing with more than 3 events at a time, one can tackle problems only with the
help of

Boolean Algebra (another review)

Both N and U (individually) are COMMUTATIVE and ASSOCIATIVE, meaning A N
B=BnNnAand (ANB)NC = AN (BNC), and the same when N — U. Being
associative implies that ANBNC' does not require any parentheses to be meaningful
(same with U ).

Intersection is distributive over union: AN (BUCU...) = (ANB)U (AN
C) U...[try to prove it, using A, B, C only, through Venn diagrams].

Similarly, union is distributive over intersection: AU(BNCN...) = (AUB)N
(AUC)N... [try proof]. This is unlike the regular algebra of adding and multiplying
numbers [addition is not distributive over multiplication: a+(b-c) # (a+b)-(a+c)],
obviously the two algebras ’behave’ differently.

Here is a handful of rather trivial rules which one can easily verify: ANQ) = A,
AN =0, ANA =A, AUQ =Q, AU = A, AUA = A, ANA =0, AUA=Q, A=A.

Also, when A C B (A is a SUBSET of B, meaing that every element of A also
belongs to B), we get: AN B = A (the smaller event) and AU B = B (the bigger
event).

And two not so trivial laws (both called DeMorgan’s): AN B = AU B, and
AUB = AN B. These can be verified easily by Venn diagrams; both can be
extended to any number of events:

ANBNCN..=AUBUCU...

and vice versa (i.e. N < U).

And a simple definition: A and B are called (mutually) exclusive or DISJOINT
when AN B = () (i.e. there is no overlap between the two events, they have no
simple events in common).
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Probability of events
Having a sample space consisting of individual simple events, we would now like
to assign each of these a sensible probability (relative frequency of its occurrence
in a long run). It’s obvious that each of these probabilities must be a non-negative
number.

To find a probability of any other event A (not necessarily simple), we then
add the probabilities of the simple events A consists of. This immediately implies
that probabilities must follow a few basic rules:

Pr(A) > 0
Pr(®) = 0
Pr(2) = 1

(the relative frequency of all € is obviously 1).

We should mention that Pr(A) = 0 does not necessarily imply that A = (), some
nonempty events may have a zero probability (we have already seen examples of
these); they are ’officially’ called IMPOSSIBLE events (a very misleading name, I
will call them zero-probability events).

» Other Formulas«
Pr(AU B) = Pr(A) + Pr(B) but only when AN B = () (disjoint). This implies

that Pr(A) = 1 — Pr(A) as a special case.

This implies that Pr(A N B) = Pr(A4) — Pr(A N B) [obvious also from the
corresponding Venn diagram]|.

For any A and B (possibly overlapping) we have
Pr(AUB) = Pr(A) + Pr(B) — Pr(AN B)

which can be verified from a Venn diagram (a probability of an event can be
visualized as its area).

Using Boolean algebra we can extend this to: Pr(AUBUC) = Pr(A)+Pr(BU
C)—Pr{AN(BUC)} = Pr(A)+Pr(B)+Pr(C)—Pr(BNC)—Pr{(ANB)U(ANC)} =
Pr(A) +Pr(B) 4+ Pr(C) —Pr(ANB) —Pr(ANC) —Pr(BNC)+Pr(ANBNC).

And, by induction, we can get the fully general

k k k
Pr(A;jUAyUAs U UAy) = Y Pr(d) =Y Pr(AinA)+ Y Pr(4nA;nA)— ..
i=1 i<j i<j<t

+Pr(A;NAsNAsN...NA)

(the plus sign for k£ odd, the minus sign for k& even). The formula computes the
probability that at least one of the A; events happens.

It is interesting to note that the probability of getting exactly one of the A;
events (i.e. either an element from A; NA;NAsN...NA,, or A;NAsNAsN...NAy,
.or AyNA;NAsN...N Ag) is similarly computed by:

k k k
D Pr(A) —2) Pr(AinA)+3 > Pr(AinA;nA)—..
=1 1<J 1<j<l

+EkPr(AiNAyNAsN...NAg)
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We demonstrate the application of these formulas in the following, rather non-

trivial EXAMPLE:

Suppose that k distinct letters (to different friends) have been written, each with
a corresponding (uniquely addressed) envelope. Then, for some strange reason, the
letters are placed in the envelopes purely randomly (after a thorough shuffling).
The sample space of this experiment is thus a list of all permutations of k£ objects,

123
132
213
231
312
321

when k = 3 (we will assume that 123 represents the correct placement of all
three letters). In general, there are k! of these, all of them equally likely (due to
symmetry, i.e. none of these arrangements should be more likely than any other).
There are three simple-looking questions:

1. What is the probability of all letters being placed correctly?

Solution (fairly trivial): Only one out of k! random arrangements meets the
criterion, thus the answer is k, (astronomically small for & beyond 10).

2. What is the probability that none of the k letters are placed correctly?

Solution is this time a lot more difficult. First we have to realize that it is
relatively easy to figure out the probability of any given letter being placed
correctly, and also the probability of any combination (intersection) of these,
i.e. two specific letters correctly placed, three letters correct..., etc. [this kind
of approach often works in other problems as well; intersections are usually
easy to deal with, unions are hard but can be converted to intersections].

Let us verify this claim. We use the following notation: A; means that the
first letter is placed correctly (regardless of what happens to the rest of them),
As means the second letter is placed correctly, etc. Pr(A;) is computed by
counting the number of permutations which have 1 in the correct first po-
sition, and dividing this by k!. The number of permutations which have 1
fixed is obviously (k — 1)! [we are effectively permuting 2, 3, ... k, altogether
k — 1 objects]. Pr(A;) is thus equal to k 1 = 1 . The probablhty of Ay, As,
etc. can be computed similarly, but it should be clear from the symmetry
of the experiment that all these probabilities must be the same, and equal
to Pr(A;) = ¢ (why should any letter have a better chance of being placed
correctly than any other?). Similarly, let us compute Pr(A; N As), i.e. prob-
ability of the first and second letter being placed correctly (regardless of the
rest). By again counting the corresponding number of permutations (with
1 and 2 fixed), we arrive at (k 2 — k(klfl). This must be the same for any
other pair of letters, e.g. Pr(A3 NA;) = m, etc. In this manner we also

get PI‘(Al N A2 N Ag) = PI'(Ag N A7 N All) =

1
R et
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So now we know how to deal with any intersection. All we need to do is to
express the event ’all letters misplaced’ using intersections only, and evaluate
the answer, thus:

Pr(A; N Ay N...NAy) [all letters misplaced] =
Pr(A; U Ay U ... U Ag) [DeMorgan| =
1-Pr(AfUAU...UA) =

k k
1-— Z PI‘(Az) + Z PI‘(AZ N AJ> + ... F PI‘(Al N Ag Nn...N Ak> =
=1

1<J
1=k 3+0G) mn - Omaes + - Fa=

1 1 1
1—1—{—5—54—...4:5

For k = 3 this implies 1 — 1 + % — % = % (check, only 231 and 312 out
of six permutations). For k = 1, 2, 4, 5, 6, and 7 we get: 0 (check, one
letter cannot be misplaced), 50% for two letters (check), 37.5% (four letters),
36.67% (five), 36.81% (six), 36.79% (seven), after which the probabilities do
not change (i.e., surprisingly, we get the same answer for 100 letters, a million
letters, etc.).

Can we identify the limit of the 1 —1 + % — % + ... sequence? Yes, of course,
this is the expansion of e~ = .36788.

3. Similarly, the probability of exactly one letter being placed correctly is k -
k k 1
% - 2(2) k(kl—l) + 3(3) k(k—1§(k—2) T Fhe % =l-T+g+..7F (k—ll)! (the
previous answer short of its last term!). This equals to 1, 0, 50%, 37.5%, ...
for k =1, 2, 3, 4, ... respectively, and has the same limit. Il

The main point of the whole section is the following
»Summary <«

Probability of any (Boolean) expression involving events A, B, C,... can be
always converted probabilities involving the individual events and their simple
(non-complemented) intersections (AN B, AN BNC, etc.) only.

Proof: When the topmost operation of the expression (and, subsequently, any of
the resulting subexpressions) is a union, we remove it by the Pr(A U B) =
Pr(A) + Pr(B) — Pr(AN B) rule (or its generalization). When the highest
operation is a complement, we get rid of it by Pr(4) = 1 — Pr(A). After
that, N must be at the top of our evaluation tree. If, at the next level,
there is at least one complement, we remove it (or them, one by one) by
Pr(AN B) = Pr(A)—Pr(AN B). Similarly we deal with a next-level union
by applying Pr{AN(BUC)} = Pr(ANB)+ Pr(ANnC)— Pr(ANBNC). In
this manner we can remove all levels below N until, ultimately, nothing but
simple intersections remain. []
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Let’s go over a few easy EXAMPLES:

1. Pr{(AnB)UBNC} =Pr{ANB}+ Pr{BNC}—- Pr{ANBNBNC} =

Pr{ANB}+1—Pr{BNC}— Pr{ANB}+ Pr{ANBNBNC} = 1— Pr{BN
C}+ Pr{ANBNC}. This can be also deduced from the corresponding Venn
diagram, bypassing the algebra (a legitimate way of doing things).

. Pr{(AnB)UCUD} = Pr{ANB}+ Pr{CUD} - Pr{{ANB)NCUD} =

Pr{ANB}+ 1-Pr{CUD} -Pr{ANB}+ Pr{{ANB)N(CUD)} =
1-Pr{CUD}+ Pr{(ANBNC)U(AN BUD)} = 1- Pr{C} —Pr{D} +
Pr{CnND} +Pr{ANnBNC}+ Pr{ANBND} - Pr{ANBNCND}.

. Four players are dealt 5 cards each. What is the probability that at least one

player gets exactly 2 aces (a chapter ago, we could not solve this problem).

Solution: Let A; be the event that the first player gets exactly 2 aces, Ay
means that the second player has exactly 2 aces, etc. The question amounts

4
to finding Pr(A4; U Ay U A3 U Ay). By our formula, this equals > Pr(A4;) —

=1

4
> Pr(A; N A;) + 0 [the intersection of 3 or more of these events is empty —

O

there are only 4 aces|. For Pr(A;) we get &= 3.993% [the denominator

5
counts the total number of five-card hands, the numerator counts only those
with exactly two aces| with the same answer for Pr(A,), ... Pr(A4) [the four
4

(22.0) (s.5042)
2,2,0/\3,3,42

players must have equal chances]. Similarly Pr(A; N Ay) = AR

5,5,42
0.037% [the denominator represents the number of ways of dealing 5 cards

each to two players, the numerator counts only those with 2 aces each —
recall the 'partitioning’ formula], and the same probability for any other pair
of players.

Final answer: 4 Pr(A;) — 6 Pr(A4; N Ay) = 15.75%.

. There are 100,000 lottery tickets marked 00000 to 99999. Omne of these is

selected at random. What is the probability that the number on it contains
84 [consecutive, in that order| at least once.

Solution: Let’s introduce four events: A means that the first two digits of the
ticket are 84 (regardless of what follows), B: 84 is found in the second and
third position, C: 84 in position three and four, and D: 84 in the last two
positions. Obviously we need Pr(AUBUCUD) =Pr(A) +Pr(B) +Pr(C) +
Pr(D) —Pr(ANC)—Pr(AN D) —Pr(BND)+0 [the remaining possibilities
are all null events - the corresponding conditions are incompatible, see the

Venn diagram).
The answer is 4 X 5095 — 3 X 150455 = 0.04 — 0.0003 = 3.97% [the logic of
each fraction should be obvious — there are 1000 tickets which belong to A,

10 tickets which meet conditions A and C, etc.]. B
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Probability tree & Conditional probability

Consider a random experiment which is done in several STAGES such as, for exam-
ple, selecting 3 marbles (one by one, without replacement — these are the three
'stages’ of this experiment), from a box containing (originally) 3 red and 5 blue
marbles. The easiest way to display possible outcomes of this experiment is to
draw a so called probability tree, with the individual branches representing pos-
sible outcomes at each stage of the experiment. This will be done in class; it is
effectively a graphical representation of

rrr
rrb
ror
rbb
brr
brb
bbr
bbb

(the sample space, each line being one simple event). In the graph, it is one
complete path (from beginning till end) which represents a simple event (each can
be also identified by its end point).

