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Chapter 1 COUNTING AND RELATED
TOPICS

Permuting objects
In how many possible ways can we arrange

I n Distinct ObjectsJ

(such as a, b, c, d,....) in a row?

We start with n empty boxes which we fill, one by one, from left to right. We
have n choices to fill the first box, once it’s done there are n− 1 choices of how to
fill the second box, n − 2 choices for the third box, .... until we come to the last
box, having only 1 object (letter) left to put in. The choices obviously multiply,
as each ’word’ created at any stage of the process is unique (no duplicates). Thus

the answer is n× (n− 1)× (n− 2)× .....× 3× 2× 1 def.
= n!

What if some of these object are

IIndistinguishableJ

such as, for example aaabbc. How many distinct permutations of these letters are
there, i.e. how many distinct words can we create by permuting aaabbc? We can
start by listing all 6! permutations, and then establishing how many times each
distinct word appears on this list (the amount of its ’duplicity’ − one should really
say ’multiplicity’). Luckily enough, the ’duplicity’ of each distinct word proves to
be the same. We can thus simply divide 6! by this common duplicity to get the
final answer.
To get the duplicity of a particular word, such as, for example baacba we first

attach a unique index to each letter: b1a1a2c1b2a3 and then try to figure out the
number of permutations of these, now fully distinct, symbols, which keeps the
actual word (baacba) intact. This is obviously achieved by permuting the a’s
among themselves, the b’s among themselves, etc. We can thus create 3! (number
of ways of permuting the a’s) times 2! (permuting the b’s) combinations which
are distinct in the original 6!-item list, but represent the same word now. (We
have multiplied 3! by 2! since every permutation of the a’s combines with every
permutation of the b’s to provide a unique combination of the indexed letters).
The answer is thus

6!

3!2!1!
= 60

(we have included 1! to indicate that there is only one permutation of the single
c, to make the formula complete). The resulting expression is so important to us
that we introduce a new symbol

6!

3!2!1!

def.
=

µ
6

3, 2, 1

¶
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which we read: 6 choose 3 choose 2 choose 1 (note that the bottom numbers must
add up to the top number). It is obvious that the same argument holds for any
other unique word of the aaabbc type.

It should now be obvious that, in the case of permuting n1 a’s, n2 b’s, n3
c’s,........nk z’s, we will get

N !

n1!n2!n3!.....nk!

def.
=

µ
N

n1, n2, n3, ...., nk

¶
(*)

distinct words (where N =
kP
i=1

ni which is the total word length). These numbers

are called multinomial coefficients (later, we will learn why).

Selecting objects
The basic question of this section is:
In how many ways can we select r out of n distinct objects (letters)?

This question is actually ambiguous, in two ways:

1. Are we allowed to select the same letter more than once?

2. Do we care about the order in which the selection is made? ¥

Depending on the answer, we end up with four distinct results.

EXAMPLE: Suppose n = 3 (letters a, b, c), and r = 2. Then, if:

• Order is important but we must not repeat letters − the answer is 6 (ab, ac,
ba, bc, ca, cb).

• Unordered selection, without replicates − answer: 3 (ab ≡ ba, ac ≡ ca, bc ≡
ca) [note that unordered selections can be always arranged alphabetically;
insisting on that enables us to avoid accidental duplication].

• Order is important, each letter can be selected repeatedly − answer: 9 (aa,
ab, ac, ba, bb, bc, ca, cb, cc).

• Unordered selection, allowed duplicating letters − answer: 6 (aa, ab ≡ ba,
ac ≡ ca, bb, bc ≡ cb, cc). ¥

Can we figure out the general formula (with any r and n) for each one of these
four possibilities? Let us try it.

IOrdered Selection, No DuplicationJ

(Selecting a chair, treasurer and secretary out of ten members of a club).

Since the result should be ordered, we can start with r empty boxes, and fill
them one by one, counting (and multiplying) the choices:

1st box 2nd box 3rd box ........ (r-1)th box rth box
n× (n− 1)× (n− 2)× ........ (n− r + 2)× (n− r + 1)
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The result is thus

n× (n− 1)× (n− 2)× ....× (n− r + 1) =
n!

(n− r)!

def.
= P n

r (1)

called the number of permutations.
With n = 3 and r = 2 this gives 3!

(3−2)! = 6 (check).

Just to practice: P 10
4 = 10× 9× 8× 7 = 5040 (start with 10, for the total of 4

factors).

IUnordered Selection, Without DuplicationJ

(Selecting a committee of three, out of ten members represented by 10 distinct
letters).

If we examine the previous list of possibilities (we did not really build it, but
we all must be able to visualize it), we notice that each unique selection of r letters
is repeated exactly r! times (it will be there with all its permutations, since these
were considered distinct). All we have to do is to remove this duplicity by dividing
the previous answer by r!, obtaining

P n
r

r!
=

n!

(n− r)!r!

def.
= Cn

r (2)

(number of combinations). Later on, these will also be called binomial co-
efficients. Note the symmetry of this formula: selecting 7 people out of 10 can
be done in the same number of ways as selecting 3 (and telling them: you did not
make it). With n = 3 and r = 2 we get 3!

2!1!
= 3 (check).

Just to practice: C17
13 = C17

4 = 17×16×15×14
4× 3× 2× 1 (same number of factors, when you

include 1).

IOrdered Selection, Duplication of Letters AllowedJ

(Building a five-letter word, using an alphabet of 26 letters).

Again, fill r empty boxes with one letter each. This time we have a choice of n
letters every time. So the answer is n× n× n× .....× n (r times), namely

nr (3)

With n = 3 and r = 2 we get 32 = 9 (check).

IUnordered Selection, Allowing DuplicationJ

(Choose ten pieces of fruit from a shelf full of apples, pears, oranges and ba-
nanas).

This is the most difficult case (we cannot use the previous list, as the duplicity
of a specific unordered selection varies from case to case), so we first solve our
specific example, and then generalize the result.
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We start with our r = 10 boxes (to contain one piece of fruit each), but to
assure an unordered selection, we insist that apples go first, pears second, and
so on. To determine how may boxes get an apple, we place a bar after the last
’apple’ box, similarly with pears, etc. For example: ¤¤|¤|¤¤¤¤¤|¤¤ means
getting 2 apples, 1 pear, 5 oranges and 2 bananas. Note that we can place the bars
anywhere (with respect to the boxes), such as: ¤¤¤| |¤¤¤¤¤¤¤| (we don’t like
pears and bananas). Also note that it will take exactly 3 = n− 1 bars to complete
our ’shopping list’. Thus any permutation of 3 = n − 1 bars and 10 = r boxes
corresponds to a particular selection (at the same time, a distinct permutation
represents a distinct choice ⇒ there is a one-to-one correspondence between these
permutations and a complete list of fruit selections). We have already solved the
problem of distinct permutations (the answer is C13

3 = 286), so that is the number
of options we have now. The general formula is obviously

Cr+n−1
n−1 ≡ Cr+n−1

r (4)

With n = 3 and r = 2 this gives C4
2 = 6 (check).

We have thus derived a formula for each of the four possibilities. Your main task
is to be able to correctly decide which of these to use in each particular situation.

EXAMPLE: Let us re-derive (*) by taking the following approach: To build
an N-letter word out of n1 a’s, n2 b’s, ....nk z’s, we start with N empty
boxes, then choose n1 of these to receive the letter a, having done that we
choose (from the remaining N − n1 boxes) n2 boxes for the letter b, and so
on (multiplying the number of choices to get the final answer). Which of our
four formulas do we use (at each stage of the selection)? Well, we have to
select ni distinct boxes (i.e. duplication is not allowed), and we don’t care
about the order (selecting Boxes 1, 4 and 7 for the letter a is the same as
selecting Boxes 4, 7 and 1). We thus use Formula (2), to get:µ

N

n1

¶
×
µ
N − n1
n2

¶
× .....

µ
nk
nk

¶
How come this differs from our original answer (*). Only seemingly, when
expanded, the new formula gives

N !

n1!(N − n1)!
× (N − n1)!

n2!(N − n1 − n2)!
× ...× 1 = N !

n1!n2!....nk!
(check)

Note that
µ

N

n1, n2

¶
yields the regular binomial coefficient, usually written

as
µ
N

n1

¶
. This notational exception is allowed only in the case of k = 2. ¥

Now, let us put these formulas to work, first to derive the so called
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Binomial expansion
You probably all know that

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

.........

(x+ y)n =
³n
0

´
xn +

³n
1

´
xn−1y +

³n
2

´
xn−2y2 + ....

³n
n

´
yn

the general (last-line) expansion usually written as

(x+ y)n =
nX
i=0

³n
i

´
xn−iyi (BE)

We have to remember that 0!
def.
= 1, so that (n

0
) = (n

n
) = 1. A whole row of these

coefficients can be easily constructed as follows (Pascal’s triangle):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

= (5
0
) = (5

1
) = (5

2
) = (5

3
) = (5

4
) = (5

5
)

To prove BE, we need only basic algebra:

(x+ y)n = (x+ y)(x+ y)......(x+ y) [n times] = [distributive law]

= xxx...x
+yxx...x
+xyx...x

.....
+yyy...y


This is a list of all n-letter words
made up of letters x and y.
Formula (3) tells us that there are
2n of them.

Let us now combine the terms of this sum which are algebraically identical: xn

[only one word will have all x’s] +xn−1y × (n
1
) [this many words will have one x]

+....+ xn−iyi× (n
i
) [this many n-letter words have exactly i x’s] +....+ yn. This is

the binomial expansion.
In summary: the essential part of the proof was knowing how many n-letter

words have exactly i x’s in them. Formula (*) with k = 2 supplied the answer. ¤

IBinomial-Expansion ExtrasJ

When we need the binomial expansion, it is usually not with just x and y, but
with something like:

(1− 3x2)n = 1− 3nx2 + 9(n
2
)x4 − 27(n

3
)x6 + .....+ (−3x2)n

This indicates that all our formulas will be useful to us only when we learn how to
apply them (just memorizing them would be useless).
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The binomial expansion can be extended to a non-integer n (I will call it β,
just to distinguish) when y = 1:

(1 + x)β = 1 + βx+ (β
2
)x2 + (β

3
)x3 + ....

where (β
2
) = β(β−1)

2
, (β

3
) = β(β−1)(β−2)

3!
, etc. This time the expansion is infinite

and its proof requires Maclaurin formula (not just simple algebra) − try it.
EXAMPLES:

(1 + x)−3 = 1− 3x+ 6x2 − 10x3 + ...

(1 + a)
3
2 = 1 +

3

2
a+

3

8
a2 − 1

16
a3 +

3

128
a4 + ...

Understand the construction of the individual coefficients, such as (−3
3
) =

(−3)(−4)(−5)
6

= −10 and
³

3
2
4

´
=

3
2
× 1
2
×−1

2
×−3

2

24
= 3

128
¥

Multinomial expansion
is an extension of the binomial expansion, having more than 2 terms inside paren-
theses. We will derive it using three terms, the extension to any other number of
terms is then quite obvious.

We want to generalize the well known: (x+y+z)2 = x2+y2+z2+2xy+2xz+2yz
to: (x + y + z)n = (x + y + z)(x + y + z)...(x + y + z) [n factors] = [distributive
law] xxx...x + yxx...x + .... + zzz...z [all 3n n-letter words built out of x, y and
z] = [collecting algebraically identical contributions:] xn + ( n

n−1)x
n−1y + .... +

( n
n−5,3,2)x

n−5y3z2+ ....+ zn [the coefficients representing the number of words with
the corresponding number of x’s, y’s and z’s] =X

i,j,k≥0
i+j+k=n

µ
n

i, j, k

¶
xiyjzk

where the summation is over all possible selections of non-negative exponents which
add up to n.
How many terms are there in this summation? Our Formula (4) tells us that

it should be
¡
n+2
2

¢ − the three exponents are chosen in the apple-pear-orange like
manner. This is because when choosing the x’s, y’s and z’ we don’t care about the
order, and we are allowed to duplicate.

Similarly

(x+ y + z + w)n =
Xµ

n

i, j, k, c

¶
xiyjzkwc

where the summation is over all non-negative integers having the correct sum n.
There are altogether (n+3

3
) terms in the last expansion.

EXAMPLES:

• (x+ y+ z)3 = x3+ y3+ z3+3x2y+3x2z+3xy2+3xz2+3y2z+3yz2+6xyz
[has 10 = (3+2

2
) terms − check].
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• Typical exam question: Find the coefficient of ut3 in the expansion of (u+2−
4t)5.

Solution: The only term containing ut3 is: ( 5
1,1,3

)(u)1(2)1(−4t)3 = −2560ut3.
Answer: −2560.

• Another exam-like question: (1 + 2x − 5x2)17 is a 34-degree polynomial in x.
When expressed as such (i.e. when expanded, and terms with like powers of
x are combined), what will be the coefficient of x4?

Solution: ( 17
i,j,k
)(1)i(2x)j(−5x2)k is the general term of this expansion. Let us

make a table of the exponents which contribute to x4:

i j k

13 4 0
14 2 1
15 0 2

. This

translates to: (17
4
)(2x)4 + ( 17

14,2,1
)(2x)2(−5x2) + (17

2
)(−5x2)2 = 680x4.

Answer: 680. ¥

Related issues
Our formulas will enable us to settle yet another issue:

IPartitioningJ

of n distinct objects (people) into several groups (teams) of given size (not neces-
sarily the same for each group).
Suppose, for example, that nine people are to be divided into three teams

of 2, 3, and 4 members. In how many ways can this be done? This is solved by
realizing that there is a one-to-one correspondence between these and permutations
of aabbbcccc. Let us look at one such case:

1 2 3 4 5 6 7 8 9
b a c c a b c b c

where the position of each letter correspond to a specific person, and the letter
itself indicates which team he joins. Our table would thus assign Persons 2 and
5 to the first team (of two people), Persons 1, 6 and 8 to the second team (of
three people), and Persons 3, 4, 7 and 9 to the third team (of four people). The
number of possible assignments must be therefore equal to the number of such
permutations, which is ( 9

2,3,4
) = 1260.