It is easy to assign probabilities to individual BRANCHES of this tree; the
initial selection of a red marble r has the probability of %, once this is done the
probability of the next marble being blue (the 7 — b branch) is 2 [5 blue marbles
out of 7, one red is out], after that selecting r again (the rb — r branch) has the
probability of Z [2 red marbles left out of 6]. Note that the probabilities at each
'fork’ have to add up to one.

We introduce the following notation: R; means a red marble is selected first
(in terms of our sample space, this event consists of: {rrr, rrb, rbr,rbb}), Ry means
a red marble is selected in the second draw (regardless of the outcome of Draw 1
and 3): {rrr,rrb, brr,brb}, and similarly we define R3, B; (a blue marble first), Bs,
and B3.

» Two Issues to Settle«

e What are the simple probabilities of individual branches found above (by
counting how many marbles of each color are left at that stage). The first
one (2, of the initial choice of r) is obviously Pr(R;). The second one (2,
of the » — b branch) can not be simply Pr(Bs), since there are other ways
of getting a blue marble in the second draw. To give it its proper name,
we have to introduce the so called conditional probability of an event B,
given that another event A has already happened, notation: Pr(B|A). This
is a very natural notion in a multi-stage experiment when the outcome of B
is decided based on the outcome of the previous stage(s). It is thus obvious
that 2 represents, by this definition, Pr(By|R;). Similarly 2 is Pr(R3|R, N B,)
[third marble being red given that the first one was red and the second one
blue].
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e How do we compute probabilities of simple events (and thus events in general)
of this sample space (we recall that a simple event is a complete "path’ (e.g.
rbr). Clearly: if this experiment is repeated (infinitely) many times, % of
them will result in r as the first marble, out of these % will have b as the

second marble, and out of these % will finish with r as the third marble. %

out of 2 is 2 (= 2-2) and 2 out of 22 is & (= 2-2-2). We can formalize

56 8 7 56 8 7 6
this by
PI‘(TbT) = PI‘(Rl N B2 N Rg) = PI‘(R1> . PI‘(BQ|R1) . PI‘(R3|R1 N Bg)

In a similar manner we can assign probabilities to all 'points’ (simple events)
of the sample space, thus:

Path: rrr rrb rbr rbb brr brb bbr bbb
Probability: & 2 2 1 2 10 10 10

Note that it is convenient to keep the same (common) denominator of these
probabilities. This helps us realize which simple events are more likely that
others, and by what factor; it also simplifies subsequent computations.

Conclusion: The ’natural’ probabilities of a multistage experiment are the
conditional probabilities of individual branches. All other probabilities must
be build from these, using the product rule to first find probabilities of simple
events.

The rule which was used to compute the probability of the R; N By N Ry inter-
section is called the

» Product Rule«

and it can be generalized to any two, three, etc. events thus:

Pr(AnB) = Pr(A)- Pr(B|A)
Pr(ANnBNC) = Pr(A)-Pr(B|A)-Pr(C|ANB)
Pr(AnNBNCND) = Pr(A)-Pr(B|A)-Pr(C|ANB)-Pr(D|JANBNC)

EXAMPLE: 4 players are dealt 13 cards each from an ordinary deck (of 52
cards). What is the probability that each player will get exactly one ace?

Old solution: The sample space consists of all possible ways of partitioning

52
13,13,13,13

player exactly one ace, we have to similarly partition the aces and non-aces,

4 ) 48
1,1,1,1 12,12,12,12

this; divided by the above total number of ways (all equally likely) gives the
answer: 10.55%.

New solution: If A, B, C, and D represent Mr.A, Mr.B, Mr.C and Mr.D
getting exactly one ace (respectively), we employ the product rule: Pr(A N

52 cards into 4 groups of equal size, ( ) in number. To give each

and multiply the answers. There are ) ways of doing
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45,48 3\/36

BNCND) =Pr(A)Pr(B|A)Pr(C|ANB) Pr(D|ANBNC) = <1(>;;)2) : <1(>;91;> :
13 13
(?()f—g;) . (i()}—%g) [visualize the experiment done sequentially, Mr.A is dealt the
first 13 cards, Mr.B the next 13, etc.]. This of course gives the same answer
(note that the last of the four factors is equal to 1 — once you have dealt one
ace each to Mr.A, B, and C, Mr.D must get his one ace with the conditional
probability of 1). H

In general, we can define the
» Conditional Probability«

for any two events (regardless whether they came from a multistage experiment or
not) by
__ Pr(AnB)
Pr(B|A) = Pr(A)
(the product rule in reverse).

The meaning of any such conditional probability is as follows: given (someone
who has observed the complete outcome of the experiment is telling us) that A
has happened (but we are left in the dark about the rest of the experiment), then
Pr(B|A) represents the conditional probability of B happening as well. This is as
if the whole sample space has shrunk to A only, and the probability of any other
event had to be re-computed accordingly. The general definition thus applies to
any A and B of any random experiment (not necessarily multistage).

Not surprisingly, all formulas which hold true in the original sample space are
still valid in the new 'reduced’ sample space A, i.e. conditionally, e.g.: Pr(B|A) =
1 — Pr(B|A), Pr(BUC|A) = Pr(B|A) + Pr(C|A) — Pr(B N C|A), etc. (make all
probabilities of any old formula conditional on A). Both of these will be proved in
class via Venn diagrams (you can try it on your own), but the idea works for any
other formula as well.

Note that with this general definition it is possible to compute the conditional
probability of, say Ry given Bj (i.e. guessing the outcome of the first stage based
on the outcome of the last stage — a total reversal of what we have been doing so
far). Subsequently, this is utilized in the so called Bayes’ theorem.

And a simple EXAMPLE of establishing a value of conditional probability in
general:

Suppose the experiment consists of rolling two dice (red and green), A is:
‘the total number of dots equals 6’, B is: 'the red die shows an even number’.
Compute Pr(B|A).

Solution: Let us use the old sample space, indicating simple events of A by
(), of B by x, and of the AN B overlap by ® :

O
X X | X X | X X
O
® | X X | X X

X O] %
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Pr(B|A) is clearly the number of the overlap simple events ® divided by the
number of simple events in A (either O) or ®), as these are all equally likely.
2

Answer: Pr(B|A) = 2 [or 2, if you want to insist on using the

36

Pr(ANB)
Pr(A)

formula]. W

Note that in general Pr(B|A) # Pr(A|B), as these two conditional probabilities
correspond to totally different situations, and have no reason to be even compared.
[In the former example Pr(A|B) = & = 1, to demonstrate the point].

Partition of a sample space
(nothing to do with our previous partitioning of a group of people into several
teams). This new notion of a PARTITION represents chopping the sample space

into several smaller events, say A, As, As, ...., Ag, so that they

(i) don’t overlap (i.e. are all mutually exclusive): 4;NA; =0 forany 1 <i,j <k

(ii) cover the whole Q (i.e. 'no gaps’): AyUA UA;U...UA, =01

It should be obvious that the ’finest’ partition is the collection of all simple
events, and the ’crudest’ partition is €2 itself. The most interesting partitions will
of course be the in-between cases. One such example is A and A (where A is an
arbitrary event).

Partitions can be quite useful when computing a probability of yet another
event B. This task can be often simplified by introducing a convenient partition,
and utilizing the following

» Formula of Total Probability«
Pr(B) = Pr(B|A;) - Pr(Ay) + Pr(B|As) - Pr(Az) + ... + Pr(B|Ax) - Pr(4g)

which can be readily verified by a Venn diagram when we realize that Pr(B|A;) -
Pr(A;) = Pr(B N A;), Pr(B|As) - Pr(Ay) = Pr(B N Ay), etc. The difficulty of
applying the formula to a specific situation relates to the fact that the question
will normally specify B only; the actual partition must be introduced by us, intel-
ligently, as a part of the solution.

EXAMPLE: Two players are dealt 5 cards each. What is the probability that
they will have the same number of aces?

Solution: We partition the sample space according to how many aces the first
player gets, calling the events Ag, Ay, ..., A4. Let B be the event of our ques-
tion (both players having the same number of aces). Then, by the formula of
total probability: Pr(B) =Pr(Ay) Pr(B|A¢)+ Pr(A;) Pr(B|A;)+ Pr(Ay) Pr(B|A2)+

P P+ P o140 ~ G G0 060 G T
A, G 0, ) 0 s m
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» Bayes Rule«

This time we start with an EXAMPLE:

Consider four ’black’ boxes: two of them (call them Type I) have 1 green and
2 red marbles inside, one (Type II) has 1 green and 1 red marble, and one
(Type III) has 2 green and 1 red marble. Let one of these boxes be selected at
random, and a marble drawn from it. The probability tree of this experiment
looks like this (the fraction in parentheses is the conditional probability of
the corresponding branch — this will be done properly in class):

15t branch  2"? branch Pr
@i Gr & O
1 N (%) g 7l
(Z) I — (?) r % v
N (3 o7}
() I — (é) r % v
N 5y 51

Let I, II, and III represent the events of selecting Type I, II, or III box; then
(I, II, III) is an obvious partition of the sample space. Similarly, if R and
G represent selecting a red and green marble, respectively (regardless of the
box), then (R, G) is yet another partition of our sample space.

1. Compute Pr(R):

Using the total-probability formula: Pr(R) =

Pr(R|I)- Pr(I)+ Pr(R[IL)- Pr(II)+ Pr(R|II)- Pr(Ill) =2+ 2+ 2 =54.17%.
This is the same as checking off (v') the simple events which contribute to R,
and adding their probabilities. The formula just spells out the logic of this
simple and natural procedure.

11

Similarly, we can compute Pr(G) = 3;.

2. Important: Find Pr(I|R):

This at first appears as a rather unusual question (to find the conditional
probability of an outcome of the first stage of our experiment, given the
result of the second stage — note the chronological reversal!). Yet, in the
next example we demonstrate that this is quite often what is needed.

Solution: We use the formal definition of conditional probability: Pr(I|R) =
8
Pli(rl(%};) = % = 2 — 61.54%. This is the probability of having selected

13

Type I box (we cannot tell - they all look identical) given that a red marble
was drawn. Note that this conditional probability is higher than the original
Pr(I) = 50% (do you understand why?). And, yet another marble drawn
from the same box may help us even more (especially if it’s also red!). B

The procedure for computing Pr(I|R) can be generalized as follows: check
off (v') all simple events contributing to R, out of these check off (perhaps using a
different symbol, () in our case) those which also contribute to I (i.e. of the INR
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overlap) Then divide the total probability of the later by the total probability of
the former.

This constitutes what I call the Bayes rule (your textbook presents it as
a formula, which we can bypass). We always encounter it in the context of a
multistage experiment to be dealt with by drawing the corresponding probability
tree.

Let us go over one more EXAMPLE of its application:

Let 0.5% of a population in a certain area have tuberculosis. There is a
medical test which can detect this condition in 95% of all (infected) cases,
but at the same time the test is (falsely) positive for 10% of the healthy
people [all in all, the test is at least 90% accurate].

The question is: A person is selected randomly and tested. The test is pos-
itive (indicating a presence of TB). What is the probability that the person
actually has it [our guess probably is: at least 90%, but we are in for a big
surprise].

Solution: This is a very simple two-stage experiment; in the first stage (con-
sidering how the experiment is actually performed) the person is selected,
resulting in either ’sick’ s or ’healthy’ h individual[the actual outcome is
hidden from us as sick and healthy people look the same to us] with the
probability of 0.005 and 0.995, respectively; in the second stage the per-
son is tested, resulting in either positive p (TB!) or negative n result (the
corresponding probabilities are of the conditional type, depending on the
first-stage outcome), thus:

(0.005) s — (0.95) p  0.00475 v O
\, (0.05)n  0.00025
(0.995) h — (0.10) p  0.09950 v’

\, (0.90)n  0.89550

If S denotes the ’sick person’ event and P stands for the 'positive test’ event,
we obviously need to compute Pr(S|P).

Using the Bayes rule, this is equal to % = 4.556% [still fairly small,
even though almost 10 times bigger than before the test]. Note that v' marks

simple events of P, and () those of SN P. W

Independence
»Of Two Events«

is a rather natural notion: if the experiment is done in such a manner that A
(happening or not) cannot influence the probability of B, B is independent of A.
Formally, this means that Pr(B|A) = Pr(B) [knowing that A has happened does
not change the probability of B]. Mathematically, this is equivalent to: Pr(ANB) =
Pr(A) - Pr(B), and also to Pr(A|B) = Pr(A). Thus, B being independent of A
implies that A is independent of B, which means that independence of two events
is always mutual (A x B will be our informal notation for independence of A and
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B). The same condition is also equivalent to Pr(4 N B) =Pr(A) - Pr(B) [prove!],
etc. Thus Ax B&Ax Be&Ax B&Ax B.

We should mention that the condition of independence may sometimes be met
"accidently’ by two events which do seem to influence each other. Technically,
they will also be considered independent, but such artificial independence is of
not much use to us. We will concentrate on independence which we can clearly
deduce from the nature of the experiment, such as: an outcome of one die cannot
influence the outcome of another die; but also: an outcome of a die cannot influence
its future outcome(s) — a die has no memory. Avoid the common mistake of
confusing independence with being mutually exclusive — two events which are
independent must have a non-zero overlap (of a specific size); on the other hand
exclusive events are strongly dependent, since Pr(A|B) = 0 [and not Pr(A)].

The notion of independence can be extended to 3 or more events.
The natural, mutual independence of
» Three Events«

requires them to be independent pairwise, plus: Pr(AN BN C) =Pr(A) - Pr(B) -
Pr(C).

And again, this is the same as A, B and C' being mutually independent, etc.
(eight distinct ways of putting it).

Mutual independence also implies that any event build from A and B (e.g.
AU B ) must be independent of C.

In general » i Events«

are mutually independent if the probability of any intersection of these (or their
complements) is equal to the corresponding product of individual probabilities
[2% — 1 — k conditions when not considering complements!].

The main point of natural independence is that all of these conditions are
there, automatically, for us to utilize, just for realizing that the events have no way
of influencing each other’s outcome.

Mutual independence of A, B, C, D, ... also implies that any event build of A,
B, ... must be independent of any event build out of C, D, ... [as long as the two
sets are distinct].

Proof: We have already seen that any event can be replaced by its comple-
ment without effecting independence. The mutual independence of A, B
and C implies that A N B and C are independent [Pr{(AN B)NC} =
Pr(A) Pr(B) Pr(C) = Pr(An B)Pr(C)], and also that AU B and C are in-
dependent [Pr{(AUB)NC} = Pr(ANC)+Pr(BNC)—-Pr(ANBNC) =
Pr(A) Pr(C)+ Pr(B) Pr(C)— Pr(A) Pr(B) Pr(C) = (Pr(A) + Pr(B) — Pr(A) Pr(B)) Pr(C) =
Pr(AU B) Pr(C)]. The rest follows by induction. [

The final and most important



» Implication of Independence«

To compute the probability of a Boolean expression (itself an event) involving

only mutually independent events, it is sufficient to know the events’ individual
probabilities. This is clear from the fact that the probability of any composite event
can be expressed in terms of probabilities of the individual-event intersections, and
these in turn can now be converted to products of individual probabilities (the
actual computation may be further simplified by various ’shortcuts’).

EXAMPLE: Let Pr(A) = 0.1, Pr(B) = 0.2, Pr(C) = 0.3 and Pr(D) = 0.4 .

Compute Pr[(AU B)NC U D|.

Solution: = Pr(AUB)-[1 —Pr(CUD)] =[0.140.2—0.02] - [1 —0.3 — 0.4 +
0.12] =11.76% W

End-of-chapter examples

e Express Pr{(AUCN D) N BUD} in terms of the individual probabilities
Pr(A), Pr(B), ... assuming that the four events are independent.

Solution: = Pr{(AUCUD)NBND} = Pr{(AuCUD)ND}-[1—-Pr(B)] =
Pr{(AND)U(CND)UP}-[1—Pr(B)] = {Pr(A)Pr(D)+ [1-Pr(C)]Pr(D)—
Pr(A)[1 — Pr(C)] Pr(D)} - [1 — Pr(B)].

e Let us return to Example 2 of the previous chapter (lottery with 100,000
tickets) and compute the probability that a randomly selected ticket has
an 8 and a 4 on it (each at least once, in any order, and not necessarily
consecutive).

Solution: Define A: no 8 at any place, B: no 4. We need Pr(AN B) [at least
one 8 and at least one 4] = Pr(AU B) [DeMorgan] =1 —-Pr(AUB) =1 —
Pr(A) — Pr(B) + Pr(AN B). Clearly A = A; N A2 N ...N Ajs, where A;: 'no
8 in the first place’, As: 'no 8 in the second place’, etc. A;, As, ..., A5 are
mutually independent (selecting a random 5 digit number is like rolling an
10-sided die five times), thus Pr(A) = Pr(A;) - Pr(Ay) - ... - Pr(4s) = ()°.

10
Similarly, Pr(B) = (5)°. Now, AN B = C; N Cy N ...N C5 where Cy: not 8
nor 4 in the first spot, Cs: not 8 nor 4 in the second, etc.; these of course are

also independent, which implies Pr(A N B) = (5)°.
Answer: 1 —2(5)° + (5)5 = 14.67%.

e The same question, but this time we want at least one 8 followed (sooner
or later) by a 4 (at least once). What makes this different from the original
question is that 8 and 4 now don’t have to be consecutive.

Solution: We partition the sample space according to the position at which
8 appears for the first time: By, Bs, ..., Bs, plus By (which means there is
no 8). Verify that this is a partition. Now, if A is the event of our ques-
tion (8 followed by a 4), we can apply the formula of total probability thus:
Pr(A) =Pr(A|By)-Pr(B)+ Pr(A|By)-Pr(By)+ Pr(A|Bs)-Pr(Bs)+ Pr(A|By)-
Pr(B,)+ Pr(A|Bs) - Pr(Bs)+ Pr(A|By) - Pr(Byp). Individually, we deal with
these in the following manner (we use the third term as an example): Pr(B3) =
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(15)*(15) [no 8 in the first slot, no 8 in the second, 8 in third, and anything af-
ter that; then multiply due to independence], Pr(A|B;) = 1—(55)? [given the
first 8 is in the third slot, get at least one 4 after; easier through complement:
1 — Pr(no 4 in the last two slots)].

Answer: Pr(A) =[1—(5)"] £+ 1 —(3)*] 5+ 11— () (F5)*5+[1—
2] (F)35+0- (3)* =8.146%

e Out of 10 dice, 9 of which are regular but one is ’crooked’” (6 has a proba-
bility of 0.5), a die is selected at random (we cannot tell which one, they all
look identical). Then, we roll it twice. The sample space of the complete
experiment, including probabilities, is

66 093 t=3%5 V
r66 09.61.65:% \/O
66 09.4.0_ %
/r' s = ==
o 01l 1-% g
6 o 11X
B owiiIme,
C d-=r 2 = =
66 Ol.f.f:@
’ 2 2 360

We will answer three question:

1. Given that the first roll resulted in a six (Event S;), what is the (con-
ditional) probability of getting a six again in the second roll (Event
Ss)?

Solution: In our sample space we mark off the simple events contributing
Pr(5: NS
to Sy (by v') and to Sy (by (O) and compute % (by adding
r{o1
the corresponding probabilities).
Answer: % (the common denominator of 360 cancels out) = 25%.
2. Are S; and S5 independent?

Let us check it out, carefully! Pr(S; N Ss) 2 Pr(S;) - Pr(Ss).
Solution: 48 (= &) # & . 2 (= L),
Answer: No.

3. Given that both rolls resulted in a six, what is the (conditional) proba-
bility of having selected the crooked die?
.9
Answer: o = 50%.
e Ten people have been arrested as suspects in a crime one of them must have
committed. A lie detector will (incorrectly) incriminate an innocent person

with a 5% probability, it can (correctly) detect a guilty person with a 90%
probability.

1. One person has been tested so far and the lie detector has its red light
flashing (implying: ’that’s him’). What is the probability that he is the
criminal?



Solution: Using ¢ for ’criminal’, ¢ for ’innocent’ r for 'red light flashing’
and g for 'green’, we have the following sample space:

cr %-1%20.090 v O

cg %g - 15 = 0.010
i L %8 =0.045 v
: 9 19 _
Answer: Pr(C|R) = % = 2 (far from certain!).

2. All 10 people have been tested and exactly one incriminated. What is
the probability of having the criminal now?

A simple event consists now of a complete record of these tests (the
sample space has of 210 of these), e.g. rggrggrggg. Assuming that the
first item represents the criminal (the sample space must ’know’ who
the criminal is), we can assign probabilities by simply multiplying since
the tests are done independently of each other. Thus, the simple event
above will have the probability of 0.9x 0.952x 0.05x 0.95%x 0.05x 0.953,
etc. Since only one test resulted in r, the only simple events of relevance
(the idea of a 'reduced’ sample space) are:

rgg99999gg 0.9 x 0.95°
grgggggggg 0.1 x 0.95% x 0.05

999999gggr 0.1 x 0.95% x 0.05

Given that it was one of these outcomes, what is the probability it was
actually the first one?

0.9 x 0.95
A : = 1
NSWer: X 0.959 9 X 0.1 X 0.95° x 005 — 270 (mow we are a lot

more certain — still not 100% though!).

e Two men take one shot each at a target. Mr. A can hit it with the probability
of 2, Mr. B’s chances are 2 (he is a better shot). What is the probability that
the target is hit (at least once)?

Here, we have to (on our own) assume independence of the two shots.
Solution (using an obvious notation): Pr(AU B) = Pr(A) + Pr(B) — Pr(AN
B)=;+2—15="5%.

Alternately: Pr(AUB) =1—-Pr(AUB)=1-Pr(ANB)=1-3.2 =55%
[replacing Pr(at least one hit) by 1 — Pr(all misses)].

e What is more likely, getting at least one 6 in four rolls of a die, or getting at
least one double 6 in twenty four rolls of a pair of dice?

Solution: Let’s work it out. The first probability can be computed as 1—Pr(no
sixes in 4 rolls) = 1 — (2)* [due to independence of the individual rolls]
= 51.77%. The second probability, similarly, as 1 — Pr(no double six in 24

rolls of a pair) = 1 — (2)* =49.14% [only one outcome out of 36 results in
a double six].

Answer: Getting at least one 6 in four rolls is more likely.
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e Four people are dealt 13 cards each. You (one of the players) got one ace.
What is the probability that your partner has the other three aces? (Go back
three questions to get a hint).