There is a bit of a problem when some groups are of the same size, such as
dividing 9 people into three groups of 3 people each. The routine answer gives
( 9
3,3,3

) = 1680, but does this consider the following two assignments distinct or
identical: 1, 2, 3 | 4, 5, 6 | 7, 8, 9 and 4, 5, 6 | 1, 2, 3 | 7, 8, 9? Anyone who is
following our line of reasoning should clearly see that the formula does consider
these two as distinct (because aaabbbccc and bbbaaaccc are two distinct words, and
that’s how the formula works). If, for whatever reason, we want to consider such
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team assignments identical (and the choice is ours), we have to ’fix’ the formula,
thus: µ

9

3, 3, 3

¶
3!

= 280

Or, in the more general case:µ
20

2, 2, 2, 3, 3, 4, 4

¶
3!2!2!

= 61108047000

I hope everyone understands the logic of the last answer.

Finally, a ICircular ArrangementJ

means placing n distinct objects (people) around a circular table (rather than in a
row). If we only care about who sits next to whom (differentiating left and right),
but not about the orientation of the whole arrangement within the room, we have
(n − 1)! possible ways of seating the people. We can see this by starting with n
empty chairs, placing Mr. A in one of them (he has no neighbors yet) and then
having n−1 choices to fill the chair to his right, n−2 choices to fill the next chair,
... until we have one person waiting to become his left-hand neighbor..

End-of-chapter examples
1. A college team plays a series of 10 games which they can either win (W ),
lose (L) or tie (T ).

(a) How many possible outcomes can the series have (differentiating be-
tween WL and LW, i.e. order is important).
Answer: 310 = 59049.

(b) How many of these have exactly 5 wins, 4 losses and 1 tie?
Answer:

¡
10
5,4,1

¢
= 1260.

(c) Same as (a) if we don’t care about the order of wins, losses and ties?
Answer:

¡
12
2

¢
= 66 (only one of these will have 5 wins, 4 losses and 1

tie).

2. A student has to answer 20 true-false questions.

(a) In how many distinct ways can this be done?
Answer: 220 = 1048576.

(b) How many of these will have exactly 7 correct answers?
Answer:

¡
20
7

¢
= 77520.

(c) At least 17 correct answers?
(Here, these is no ’shortcut’ formula, we have to do this individually,
one by one, adding the results):

¡
20
17

¢
+
¡
20
18

¢
+
¡
20
19

¢
+
¡
20
20

¢
=
¡
20
3

¢
+
¡
20
2

¢
+¡

20
1

¢
+
¡
20
0

¢
= 1351.
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(d) Fewer than 3? (excludes 3):
¡
20
0

¢
+
¡
20
1

¢
+
¡
20
2

¢
= 211.

3. In how many ways can 3 Americans, 4 Frenchmen, 4 Danes and 2 Cana-
dians be seated (here we are particular about nationalities, but not about
individuals)

(a) in a row.
Answer (same as the number of permutations ofAAAFFFFDDDDCC):¡

13
3,4,4,2

¢
=
¡
13
3

¢¡
10
4

¢¡
6
4

¢
= 900900.

(b) In how many of these will people of the same nationality sit together?
Answer: We just have to arrange the four nationalities, say a, f, d and
c: 4! = 24.

(c) Repeat (a) with circular arrangement:
Answer (13 of the original arrangements are duplicates now, as
AAAFFFFDDDDCC, AAFFFFDDDDCCA, ..., CAAAFFFFDDDDC
are identical): 900900

13
= 69300.

(d) Repeat (b) with circular arrangement:
Answer (circular arrangement of nationalities): 3! = 6.

4. Four couples (Mr&Mrs A, Mr&Mrs B, ...) are to be seated at a round table.

(a) In how many ways can this be done?
Answer: 7! = 5040.

(b) How many of these have all spouses sit next to each other?
Solution: First we have to arrange the families with respect to each
other. This can be done in 3! ways. Then, having two seats reserved
for each couple, we have to decide the mutual position of every wife and
husband (2× 2× 2× 2).
Answer: 3!×24 = 96. (Later on, our main task will be converting these to
probabilities. If the seating is done randomly, the probability of keeping
the spouses together will be then 96

5040
= 1.905%).

(c) How many of these have the men and women alternate?
Solution: Place Mr A into one chair, then select his right-hand neighbor
(must be a woman) in 4 ways, select her extra neighbor (3 ways), and
so on.
Answer: 4× 3× 3× 2× 2× 1× 1 = 144 (corresponds to 2.86%).

(d) How many of these have the men (and women) sit together?
Solution: This is analogous to (b). We have to arrange the two groups
(men and women) with respect to each other first. But, in the circular
arrangement, this can be done in one way only! Then, we have to take
care of arranging the 4 men and four women within the four chairs
allocated to them. This can be done in 4! ways each.
Answer: (4!)2 = 576 (correspond to 11.43%).



16

5. In how many ways can we put 12 books into 3 shelves? This question is
somehow ambiguous: do we want to treat the books as distinct or identical,
and if we do treat them as distinct, do we care about the order in which they
are placed within a shelf? The choice is ours, let’s try it each way:

(a) It the books are treated as 12 identical copies of the same novel, then the
only decision to be made is: how many books do we place on each shelf
(the shelves are obviously distinct, and large enough to accommodate
all 12 books if necessary).
The answer follows from Formula (4) with n = 3 and r = 12 - for each
book we have to select a shelf, but the order does not matter (1, 3 and
3, 1 puts one book each on Shelf 1 and 3), and duplication is allowed:¡
14
2

¢
= 91

(b) If we treat the books as distinct and their order within each shelf im-
portant, we solve this in two stages:
First we decide how many books we place in each shelf, which was done
in (a), then we choose a book to fill, one by one, each allocated slot
(here we have 12× 11× 10× ....× 2× 1 choices).
Answer: 91× 12! = 43, 589, 145, 600.

(c) Finally, if the books are considered all distinct, but their arrangement
within each shelf is irrelevant, we simply have to decide which shelf will
each book go to [similar to (a), order important now].
This can be done in 3× 3× 3× ....× 3 = 312 = 531441 number of ways.

6. Twelve men can be seated in a row in 12! = 479001600 number of ways
(trivial).

(a) How many of these will have Mr A and Mr B sit next to each other?
Solution: Mr A and Mr B have to be first treated as a single item, for
a total of 11 items. These can be permuted in 11! number of ways.
Secondly, we have to place Mr A and Mr B in the two chairs already
allocate to them, in 2! ways.
Answer: 2× 11! = 79833600.

(b) How many of the original arrangements will have Mr A and Mr B sit
apart?
This set consists of those which did not have them sit next to each other,
i.e. (a)− (b) = 12!− 2× 11! = 399168000.

(c) How many of the original arrangements will have exactly 4 people sit
between Mr A and Mr B?
Solution: First, we allocate two chairs for MrA andMrB, thus: ¥¤¤¤¤¥¤¤¤¤¤¤,
¤¥¤¤¤¤¥¤¤¤¤¤,....,¤¤¤¤¤¤¥¤¤¤¤¥, altogether in 7 possi-
ble ways (here we count using our fingers − no fancy formula). Sec-
ondly, we seat the people. We have 10! choices for filling the ¤¤...¤
chairs, times 2 choices for how to fill ¥ and ¥.
Answer: 7× 2× 10! = 50803200.
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7. Security council of the UN has 15 permanent members, US, Russia, GB,
France and China among them. These can be seated in a row in 15! possible
arrangements.

(a) How many of these have France and GB sit together but (at the same
time) US and Russia sit apart?
Solution: We break the problem into two parts:

i. France and GB sit together in 2 × 14! = 174, 356, 582, 400 of the
original 15! arrangements (we understand the logic of this answer
from the previous question).

ii. France and GB sit together and (at the same time) US and Russia
sit together in 2× 2× 13! = 24, 908, 083, 200 arrangements (similar
logic: first we create two groups of two, one for France/GB, the
other for US/Russia and permute the resulting 13 items, then we
seat the individual people).

The answer is obviously the difference between the two: 2× 14!− 22 ×
13! = 149, 448, 499, 200. (To make the answer more meaningful, convert
it to probability).

8. Consider the standard deck of 52 cards (4 suits: hearts, diamonds, spades
and clubs, 13 ’values’: 2, 3, 4...10, Jack, Queen, King, Ace). Deal 5 cards
from this deck. This can be done in

¡
52
5

¢
= 2598960 distinct ways (trivial).

(a) How many of these will have exactly 3 diamonds?
Solution: First select 3 diamonds and two ’non-diamonds’, then combine
these together, in

¡
13
3

¢× ¡39
2

¢
= 211926 number of ways.

(b) Exactly 2 aces?
Same logic:

¡
4
2

¢× ¡48
3

¢
= 103776.

(c) Exactly 2 aces and 2 diamonds?
This is slightly more complicated because there is a card which is both
an ace and a diamond. The deck must be first divided into four parts,
the ace of diamonds (1 card) the rest of the aces (3), the rest of the
diamonds (12), the rest of the cards (36). We then consider two cases,
either the ace of diamonds is included, or not. The two individual
answers are added, since they are mutually incompatible (no ’overlap’):¡
1
1

¢¡
3
1

¢¡
12
1

¢¡
36
2

¢
+
¡
1
0

¢¡
3
2

¢¡
12
2

¢¡
36
1

¢
= 29808.

9. In how many ways can we deal 5 cards each to 4 players?

(a) Answer:
¡
52
5

¢× ¡47
5

¢× ¡42
5

¢× ¡37
5

¢
= 1.4783× 1024

(b) So that each gets exactly one ace?
Answer (consider dealing the aces and the non-aces separately):

¡
4
1

¢¡
3
1

¢¡
2
1

¢¡
1
1

¢×¡
48
4

¢¡
44
4

¢¡
40
4

¢¡
36
4

¢
= 3.4127× 1021

(c) None gets any ace:
Answer:

¡
48
5

¢¡
43
5

¢¡
38
5

¢¡
33
5

¢
= 1.9636× 1023
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(d) Mr A gets 2 aces, the rest get none.

Answer:
¡
4
2

¢× ¡48
3

¢¡
45
5

¢¡
40
5

¢¡
35
5

¢
= 2.7084× 1022

(e) (Any) one player gets 2 aces, the other players get none.

Solution: The previous answer is correct whether it is Mr A, B, C or
D who gets the 2 aces (due to symmetry), all we have to do is to add
the four (identical) numbers, because the four corresponding sets cannot
overlap, i.e. are mutually incompatible or exclusive).

Answer: 4× 2.7084× 1022 = 1.0834× 1023
(f) Mr. A gets 2 aces.

Answer:
¡
4
2

¢¡
48
3

¢×¡47
5

¢¡
42
5

¢¡
37
5

¢
= 5.9027×1022.Note that when computing

the probability of this happening, the
¡
47
5

¢¡
42
5

¢¡
37
5

¢
part cancels out (we

can effectively deal 5 cards to him and stop).

(g) Mr. C gets 2 aces.

Solution: If he is the third player to be dealt his cards, we can either do
this to long and impractical way (taking into account how many aces
have been dealt to Mr A and Mr B), thus:

¡
48
5

¢¡
43
5

¢ × ¡38
3

¢¡
4
2

¢ × ¡37
5

¢
+¡

48
4

¢¡
4
1

¢¡
44
5

¢×¡39
3

¢¡
3
2

¢×¡37
5

¢
+
¡
48
5

¢¡
43
4

¢¡
4
1

¢×¡39
3

¢¡
3
2

¢×¡37
5

¢
+
¡
48
4

¢¡
4
1

¢¡
44
4

¢¡
3
1

¢×¡
40
3

¢×¡37
5

¢
+
¡
48
3

¢¡
4
2

¢¡
45
5

¢×¡40
3

¢×¡37
5

¢
+
¡
48
5

¢¡
43
3

¢¡
4
2

¢×¡40
3

¢×¡37
5

¢
=5.9027×

1022, or be smart and argue that, due to the symmetry of the experiment,
the answer must be the same as for Mr. A.

(h) At least one player gets 2 aces (regardless of what the others get).

This is quite a bit more difficult, to the extend that we must postpone
solving it.

10. (Game of Poker): 5 cards are dealt from an ordinary deck of 52. The total
number of possible outcomes (5-card hands) is

¡
52
5

¢
= 2598960 (trivial). How

many of these contain exactly

(a) One pair, i.e. two identical values (and no other duplication of values).

Solution: This is done in two stages, first we select the suit to be repre-
sented by a pair and three distinct suits to be represented by a singlet
each:

¡
13
1

¢× ¡12
3

¢
, then we select two individual cards from the first suit:¡

4
2

¢
and one card each from the other 3 suits: 43.

Answer:
¡
13
1

¢¡
12
3

¢¡
4
2

¢
43 = 1098240.

(b) Two pairs.

Following the same logic:
¡
13
2

¢¡
11
1

¢× ¡4
2

¢2 × 4 = 123552
(c) A triplet:

¡
13
1

¢¡
12
2

¢× ¡4
3

¢× 42 = 54912
(d) Full house (a pair and a triplet):

¡
13
1

¢¡
12
1

¢× ¡4
3

¢× ¡4
2

¢
= 3744

(e) Four of a kind:
¡
13
1

¢¡
12
1

¢× ¡4
4

¢¡
4
1

¢
= 624

(f) A straight (five consecutive values − ace can be considered both as the
highest and the lowest value, i.e. Ace, 2, 3, 4, 5 is a straight).
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Solution: There are 10 possibilities as to the sequence of values (starting
from Ace...5, up to 10...Ace), once this is chosen, one has to select the
individual cards: 4× 4× 4× 4× 4.
Answer: 10× 45 = 10240.

(g) Flush (five cards of the same suit).
Solution: 4 ways of selecting the suit,

¡
13
5

¢
ways of selecting the individual

cards from it.
Answer: 4× ¡13

5

¢
= 5148.

(h) We should note that a hand can be both a straight and a flush (a first
overlap encountered so far).
We have again 10 possibilities for the values, but only 4 ways of selecting
the cards (they must be of the same suit). The number of these hands
is thus 10× 4 = 40.