We can visualize the experiment done sequentially, with you being the first
player and your partner the second one [even if the cards were actually dealt
in a different order, that cannot change probabilities, right?]. The answer is
a natural conditional probability, i.e. the actual condition (event) is decided
in the first stage [consider it completed accordingly]. The second stage then
consists of dealing 13 cards out of 39, with 3 aces remaining.

3 36
Answer: % = 3.129%.
13

The moral: conditional probability is, in some cases, the ’simple’ probability.

e A, B, C are mutually independent, having (the ind_ividual) probabilities of
0.25, 0.35 and 0.45, respectively. Compute Pr[(A N B) U C].

Solution: = Pr(ANB)+ Pr(C) —Pr(ANBNC) =0.25 x 0.65+ 0.45 — 0.25 x
0.65 x 0.45 = 53.94%.

e Two coins are flipped, followed by rolling a die as many times as the number
of heads shown. What is the probability of getting fewer than 5 dots in total?

Solution: Introduce a partition Ay, Ay, Ay according to how many heads are
obtained. If B stands for 'getting fewer than 5 dots’, the total-probability for-
mula gives: Pr(B) =Pr(Ag) Pr(B|Ay)+Pr(A;) Pr(B|A;)+Pr(Az) Pr(B|Ay) =
Ix1+2x2+1x3=625%.

The probabilities of Ay, A;, and A, followed from the sample space of two
flips: {hh, ht,th,tt}; the conditional probabilities are clear for Pr(B|Ay) and
Pr(B|A;), Pr(B|As) requires going back to 36 outcomes of two rolls of a die
and counting those having a total less than 5: {11,12,13,21,22,31}.

e Consider the previous example. Given that there were exactly 3 dots in total,
what is the conditional probability that the coins showed exactly one head?

Solution: We are given the outcome of the second stage to guess at the out-
come of the first stage. We need the Bayes rule, and the following (simplified)
sample space:

03 -0 v
03 -1
23 i-g%g v
Q 1.3
23 .-

where the first entry is the number of heads, and the second one is the result
of rolling the die, simplified to tell us only whether the total dots equaled 3,
1

or did not (3). Pr(1]3) = — f +— =85.71%. Note that here, rather atypically,
12 72

we used bold digits as names of events.
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e Jim, Joe, Tom and six other boys are randomly seated in a row. What is the

probability that at least two of the three friends will sit next to each other?

Solution: Let’s introduce A: ’Jim and Joe sit together’, B: *Jim and Tom sit
together’, C: ’Joe and Tom sit together’. We need Pr(AUBUC) =Pr(A) +
Pr(B)+Pr(C)—Pr(ANB)—Pr(ANC)—Pr(BNC)+Pr(ANBNC). There
is 9! random arrangements of the boys, 2 x 8! will meet condition A (same
with B and ('), 2 x 7! will meet both A and B (same with ANC and BN(C),
none will meet all three.

Answer: 3 x 23!8! — 3 x &I —58.33%.

9!

(From a former exam — these are usually a touch easier): Shuffle a deck of
52 cards. What is the probability that the four aces will end up next to each
other (as a group of four consecutive aces)?

Answer: 4239 — 0.0181% (= =%=) [for small probabilities, the last number
— telling us that this will happen, on the average, only in 1 out of 5525

attempts — conveys more information than the actual percentage].

Consider a 10 floor government building with all floors being equally likely to
be visited. If six people enter the elevator (individually, i.e. independently)
what is the probability that they are all going to (six) different floors?

Solution: The experiment is in principle identical to rolling a 9-sided die
(there are nine floors to be chosen from, exclude the main floor!) six times
(once for each person — this corresponds to selecting his/her floor). The
sample space thus consists of 9% equally likely outcomes (each looking like
this: 248694 — ordered selection, repetition allowed). Out of these, only
9Xx8xTxX6xb5x4= P consist of all distinct floors.

Answer: 5—5 = 11.38%.

(Extension of the previous example). What if the floors are not equally likely
[they issue licences on the 4" floor, which has therefore a higher probability
of % to be visited by a 'random’ arrival — the other floors remain equally
likely with the probability of - each].

Solution: The sample space will be the same, but the individual probabilities
will no longer be identical; they will now equal to (3)*(%)%~* where 7 is how
many times 4 appears in the selection [248694 will have the probability
of (3)%(s5)* etc.]. We have to single out the outcomes with all six floors
different and add their probabilities. Luckily, there are only two types of
these outcomes: (i) those without any 4: we have P of these, each having
the probability of (£)¢, and (ii) those with a single 4: there are 6 x P} of

these, each having the probability of (3)(55)°.

Answer: P§(=)5+6P8(3)(55)° = 2.04% (the probability is a lot smaller now).
Within the next hour 4 people in a certain town will call for a cab. They will

choose, randomly, out of 3 existing (equally popular) taxi companies. What
is the probability that no company is left out (each gets at least one job)?
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Solution: This is again a roll-of-a-die type of experiment (this time we roll 4

times — once for each customer — and the die is 3-sided — one side for each

company). The sample space will thus consist of 3 equally likely possibilities,

each looking like this: 1321. How many of these contain all three numbers?

To achieve that, we obviously need one duplicate and two singles. There

are 3 ways to decide which company gets two customers. Once this decision
. . 4

has been made (say 1223), we simply permute the symbols [getting (27171)
distinct 'words’].
4

3 X (2,171)

Answer: e

= % = 44.44%.
There are 10 people at a party (no twins). Assuming that all 365 days of a
year are equally likely to be someone’s birth date [not quite, say the statistics,

but we will ignore that] and also ignoring leap years, what is the probability
of:

1. All these ten people having different birth dates?

Solution: This, in principle, is the same as choosing 6 different floors in
an elevator (two examples ago).

P
A : = 88.31%.
nswer: oo %
2. Exactly two people having the same birth date (and no other duplica-

tion).
Solution: This is similar to the previous example where we needed ex-
actly one duplicate. By a similar logic, there are 365 ways to choose

the date of the duplication, (120) ways of placing these into 2 of the 10

empty slots, and P3% of filling out the remaining 8 slot with distinct
birth dates.

365 x () x Pg%

AT = 11.16% (seems reasonable).

Answer:

These two answers account for 99.47% of the total probability. Two or three
duplicates, and perhaps one triplicate would most likely take care of the rest;
try it!

A simple padlock is made with only ten distinct keys (all equally likely). A
thief steals, independently, 5 of such keys, and tries these to open your lock.
What is the probability that he will succeed?

Solution: Again, a roll-of-a-die type of experiment (10 sides, 5 rolls). The
question is in principle identical to rolling a die to get at least one six. This,
as we already know, is easier through the corresponding complement.

Answer: 1 — ()5 =40.95%. W
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Chapter 3 RANDOM VARIABLES -
DISCRETE CASE

If each (complete) outcome [simple event] of a random experiment is assigned a
single real number (usually an integer), this (assignment) is called a random
variable (RV). Using the same experiment we can define any number of random
variables, and call them X, Y, Z, etc. (capital letters from the end of the alphabet).

EXAMPLE: Using the experiment of rolling two dice, we can define X as the
total number of dots, and Y as the larger of the two numbers. This means
assigning numbers to individual simple events in the following fashion:

X: Y:
21314 5| 6| 7 1{2|13[4]|5|6
31415 6 7| 8 212131456
41516 7] 8] 9 313(13|4(5]|6
5167 8| 910 4141414156
6|78 91011 5|5[5|5|5|6
7181910 11] 12 6|/6/6|6|6]|6

Note the difference between events and random variables: an event is effec-
tively an assignment, to each outcome, of either 'yes’ (v', meaning: I am in) or
'no’ (blank, meaning: I am out). E.g. Event A: ’the total number of dots is even’
will be represented by:

v v v
v v v
v v v
v v v
v v v
v v v

Probability distribution of a random variable
is a table (or formula) summarizing the information about

1. possible outcomes of the RV (numbers, arranged from the smallest to the
largest)

2. the corresponding probabilities. Il

Thus, for example, our X and Y have the following (probability) distributions:

X=| 2 3 4 5 6 7 8 9 (10| 11| 12
Py 1 2 3 4 D §] 5) 4 3 2 1
- 6136136136136 1361361361361361 36
and
Y=| 1 2 3 4 5 6
1 3 5 7 9 11
Pr: | =|=|=|=|=1| =
36136 1361361361 36
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The probabilities of each distribution must of course add up to 1 (checking this is
a lot easier if you use the same denominator).

Later on we will find it more convenient to express the same information using
formulas instead of tables (we will stick to tables for as long as we can, i.e. for
the rest of this chapter). Thus, for example the distribution of X can be specified
by: fx(i) = % with ¢ = 2, 3,...12 where fx(z) is the so called PROBABILITY
FUNCTION of X. Similarly: fy (i) = 2= withi = 1, 2, ...6 (these being the potential

36
values of Y, fy (i) computing the corresponding probability).

Formulas become more convenient when dealing with RVs having too many
(sometimes infinitely many) values. Thus, for example, if we go back to the
experiment of flipping a coin till a head appears, and define X as the total number
of tosses (anything which translates an outcome of an experiment into a single
number is a RV), we have a choice of either

X=|1(21]3]|4]... R
. 1 1 1 1 T
Pr: 5 b 53 57 | oo 57 | oo

or fx(i) = 5 with ¢ =1, 2, 3,.... [implying: up to infinity]. In this case, one would
usually prefer the formula to an unwieldy table.

Sometimes it’s useful to have a graph (histogram) of a distribution. The
probabilities are usually displayed as vertical bars or (connected) rectangles. We
get a nice graphical view of what’s likely and what is not.

» Distribution Function of a Random Variable«

At this point the names may get a bit confusing. Learn to differentiate between
a probability distribution [a more generic term implying a complete information
about a RV, usually in a form of a table or a probability function f(i) | and a
distribution function (I like to call it 'capital F”), which is defined by: Fx (k) =
Pr(X < k) i.e. effectively a table (or a formula) providing cumulative (i.e. total)
probabilities of intervals of values, from the smallest up to and including &.

Thus, using one of our previous examples:

Y=(|1|2 |3 | 4] 5|6
1 4 9 116125
FyZ 1

It is obvious that the values of F'(k) can only increase with increasing k, and
that the last one must be equal to 1. When there is no last value (i.e. k can go up
to infinity), it is the klim Fx (k) which must equal to 1.

— 00

EXAMPLE: The total number of tosses in the flip-a-coin experiment has the
k (1)\F
following distribution function: Fx(k) =3 (3)" =3 - & l(i) =1— (3)k, for
i=1 2
k=1, 2, 3,... (its argument is a '"dummy’ variable, it makes no difference
whether we call it i, j, k, or anything else — your textbook calls it z, but I
don’t like that notation). Obviously, klim Fx(k) =1 (check). B
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Multivariate distribution
of several random variables (we have already mentioned that more than one RV
can be defined for the same experiment). We start with the

» Distribution of Two Random Variables«

A two dimensional table which, for every combination of the RVs’ values spec-
ifies the respective probability, is called their (bivariate) joint distribution.

The same information can be usually given (in a more 'compact’ form) by the
corresponding probability function f(i,j) and the range of possible i (the first
RV’s) and j (the second RV’s) values. Unlike you textbook, I usually like to include
the names of the two RVs as subscripts, thus: fxy (4, ).

EXAMPLE: A coin is flipped three times. X: total number of tails, Y: number
of heads up to the first tail. We first display the sample space with the values

of X and Y:
Prob: Outcome: X: Y:
% HHH 0o 3
% HHT 1 2
L HTH 1 1
i HTT 2 1
i THH 1 0
z THT 2 0
% TTH 2 0
% TTT 3 0

The joint distribution of X and Y follows:

E NEARE
NEREN E
2 |2 100
3 15 000

Thus, for example Pr(X =2NY =0) = 2, etc.

Trying to express this distribution via fxy (i, 7) would be rather difficult, and
the resulting function very unwieldy (to say the least) — there is no point
attempting it.

The joint distribution function is defined as Fiyy (i, ) = Pr(X <inY <j).
It’s not going to be used by us much.

Marginal distribution of X (and, similarly, of V') is, effectively the ordinary
(UNIVARIATE) distribution of X (asif Y has never been defined). It can be obtained
from the bivariate (joint) distribution by adding the probabilities in each row [over
all possible Y-values, using the total probability formula: Pr(X = 0) =Pr(X =
0NY =0)+Pr(X =0NY =1)+Pr(X =0NY =2)+Pr(X =0NY = 3); in this
context one must realize that Y =0, Y =1, Y = 2, .... are events, furthermore,
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they constitute a partition of the sample space]. The results are conveniently
displayed at the table’s margin (thus the name):

Y —
T
R b
o |21 0 of?
g i
3 [ 00 o0f1

implying that the marginal (i.e. ’ordinary’) distribution of X is

X p—
Pr:

ol O

ol— Co

oled —
oled DN

Similarly, one can find the marginal distribution of Y by adding the probabilities
in each column.

A bivariate distribution is often given to us via the corresponding joint proba-
bility function. One of the two ranges has usually the 'marginal’ form (the limits
are constant), the other range is 'conditional’ (i.e. both of its limits may depend
on the value ot the ohter random variable). The best way is to ’translate’ this
information into an explicit table whenever possible.

EXAMPLE: Consider the following bivariate probability function of two ran-
dom variables X and Y:

0<:1<2

. . _ . . 2
fxv(i,7) =c- (20 +j7) where i< <4

Find the value of ¢, the marginal distribution of Y and (based on this) Pr(Y <
2).

Solution: We translate the above information into the following table

| Y=]1]2]3 |4 |

X=01|1c|4c|9c | 16¢
1| 3c|6c]|1lc]| O
2110 |8 |0 0

1

=5, the marginal distribution of Y is

which clearly implies that ¢ =

Y=T1 12 |3 [4
. T TIS 2016
" |58 158 15: 158

and Pr(Y <2) = 2 —37.93%. B

Independence of X and Y is almost always a consequence of X and Y being
defined based on two distinct parts of the experiment which, furthermore, cannot
influence each other’s outcome(e.g. rolling a die 4 times, let X be the total number
of dots in the first two rolls, and Y be the total number of dots in the last two
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rolls). Normally, we should be able to tell, based on this, that X and Y must be
independent, and utilize the consequences of any such natural independence.

Formally, X and Y being independent means that Pr(X =iNY = j) =Pr(X =
i)x Pr(Y = j) for every possible combination of i and j (each joint probability is
a product of the two corresponding marginal probabilities). [We can readily see
that, in the above example, X and Y are not independent, since 0 # % X % ]. This
implies that, when X and Y are independent, their marginal distributions enable
us to compute each and every of their joint probabilities by a simple multiplication
(we usually don’t need to construct the corresponding, now fully redundant, join
probability table).

All of these concepts can be extended to
» Three or More Random Variables«

In such a case we usually don’t like working with (3 or more-dimensional) tables;
we will have to rely on formulas.

PI‘(X:ZQYZ]QZ:]C)Efxyz(Z,j,l{?)

defines the (joint) probability function; it must be accompanied by stipulating
the permissible ranges of i, j and k ( f given without this information would be
meaningless).

Based on this, we are able to instantly determine whether the corresponding
RVs are independent or not, since their independence requires that:

e f(i,7,k) can be written as a product of a function of i times a function of j
times a function of k,

and

e the i, j, and k ranges are (algebraically) independent of each other (i.e. both
the lower and upper limit of each range are fixed numbers, not functions of
the other two variables).

When either of these two conditions is violated (even if it is only by one item),
the two RVs are dependent.

EXAMPLES:

1. fxy(i,j) = %, where 1 < i <3 and 1 < j <1, clearly implies that X and
Y are not independent (here, both conditions are broken). To deal with this
bivariate distribution, my advice is to ’translate’ it into an explicit table of

joint probabilities, whenever possible (try it with this one).

2. fxvz(i,j, k) = 2% where 1 <i <3,1<j<3and 1<k <2. Yes, both
conditions are met, therefore X, Y and Z are independent. [It is then very
easy to establish the individual marginals, e.g.: fx(i) = c-i with 1 <7 <3,
where ¢ is a constant which makes the probabilities add up to 1 (% in this

case)]. B
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Finally, an important note about ranges: The are two distinct ways of spec-
ifying a two-dimensional region: we can start by the 'marginal’ range of ¢ values
and follow it by the ’conditional’ range of j values, or we can do it the other way
around (both descriptions are equally correct, but often appear quite distinct).
When constructing a marginal distribution, the summation must be done over the
‘conditional’ range of the other variable; thus, when working with formulas [in-
stead of explicit tables], one must always make sure that the ranges are in the
appropriate form (and be able to do the ’translation” when they are not).

EXAMPLE: f(i,j) = 82U where 0 <4 < 2 and i < j < i+ 2 [to un-
derstand the example, try translating this into the corresponding table of
probabilities]. Note that the corresponding two variables are not indepen-
dent. The other way of expressing the ranges (this time, it is rather tricky)
is: 0 < j <4 and max(0,5) < ¢ < min(2,5) [I hope you understand the
max/min notation — verify that this is so!|]. B

Similarly, there are 6 (in general) distinct ways of stipulating the ranges of i,
j and k (we may start with the marginal range of ¢, follow with the j-range given
1, and finally the k-range given both ¢ and j; obviously having 3! choices as to the
order). This is very important for us to understand, especially when reaching the
continuous distributions [students always have difficulties at this point].

» Conditional Distribution <«

of X, given an (observed) value of Y.
Using the old notion for conditional probabilities, we know that

Pr(X =inY =j)

PH(Y =Y =) = =5

All we have to do is to introduce a new notation for these, namely: fx|y—;(i)
where i varies over its conditional range (given the value of j; we use a different
print type to emphasize that j has a specific, fixed value).

These probabilities (for all such i values) constitute a new, special probability
distribution called CONDITIONAL DISTRIBUTION which has, nevertheless, all the
properties of an ordinary distribution. They usually arise in a situation when a
specific value of one RV has already been observed, but one is still waiting for the
outcome of the other.

EXAMPLE: Using Table (*) of our original example, we can easily construct
YIX=2]|0
Prob: % %

each of them by their total (the corresponding marginal probability of X =

2). Note that values with zero probability have been discarded.

XY =0 2
Prob:

—_

by taking the probabilities in the X = 2 row and dividing

Similarly: |

N JOV]

s =
NI
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Things get more tricky when dealing with three (or more) Random Vari-
ables. One can define a conditional distribution of one of them, given a value of
each of the other two, say:

Pr(Xzé!Yzjmzzk):%

with i varying over all values permitted by j and k (fixed),

or a conditional (and joint) distribution of two of them, given a value of the third:

Pr(X =iNY =j|Z =k) = %(Zkik)

with ¢ and j varying over all pairs of values allowed by k.

Mutual independence implies that all conditional distributions are identical
to the corresponding marginal distribution. For example, when X, Y and Z are
mutually independent, Pr(X =i|Y =j) =Pr(X =), Pr(X =Y =jNnZ =
k) =Pr(X =1), etc. [X has the same distribution, whatever the value of the other
variable(s)].

The rule to remember: Under mutual independence it is legitimate to simply
ignore (remove) the condition(s).

Transforming random variables

It should be obvious that, if X is a random variable, any transformation of X (i.e.
X

an expression involving X, such as — + 1) defines a new random variable (say Z)

with its own new distribution. This follows from our basic definition of a random
variable (the experiment returns a single number).

EXAMPLE: If X has a distribution given by P)’( — (1) % z :15 then, to
rob: [z |52 %
S I
build a distribution of Z = % + 1, one simply replaces the first-row values of
Z=1113]2]2
: ) 2 2
the previous table, thus: Prob: % % % %

Similarly, if the new RV is U = (X — 2)? [one can define any number of new
RVs based on the same X], using the same approach the new table would
U= |4|1]|0]|1

look: —t=tst1

Prob: sl3lz2ls

Here we of course don’t like the duplication of values and their general "disor-

U=10(1]2]3

der’, so the same table should always be presented as:

ol W~

Prob: % % 010

[the values 2 and 3 have been inserted, with zero probabilities, to make the
table more 'regular’ — doing this is optional]. H

The most important such case is the so called linear transformation of X,
ie.
Y=aX+0
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where a and b are two constants. Note that the shape (in terms of a histogram) of
the Y-distribution is the same as that of X, only the horizontal scale has different
tick marks now. The new random variable is effectively the old random variable on
a new scale (such as expressing temperature in Celsius to define X and in Fahren-
heit to ’transform it’ to Y). This is why linear transformations are particularly
easy to deal with, as we will see later.

Similarly, we can
» Transform Two Random Variables«
into a single one by using any mathematical expression (function) of the two.

EXAMPLE: If X and Y have the distribution of our old bivariate example, and
W =|X — Y|, we can easily construct the (univariate) distribution of W by
first building a table which shows the value of W for each X, Y combination:

Y =
1 2
Y 0 3
0 0 1 2 3
1 1 0 1 2
2 2 1 0 1
3 3 2 10
and then collect the probabilities of each unique value of W, from the smallest
to the largest, thus: W = (1) ! 3 iz)’ . This is the resulting distribution
Prob: [ = |2 ]2 ]2
- e I

of W.

Transforming RVs is a lot more fun in the continuous case (a few months from
now).
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Chapter 4 EXPECTED VALUE OF A
RANDOM VARIABLE

also called its mean or average, is a number which corresponds (empirically)
to the average value of the random variable when the experiment is repeated,
independently, infinitely many times (i.e. it is the limit of such averages). We
can compute it based on the RV’s distribution by realizing that the individual
probabilities (second row) represent the limit of the OBSERVED FREQUENCIES of
the corresponding values (first row).

For example, the probability of % (of getting a six when rolling a die) is
telling us that, in a long run, one sixth of all outcomes will have that value (exact
only in the infinite limit), etc. One also has to remember that averaging (i.e.
the very simple ’add all values and divide by their number’) can be simplified by
1Xk1+2><]€2+...+6><]€6

ki 4 ko + ... + kg
in a 1 (dot), ks is the number of those with 2 (dots), etc. [the numerator still gives
the simple sum of all observed values, and the denominator their number|. This
can be rewritten as 1 X r; +2 Xry+ ...+ 6 X rg where | = is the relative

where k; is the number of outcomes which resulted

k1
. k1+ko+...+ke
— 2 3 3
frequency of outcome 1, ry = e 18 the relative frequency of outcome 2, etc.

In the infinite limit the relative frequencies become the corresponding probabilities,
rr — f(1), o — f(2), etc. [recall that f(1) = Pr(X = 1),...]. The expected
(average) value of a RV X is thus 1 x f(1)+2x f(2)+...4+6 x f(6) or, in general,

n

B(X) = 3 i x /()

1=0

where the summation is from the smallest value (usually 0 or 1) to the largest
possible value, say n. Note that this simply means multiplying the numbers of the
first row (of a distribution table) by the corresponding numbers of the second row,
and adding the results.

E(X) is the usual notation for the expected value of X. Sometimes, for the
same thing, we also use the following alternate (’shorthand’) notation: py (u is the
Greek letter 'mu’, not to be confused with u ). We will often refer to the process of
taking the expected value of a RV (or an expression involving RVs) as ’averaging’
[since weighted averaging it is].