(i) None of the above.
Solution: First we select five distinct values, disallowing the 10 cases
resulting in a straight:

¡
13
5

¢− 10, then we select one card of each chosen
value, disallowing a flush, which happens in only 4 of these cases: 45−4.
Answer:

¡¡
13
5

¢− 10¢× (45 − 4) = 1302540.
One can verify that adding all these answers, except for (h) which needs
to be subtracted (why?), results in the correct total of 2598960 (check).

11. Roll a die five times. The number of possible (ordered) outcomes is 65 = 7776
(trivial). How many of these will have:

(a) One pair of identical values(and no other duplicates).
Solution: First we choose the value which should be represented twice
and the three values to go as singles:

¡
6
1

¢× ¡5
3

¢
, then we decide how to

place the 5 selected numbers in the five blank boxes, which can be done
in
¡

5
2,1,1,1

¢
ways (equal to the number of aabcd permutations).

Answer:
¡
6
1

¢× ¡5
3

¢× ¡ 5
2,1,1,1

¢
= 3600.

(b) Two pairs.
The same logic gives:

¡
6
2

¢¡
4
1

¢× ¡ 5
2,2,1

¢
= 1800.

(c) A triplet:
¡
6
1

¢¡
5
2

¢× ¡ 5
3,1,1

¢
= 1200.

(d) ’Full house’ (a triplet and a pair):
¡
6
1

¢¡
5
1

¢× ¡ 5
3,2

¢
= 300.

(e) ’Four of a kind’:
¡
6
1

¢¡
5
1

¢× ¡ 5
4,1

¢
= 150.

(f) ’Five of a kind’:
¡
6
1

¢× ¡5
5

¢
= 6.

(g) Nothing.
Solution: We again fill the empty boxes, one by one, avoiding any du-
plication: 6× 5× 4× 3× 2 = 720.

Note that all these answers properly add up to 7776 (check).
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12. Let us try the same thing with 15 rolls of a die (615 = 4.7018×1011 outcomes
in total). How many of these will have:

(a) A quadruplet, 2 triplets, 2 pairs and 1 singlet:¡
6
1

¢¡
5
2

¢¡
3
2

¢¡
1
1

¢× ¡ 15
4,3,3,2,2,1

¢
= 6.8108× 1010

(b) 3 triplets and 3 pairs:
¡
6
3

¢¡
3
3

¢× ¡ 15
3,3,3,2,2,2

¢
= 1.5135× 1010.

We will not try to complete this exercise; the full list would consist of 110
possibilities.
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Chapter 2 RANDOM EXPERIMENTS
A few examples
1. Rolling a die

2. Rolling 2 (n in general) dice (or, equivalently, one die twice, or n times)

3. Selecting 2 people out of 4 (k objects out of n in general)

4. Flipping a coin until a head appears

5. Rotating a wheel with a pointer

6. Flipping a tack (⊥)

Sample space
is a collection of all possible outcomes of an experiment. The individual (complete)
outcomes are called simple events. For the six examples above, we get:

1. The outcomes can be uniquely represented by the number of dots shown on
the top face. The sample space is thus the following set of six elements:
{1, 2, 3, 4, 5, 6}.

2. With two dice, we have a decision to make: do we want to consider the
dice as indistinguishable (to us, they usually are) and have the sample space
consist of unordered pairs of numbers, or should we mark the dice (red and
green say) and consider an ordered pair of numbers as an outcome of the
experiment (the first number for red, the second one for green die)? The
choice is ours; we are allowed to consider as much or as little detail about
the experiment as we need, but there two constraints:

(a) We have to make sure that our sample space has enough information to
answer the questions at hand (if the question is: what is the probability
that the red die shows a higher number than the green die, we obviously
need the ordered pairs).

(b) Subsequently, we learn how to assign probabilities to individual out-
comes of a sample space. This task can quite often be greatly simplified
by a convenient design of the sample space.. It just happens that, when
rolling two dice, the simple events (pairs of numbers) of the sample space
have the same simple probability of 1

36
when they are ordered; assigning

correct probabilities to the unordered list would be extremely difficult.
That is why, for this kind of experiment (rolling a die any fixed number
of times), we always choose the sample space to consist of an ordered
set of numbers (whether the question requires it or not).
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In the case of two dice, we will thus use the following (conveniently organized)
sample space:

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,1 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6

and correspondingly for more than 2 dice (we will no longer be able to write
it down explicitly, but we should be able to visualize the result). Note that a
single simple event consists of two (or more) numbers. As explained earlier,
we will never try to simplify this sample space by removing the order; there
is one simplification one can make though, if the question is concerned only
with sixes versus non-sixes: we can reduce the sample space of 36 simple
events to: {66, 6O,O6, OO} where O stands for any other number but 6.
Assigning probabilities will be a touch more difficult now, but it will prove
to be manageable.

3. Selecting 2 (distinct) people out of 4. Here (unless the question demands it),
we can ignore the order of the selection, and simplify the sample space to:
{AB,AC,AD,BC,BD,CD} [unordered pairs], with ¡4

2

¢
= 6 equally likely

outcomes (simple events). Selecting k out of n objects will similarly result
in
¡
n
k

¢
equally likely possibilities. Another typical experiment of this kind is

dealing 5 cards out of 52.

4. The new feature of this example (waiting for the first head) is that the sam-
ple space is infinite: {H,TH, TTH, TTTH, TTTTH, TTTTTH, ....}. Even-
tually, we must learn to differentiate between the discrete (countable) infin-
ity, where the individual simple events can be labeled 1st, 2nd, 3rd, 4th, 5th, ....
in an exhaustive manner, and the continuous infinity (real numbers in
any interval). The current example is obviously a case of discrete infinity,
which implies that the simple events cannot be equally likely (they would
all have the probability of 1

∞ = 0, implying that their sum is 0, an obvious
contradiction). But we can easily manage to assign correct and meaningful
probabilities even in this case (as discussed later).

5. The rotating wheel has also an infinite sample space (an outcome is identified
with the final position − angle − of the pointer, measured from some fixed
direction), this time being represented by all real numbers from the interval
[0, 2π) [assuming that angles are measured in radians]. This infinity of simple
events is of the continuous type, with some interesting consequences. Firstly,
from the symmetry of the experiment, all of its outcomes must be equally
likely. But this implies that the probability of each single outcome is zero!
Isn’t this a contradiction as well? The answer is no; in this case the number
of outcomes is no longer countable, and therefore the infinite sum (actually,
an integral) of their zero probabilities can become nonzero (we need them to
add up to 1). The final puzzle is: how do we put all these zero probabilities
together to answer a simple question such as: what is the probability that the
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pointer will stop in the [0, π
2
] interval? This will require introducing a new

concept of the so called probability density (probability of an interval,
divided by the length of the interval). We will postpone this until the second
part of this course.

6. What exactly is new about the tack and its two simple outcomes: {⊥,i}?
Here, for the first time, we will not be able to introduce probabilities based
on any symmetry argument, these will have to be established empirically by
flipping the tack many times, finding the proportion of times it lands in the
⊥ position and calling this the probability of ⊥ (to be quite correct, the
exact probability of ⊥ is the limit of these experiments, when their number
approaches infinity). That effectively implies that the probability of any
such event can never be known exactly; we deal with this by replacing it
by a parameter p, which we substitute for the exact probability in all our
formulas. Eventually we may learn (if we manage to reach those chapters)
how to test hypotheses concerning the value of p (such as, for example,
p = 0.7).

Events
The technical definition of an event is: any subset of the sample space. These are
usually denoted by capital letters from the beginning of the alphabet: A, B, C,...

EXAMPLES (using the experiment of rolling two dice):

1. Let A be the event that the total number of dots equal 8.

This of course consists of the subset: {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} [five
simple events].

2. B defined by requiring that neither of the two numbers be a six.

This correspond to the subset:

1,1 1,2 1,3 1,4 1,5
2,1 2,2 2,3 2,4 2,5
3,1 3,1 3,3 3,4 3,5
4,1 4,2 4,3 4,4 4,5
5,1 5,2 5,3 5,4 5,5

3. C: first number smaller than second.

Subset:
1,2 1,3 1,4 1,5 1,6

2,3 2,4 2,5 2,6
3,4 3,5 3,6

4,5 4,6
5,6
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Set Theory (review)
Our definition of events as subsets of the sample space indicates that it may help to
recall what we already know about sets, subsets, etc. Unfortunately, on occasion
Statistics uses its own, different terminology for some of the set-theory definitions;
it may help to build the corresponding ’dictionary’:

The old notion of: is (are) now called:
Universal set Ω Sample space
Elements of Ω (its individual ’points’) Simple events (complete outcomes)
Subsets of Ω Events
Empty set ∅ Null event

We continue to use the word intersection (notation: A ∩ B, representing
the collection of simple events common to both A and B ), union (A∪B, simple
events belonging to either A or B or both), and complement (A, simple events
not in A ). One should be able to visualize these using Venn diagrams, but when
dealing with more than 3 events at a time, one can tackle problems only with the
help of

Boolean Algebra (another review)
Both ∩ and ∪ (individually) are commutative and associative, meaning A ∩
B = B ∩ A and (A ∩ B) ∩ C = A ∩ (B ∩ C), and the same when ∩ → ∪. Being
associative implies that A∩B∩C does not require any parentheses to be meaningful
(same with ∪ ).
Intersection is distributive over union: A ∩ (B ∪ C ∪ ...) = (A ∩ B) ∪ (A ∩

C) ∪ ...[try to prove it, using A, B, C only, through Venn diagrams].

Similarly, union is distributive over intersection: A∪ (B ∩C ∩ ...) = (A∪B)∩
(A∪C)∩... [try proof]. This is unlike the regular algebra of adding and multiplying
numbers [addition is not distributive over multiplication: a+(b·c) 6= (a+b)·(a+c)],
obviously the two algebras ’behave’ differently.

Here is a handful of rather trivial rules which one can easily verify: A∩Ω = A,

A∩∅ = ∅, A∩A = A, A∪Ω = Ω, A∪∅ = A, A∪A = A, A∩A = ∅, A∪A = Ω, Ā = A.
Also, when A ⊂ B (A is a subset of B, meaing that every element of A also

belongs to B), we get: A ∩B = A (the smaller event) and A ∪B = B (the bigger
event).

And two not so trivial laws (both called DeMorgan’s): A ∩B = A ∪ B, and
A ∪B = A ∩ B. These can be verified easily by Venn diagrams; both can be
extended to any number of events:

A ∩B ∩ C ∩ ... = A ∪B ∪ C ∪ ...

and vice versa (i.e. ∩ ↔ ∪).
And a simple definition: A and B are called (mutually) exclusive or disjoint

when A ∩ B = ∅ (i.e. there is no overlap between the two events, they have no
simple events in common).
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Probability of events
Having a sample space consisting of individual simple events, we would now like
to assign each of these a sensible probability (relative frequency of its occurrence
in a long run). It’s obvious that each of these probabilities must be a non-negative
number.
To find a probability of any other event A (not necessarily simple), we then

add the probabilities of the simple events A consists of. This immediately implies
that probabilities must follow a few basic rules:

Pr(A) ≥ 0

Pr(∅) = 0

Pr(Ω) = 1

(the relative frequency of all Ω is obviously 1).
We should mention that Pr(A) = 0 does not necessarily imply that A = ∅, some

nonempty events may have a zero probability (we have already seen examples of
these); they are ’officially’ called impossible events (a very misleading name, I
will call them zero-probability events).

IOther FormulasJ
Pr(A∪B) = Pr(A) + Pr(B) but only when A∩B = ∅ (disjoint). This implies

that Pr(A) = 1− Pr(A) as a special case.
This implies that Pr(A ∩ B) = Pr(A) − Pr(A ∩ B) [obvious also from the

corresponding Venn diagram].

For any A and B (possibly overlapping) we have

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)
which can be verified from a Venn diagram (a probability of an event can be
visualized as its area).

Using Boolean algebra we can extend this to: Pr(A∪B∪C) = Pr(A)+Pr(B∪
C)−Pr{A∩(B∪C)} = Pr(A)+Pr(B)+Pr(C)−Pr(B∩C)−Pr{(A∩B)∪(A∩C)} =
Pr(A) + Pr(B) + Pr(C)− Pr(A ∩B)− Pr(A ∩ C)− Pr(B ∩ C) + Pr(A ∩B ∩ C).
And, by induction, we can get the fully general

Pr(A1 ∪A2 ∪A3 ∪ ... ∪Ak) =
kX
i=1

Pr(Ai)−
kX
i<j

Pr(Ai ∩Aj) +
kX

i<j<c

Pr(Ai ∩Aj ∩Ac)− ...

±Pr(A1 ∩A2 ∩A3 ∩ ... ∩Ak)

(the plus sign for k odd, the minus sign for k even). The formula computes the
probability that at least one of the Ai events happens.
It is interesting to note that the probability of getting exactly one of the Ai

events (i.e. either an element from A1∩A2∩A3∩ ...∩Ak, or A1∩A2∩A3∩ ...∩Ak,
... or A1 ∩A2 ∩A3 ∩ ... ∩Ak) is similarly computed by:

kX
i=1

Pr(Ai)− 2
kX
i<j

Pr(Ai ∩Aj) + 3
kX

i<j<c

Pr(Ai ∩Aj ∩Ac)− ...

±kPr(A1 ∩A2 ∩A3 ∩ ... ∩Ak)
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We demonstrate the application of these formulas in the following, rather non-
trivial EXAMPLE:
Suppose that k distinct letters (to different friends) have been written, each with

a corresponding (uniquely addressed) envelope. Then, for some strange reason, the
letters are placed in the envelopes purely randomly (after a thorough shuffling).
The sample space of this experiment is thus a list of all permutations of k objects,

123
132
213
231
312
321

when k = 3 (we will assume that 123 represents the correct placement of all
three letters). In general, there are k! of these, all of them equally likely (due to
symmetry, i.e. none of these arrangements should be more likely than any other).
There are three simple-looking questions:

1. What is the probability of all letters being placed correctly?

Solution (fairly trivial): Only one out of k! random arrangements meets the
criterion, thus the answer is 1

k!
(astronomically small for k beyond 10).

2. What is the probability that none of the k letters are placed correctly?

Solution is this time a lot more difficult. First we have to realize that it is
relatively easy to figure out the probability of any given letter being placed
correctly, and also the probability of any combination (intersection) of these,
i.e. two specific letters correctly placed, three letters correct..., etc. [this kind
of approach often works in other problems as well; intersections are usually
easy to deal with, unions are hard but can be converted to intersections].

Let us verify this claim. We use the following notation: A1 means that the
first letter is placed correctly (regardless of what happens to the rest of them),
A2 means the second letter is placed correctly, etc. Pr(A1) is computed by
counting the number of permutations which have 1 in the correct first po-
sition, and dividing this by k!. The number of permutations which have 1
fixed is obviously (k − 1)! [we are effectively permuting 2, 3, ... k, altogether
k− 1 objects]. Pr(A1) is thus equal to (k−1)!

k!
= 1

k
. The probability of A2, A3,

etc. can be computed similarly, but it should be clear from the symmetry
of the experiment that all these probabilities must be the same, and equal
to Pr(A1) = 1

k
(why should any letter have a better chance of being placed

correctly than any other?). Similarly, let us compute Pr(A1 ∩A2), i.e. prob-
ability of the first and second letter being placed correctly (regardless of the
rest). By again counting the corresponding number of permutations (with
1 and 2 fixed), we arrive at (k−2)!

k!
= 1

k(k−1) . This must be the same for any
other pair of letters, e.g. Pr(A3 ∩ A7) = 1

k(k−1) , etc. In this manner we also
get Pr(A1 ∩A2 ∩A3) =Pr(A3 ∩A7 ∩A11) = 1

k(k−1)(k−2) , etc.
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So now we know how to deal with any intersection. All we need to do is to
express the event ’all letters misplaced’ using intersections only, and evaluate
the answer, thus:

Pr(A1 ∩A2 ∩ ... ∩Ak) [all letters misplaced] =

Pr(A1 ∪A2 ∪ ... ∪Ak) [DeMorgan] =

1− Pr(A1 ∪A2 ∪ ... ∪Ak) =

1−
kP
i=1

Pr(Ai) +
kP
i<j

Pr(Ai ∩Aj) + ...∓ Pr(A1 ∩A2 ∩ ... ∩Ak) =

1− k · 1
k
+
¡
k
2

¢ · 1
k(k−1) −

¡
k
3

¢
1

k(k−1)(k−2) + ...∓ 1
k!
=

1− 1 + 1

2!
− 1

3!
+ ...∓ 1

k!

For k = 3 this implies 1 − 1 + 1
2
− 1

6
= 1

3
(check, only 231 and 312 out

of six permutations). For k = 1, 2, 4, 5, 6, and 7 we get: 0 (check, one
letter cannot be misplaced), 50% for two letters (check), 37.5% (four letters),
36.67% (five), 36.81% (six), 36.79% (seven), after which the probabilities do
not change (i.e., surprisingly, we get the same answer for 100 letters, a million
letters, etc.).

Can we identify the limit of the 1−1+ 1
2!
− 1

3!
+ ... sequence? Yes, of course,

this is the expansion of e−1 = .36788.

3. Similarly, the probability of exactly one letter being placed correctly is k ·
1
k
− 2¡k

2

¢
1

k(k−1) + 3
¡
k
3

¢
1

k(k−1)(k−2) + ... ∓ k · 1
k!
=1 − 1 + 1

2!
+ ... ∓ 1

(k−1)! (the
previous answer short of its last term!). This equals to 1, 0, 50%, 37.5%, ...
for k = 1, 2, 3, 4, ... respectively, and has the same limit. ¥

The main point of the whole section is the following

ISummaryJ

Probability of any (Boolean) expression involving events A, B, C, ... can be
always converted probabilities involving the individual events and their simple
(non-complemented) intersections (A ∩B, A ∩B ∩ C, etc.) only.

Proof: When the topmost operation of the expression (and, subsequently, any of
the resulting subexpressions) is a union, we remove it by the Pr(A ∪ B) =
Pr(A) + Pr(B) − Pr(A ∩ B) rule (or its generalization). When the highest
operation is a complement, we get rid of it by Pr(A) = 1 − Pr(A). After
that, ∩ must be at the top of our evaluation tree. If, at the next level,
there is at least one complement, we remove it (or them, one by one) by
Pr(A ∩ B) = Pr(A)−Pr(A ∩ B). Similarly we deal with a next-level union
by applying Pr{A∩ (B ∪C)} = Pr(A∩B)+ Pr(A∩C)− Pr(A∩B ∩C). In
this manner we can remove all levels below ∩ until, ultimately, nothing but
simple intersections remain. ¤
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Let’s go over a few easy EXAMPLES:

1. Pr{(A ∩ B) ∪B ∩ C} = Pr{A ∩B}+ Pr{B ∩ C}− Pr{A ∩ B ∩ B ∩ C} =
Pr{A∩B}+1− Pr{B∩C}− Pr{A∩B}+ Pr{A∩B∩B∩C} = 1− Pr{B∩
C}+ Pr{A∩B∩C}. This can be also deduced from the corresponding Venn
diagram, bypassing the algebra (a legitimate way of doing things).

2. Pr{(A∩B)∪C ∪D} = Pr{A∩B}+ Pr{C ∪D}− Pr{(A∩B)∩C ∪D} =
Pr{A ∩ B} + 1 − Pr{C ∪ D} − Pr{A ∩ B} + Pr{(A ∩ B) ∩ (C ∪ D)} =
1−Pr{C ∪D}+ Pr{(A∩B ∩C) ∪ (A∩ B ∪D)} = 1− Pr{C} −Pr{D} +
Pr{C ∩D} +Pr{A ∩B ∩ C}+ Pr{A ∩B ∩D}− Pr{A ∩B ∩ C ∩D}.

3. Four players are dealt 5 cards each. What is the probability that at least one
player gets exactly 2 aces (a chapter ago, we could not solve this problem).

Solution: Let A1 be the event that the first player gets exactly 2 aces, A2
means that the second player has exactly 2 aces, etc. The question amounts

to finding Pr(A1 ∪ A2 ∪ A3 ∪ A4). By our formula, this equals
4P

i=1

Pr(Ai) −
4P

i< j

Pr(Ai ∩Aj) + 0 [the intersection of 3 or more of these events is empty −

there are only 4 aces]. For Pr(A1) we get
(42)(

48
3 )

(525 )
= 3.993% [the denominator

counts the total number of five-card hands, the numerator counts only those
with exactly two aces] with the same answer for Pr(A2), ... Pr(A4) [the four

players must have equal chances]. Similarly Pr(A1 ∩ A2) =
( 4
2,2,0)(

48
3,3,42)

( 52
5,5,42)

=

0.037% [the denominator represents the number of ways of dealing 5 cards
each to two players, the numerator counts only those with 2 aces each −
recall the ’partitioning’ formula], and the same probability for any other pair
of players.

Final answer: 4Pr(A1)− 6Pr(A1 ∩A2) = 15.75%.

4. There are 100,000 lottery tickets marked 00000 to 99999. One of these is
selected at random. What is the probability that the number on it contains
84 [consecutive, in that order] at least once.

Solution: Let’s introduce four events: A means that the first two digits of the
ticket are 84 (regardless of what follows), B: 84 is found in the second and
third position, C: 84 in position three and four, and D: 84 in the last two
positions. Obviously we need Pr(A∪B∪C ∪D) =Pr(A)+Pr(B)+Pr(C)+
Pr(D)−Pr(A∩C)−Pr(A∩D)−Pr(B ∩D) + 0 [the remaining possibilities
are all null events - the corresponding conditions are incompatible, see the
Venn diagram].

The answer is 4 × 1000
100,000

− 3× 10
100,000

= 0.04 − 0.0003 = 3.97% [the logic of
each fraction should be obvious − there are 1000 tickets which belong to A,
10 tickets which meet conditions A and C, etc.]. ¥
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Probability tree & Conditional probability
Consider a random experiment which is done in several stages such as, for exam-
ple, selecting 3 marbles (one by one, without replacement − these are the three
’stages’ of this experiment), from a box containing (originally) 3 red and 5 blue
marbles. The easiest way to display possible outcomes of this experiment is to
draw a so called probability tree, with the individual branches representing pos-
sible outcomes at each stage of the experiment. This will be done in class; it is
effectively a graphical representation of

rrr

rrb

rbr

rbb

brr

brb

bbr

bbb

(the sample space, each line being one simple event). In the graph, it is one
complete path (from beginning till end) which represents a simple event (each can
be also identified by its end point).
It is easy to assign probabilities to individual branches of this tree; the

initial selection of a red marble r has the probability of 3
8
, once this is done the

probability of the next marble being blue (the r → b branch) is 5
7
[5 blue marbles

out of 7, one red is out], after that selecting r again (the rb → r branch) has the
probability of 2

6
[2 red marbles left out of 6]. Note that the probabilities at each

’fork’ have to add up to one.
We introduce the following notation: R1 means a red marble is selected first

(in terms of our sample space, this event consists of: {rrr, rrb, rbr, rbb}), R2 means
a red marble is selected in the second draw (regardless of the outcome of Draw 1
and 3): {rrr, rrb, brr, brb}, and similarly we define R3, B1 (a blue marble first), B2,
and B3.

ITwo Issues to SettleJ

• What are the simple probabilities of individual branches found above (by
counting how many marbles of each color are left at that stage). The first
one (3

8
, of the initial choice of r) is obviously Pr(R1). The second one (57 ,

of the r → b branch) can not be simply Pr(B2), since there are other ways
of getting a blue marble in the second draw. To give it its proper name,
we have to introduce the so called conditional probability of an event B,
given that another event A has already happened, notation: Pr(B|A). This
is a very natural notion in a multi-stage experiment when the outcome of B
is decided based on the outcome of the previous stage(s). It is thus obvious
that 5

7
represents, by this definition, Pr(B2|R1). Similarly 2

6
is Pr(R3|R1∩B2)

[third marble being red given that the first one was red and the second one
blue].
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• How do we compute probabilities of simple events (and thus events in general)
of this sample space (we recall that a simple event is a complete ’path’ (e.g.
rbr). Clearly: if this experiment is repeated (infinitely) many times, 3

8
of

them will result in r as the first marble, out of these 5
7
will have b as the

second marble, and out of these 2
6
will finish with r as the third marble. 5

7

out of 3
8
is 15

56
(= 3

8
· 5
7
) and 2

6
out of 15

56
is 5

56
(= 3

8
· 5
7
· 2
6
). We can formalize

this by

Pr(rbr) = Pr(R1 ∩B2 ∩R3) = Pr(R1) · Pr(B2|R1) · Pr(R3|R1 ∩B2)
In a similar manner we can assign probabilities to all ’points’ (simple events)
of the sample space, thus:

Path: rrr rrb rbr rbb brr brb bbr bbb
Probability: 1

56
5
56

5
56

10
56

5
56

10
56

10
56

10
56

Note that it is convenient to keep the same (common) denominator of these
probabilities. This helps us realize which simple events are more likely that
others, and by what factor; it also simplifies subsequent computations.

Conclusion: The ’natural’ probabilities of a multistage experiment are the
conditional probabilities of individual branches. All other probabilities must
be build from these, using the product rule to first find probabilities of simple
events.

The rule which was used to compute the probability of the R1 ∩B2 ∩R3 inter-
section is called the

IProduct RuleJ

and it can be generalized to any two, three, etc. events thus:

Pr(A ∩B) = Pr(A) · Pr(B|A)
Pr(A ∩B ∩ C) = Pr(A) · Pr(B|A) · Pr(C|A ∩B)

Pr(A ∩B ∩ C ∩D) = Pr(A) · Pr(B|A) · Pr(C|A ∩B) · Pr(D|A ∩B ∩ C)
...

EXAMPLE: 4 players are dealt 13 cards each from an ordinary deck (of 52
cards). What is the probability that each player will get exactly one ace?

Old solution: The sample space consists of all possible ways of partitioning
52 cards into 4 groups of equal size,

³
52

13,13,13,13

´
in number. To give each

player exactly one ace, we have to similarly partition the aces and non-aces,
and multiply the answers. There are

³
4

1,1,1,1

´
·
³

48
12,12,12,12

´
ways of doing

this; divided by the above total number of ways (all equally likely) gives the
answer: 10.55%.

New solution: If A, B, C, and D represent Mr.A, Mr.B, Mr.C and Mr.D
getting exactly one ace (respectively), we employ the product rule: Pr(A ∩
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B∩C ∩D) =Pr(A) Pr(B|A) Pr(C|A∩B) Pr(D|A∩B∩C) = ( 4
1
)( 48
12
)

( 52
13
)
· (

3
1
)( 36
12
)

( 39
13
)
·

( 2
1
)( 24
12
)

( 26
13
)
· (

1
1
)( 12
12
)

( 13
13
)
[visualize the experiment done sequentially, Mr.A is dealt the

first 13 cards, Mr.B the next 13, etc.]. This of course gives the same answer
(note that the last of the four factors is equal to 1 − once you have dealt one
ace each to Mr.A, B, and C, Mr.D must get his one ace with the conditional
probability of 1). ¥

In general, we can define the

IConditional ProbabilityJ
for any two events (regardless whether they came from a multistage experiment or
not) by

Pr(B|A) ≡ Pr(A ∩B)
Pr(A)

(the product rule in reverse).
Themeaning of any such conditional probability is as follows: given (someone

who has observed the complete outcome of the experiment is telling us) that A
has happened (but we are left in the dark about the rest of the experiment), then
Pr(B|A) represents the conditional probability of B happening as well. This is as
if the whole sample space has shrunk to A only, and the probability of any other
event had to be re-computed accordingly. The general definition thus applies to
any A and B of any random experiment (not necessarily multistage).
Not surprisingly, all formulas which hold true in the original sample space are

still valid in the new ’reduced’ sample space A, i.e. conditionally, e.g.: Pr(B|A) =
1 − Pr(B|A), Pr(B ∪ C|A) = Pr(B|A) + Pr(C|A) − Pr(B ∩ C|A), etc. (make all
probabilities of any old formula conditional on A). Both of these will be proved in
class via Venn diagrams (you can try it on your own), but the idea works for any
other formula as well.
Note that with this general definition it is possible to compute the conditional

probability of, say R1 given B3 (i.e. guessing the outcome of the first stage based
on the outcome of the last stage − a total reversal of what we have been doing so
far). Subsequently, this is utilized in the so called Bayes’ theorem.