EXAMPLES:

1. When X is the number of dots in a single roll of a die, this gives E(X) =
123444546 — 3.5, Note that this is the exact center (of symmetry) of the
distribution. This observation is true for any symmetric distribution, which
enables us to bypass the computation in such cases. Also note that the result
(3.5) is not one of the possible values. Thus the name (expected value) is
rather misleading, it is not the value we would expect to get in any roll.

2. Let Y be the larger (max) of the two numbers when rolling two dice [we

constructed its distribution in the previous chapter]. E(Y) =1 x 5= + 2 x
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+3>< +4><——|—5><——|—6><11 1+6+15+28+45+66:1 — 4473 Tn a
probablhty hlstogram Where probablhtles are represented by (heavy) bars,
this would correspond to their ’center of mass’ (if the z-axis is seen as a
weightless platform, this is the point at which the structure could be sup-
ported without tilting). This enables us to roughly estimate the mean and
detect a possible computational error when it happens (if nothing else, make
sure that the answer is within the RV’s range)!

3. Let U have the following (arbitrarily chosen) distribution:

U=]o 1 2 4
Prob: [[ 0.3 0.2 0.4 0.1

E({U)=02+08+04=14. 1
When »Transforming <

a random variable, what happens to the mean?

The main thing to remember is that in general (unless the transformation is
linear — to be discussed later) the mean does not transform accordingly, and has
to be computed anew, i.e. E[g(X)] # g (E[X]) [same as g(uy) in ’shorthand’], the
simplest but rather important example being: B(X?) # (E(X))? [= p& !

EXAMPLE: Related to the previous problem, we define W = |U —2J3. It would
be a big mistake to assume that E[|U — 2[*] = [E(U) — 2> = 0.63 = 0.216,
it is not. There are two ways of computing the correct expected value, as
follows:

e We can simply build the distribution of the new RV (the way we learned
in the previous chapter), and then use the basic procedure of computing its

W=1] o0 1 8
Prob: H 04 02 04 — B(W)=02+32=34

mean:

e We can use the old distribution, adding an extra row for the new RV’s values:

= 8 1 0 8
= 0 1 2 4
Prob: | 0.3 0.2 04 0.1

and then perform the following 'weighted’ averaging of W: E(W) = 8 x 0.3+
1 x0.240x0.44 8 x 0.1 resulting in the same answer of 3.4. W

The equivalence of the two techniques is true in general, we can summarize
it by the following formula:

E[W = i fw() = g(i) x fu(i)

All § Alld

where g(U) is the actual transformation [ g(U) = |U — 2[* in our example].
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For »Linear Transformations«

i.e. those of the type Y = aX + b (where a and b are two constants), the situation
is different; we can prove easily that

E(aX +¢) = aE(X) + ¢

Proof: B(aX +¢) =Y (ai+c)fx(i) =a > ix fx(i)+c > fx(i) =aB(X)+cO
All'i All'i All'i
EXAMPLE: E(2U — 3) = 2 x 1.4 — 3 = —0.2 [where U is the variable of the

previous sections|. Verify this by a direct technique (you have a choice of
two) and note the significant simplification achieved by this formula. B

Expected values related to a bivariate distribution
When a bivariate distribution (of two RVSs) is given, the easiest way to compute
the individual expected values (of X and Y') is through the marginals.

EXAMPLE: Based on

X =
1 2 3
Y= 0] 01 0 03]|04
1103 01 02]0.6
04 0.1 0.5

we compute BE(X) =1x04+2x01+3x05=21and E(Y)=0x04+
1x06=06 1

We know that any function of X and Y (e.g. their simple product X -Y ) is
a new random variable with its own distribution and therefore its mean. How do
we compute E(X - Y)? Again, we have two ways of doing this, either by building
the distribution of Z = X - Y and using the usual formula, or by multiplying the
(joint) probabilities of the bivariate table by the corresponding value of X - Y and
adding the results (over the whole table, i.e. both rows and columns), thus (using
the previous example): BE(X -Y)=1x0x014+2x0x0+3x0x03+1x1x
03 +2x1x01+3x1x02=1.1.

This means that in general we have

Rows Columns

More EXAMPLES [based on the previous bivariate distribution]:

1. E[(X —1)? = 02%x0.4+12%x0.1+2%x0.5 = 2.1 [here we used the X-marginal,
bypassing the 2-D table].

2. B 5= = ez X 04+ 5z x 0.6 = 0.7 [similarly, use the Y-marginal].
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3. E [(ﬁ‘;f} [don’t try to multiply the last two results, that would be wrong].

Here it may help to first build the corresponding table of the (ﬁg}f values:
8 i ;l , then multiply each item of this table by the corresponding item
2

of the probability table and add the results: 1.2 4 0.05 + 0.4 [discarding zero
values| = 1.65. B

» Linear Case«

Please note that in general we again cannot equate E [g(X,Y")] with g(py, ity ),
unless the function is linear (in both X and Y) i.e. ¢(X,Y) =aX+bY +c¢. Then
we have:

E[aX +bY + ¢ =aB(X)+0E(Y) + ¢

Proof: E[aX +b0Y + ] => > (axi+bxj+c)fxy(i,j) =ad ix fx(i)+b>  jx
T g 5 7
fy(j)+c=aB(X)+bE(Y) + ¢ . Note that i is treated as a constant by the

J summation and vice versa. [

EXAMPLE: Using the previous bivariate distribution, E(2X —3Y 4-4) is simply
2x21-3x06+4=641

The previous formula easily extends to any number of variables:
E [ale + a2X2 + ...+ aka + C] = a1E<X1) + CLQE(XQ) + ...+ akE(Xk) +c

Note that no assumption of independence was made about these variables!

»Independence Related Issues«

Can independence help when computing some of our expected values? The
answer is yes, the expected value of a product of RVs equals the product of the
individual expected values, when these RVs are independent:

XxY = EX-Y)=EX) EY)

where X is our notation for (pairwise) independence.

Proof: E(X-Y) :;;iijfx(i)Xfy(j) = (Zz X fx('i)> X (%:J X fy(j)> =E(X):-
E(Y) O
The statement can actually be made more general:
XxY = ElgX) ¢Y)=ElgnX) - ElgaY)

where g1 and g9 are any two (univariate) functions (Proof would be practically the
same).



55

Moments of a single random variable

We now return to the case of a single RV and define its so called MOMENTS as
follows: E(X™) where n is an integer is called the n'* simple moment of X (or,
of the corresponding distribution). The mean E(X) is thus the first simple mo-
ment (yet another name for the same thing!), E(X?) is the second simple moment
(remember, it is not equal to the first moment squared!), etc. The zero moment,
E(XY = 1), is always identically equal to 1.

Similarly we can define the so called central moments (your textbook calls
them 'moments with respect to the mean’, but that’s too long for us!) asE [(X — pux)"],
where 1y = BE(X) [as we know already]. Thus, the first central moment E(X —
Ux) =px — px = 0 [always identically equal to zero, and of not much use].

The second central moment B [(X — puy)?| =E[X? — 2X uy + p%] =E(X?) —
213 + % =E(X?) — % > 0 (averaging non-negative quantities cannot result in a
negative number; also, the last expression is more convenient computationally than
the first) is of such importance that it goes under yet another name, it is called the
RV’s variance, notation: Var(X). Its purpose is to measure the spread (width) of
the distribution by finding a typical, ’average’ deviation of the observations from its
‘center’ 11y . Note that averaging the deviation X — y directly would have given us
zero, as the positive and negative values cancel out. One could propose averaging
| X — puy | to correct that problem, but this would create all sorts of difficulties,
both computational and ’theoretical’ (as we will see later). So we have averaged
(X — py)?, which also gets rid of the cancellation problem (and more ’elegantly’
s0), but results in the average squared deviation [if X is length, its variance will
be in square inches — wrong units|.

This can be fixed by simply taking the square root of the variance [which
finally gives us this ’typical’ deviation from the mean] and calling it the standard
deviation of X, notation: ox = \/Var(X) [this is the Greek letter 'sigma’]. One
can make a rough estimate of o from the graph of the distribution (the interval
it — o to p + o should contain the 'bulk’ of the distribution — anywhere from 50
to 90%); this rough rule should detect any gross mistake on our part.

E(X — 3
Finally, SKEWNESS is defined as M [it measures to what extent is
o
the distribution non-symmetric, or better yet: left (positively) or right (positively)
E[(X — px)’]

'skewed’], and KURTOSIS as [it measures the degree of 'flatness’, 3

4
o
being a typical value, higher for 'peaked’, smaller for flat” distributions|. The last

two quantities (unlike the variance) are of only a marginal importance to us.
EXAMPLES:

1. If X is the number of dots when rolling one die, uy = % [we computed that

already], Var(X) =128 60 (%)2 =32 [we used the ’computa-
tional’ formula E(X?) — u% , verify that BE[(X — uy)?] results in the same

answer, but it is clumsier to use]. This implies that the standard deviation

ox = ,/% = 1.7078. Note that 3.5 4= 1.708 contains 66.7% of the distribu-
tion. Skewness, for a symmetric distribution, must be equal to 0, kurtosis can
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be computed based on E[(X — u)l] = (-25)1+(-15)1+(-05)7 40541514257 _

6
14.72

14. 729 = kurtosis = 29 = 1.7314 [flat’].
(%)2

U=o 1 2 4
Prob: || 0.3 0.2 0.4 0.1°
py = 1.4 [already computed], Var(U) = 0% x 0.3+ 12 x 0.2 + 2% x 0.4 + 42 x

01-142 =144 =0y =144 =1.2. From E [(U — py)?] =(—1.4)*> x 0.3+

(—0.4)3x 0.2+ 0.63x 0.4+ 2.63 x 0.1 = 1.008, the skewness is — 55 = 58333
[long right tail], and from B [(U — pp)*] = (=1.4)* x 0.3 + (—0.4)* x 0.2 +
0.6 x 0.4 + 2.6* x 0.1 = 5.7792 the kurtosis equals %22 = 2.787 W

2. Consider the distribution of one of our previous examples:

When X is transformed to define Y = g(X), we already know that there is no
general ’shortcut’ for computing E(Y"). This (even more so) applies to the variance
of Y, which also needs to be computed ’from scratch’. But, we did manage to
simplify the expected value of a linear transformation of X (of the Y = aX +¢
type). Is there any simple conversion of Var(X) into Var(Y') in this (linear) case?

The answer is "yes’, and we can easily derive the corresponding formula: Var(a X+
¢) = E[(aX + )} —(apux+c)? = Bla®>X? + 2aX + a?] — (aux +c)* = a’B(X?)—
a’p% [the rest cancel] = a*Var(X) [note that ¢ drops out entirely as expected,
it corresponds to the change of origin only — ’sliding’ the distribution by a fixed
amount ¢, which does not change its width|. This implies that

Tax+ec = |alox

(don’t forget that v/a2 = |al, not a).

Moments — the bivariate case

When dealing with a joint distribution of two RVs we can always compute the
individual (single-variable) moments (means, variances, etc.) based on the
corresponding the marginal distributions.

Are there any other (joint) moments? Yes, a whole multitude of them. And
similarly to the univariate case, we can separate them into simple (joint) moments
E(X™-Y™) and central moments: E[(X — uy)" - (Y — py)™] where n and m are
integers. Thus, for example, E(X?2-Y?3) computes the second-third simple moment
of X and Y.

» Covariance«

The most important of these is the first-first central moment, called the co-
variance of X and Y:

Cou(X,Y) = B[(X — ) - (V — iy )| = BX - Y) — jry - iy

[the last is the 'computational’ formula]. Covariance is obviously a ’symmetric’
notion, i.e. Cov(X,Y) = Cov(Y, X). It becomes zero when X and Y are indepen-
dent [this is an immediate consequence of what independence implies for products,
as we learned already]:

XxY=CowlX,Y)=0
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Note that this cannot be reversed: zero covariance does not necessarily imply
independence.