And a simple EXAMPLE of establishing a value of conditional probability in
general:

Suppose the experiment consists of rolling two dice (red and green), A is:
’the total number of dots equals 6’, B is: ’the red die shows an even number’.
Compute Pr(B|A).
Solution: Let us use the old sample space, indicating simple events of A by
°, of B by ×, and of the A ∩B overlap by ⊗ :

°
× × × ⊗ × ×

°
× ⊗ × × × ×
°
× × × × × ×
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Pr(B|A) is clearly the number of the overlap simple events ⊗ divided by the
number of simple events in A (either° or ⊗), as these are all equally likely.

Answer: Pr(B|A) = 2
5
[or

2
36
5
36

, if you want to insist on using the Pr(A∩B)
Pr(A)

formula]. ¥

Note that in general Pr(B|A) 6= Pr(A|B), as these two conditional probabilities
correspond to totally different situations, and have no reason to be even compared.
[In the former example Pr(A|B) = 2

18
= 1

9
, to demonstrate the point].

Partition of a sample space
(nothing to do with our previous partitioning of a group of people into several
teams). This new notion of a partition represents chopping the sample space
into several smaller events, say A1, A2, A3, ...., Ak, so that they

(i) don’t overlap (i.e. are all mutually exclusive): Ai∩Aj = ∅ for any 1 ≤ i, j ≤ k

(ii) cover the whole Ω (i.e. ’no gaps’): A1 ∪A2 ∪A3 ∪ ... ∪Ak = Ω. ¥

It should be obvious that the ’finest’ partition is the collection of all simple
events, and the ’crudest’ partition is Ω itself. The most interesting partitions will
of course be the in-between cases. One such example is A and A (where A is an
arbitrary event).

Partitions can be quite useful when computing a probability of yet another
event B. This task can be often simplified by introducing a convenient partition,
and utilizing the following

IFormula of Total ProbabilityJ

Pr(B) = Pr(B|A1) · Pr(A1) + Pr(B|A2) · Pr(A2) + ...+Pr(B|Ak) · Pr(Ak)

which can be readily verified by a Venn diagram when we realize that Pr(B|A1) ·
Pr(A1) = Pr(B ∩ A1), Pr(B|A2) · Pr(A2) = Pr(B ∩ A2), etc. The difficulty of
applying the formula to a specific situation relates to the fact that the question
will normally specify B only; the actual partition must be introduced by us, intel-
ligently, as a part of the solution.

EXAMPLE: Two players are dealt 5 cards each. What is the probability that
they will have the same number of aces?

Solution: We partition the sample space according to how many aces the first
player gets, calling the events A0, A1, ..., A4. Let B be the event of our ques-
tion (both players having the same number of aces). Then, by the formula of
total probability: Pr(B) =Pr(A0) Pr(B|A0)+Pr(A1) Pr(B|A1)+Pr(A2) Pr(B|A2)+
Pr(A3) Pr(B|A3)+Pr(A4) Pr(B|A4) = (

4
0)(

48
5 )

(525 )
· (

4
0)(

43
5 )

(475 )
+
(41)(

48
4 )

(525 )
· (

3
1)(

44
4 )

(475 )
+
(42)(

48
3 )

(525 )
·

(22)(
45
3 )

(475 )
+
(43)(

48
2 )

(525 )
· 0+ (

4
4)(

48
0 )

(525 )
· 0 =49.33% ¥
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IBayes RuleJ

This time we start with an EXAMPLE:
Consider four ’black’ boxes: two of them (call them Type I) have 1 green and
2 red marbles inside, one (Type II) has 1 green and 1 red marble, and one
(Type III) has 2 green and 1 red marble. Let one of these boxes be selected at
random, and a marble drawn from it. The probability tree of this experiment
looks like this (the fraction in parentheses is the conditional probability of
the corresponding branch — this will be done properly in class):

1st branch 2nd branch Pr

(2
4
) I → (2

3
) r 8

24
X °

& (1
3
) g 4

24

(1
4
) II → (1

2
) r 3

24
X

& (1
2
) g 3

24

(1
4
) III → (1

3
) r 2

24
X

& (2
3
) g 4

24

Let I, II, and III represent the events of selecting Type I, II, or III box; then
(I, II, III) is an obvious partition of the sample space. Similarly, if R and
G represent selecting a red and green marble, respectively (regardless of the
box), then (R, G) is yet another partition of our sample space.

1. Compute Pr(R):

Using the total-probability formula: Pr(R) =
Pr(R|I)·Pr(I)+ Pr(R|II)·Pr(II)+ Pr(R|III)·Pr(III) = 8

24
+ 3

24
+ 2

24
=54.17%.

This is the same as checking off (X) the simple events which contribute to R,
and adding their probabilities. The formula just spells out the logic of this
simple and natural procedure.

Similarly, we can compute Pr(G) = 11
24
.

2. Important: Find Pr(I |R):
This at first appears as a rather unusual question (to find the conditional
probability of an outcome of the first stage of our experiment, given the
result of the second stage − note the chronological reversal!). Yet, in the
next example we demonstrate that this is quite often what is needed.

Solution: We use the formal definition of conditional probability: Pr(I|R) =
Pr(I∩R)
Pr(R)

=
8
24
13
24

= 8
13
= 61.54%. This is the probability of having selected

Type I box (we cannot tell - they all look identical) given that a red marble
was drawn. Note that this conditional probability is higher than the original
Pr(I) = 50% (do you understand why?). And, yet another marble drawn
from the same box may help us even more (especially if it’s also red!). ¥

The procedure for computing Pr(I |R) can be generalized as follows: check
off (X) all simple events contributing to R, out of these check off (perhaps using a
different symbol, ° in our case) those which also contribute to I (i.e. of the I∩R
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overlap) Then divide the total probability of the later by the total probability of
the former.
This constitutes what I call the Bayes rule (your textbook presents it as

a formula, which we can bypass). We always encounter it in the context of a
multistage experiment to be dealt with by drawing the corresponding probability
tree.

Let us go over one more EXAMPLE of its application:
Let 0.5% of a population in a certain area have tuberculosis. There is a
medical test which can detect this condition in 95% of all (infected) cases,
but at the same time the test is (falsely) positive for 10% of the healthy
people [all in all, the test is at least 90% accurate].

The question is: A person is selected randomly and tested. The test is pos-
itive (indicating a presence of TB). What is the probability that the person
actually has it [our guess probably is: at least 90%, but we are in for a big
surprise].

Solution: This is a very simple two-stage experiment; in the first stage (con-
sidering how the experiment is actually performed) the person is selected,
resulting in either ’sick’ s or ’healthy’ h individual[the actual outcome is
hidden from us as sick and healthy people look the same to us] with the
probability of 0.005 and 0.995, respectively; in the second stage the per-
son is tested, resulting in either positive p (TB!) or negative n result (the
corresponding probabilities are of the conditional type, depending on the
first-stage outcome), thus:

(0.005) s→ (0.95) p 0.00475 X°
& (0.05) n 0.00025

(0.995) h→ (0.10) p 0.09950 X
& (0.90) n 0.89550

If S denotes the ’sick person’ event and P stands for the ’positive test’ event,
we obviously need to compute Pr(S|P ).
Using the Bayes rule, this is equal to 0.00475

0.00475+0.09950
= 4.556% [still fairly small,

even though almost 10 times bigger than before the test]. Note thatX marks
simple events of P, and ° those of S ∩ P . ¥

Independence
IOf Two EventsJ

is a rather natural notion: if the experiment is done in such a manner that A
(happening or not) cannot influence the probability of B, B is independent of A.
Formally, this means that Pr(B|A) = Pr(B) [knowing that A has happened does
not change the probability of B].Mathematically, this is equivalent to: Pr(A∩B) =
Pr(A) · Pr(B), and also to Pr(A|B) = Pr(A). Thus, B being independent of A
implies that A is independent of B, which means that independence of two events
is always mutual (A on B will be our informal notation for independence of A and
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B). The same condition is also equivalent to Pr(A ∩ B) =Pr(A) · Pr(B) [prove!],
etc. Thus A on B ⇔A on B ⇔A on B ⇔A on B.

We should mention that the condition of independence may sometimes be met
’accidently’ by two events which do seem to influence each other. Technically,
they will also be considered independent, but such artificial independence is of
not much use to us. We will concentrate on independence which we can clearly
deduce from the nature of the experiment, such as: an outcome of one die cannot
influence the outcome of another die; but also: an outcome of a die cannot influence
its future outcome(s) − a die has no memory. Avoid the common mistake of
confusing independence with being mutually exclusive − two events which are
independent must have a non-zero overlap (of a specific size); on the other hand
exclusive events are strongly dependent, since Pr(A|B) = 0 [and not Pr(A)].
The notion of independence can be extended to 3 or more events.

The natural, mutual independence of

IThree EventsJ

requires them to be independent pairwise, plus: Pr(A ∩ B ∩ C) =Pr(A) · Pr(B) ·
Pr(C).

And again, this is the same as A, B and C being mutually independent, etc.
(eight distinct ways of putting it).

Mutual independence also implies that any event build from A and B (e.g.
A ∪B ) must be independent of C.

In general I k EventsJ

are mutually independent if the probability of any intersection of these (or their
complements) is equal to the corresponding product of individual probabilities
[2k − 1− k conditions when not considering complements!].

The main point of natural independence is that all of these conditions are
there, automatically, for us to utilize, just for realizing that the events have no way
of influencing each other’s outcome.

Mutual independence of A, B, C, D, ... also implies that any event build of A,
B, ... must be independent of any event build out of C, D, ... [as long as the two
sets are distinct].

Proof: We have already seen that any event can be replaced by its comple-
ment without effecting independence. The mutual independence of A, B
and C implies that A ∩ B and C are independent [Pr{(A ∩ B) ∩ C} =
Pr(A) Pr(B) Pr(C) = Pr(A ∩ B) Pr(C)], and also that A ∪ B and C are in-
dependent [Pr{(A ∪B) ∩ C} = Pr(A ∩ C) + Pr(B ∩ C)− Pr(A ∩B ∩ C) =
Pr(A) Pr(C)+Pr(B) Pr(C)−Pr(A) Pr(B) Pr(C) = (Pr(A) + Pr(B)− Pr(A) Pr(B)) Pr(C) =
Pr(A ∪B) Pr(C)]. The rest follows by induction. ¤

The final and most important
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IImplication of IndependenceJ

To compute the probability of a Boolean expression (itself an event) involving
only mutually independent events, it is sufficient to know the events’ individual
probabilities. This is clear from the fact that the probability of any composite event
can be expressed in terms of probabilities of the individual-event intersections, and
these in turn can now be converted to products of individual probabilities (the
actual computation may be further simplified by various ’shortcuts’).

EXAMPLE: Let Pr(A) = 0.1, Pr(B) = 0.2, Pr(C) = 0.3 and Pr(D) = 0.4 .
Compute Pr[(A ∪B) ∩ C ∪D].
Solution: = Pr(A∪B) · [1−Pr(C ∪D)] = [0.1 + 0.2− 0.02] · [1− 0.3− 0.4 +
0.12] =11.76% ¥

End-of-chapter examples
• Express Pr{(A ∪ C ∩D) ∩ B ∪D} in terms of the individual probabilities
Pr(A), Pr(B), ... assuming that the four events are independent.

Solution: = Pr{(A∪C ∪D)∩B∩D} = Pr{(A∪C ∪D)∩D} · [1−Pr(B)] =
Pr{(A∩D)∪(C∩D)∪∅}· [1−Pr(B)] = {Pr(A) Pr(D)+ [1−Pr(C)] Pr(D)−
Pr(A)[1− Pr(C)] Pr(D)} · [1− Pr(B)].

• Let us return to Example 2 of the previous chapter (lottery with 100,000
tickets) and compute the probability that a randomly selected ticket has
an 8 and a 4 on it (each at least once, in any order, and not necessarily
consecutive).

Solution: Define A: no 8 at any place, B: no 4. We need Pr(A∩B) [at least
one 8 and at least one 4] = Pr(A ∪B) [DeMorgan] = 1 − Pr(A ∪ B) =1 −
Pr(A)− Pr(B) + Pr(A ∩ B). Clearly A ≡ A1 ∩ A2 ∩ ... ∩ A5, where A1: ’no
8 in the first place’, A2: ’no 8 in the second place’, etc. A1, A2, ..., A5 are
mutually independent (selecting a random 5 digit number is like rolling an
10-sided die five times), thus Pr(A) = Pr(A1) · Pr(A2) · ... · Pr(A5) = ( 910)5.
Similarly, Pr(B) = ( 9

10
)5. Now, A ∩ B ≡ C1 ∩ C2 ∩ ... ∩ C5 where C1: not 8

nor 4 in the first spot, C2: not 8 nor 4 in the second, etc.; these of course are
also independent, which implies Pr(A ∩B) = ( 8

10
)5.

Answer: 1− 2( 9
10
)5 + ( 8

10
)5 = 14.67%.

• The same question, but this time we want at least one 8 followed (sooner
or later) by a 4 (at least once). What makes this different from the original
question is that 8 and 4 now don’t have to be consecutive.

Solution: We partition the sample space according to the position at which
8 appears for the first time: B1, B2, ..., B5, plus B0 (which means there is
no 8). Verify that this is a partition. Now, if A is the event of our ques-
tion (8 followed by a 4), we can apply the formula of total probability thus:
Pr(A) =Pr(A|B1)·Pr(B1)+Pr(A|B2)·Pr(B2)+Pr(A|B3)·Pr(B3)+Pr(A|B4)·
Pr(B4)+Pr(A|B5) · Pr(B5)+Pr(A|B0) · Pr(B0). Individually, we deal with
these in the following manner (we use the third term as an example): Pr(B3) =
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( 9
10
)2( 1

10
) [no 8 in the first slot, no 8 in the second, 8 in third, and anything af-

ter that; then multiply due to independence], Pr(A|B3) = 1−( 910)2 [given the
first 8 is in the third slot, get at least one 4 after; easier through complement:
1− Pr(no 4 in the last two slots)].
Answer: Pr(A) = [1− ( 9

10
)4] · 1

10
+[1− ( 9

10
)3] · 9

10
1
10
+[1− ( 9

10
)2] · ( 9

10
)2 1
10
+ [1−

9
10
] · ( 9

10
)3 1
10
+0 · ( 9

10
)4 1
10
=8.146%

• Out of 10 dice, 9 of which are regular but one is ’crooked’ (6 has a proba-
bility of 0.5), a die is selected at random (we cannot tell which one, they all
look identical). Then, we roll it twice. The sample space of the complete
experiment, including probabilities, is

r66 0.9 · 1
6
· 1
6
= 9

360
X °

r66̄ 0.9 · 1
6
· 5
6
= 45

360
X

r6̄6 0.9 · 5
6
· 1
6
= 45

360
°

r6̄6̄ 0.9 · 5
6
· 5
6
= 225

360

c66 0.1 · 1
2
· 1
2
= 9

360
X °

c66̄ 0.1 · 1
2
· 1
2
= 9

360
X

c6̄6 0.1 · 1
2
· 1
2
= 9

360
°

c6̄6̄ 0.1 · 1
2
· 1
2
= 9

360

We will answer three question:

1. Given that the first roll resulted in a six (Event S1), what is the (con-
ditional) probability of getting a six again in the second roll (Event
S2)?

Solution: In our sample space we mark off the simple events contributing

to S1 (by X) and to S2 (by °) and compute Pr(S1 ∩ S2)
Pr(S1)

(by adding

the corresponding probabilities).
Answer: 9+9

9+9+45+9
(the common denominator of 360 cancels out) = 25%.

2. Are S1 and S2 independent?

Let us check it out, carefully! Pr(S1 ∩ S2) ?
= Pr(S1) · Pr(S2).

Solution: 18
360
(= 1

20
) 6= 72

360
· 72
360
(= 1

25
).

Answer: No.

3. Given that both rolls resulted in a six, what is the (conditional) proba-
bility of having selected the crooked die?
Answer: 9

9+9
= 50%.

• Ten people have been arrested as suspects in a crime one of them must have
committed. A lie detector will (incorrectly) incriminate an innocent person
with a 5% probability, it can (correctly) detect a guilty person with a 90%
probability.

1. One person has been tested so far and the lie detector has its red light
flashing (implying: ’that’s him’). What is the probability that he is the
criminal?
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Solution: Using c for ’criminal’, i for ’innocent’ r for ’red light flashing’
and g for ’green’, we have the following sample space:

cr 1
10
· 9
10
= 0.090 X °

cg 1
10
· 1
10
= 0.010

ir 9
10
· 1
20
= 0.045 X

ig 9
10
· 19
20
= 0.855

Answer: Pr(C|R) = 0.090
0.090+0.045

= 2
3
(far from certain!).

2. All 10 people have been tested and exactly one incriminated. What is
the probability of having the criminal now?
A simple event consists now of a complete record of these tests (the
sample space has of 210 of these), e.g. rggrggrggg. Assuming that the
first item represents the criminal (the sample space must ’know’ who
the criminal is), we can assign probabilities by simply multiplying since
the tests are done independently of each other. Thus, the simple event
above will have the probability of 0.9× 0.952× 0.05× 0.952× 0.05× 0.953,
etc. Since only one test resulted in r, the only simple events of relevance
(the idea of a ’reduced’ sample space) are:

rggggggggg 0.9× 0.959
grgggggggg 0.1× 0.958 × 0.05
........
gggggggggr 0.1× 0.958 × 0.05

Given that it was one of these outcomes, what is the probability it was
actually the first one?

Answer:
0.9× 0.959

0.9× 0.959 + 9× 0.1× 0.958 × 0.05 = 95% (now we are a lot

more certain − still not 100% though!).

• Two men take one shot each at a target. Mr.A can hit it with the probability
of 1

4
, Mr.B’s chances are 2

5
(he is a better shot). What is the probability that

the target is hit (at least once)?

Here, we have to (on our own) assume independence of the two shots.

Solution (using an obvious notation): Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩
B) = 1

4
+ 2

5
− 1

10
= 55%.

Alternately: Pr(A ∪B) = 1− Pr(A ∪B) = 1− Pr(A ∩B) = 1− 3
4
· 3
5
= 55%

[replacing Pr(at least one hit) by 1 − Pr(all misses)].
• What is more likely, getting at least one 6 in four rolls of a die, or getting at
least one double 6 in twenty four rolls of a pair of dice?

Solution: Let’s work it out. The first probability can be computed as 1−Pr(no
sixes in 4 rolls) = 1 − (5

6
)4 [due to independence of the individual rolls]

= 51.77%. The second probability, similarly, as 1 − Pr(no double six in 24
rolls of a pair) = 1− (35

36
)24 =49.14% [only one outcome out of 36 results in

a double six].

Answer: Getting at least one 6 in four rolls is more likely.
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• Four people are dealt 13 cards each. You (one of the players) got one ace.
What is the probability that your partner has the other three aces? (Go back
three questions to get a hint).

We can visualize the experiment done sequentially, with you being the first
player and your partner the second one [even if the cards were actually dealt
in a different order, that cannot change probabilities, right?]. The answer is
a natural conditional probability, i.e. the actual condition (event) is decided
in the first stage [consider it completed accordingly]. The second stage then
consists of dealing 13 cards out of 39, with 3 aces remaining.

Answer: (
3
3
)( 36
10
)

( 39
13
)
= 3.129%.

The moral: conditional probability is, in some cases, the ’simple’ probability.

• A, B, C are mutually independent, having (the individual) probabilities of
0.25, 0.35 and 0.45, respectively. Compute Pr[(A ∩B) ∪ C].
Solution: = Pr(A∩B)+Pr(C)−Pr(A∩B∩C) = 0.25× 0.65+0.45− 0.25×
0.65× 0.45 =53.94%.

• Two coins are flipped, followed by rolling a die as many times as the number
of heads shown. What is the probability of getting fewer than 5 dots in total?

Solution: Introduce a partition A0, A1, A2 according to how many heads are
obtained. If B stands for ’getting fewer than 5 dots’, the total-probability for-
mula gives: Pr(B) =Pr(A0) Pr(B|A0)+Pr(A1) Pr(B|A1)+Pr(A2) Pr(B|A2) =
1
4
× 1 + 2

4
× 4

6
+ 1

4
× 6

36
=62.5%.

The probabilities of A0, A1, and A2 followed from the sample space of two
flips: {hh, ht, th, tt}; the conditional probabilities are clear for Pr(B|A0) and
Pr(B|A1), Pr(B|A2) requires going back to 36 outcomes of two rolls of a die
and counting those having a total less than 5: {11, 12, 13, 21, 22, 31}.

• Consider the previous example. Given that there were exactly 3 dots in total,
what is the conditional probability that the coins showed exactly one head?

Solution: We are given the outcome of the second stage to guess at the out-
come of the first stage. We need the Bayes rule, and the following (simplified)
sample space:

03 1
4
· 0 X

03 1
4
· 1

13 1
2
· 1
6

X °
13 1

2
· 5
6

23 1
4
· 2
36

X
23 1

4
· 34
36

where the first entry is the number of heads, and the second one is the result
of rolling the die, simplified to tell us only whether the total dots equaled 3,
or did not (3). Pr(1|3) = 1

12
1
12
+ 1
72

=85.71%. Note that here, rather atypically,
we used bold digits as names of events.
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• Jim, Joe, Tom and six other boys are randomly seated in a row. What is the
probability that at least two of the three friends will sit next to each other?

Solution: Let’s introduce A: ’Jim and Joe sit together’, B: ’Jim and Tom sit
together’, C: ’Joe and Tom sit together’. We need Pr(A∪B ∪C) =Pr(A)+
Pr(B)+Pr(C)−Pr(A∩B)−Pr(A∩C)−Pr(B∩C)+Pr(A∩B∩C). There
is 9! random arrangements of the boys, 2 × 8! will meet condition A (same
with B and C), 2×7! will meet both A and B (same with A∩C and B∩C),
none will meet all three.

Answer: 3× 2×8!
9!
− 3× 2×7!

9!
=58.33%.

• (From a former exam — these are usually a touch easier): Shuffle a deck of
52 cards. What is the probability that the four aces will end up next to each
other (as a group of four consecutive aces)?

Answer: 4!×49!
52!

= 0.0181% (= 1
5525

) [for small probabilities, the last number
− telling us that this will happen, on the average, only in 1 out of 5525
attempts — conveys more information than the actual percentage].

• Consider a 10 floor government building with all floors being equally likely to
be visited. If six people enter the elevator (individually, i.e. independently)
what is the probability that they are all going to (six) different floors?

Solution: The experiment is in principle identical to rolling a 9-sided die
(there are nine floors to be chosen from, exclude the main floor!) six times
(once for each person − this corresponds to selecting his/her floor). The
sample space thus consists of 96 equally likely outcomes (each looking like
this: 2 4 8 6 9 4 − ordered selection, repetition allowed). Out of these, only
9× 8× 7× 6× 5× 4 = P 9

6 consist of all distinct floors.

Answer: P 96
96
= 11.38%.

• (Extension of the previous example). What if the floors are not equally likely
[they issue licences on the 4th floor, which has therefore a higher probability
of 1

2
to be visited by a ’random’ arrival − the other floors remain equally

likely with the probability of 1
16
each].

Solution: The sample space will be the same, but the individual probabilities
will no longer be identical; they will now equal to (1

2
)i( 1

16
)6− i where i is how

many times 4 appears in the selection [2 4 8 6 9 4 will have the probability
of (1

2
)2( 1

16
)4, etc.]. We have to single out the outcomes with all six floors

different and add their probabilities. Luckily, there are only two types of
these outcomes: (i) those without any 4: we have P 8

6 of these, each having
the probability of ( 1

16
)6, and (ii) those with a single 4: there are 6 × P 8

5 of
these, each having the probability of (1

2
)( 1
16
)5.

Answer: P 8
6 (

1
16
)6+6P 8

5 (
1
2
)( 1
16
)5 = 2.04% (the probability is a lot smaller now).

• Within the next hour 4 people in a certain town will call for a cab. They will
choose, randomly, out of 3 existing (equally popular) taxi companies. What
is the probability that no company is left out (each gets at least one job)?
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Solution: This is again a roll-of-a-die type of experiment (this time we roll 4
times − once for each customer − and the die is 3-sided − one side for each
company). The sample space will thus consist of 34 equally likely possibilities,
each looking like this: 1321. How many of these contain all three numbers?
To achieve that, we obviously need one duplicate and two singles. There
are 3 ways to decide which company gets two customers. Once this decision
has been made (say 1 2 2 3), we simply permute the symbols [getting

¡
4

2,1,1

¢
distinct ’words’].

Answer:
3× ¡ 4

2,1,1

¢
34

= 4
9
= 44.44%.

• There are 10 people at a party (no twins). Assuming that all 365 days of a
year are equally likely to be someone’s birth date [not quite, say the statistics,
but we will ignore that] and also ignoring leap years, what is the probability
of:

1. All these ten people having different birth dates?
Solution: This, in principle, is the same as choosing 6 different floors in
an elevator (two examples ago).

Answer:
P 36510

36510
= 88.31%.

2. Exactly two people having the same birth date (and no other duplica-
tion).
Solution: This is similar to the previous example where we needed ex-
actly one duplicate. By a similar logic, there are 365 ways to choose
the date of the duplication,

¡
10
2

¢
ways of placing these into 2 of the 10

empty slots, and P 364
8 of filling out the remaining 8 slot with distinct

birth dates.

Answer:
365× ¡10

2

¢× P 364
8

36510
= 11.16% (seems reasonable).

These two answers account for 99.47% of the total probability. Two or three
duplicates, and perhaps one triplicate would most likely take care of the rest;
try it!

• A simple padlock is made with only ten distinct keys (all equally likely). A
thief steals, independently, 5 of such keys, and tries these to open your lock.
What is the probability that he will succeed?

Solution: Again, a roll-of-a-die type of experiment (10 sides, 5 rolls). The
question is in principle identical to rolling a die to get at least one six. This,
as we already know, is easier through the corresponding complement.

Answer: 1− ( 9
10
)5 = 40.95%. ¥
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Chapter 3 RANDOM VARIABLES —
DISCRETE CASE

If each (complete) outcome [simple event] of a random experiment is assigned a
single real number (usually an integer), this (assignment) is called a random
variable (RV). Using the same experiment we can define any number of random
variables, and call themX, Y, Z, etc. (capital letters from the end of the alphabet).

EXAMPLE: Using the experiment of rolling two dice, we can define X as the
total number of dots, and Y as the larger of the two numbers. This means
assigning numbers to individual simple events in the following fashion:

X:
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

Y :
1 2 3 4 5 6
2 2 3 4 5 6
3 3 3 4 5 6
4 4 4 4 5 6
5 5 5 5 5 6
6 6 6 6 6 6

Note the difference between events and random variables: an event is effec-
tively an assignment, to each outcome, of either ’yes’ (X, meaning: I am in) or
’no’ (blank, meaning: I am out). E.g. Event A: ’the total number of dots is even’
will be represented by:

X X X
X X X

X X X
X X X

X X X
X X X

Probability distribution of a random variable
is a table (or formula) summarizing the information about

1. possible outcomes of the RV (numbers, arranged from the smallest to the
largest)

2. the corresponding probabilities. ¥

Thus, for example, our X and Y have the following (probability) distributions:

X = 2 3 4 5 6 7 8 9 10 11 12

Pr:
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

and
Y = 1 2 3 4 5 6

Pr:
1

36

3

36

5

36

7

36

9

36

11

36
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The probabilities of each distribution must of course add up to 1 (checking this is
a lot easier if you use the same denominator).