Based on the covariance one can define the
» Correlation Coefficient«

of X and Y by: pyy = 21 [this is the Greek letter 'rho’]. The absolute value

of this coefficient cannot be greater than 1.

Proof: B {[(X — ux) +A(Y — ,uy)]2} > 0 for any value of A [an arbitrary pa-
rameter]. Expanded, this implies Var(X) + 2ACov(X,Y) + A*Var(Y) >
0. The minimum of the left hand side [considering Var and Couv fixed]

isat A\ = —C‘izgn)é’))/) [by simple differentiation]. Substituting this A gives:
Var(X) — S50 > 0= g4, <10
X =
1 2 3

EXAMPLE: Using one of our previous distributions Y= 0[ 0.1 0 03] 0.4
1103 0.1 02]0.6
04 0.1 05
we have iy = 2.1, pyy = 0.6 [done earlier] Var(X) = 5.3 — 2.1 = .89,
Var(Y) = 0.6—0.6% = 0.24, Cov(X,Y) = 0.3+ 0.2+ 0.6 — 2.1 x 0.6 = —0.16
[as likely to be negative as positive] and pyy = \/% =—-0.3462 &

» Linear Combination of Random Variables«

One can simplify a variance of a linear combination of two RVs [so far we
have a formula for a X +c only]. Let’s try it: Var(aX+bY +c) = E[(aX + bY + ¢)?] —
(apix + bpg + ¢)* = a?B(X?) + D*E(Y?)+ 2abE(X -Y) — a?pk — b33 — 2abjuix iy
[the c-terms cancel] =

a?Var(X) 4+ b*Var(Y) + 2abCov(X,Y)

Independence would make the last term zero.
This result can be easily extended to a linear combination of any number of
random variables:
Var(ai X, + aaXo + ..ap Xp + ¢) = a2Var(Xy) + a3Var(Xs) + ... + aiVar(Xy) +
2&1&QCOU(X1, XQ) + 2&1&3001)()(1, Xg) + ...+ 2ak_1akCOU(Xk_1, Xk)
Mutual independence (if present) would make the last row of (’;) covariances dis-
appear (as they are all equal to zero).
And finally a formula for a covariance of one linear combination of RVs against

another:

Cov (a1 X1+ agXo + ..., 01Y1 + boYo +....) =
a1b1Cov( X1, Y1) + a1baCov(X1,Y3) + asbiCov(Xs, Y1) + asbeCov(Xa, Ys) + ...
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[each term from the left hand side against each term on the right - the ’distributive
law of covariance’]. Note that in the last formula the X and Y variables don’t
need to be all distinct; whenever we encounter something like Cov(U, U), we know
how to deal with it [by our definition: Cov(X, X) = Var(X)].

Correlation coeflicient: Using these formulas we can easily prove that p,x .,y 14 =
Cov(aX+c,bY+d) _ ab-Cov(X)Y)
OuxX+tcOby+d  lalblox-oy

they have opposite signs].

= +pyy [+ when a and b have the same sign, — when

Another important special case results when we independently sample the same
bivariate X-Y distribution n times, calling the individual results X; and Y;, X5
and Y, ...., X, and Y,,. These constitute the so called

» Random Independent Sample<« of size n

Note that in this case X7 X X5, ¥ X Y5, X7 x Y5, V7 x X, .... but
X; and Yj,...remain dependent. Obviously then Var(X; + Xo + ... + X,,) =
Var(Xy) + Var(Xz) + ... + Var(X,) = nVar(X) and, similarly, Var(> Y;) =

i=1
nVar(Y). On the other hand Cov(> X;, Y Y;) = Cov(X1,Y1) + Cov(Xs,Ys) +
=1 =1

..... + Cov(X,,,Y,) = nCov(X,Y).

All this implies that the correlation coefficient between the two totals » X;
=1

< - n Cov(X,Y) — . T
and ;YZ equals TG0 Jeve = pxy (the correlation between individual

X and Y observations). The same is true for the corresponding sample means
Zi:nl X and Zijllyi (why?).

Moment generating function
Technically, it is defined as the following expected value [but of a very special
type, so to us, MGF is really ’something else’]:

Mx(t) =E [e'¥]

where ¢ is an arbitrary (real) parameter [My(¢) will be our usual notation for a
MGF].

The main purpose for introducing a MGF' is this: when expanded in t, it
yields:
t3
3!
the individual coefficients of the t-powers being the simple moments of the distri-
bution, each divided by the corresponding factorial. Quite often this is the easiest
way of calculating them! Note that this is equivalent to:

Mx(t) =1+ tE(X) + gE(XQ) + =E(X?) + ...

E(X*) = MP(t = 0)

or, in words, to get the k%" simple moment differentiate the corresponding MGF k
times (with respect to t) and set ¢ equal to zero.
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EXAMPLE: Let us consider the distribution of the number of rolls when waiting
for the first head: f(i) = (%)1, i =1, 2, 3,...To compute its expected value

and standard deviation, we first need B(X) = > i x (3)' = 1 x 3 +2 X
i=1

(3)+3x(3)*+.... and B(X?) = ;iQ X (3). These infinite sums are neither

of the geometric, nor of the expo;lential type (the only two we know how
to handle), so unless we want to spend a lot of time learning about infinite
sums (we don’t), we have to resort to something else. Let us see how difficult

it is to build the corresponding MGF: M(t) = E [¢/*] = Y €'’ x (3) =
i=1

o0 i
3 (%) = A+ A2+ A3+ A'+ ... where A = %t This is a simple geometric
=1 .

2 —et’
meaningless, its shape has nothing to do with the distribution.) From this
M (t) we can find the first two simple moments by:

sum which has the value of ﬁ = (Displaying its graph would be

d ¢ 2¢!
M'(t) = — = =2
®) dt2—et  (2—e')?|,_,
"(t) = d 2 _ 4et + 2% p
dt (2 —e')?  (2—¢e)? |

The mean of the distribution is thus equal to 2 [we expected that: on the
average it should take two rolls to get a head — after all, if you keep on rolling,
half of the outcomes will be heads], the standard deviation is v/6 — 22 = V2 =
1.414 1

»Important Results« concerning MGF

For two independent RVs we have: My y(t) = E [e!X™)] [this follows from
the basic definition] = E [¢!* - '] = E[e!*] - E [¢"Y] [due to independence]
= Mx(t)- My(t), i.e. the MGF of a sum of two independent RVs is the product
of their individual MGF's. This result can be extended to any number of mutually
independent RVs:

Mx yyyz(t) = Mx(t) - My (t) - Mz(t)
etc. This result is more significant than it appears because it is very difficult to
find the distribution of an independent sum directly.

EXAMPLE: Find the distribution of the total number of dots in three rolls of
a die. We have the distributions for one and two rolls, to ’add’ these, we have
to first build the joint distribution of the two

2 3 4 5 6 7 8 9 10 11 12
1L 2 2 4 5 6 5 4 3 2 1
2%6 2%6 2%6 2&6 2%6 2%6 2%6 2&6 2%6 2%6 216
6|26 36 26 216 316 216 316 316 216 316 214
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with the corresponding table for the value of the sum

23 4 5 6 7 &8 9 10 11 12
113 4 5 6 7 8 9 10 11 12 13
214 5 6 7 8 9 10 11 12 13 14
315 6 7 8 9 10 11 12 13 14 15
416 7 8 9 10 11 12 13 14 15 16
o7 8 9 10 11 12 13 14 15 16 17
6(8 9 10 11 12 13 14 15 16 17 18

from which we can construct the univariate distribution of the sum by adding
probabilities corresponding to the same value [the usual procedure]:

X+Y|3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Prob: H 1 3 ® 10 15 2 2 2 2r 2 20 15 10 6 3 T
216 216 216 216 216 216 216 216 216 216 216 216 216 216 216 216

The point being: building the distribution of the sum of two independent RVs
is far from trivial. Constructing their MGF (from the individual MGFSs) is
trivial, all it takes is multiplying the two functions [nothing can be easier|. B

And one more formula: M,y .(t) = E [e(*XT9!] [by definition] = ¢ -E [¢"¥]
[since, with respect to E-averaging, e is constant] =

et - Mx(at)

i.e. to build the MGF of a linear transformation of a single RV one takes the
original MGF (of X)) (i) replaces ¢ by at (throughout) and (ii) multiplies the result
by e.

EXAMPLE: If X is the number of rolls till the first head, the MGF of 3X — 4

. _ 3t —t
ise . £ = ¢ [

2—e3t T 2—¢3t"

Note: Even though a full information about the corresponding distribution
is ’encoded’ into a MGF, its ’"decoding’ (converting MGF back into a table of
probabilities) is somehow more involved and we will be not discussed here. Instead,
we will just build a ’dictionary’ of MGFs of all distributions we encounter, so that
eventually we can recognize a distribution by its MGF.

Optional: Inverting MGF is relatively easy in one important case: When a RV
has only non-negative integers for its values, the corresponding MGF is actually a
function of z = €' (i.e. t appears only in the e’ combination). Seen as a function of
z, Mx(z) is called PROBABILITY GENERATING FUNCTION which, when expanded
in z, yields the probabilities of X = 0, X = 1, X = 2, ... as coefficients of 2°, 2!,

22, .... (respectively), thus: M(2) = po + p1z + p22% + p32® + ...

EXAMPLE: ;< = 32 = 2. 72 = £+ £ + £ + % + ... We have thus

2—z 1-2

recovered probabilities of the f(i) = 2i, i=1, 2, 3,.... distribution. W

[\GIEN
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Conditional expected value

is, simply put, an expected value computed (via the same 'multiply values by
probabilities, then add the results’ rule) using the corresponding conditional (rather
than ordinary) distribution, e.g.

X‘Y—l ZZXfx|Y1

etc.
EXAMPLE: Using one of our old bivariate distributions X =
1 2 3
Y= 0]01] 0 |03
1103 (01(0.2
04 01 0.5
E(X|Y = 1) will be constructed based on the corresponding conditional dis-
tribution
Xly=1]1 2 3
bk 1313

by the usual process: 1 x % +2 X % +3 X % = 1.833 (note that this is different
from E(X) = 2.1 calculated previously)

Similarly B(X?]Y =1) = 12 x 3 +22 x £ + 3% x 2 = 4.166 .

Based on these two, one can deﬁne Var(X|Y = 1) = 4.166—1.833% = 0.8056
[conditional variance].

Mxyy=1(t) = M [conditional MGF].

B(x]Y =1)=1x3+ixt+3x2=1069441

Infinite expected value
Final beware: Not all RVs need to have a (finite) expected value.

EXAMPLE: Consider the following simple game: You bet $1 on a flip of a coin
(say you bet on heads). It you win, you collect your $2 ($1 net) and stop.
If you lose your continue, doubling your bet. And so on, until you win. We
want to compute the expected value of our net win.