Later on we will find it more convenient to express the same information using
formulas instead of tables (we will stick to tables for as long as we can, i.e. for
the rest of this chapter). Thus, for example the distribution of X can be specified
by: fX(i) =

6− |i−7|
36

with i = 2, 3, ...12 where fX(x) is the so called probability
function ofX. Similarly: fY (i) = 2i−1

36
with i = 1, 2, ...6 (these being the potential

values of Y, fY (i) computing the corresponding probability).

Formulas become more convenient when dealing with RVs having too many
(sometimes infinitely many) values. Thus, for example, if we go back to the
experiment of flipping a coin till a head appears, and define X as the total number
of tosses (anything which translates an outcome of an experiment into a single
number is a RV), we have a choice of either

X = 1 2 3 4 ..... i .....
Pr: 1

2
1
22

1
23

1
24

..... 1
2i

.....

or fX(i) = 1
2i
with i = 1, 2, 3,.... [implying: up to infinity]. In this case, one would

usually prefer the formula to an unwieldy table.

Sometimes it’s useful to have a graph (histogram) of a distribution. The
probabilities are usually displayed as vertical bars or (connected) rectangles. We
get a nice graphical view of what’s likely and what is not.

IDistribution Function of a Random VariableJ

At this point the names may get a bit confusing. Learn to differentiate between
a probability distribution [a more generic term implying a complete information
about a RV, usually in a form of a table or a probability function f(i) ] and a
distribution function (I like to call it ’capital F ’), which is defined by: FX(k) =
Pr(X ≤ k) i.e. effectively a table (or a formula) providing cumulative (i.e. total)
probabilities of intervals of values, from the smallest up to and including k.

Thus, using one of our previous examples:

Y = 1 2 3 4 5 6

FY :
1

36

4

36

9

36

16

36

25

36
1

It is obvious that the values of F (k) can only increase with increasing k, and
that the last one must be equal to 1.When there is no last value (i.e. k can go up
to infinity), it is the lim

k→∞
FX(k) which must equal to 1.

EXAMPLE: The total number of tosses in the flip-a-coin experiment has the

following distribution function: FX(k) =
kP
i=1

(1
2
)i = 1

2
· 1−(

1
2)

k

1− 1
2

=1 − (1
2
)k, for

k = 1, 2, 3,... (its argument is a ’dummy’ variable, it makes no difference
whether we call it i, j, k, or anything else − your textbook calls it x, but I
don’t like that notation). Obviously, lim

k→∞
FX(k) = 1 (check). ¥
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Multivariate distribution
of several random variables (we have already mentioned that more than one RV
can be defined for the same experiment). We start with the

IDistribution of Two Random VariablesJ

A two dimensional table which, for every combination of the RVs’ values spec-
ifies the respective probability, is called their (bivariate) joint distribution.
The same information can be usually given (in a more ’compact’ form) by the

corresponding probability function f(i, j) and the range of possible i (the first
RV’s) and j (the second RV’s) values. Unlike you textbook, I usually like to include
the names of the two RVs as subscripts, thus: fXY (i, j).

EXAMPLE: A coin is flipped three times. X: total number of tails, Y : number
of heads up to the first tail. We first display the sample space with the values
of X and Y :

Prob: Outcome: X: Y :
1
8

HHH 0 3
1
8

HHT 1 2
1
8

HTH 1 1
1
8

HTT 2 1
1
8

THH 1 0
1
8

THT 2 0
1
8

TTH 2 0
1
8

TTT 3 0

The joint distribution of X and Y follows:

Y =

X =
0 1 2 3

0 0 0 0 1
8

1 1
8

1
8

1
8
0

2 2
8

1
8
0 0

3 1
8
0 0 0

(*)

Thus, for example Pr(X = 2 ∩ Y = 0) = 2
8
, etc.

Trying to express this distribution via fXY (i, j) would be rather difficult, and
the resulting function very unwieldy (to say the least) − there is no point
attempting it. ¥

The joint distribution function is defined as FXY (i, j) = Pr(X ≤ i∩Y ≤ j).
It’s not going to be used by us much.

Marginal distribution of X (and, similarly, of Y ) is, effectively the ordinary
(univariate) distribution ofX (as if Y has never been defined). It can be obtained
from the bivariate (joint) distribution by adding the probabilities in each row [over
all possible Y -values, using the total probability formula: Pr(X = 0) =Pr(X =
0∩ Y = 0)+Pr(X = 0∩ Y = 1)+Pr(X = 0∩ Y = 2)+Pr(X = 0∩ Y = 3); in this
context one must realize that Y = 0, Y = 1, Y = 2, .... are events, furthermore,
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they constitute a partition of the sample space]. The results are conveniently
displayed at the table’s margin (thus the name):

Y =

X =
0 1 2 3

0 0 0 0 1
8

1
8

1 1
8

1
8

1
8
0 3

8

2 2
8

1
8
0 0 3

8

3 1
8
0 0 0 1

8

implying that the marginal (i.e. ’ordinary’) distribution of X is

X = 0 1 2 3
Pr: 1

8
3
8

3
8

1
8

Similarly, one can find the marginal distribution of Y by adding the probabilities
in each column.
A bivariate distribution is often given to us via the corresponding joint proba-

bility function. One of the two ranges has usually the ’marginal’ form (the limits
are constant), the other range is ’conditional’ (i.e. both of its limits may depend
on the value ot the ohter random variable). The best way is to ’translate’ this
information into an explicit table whenever possible.

EXAMPLE: Consider the following bivariate probability function of two ran-
dom variables X and Y :

fXY (i, j) = c · (2i+ j2) where
0 ≤ i ≤ 2
i ≤ j ≤ 4− i

Find the value of c, the marginal distribution of Y and (based on this) Pr(Y ≤
2).

Solution: We translate the above information into the following table

Y = 1 2 3 4

X = 0 1c 4c 9c 16c
1 3c 6c 11c 0
2 0 8c 0 0

which clearly implies that c = 1
58
, the marginal distribution of Y is

Y = 1 2 3 4

Pr
4

58

18

58

20

58

16

58

and Pr(Y ≤ 2) = 22
58
= 37.93%. ¥

Independence of X and Y is almost always a consequence of X and Y being
defined based on two distinct parts of the experiment which, furthermore, cannot
influence each other’s outcome(e.g. rolling a die 4 times, let X be the total number
of dots in the first two rolls, and Y be the total number of dots in the last two
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rolls). Normally, we should be able to tell, based on this, that X and Y must be
independent, and utilize the consequences of any such natural independence.
Formally, X and Y being independent means that Pr(X = i∩Y = j) =Pr(X =

i)×Pr(Y = j) for every possible combination of i and j (each joint probability is
a product of the two corresponding marginal probabilities). [We can readily see
that, in the above example, X and Y are not independent, since 0 6= 1

8
× 4

8
]. This

implies that, when X and Y are independent, their marginal distributions enable
us to compute each and every of their joint probabilities by a simple multiplication
(we usually don’t need to construct the corresponding, now fully redundant, join
probability table).

All of these concepts can be extended to

IThree or More Random VariablesJ

In such a case we usually don’t like working with (3 or more-dimensional) tables;
we will have to rely on formulas.

Pr(X = i ∩ Y = j ∩ Z = k) ≡ fXY Z(i, j, k)

defines the (joint) probability function; it must be accompanied by stipulating
the permissible ranges of i, j and k ( f given without this information would be
meaningless).
Based on this, we are able to instantly determine whether the corresponding

RVs are independent or not, since their independence requires that:

• f(i, j, k) can be written as a product of a function of i times a function of j
times a function of k,

and

• the i, j, and k ranges are (algebraically) independent of each other (i.e. both
the lower and upper limit of each range are fixed numbers, not functions of
the other two variables).

When either of these two conditions is violated (even if it is only by one item),
the two RVs are dependent.

EXAMPLES:

1. fXY (i, j) =
i+j
24
, where 1 ≤ i ≤ 3 and 1 ≤ j ≤ i, clearly implies that X and

Y are not independent (here, both conditions are broken). To deal with this
bivariate distribution, my advice is to ’translate’ it into an explicit table of
joint probabilities, whenever possible (try it with this one).

2. fXY Z(i, j, k) =
i·j·k
108

, where 1 ≤ i ≤ 3, 1 ≤ j ≤ 3 and 1 ≤ k ≤ 2. Yes, both
conditions are met, therefore X, Y and Z are independent. [It is then very
easy to establish the individual marginals, e.g.: fX(i) = c · i with 1 ≤ i ≤ 3,
where c is a constant which makes the probabilities add up to 1 (1

6
in this

case)]. ¥
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Finally, an important note about ranges: The are two distinct ways of spec-
ifying a two-dimensional region: we can start by the ’marginal’ range of i values
and follow it by the ’conditional’ range of j values, or we can do it the other way
around (both descriptions are equally correct, but often appear quite distinct).
When constructing a marginal distribution, the summation must be done over the
’conditional’ range of the other variable; thus, when working with formulas [in-
stead of explicit tables], one must always make sure that the ranges are in the
appropriate form (and be able to do the ’translation’ when they are not).

EXAMPLE: f(i, j) = (i+1)·(j+1)
60

, where 0 ≤ i ≤ 2 and i ≤ j ≤ i + 2 [to un-
derstand the example, try translating this into the corresponding table of
probabilities]. Note that the corresponding two variables are not indepen-
dent. The other way of expressing the ranges (this time, it is rather tricky)
is: 0 ≤ j ≤ 4 and max(0, j) ≤ i ≤ min(2, j) [I hope you understand the
max/min notation − verify that this is so!]. ¥

Similarly, there are 6 (in general) distinct ways of stipulating the ranges of i,
j and k (we may start with the marginal range of i, follow with the j-range given
i, and finally the k-range given both i and j; obviously having 3! choices as to the
order). This is very important for us to understand, especially when reaching the
continuous distributions [students always have difficulties at this point].

IConditional DistributionJ

of X, given an (observed) value of Y .

Using the old notion for conditional probabilities, we know that

Pr(X = i |Y = j) = Pr(X = i ∩ Y = j)
Pr(Y = j)

All we have to do is to introduce a new notation for these, namely: fX|Y=j(i)
where i varies over its conditional range (given the value of j; we use a different
print type to emphasize that j has a specific, fixed value).

These probabilities (for all such i values) constitute a new, special probability
distribution called conditional distribution which has, nevertheless, all the
properties of an ordinary distribution. They usually arise in a situation when a
specific value of one RV has already been observed, but one is still waiting for the
outcome of the other.

EXAMPLE: Using Table (*) of our original example, we can easily construct
Y |X = 2 0 1
Prob: 2

3
1
3

by taking the probabilities in the X = 2 row and dividing

each of them by their total (the corresponding marginal probability of X =
2). Note that values with zero probability have been discarded.

Similarly:
X |Y = 0 1 2 3
Prob: 1

4
2
4

1
4

¥
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Things get more tricky when dealing with three (or more) Random Vari-
ables. One can define a conditional distribution of one of them, given a value of
each of the other two, say:

Pr(X = i |Y = j ∩ Z = k) = fXY Z(i, j,k)

fY Z(j,k)

with i varying over all values permitted by j and k (fixed),

or a conditional (and joint) distribution of two of them, given a value of the third:

Pr(X = i ∩ Y = j |Z = k) = fXY Z(i, j,k)

fZ(k)

with i and j varying over all pairs of values allowed by k.

Mutual independence implies that all conditional distributions are identical
to the corresponding marginal distribution. For example, when X, Y and Z are
mutually independent, Pr(X = i |Y = j) ≡ Pr(X = i), Pr(X = i |Y = j ∩ Z =
k) =Pr(X = i), etc. [X has the same distribution, whatever the value of the other
variable(s)].

The rule to remember: Under mutual independence it is legitimate to simply
ignore (remove) the condition(s).

Transforming random variables
It should be obvious that, if X is a random variable, any transformation of X (i.e.

an expression involving X, such as
X

2
+ 1) defines a new random variable (say Z)

with its own new distribution. This follows from our basic definition of a random
variable (the experiment returns a single number).

EXAMPLE: If X has a distribution given by
X = 0 1 2 3
Prob: 1

8
3
8

3
8

1
8

then, to

build a distribution of Z = X
2
+1, one simply replaces the first-row values of

the previous table, thus:
Z = 1 3

2
2 5

2

Prob: 1
8

3
8

3
8

1
8

.

Similarly, if the new RV is U = (X − 2)2 [one can define any number of new
RVs based on the same X], using the same approach the new table would

look:
U = 4 1 0 1
Prob: 1

8
3
8

3
8

1
8

Here we of course don’t like the duplication of values and their general ’disor-

der’, so the same table should always be presented as:
U = 0 1 2 3 4
Prob: 3

8
4
8
0 0 1

8

[the values 2 and 3 have been inserted, with zero probabilities, to make the
table more ’regular’ − doing this is optional]. ¥

The most important such case is the so called linear transformation of X,
i.e.

Y = aX + b
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where a and b are two constants. Note that the shape (in terms of a histogram) of
the Y -distribution is the same as that of X, only the horizontal scale has different
tick marks now. The new random variable is effectively the old random variable on
a new scale (such as expressing temperature in Celsius to define X and in Fahren-
heit to ’transform it’ to Y ). This is why linear transformations are particularly
easy to deal with, as we will see later.

Similarly, we can

ITransform Two Random VariablesJ

into a single one by using any mathematical expression (function) of the two.