Solution: The experiment is the same as flipping a coin until a head appears,
with (%)Z being the probability of needing exactly ¢ flips. The RVs we need
are X: how much we bet on the i** flip, Y: how much money have we have
betted in total at that point, and Z: how much money we collect when the
head appears (in the i'* flip), thus:

‘ Simple event: | Prob: ‘ X ‘ Y | A |
H % 1 1 2
TH 2% 2 3 4
TTH 2%, 4 7 8
TTTH 2—14 8 15 |16
i flips = |27t ]2-1]2

0.4
0.6
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Note that our net win is Z — Y = 1, i.e. we always win $1 in the end!
Is this game fair (equitable)? Of course not, our probability of winning is
100% and the expected win is $1 (a fair game must have the expected net
win equal to 0). The catch is that you can play this game only if you have
unlimited resources (nobody does) because the expected value of Y (the
money you need to invest in the game before winning your $1) is infinite:
E(Y)=Y(2"-1)x(3)'= Y 1= (3)" = co—1 = oo. As soon as you put
i=1 i=1 =1

a limit on how much money you can spend (redoing our table accordingly —
try it), the game becomes fair. W

Remember: Some (unusual) RVs have infinite (or indefinite: co—o00) expected
value (in either case they say that the expected value does not exist). Other RVs
may have a finite expected value, but their variance is infinite. These RVs behave
differently from the 'usual’ ones, as we will see in later chapters.
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Chapter 5 SPECIAL DISCRETE
DISTRIBUTIONS

We will now discuss, one by one, those discrete distributions which are most fre-
quently encountered in applications. For each of them, we derive the probability
function f(i), the distribution function F'(i) [whenever possible], the mean and
standard deviation, and the moment generating function M (¢). For multivariate
distributions, we also like to know the covariance between any two of its RVs.

Univariate distributions
» Bernoulli«

Consider an experiment with only two possible outcomes (we call them SUCCESS
and FAILURE) which happen with the probability of p and ¢ = 1 — p respectively
[examples: flipping a coin, flipping a tack, rolling a die and being concerned only
with obtaining a six versus any other number, a team winning or losing a game,
drawing a marble from a box with red and blue marbles, shooting against a target
to either hit or miss, etc.]

We define a random variable X as the number of successes one gets in one
round, or TRIAL, of this experiment. Its distribution is obviously

X=10|1
Prob: | g | p

implying: B(X) = p, Var(X) =p —p* = pg, M(t) = q + pe".

» Binomial«

Same as before, except now the experiment consists of n independent rounds
(trials) of the Bernoulli type [independence means that the team is not improv-
ing as they play more games, the n marbles are selected with replacement, etc.].
The sample space consists of all n-letter words build of letters S and F', e.g.
SSFSFSSFFF [if nis 10]. We know that there are 2" of these. They are not
equally likely, the probability of each is p'q™~* where i is the number of S’s and
n — i is the number of F’s (due to independence, we just multiply the individual
probabilities). We also know that (?) of these words have exactly ¢ S’s, luckily
they all have the same probability p'¢"~*. Thus, the probability that our random
variable X [the total number of successes| will have the value of i is

(7;) plq" (f)

This of course is the probability function f(i), withi =0, 1,2,... ,n—1, n. Let
us verify that these probabilities add up to 1 (as a check): > (7)p'¢" " = (p+¢q)"

7

1=0
[the binomial expansion ’in reverse’] = 1" =1 (v').
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The name of the formula used for such a verification usually gives name to
the distribution itself [that is why several of our distributions acquire rather puz-
zling names]. B(n,p) will be our ’shorthand’ for this distribution, n and p are its
PARAMETERS.

There are three ways of deriving the expected value of X:

n . .
1. Using the basic expected-value formula: > i x (’Z) p'q"". Evaluating this is
i=0
actually quite tricky (see your textbook if interested) we will not even try it.

2. Note that X can be defined as a sum of n independent random variables of the
Bernoulli type (number of successes in Trial 1, Trial 2,.... Trial n), say X; +
Xo+ ... + X, [X1, Xs,...., X,, are said to be INDEPENDENT, IDENTICALLY
DISTRIBUTED]. Then, as we know, E(X) = E(X;)+ E(Xs) + ... +E(X,) =
p+p+..+p=

np (mean)

3. Using the corresponding MGF which, for the same reason (X being an inde-
pendent sum of X, Xo, ..., X,,) must equal to (¢+pe’) x (g+pe’) x ..... X (q+
pet) = (q + pet)™. One simple differentiation yields: n(g + pe!)" !pe! —>np

[check].

Similarly, the variance can be computed either from the basic definition (a
rather difficult summation which we choose to bypass), or from Var(X) = Var(X;)+
Var(Xs) + .... + Var(X,) [valid for independent X;s, which ours are] = pq + pq +

npq (variance)

or from the moment generating function, thus: M¥%(t) = n(n—1)(q+pe’)"2(pet)*+
n(q + pe")"pe! — n(n — 1)p? + np = n?p* — np* + np, yielding the value of

E(X?). Subtlracting_E(X)2 = n?p? gives: Var(X) = np — np® = npq [check].

Remark: When deriving the central moments, it is often more convenient to use
Mx_,(t) = e "'+ Mx(t) [the general formula] = (ge™P' + pe?®)" [in this
particular case]. Then, obviously, My _,(0) = Var(X), My_,(0) = B[(X —
)3], ete. Verify that this also results in Var(X) = npq. B

The moment generation function was already derived, based on the X =
X1+ Xo+.....+ X, argument. Let us re-derive it directly from the basic definition
of MX(t) _ E(eXt) _ Z%eit « (?)piqn—i _ z:o (7;) (pet)iqn—i _

(q+ pe')” (MGF)

[based on the same binomial formula] v'. Surprisingly [yet typically] it is easier to
find the expected value of eX! than the expected value of X itself (this is one of
the big advantages of MGFs).

There is no formula for the distribution function F(i), which means that the
probability of any range of values can be computed only by adding the individual
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probabilities. For example, if n = 20 and p = = [rolhng a die 20 times, counting the
sixes| the probability of getting at least 10 [dlfferent from more than 10, be careful

about this] equals () (5)"°(3)"°+ (1) ()" (3)*+ (1) ()2 ()" + -+ () ()™ ()
[must evaluate, one by one, and add] = 0.05985%.

Your main task will be first to recognize a binomial RV when you see one,
and be able to correctly apply the formulas of this section to specific questions.

» Geometric«

distribution is based on the same kind of experiment, where the independent
Bernoulli-type trials are performed, repeatedly, until the first success appears. This
time the random variable (we may as well call it X again, otherwise we would run
out of letters much too soon) is the total number of trials needed. We already
know that the simple events are S, F'S, F'F'S, FFF'S, .... with the probabilities of p,
qp, ¢*p, ¢°p, ... and the corresponding values of X equal to 1, 2, 3, 4, ... respectively.

The general formula for Pr(X = ¢) = f(i) is thus

pq (f)
where i =1, 2, 3, ..... To check that these probabilities add up to 1, we proceed as

follows: > p¢t = p(l+q+ @ +@3+....) = % :% = 1. The summation was
i=1

performed using the geometric formula (thus the name of the distribution). The
distribution has a single parameter p, and will be referred to as G(p).

To evaluate E(X) directly, i.e. by means of Z i X pg'~! would be quite difficult

[try it if you like, but you must know how to add 14+2q+3¢>+ 4q + .... first], so

we will use the MGF technique instead. To derive M (t), we need: Z et x pgi~! =
i=1

> elpelq)=t = pet[l+elq+(elq)*+ (elq) +....] which is again quite simple to deal

t
with (a geometric series). The answer is

-. Differentiating it with respect to

1—gqe
pe'(l—ge')—pe'ge’ _ _ pet p o
£, we get (1—get)? T T o B
1
— (mean)
p

This is then the expected value of X [on the average it should take 1+ = 6 rolls to

6
get a six; that seems to check, since, in an infinite sequence of trials, one sixth of
all outcomes would yield a 6].

pet(1—get)?—2(1—qe’) (—qe')pet

Similarly, one more differentiation of M () results in T P
% = % + 2% = 1% - 5, which yields B(X?). This implies that Var(X) =

1 (1 _ 1) (variance)

P \Pp
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e.g. the standard deviation of the number of trials to get the first 6 is /6 x 5 =
5.477 [almost as big as the mean itself, implying large variation].

To find the distribution function F(j) we first compute Pr(X > j) =
> Pr(X =i) = pg +pgt +pg P+ = pg (1 +q+ P+ ..) = £2 = ¢ for

i=j+1
any 7 =0, 1, 2, 3, .... From this

F(j)=Pr(X<j)=1-¢

easily follows. Thus, for example, the probability that it will take at least 10 rolls
to get the first 6 [same as more than 9] is Pr(X > 9) = (2)° = 19.38%. The
probability that it will take more than 18 rolls is (2)"® = 3.756% [implying that

the geometric distribution has a long TAIL].

» Negative Binomial«

distribution is [in spite of its name] a simple extension of the geometric (not bi-
nomial) distribution. This time the random variable X is the number of trials
until (and including) the k™ success. It can be expressed a sum of k independent
[a die cannot remember] random variables of the previous, geometric type, thus:
X = X1+ Xo + ... + X} where X is the number of trials to get the first success,
X, is the number of trials to get the second success (from that point on), etc.
This simplifies getting the mean and variance of X to mere multiplication of the
‘'geometric’ answers by k, resulting in 5 and p(p 1) respectively. Similarly, the
new MGTF is obtained by raising the old MGF to the power of k: (ﬁeq k. The
distribution’s parameters are k and p, its symbolic name will be N'B(k, p).

To get the individual probabilities of the Pr(X = i) type we must proceed
differently: we break the experiment into two uneven parts, namely: (i) the first
i — 1 rolls, and (ii) the last roll. To get the k™ success in this last roll we must
first get the first kK — 1 successes anywhere within the first 2 — 1 rolls, followed by a
success in the last, i roll. The former event has a probability of the binomial type:
(,:11) p*~1¢"*, the latter one’s probability is simply p. To get the overall answer we
multiply these two (due to independence), to get

<;_ Dpkq’ k= <z - ;)pqu g (f)

where t =k, k+ 1, k£ + 2, ... It helps to display these in an explicit table:

X=1k |k+1 k+2 k+3
Prob: | p* | kpFq (k+1)p q (k+2)p ¢

To verify that these probabilities add up to 1 we proceed as follows: 1 = p (
)= P = (Pa+ (O — (D7 4] = 1 1+ kg + (P)E + (50

The main part of thls proof was the generalized binomial expansion of (1—¢q)~* [an
expression with a negative exponent], which explains the name of the distribution.
We can now easily deal with questions like: what is the probability that it will take
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exactly 5 flips of a coin to get the third head [answer: (3)()%(3)>~® = 18.75%] and:
what is the probability of requiring exactly 10 rolls to get the second 6 [answer:

(?)(%)2(%)8 = 5.814%).

To be able to answer questions like: 'what is the probability that we will need
more than 10 rolls to get a second 6, the distribution function F(j) would come
handy [otherwise we would have to add the individual probabilities of this event,
or its complement — neither of which is very practical]. To answer the general
question of 'requiring more than j trials to get the k' success’ we realize that this
is identical to 'getting fewer than k successes in the first j trials’. And the problem
is solved, as we know how to deal with the second question: we just need to add

the corresponding binomial probabilities [of 0, 1, 2,....k — 1 successes in j trials]:
> (9)pi¢~". This implies that

1=

PrX <j)=F(j)=1- ki (‘Z)piq“

=0

EXAMPLE: More than 10 rolls of a die will be needed to get the second 6 with
the probability of (2)1° + (') (2)?(3)! = 48.45% [= fewer than 2 successes
in 10 rolls|]. W

» Hypergeometric«

distribution relates to the following experiment: Suppose there are N objects, K
of which have some special property, such as being red (marbles), being spades,
aces (cards), defective (items of some kind), women (people), etc. [let’s call the
remaining N — K objects 'ordinary’]. Of these N objects [in total], n [distinct] are
randomly selected [SAMPLING WITHOUT REPLACEMENT]|. Let X be the number
of ’special’ objects found in the sample. The sample space consists of a list of all
possible ways of selecting n objects out of N (order irrelevant). We know that
the total number of these is (f ) and that they are [when the selection