EXAMPLE: If X and Y have the distribution of our old bivariate example, and
W = |X − Y |, we can easily construct the (univariate) distribution of W by
first building a table which shows the value ofW for each X, Y combination:

Y =

X =
0 1 2 3

0 0 1 2 3
1 1 0 1 2
2 2 1 0 1
3 3 2 1 0

and then collect the probabilities of each unique value ofW, from the smallest

to the largest, thus:
W = 0 1 2 3
Prob: 1

8
3
8

2
8

2
8

. This is the resulting distribution

of W. ¥

Transforming RVs is a lot more fun in the continuous case (a few months from
now).
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Chapter 4 EXPECTED VALUE OF A
RANDOM VARIABLE

also called its mean or average, is a number which corresponds (empirically)
to the average value of the random variable when the experiment is repeated,
independently, infinitely many times (i.e. it is the limit of such averages). We
can compute it based on the RV’s distribution by realizing that the individual
probabilities (second row) represent the limit of the observed frequencies of
the corresponding values (first row).

For example, the probability of 1
6
(of getting a six when rolling a die) is

telling us that, in a long run, one sixth of all outcomes will have that value (exact
only in the infinite limit), etc. One also has to remember that averaging (i.e.
the very simple ’add all values and divide by their number’) can be simplified by
1× k1 + 2× k2 + ...+ 6× k6

k1 + k2 + ...+ k6
where k1 is the number of outcomes which resulted

in a 1 (dot), k2 is the number of those with 2 (dots), etc. [the numerator still gives
the simple sum of all observed values, and the denominator their number]. This
can be rewritten as 1×r1+2×r2+ ...+6×r6 where r1 = k1

k1+k2+...+k6
is the relative

frequency of outcome 1, r2 = k2
k1+k2+...+k6

is the relative frequency of outcome 2, etc.
In the infinite limit the relative frequencies become the corresponding probabilities,
r1 → f(1), r2 → f(2), etc. [recall that f(1) ≡ Pr(X = 1), ...]. The expected
(average) value of a RV X is thus 1×f(1)+2×f(2)+ ...+6×f(6) or, in general,

E(X) =
nX
i=0

i× f(i)

where the summation is from the smallest value (usually 0 or 1) to the largest
possible value, say n. Note that this simply means multiplying the numbers of the
first row (of a distribution table) by the corresponding numbers of the second row,
and adding the results.

E(X) is the usual notation for the expected value of X. Sometimes, for the
same thing, we also use the following alternate (’shorthand’) notation: µX (µ is the
Greek letter ’mu’, not to be confused with u ). We will often refer to the process of
taking the expected value of a RV (or an expression involving RVs) as ’averaging’
[since weighted averaging it is].

EXAMPLES:

1. When X is the number of dots in a single roll of a die, this gives E(X) =
1+2+3+4+5+6

6
= 3.5. Note that this is the exact center (of symmetry) of the

distribution. This observation is true for any symmetric distribution, which
enables us to bypass the computation in such cases. Also note that the result
(3.5) is not one of the possible values. Thus the name (expected value) is
rather misleading, it is not the value we would expect to get in any roll.

2. Let Y be the larger (max) of the two numbers when rolling two dice [we
constructed its distribution in the previous chapter]. E(Y ) =1 × 1

36
+ 2 ×
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3
36
+3 × 5

36
+ 4 × 7

36
+5 × 9

36
+ 6 × 11

36
= 1+6+15+28+45+66

36
= 161

36
= 4.472. In a

probability histogram, where probabilities are represented by (heavy) bars,
this would correspond to their ’center of mass’ (if the x-axis is seen as a
weightless platform, this is the point at which the structure could be sup-
ported without tilting). This enables us to roughly estimate the mean and
detect a possible computational error when it happens (if nothing else, make
sure that the answer is within the RV’s range)!

3. Let U have the following (arbitrarily chosen) distribution:

U = 0 1 2 4
Prob: 0.3 0.2 0.4 0.1

E(U) = 0.2 + 0.8 + 0.4 = 1.4. ¥

When ITransformingJ

a random variable, what happens to the mean?

The main thing to remember is that in general (unless the transformation is
linear − to be discussed later) the mean does not transform accordingly, and has
to be computed anew, i.e. E[g(X)] 6= g (E[X]) [same as g(µX) in ’shorthand’], the
simplest but rather important example being: E(X2) 6= (E(X))2 [= µ2X ]!!!

EXAMPLE: Related to the previous problem, we defineW = |U−2|3. It would
be a big mistake to assume that E[|U − 2|3] ?

= |E(U)− 2|3 = 0.63 = 0.216,
it is not. There are two ways of computing the correct expected value, as
follows:

• We can simply build the distribution of the new RV (the way we learned
in the previous chapter), and then use the basic procedure of computing its

mean:
W = 0 1 8
Prob: 0.4 0.2 0.4

⇒ E(W ) = 0.2 + 3.2 = 3.4.

• We can use the old distribution, adding an extra row for the new RV’s values:
W = 8 1 0 8
U = 0 1 2 4
Prob: 0.3 0.2 0.4 0.1

and then perform the following ’weighted’ averaging ofW : E(W ) = 8×0.3+
1× 0.2 + 0× 0.4 + 8× 0.1 resulting in the same answer of 3.4. ¥

The equivalence of the two techniques is true in general, we can summarize
it by the following formula:

E[W = g(U)] =
X
All j

j × fW (j) =
X
All i

g(i)× fU(i)

where g(U) is the actual transformation [ g(U) ≡ |U − 2|3 in our example].
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For ILinear TransformationsJ

i.e. those of the type Y = aX + b (where a and b are two constants), the situation
is different; we can prove easily that

E(aX + c) = aE(X) + c

Proof: E(aX+ c) =
P
All i

(ai+ c)fX(i) = a
P
All i

i×fX(i)+ c
P
All i

fX(i) = aE(X)+ c ¤

EXAMPLE: E(2U − 3) = 2 × 1.4 − 3 = −0.2 [where U is the variable of the
previous sections]. Verify this by a direct technique (you have a choice of
two) and note the significant simplification achieved by this formula. ¥

Expected values related to a bivariate distribution
When a bivariate distribution (of two RVs) is given, the easiest way to compute
the individual expected values (of X and Y ) is through the marginals.

EXAMPLE: Based on

X =
1 2 3

Y = 0 0.1 0 0.3 0.4
1 0.3 0.1 0.2 0.6

0.4 0.1 0.5

we compute E(X) = 1× 0.4 + 2× 0.1 + 3× 0.5 = 2.1 and E(Y ) = 0× 0.4 +
1× 0.6 = 0.6. ¥

We know that any function of X and Y (e.g. their simple product X · Y ) is
a new random variable with its own distribution and therefore its mean. How do
we compute E(X · Y )? Again, we have two ways of doing this, either by building
the distribution of Z = X · Y and using the usual formula, or by multiplying the
(joint) probabilities of the bivariate table by the corresponding value of X · Y and
adding the results (over the whole table, i.e. both rows and columns), thus (using
the previous example): E(X · Y ) =1× 0× 0.1 + 2× 0× 0 + 3× 0× 0.3 + 1× 1×
0.3 + 2× 1× 0.1 + 3× 1× 0.2 = 1.1.
This means that in general we have

E [g(X,Y )] =
X
Rows

X
Columns

g(i, j)× fXY (i, j)

More EXAMPLES [based on the previous bivariate distribution]:

1. E [(X − 1)2] = 02×0.4+12×0.1+22×0.5 = 2.1 [here we used theX-marginal,
bypassing the 2-D table].

2. E
£

1
1+Y 2

¤
= 1

1+02
× 0.4 + 1

1+12
× 0.6 = 0.7 [similarly, use the Y -marginal].
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3. E
h
(X−1)2
1+Y 2

i
[don’t try to multiply the last two results, that would be wrong].

Here it may help to first build the corresponding table of the (X−1)2
1+Y 2

values:
0 1 4
0 1

2
2
, then multiply each item of this table by the corresponding item

of the probability table and add the results: 1.2+ 0.05+ 0.4 [discarding zero
values] = 1.65. ¥

ILinear CaseJ

Please note that in general we again cannot equate E [g(X,Y )] with g(µX , µY ),
unless the function is linear (in both X and Y ) i.e. g(X,Y ) ≡ aX+bY +c . Then
we have:

E [aX + bY + c] = aE(X) + bE(Y ) + c

Proof: E [aX + bY + c] =
P
i

P
j

(a×i+b×j+c)fXY (i, j) = a
P
i

i×fX(i)+b
P
j

j×
fY (j) + c = aE(X) + bE(Y ) + c . Note that i is treated as a constant by the
j summation and vice versa. ¤

EXAMPLE: Using the previous bivariate distribution, E(2X−3Y +4) is simply
2× 2.1− 3× 0.6 + 4 = 6.4 ¥

The previous formula easily extends to any number of variables:

E [a1X1 + a2X2 + ...+ akXk + c] = a1E(X1) + a2E(X2) + ...+ akE(Xk) + c

Note that no assumption of independence was made about these variables!

IIndependence Related IssuesJ

Can independence help when computing some of our expected values? The
answer is yes, the expected value of a product of RVs equals the product of the
individual expected values, when these RVs are independent:

X on Y ⇒ E(X · Y ) = E(X) · E(Y )

where on is our notation for (pairwise) independence.

Proof: E(X·Y ) =P
i

P
j

i×j×fX(i)×fY (j) =
µP

i

i× fX(i)

¶
×
ÃP

j

j × fY (j)

!
=E(X)·

E(Y ) ¤

The statement can actually be made more general:

X on Y ⇒ E [g1(X) · g2(Y )] = E [g1(X)] · E [g2(Y )]

where g1 and g2 are any two (univariate) functions (Proof would be practically the
same).
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Moments of a single random variable
We now return to the case of a single RV and define its so called moments as
follows: E(Xn) where n is an integer is called the nth simple moment of X (or,
of the corresponding distribution). The mean E(X) is thus the first simple mo-
ment (yet another name for the same thing!), E(X2) is the second simple moment
(remember, it is not equal to the first moment squared!), etc. The zeroth moment,
E(X0 ≡ 1), is always identically equal to 1.
Similarly we can define the so called central moments (your textbook calls

them ’moments with respect to the mean’, but that’s too long for us!) asE [(X − µX)
n] ,

where µX ≡ E(X) [as we know already]. Thus, the first central moment E(X −
µX) =µX − µX ≡ 0 [always identically equal to zero, and of not much use].
The second central moment E [(X − µX)

2] =E [X2 − 2XµX + µ2X ] =E(X2) −
2µ2X +µ2X =E(X2)−µ2X ≥ 0 (averaging non-negative quantities cannot result in a
negative number; also, the last expression is more convenient computationally than
the first) is of such importance that it goes under yet another name, it is called the
RV’s variance, notation: V ar(X). Its purpose is to measure the spread (width) of
the distribution by finding a typical, ’average’ deviation of the observations from its
’center’ µX . Note that averaging the deviationX−µX directly would have given us
zero, as the positive and negative values cancel out. One could propose averaging
|X − µX | to correct that problem, but this would create all sorts of difficulties,
both computational and ’theoretical’ (as we will see later). So we have averaged
(X − µX)

2, which also gets rid of the cancellation problem (and more ’elegantly’
so), but results in the average squared deviation [if X is length, its variance will
be in square inches − wrong units].
This can be fixed by simply taking the square root of the variance [which

finally gives us this ’typical’ deviation from the mean] and calling it the standard
deviation of X, notation: σX =

p
V ar(X) [this is the Greek letter ’sigma’]. One

can make a rough estimate of σ from the graph of the distribution (the interval
µ − σ to ρ + σ should contain the ’bulk’ of the distribution − anywhere from 50
to 90%); this rough rule should detect any gross mistake on our part.

Finally, skewness is defined as
E [(X − µX)

3]

σ3
[it measures to what extent is

the distribution non-symmetric, or better yet: left (positively) or right (positively)

’skewed’], and kurtosis as
E [(X − µX)

4]

σ4
[it measures the degree of ’flatness’, 3

being a typical value, higher for ’peaked’, smaller for ’flat’ distributions]. The last
two quantities (unlike the variance) are of only a marginal importance to us.

EXAMPLES:

1. If X is the number of dots when rolling one die, µX =
7
2
[we computed that

already], V ar(X) = 12+22+32+42+52+62

6
− ¡7

2

¢2
= 35

12
[we used the ’computa-

tional’ formula E(X2) − µ2X , verify that E [(X − µX)
2] results in the same

answer, but it is clumsier to use]. This implies that the standard deviation

σX =
q

35
12
= 1.7078. Note that 3.5 ± 1.708 contains 66.7% of the distribu-

tion. Skewness, for a symmetric distribution, must be equal to 0, kurtosis can
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be computed based on E [(X − µ)4] = (−2.5)4+(−1.5)4+(−0.5)4+0.54+1.54+2.54
6

=

14. 729⇒kurtosis = 14.729

(35
12
)2
= 1. 7314 [’flat’].

2. Consider the distribution of one of our previous examples:
U = 0 1 2 4
Prob: 0.3 0.2 0.4 0.1

.

µU = 1.4 [already computed], V ar(U) = 0
2× 0.3+ 12× 0.2+ 22× 0.4+ 42×

0.1−1.42 = 1.44⇒σU =
√
1.44 = 1.2. From E [(U − µU)

3] = (−1.4)3×0.3+
(−0.4)3×0.2+ 0.63×0.4+ 2.63×0.1 = 1.008, the skewness is

1.008

1.23
= .58333

[long right tail], and from E [(U − µU)
4] = (−1.4)4 × 0.3 + (−0.4)4 × 0.2 +

0.64 × 0.4 + 2.64 × 0.1 = 5.7792 the kurtosis equals 5.7792
1.24

= 2.787 ¥

When X is transformed to define Y = g(X), we already know that there is no
general ’shortcut’ for computing E(Y ). This (even more so) applies to the variance
of Y, which also needs to be computed ’from scratch’. But, we did manage to
simplify the expected value of a linear transformation of X (of the Y = aX + c
type). Is there any simple conversion of V ar(X) into V ar(Y ) in this (linear) case?

The answer is ’yes’, and we can easily derive the corresponding formula: V ar(aX+
c) = E [(aX + c)2]−(aµX+c)2 = E [a2X2 + 2aX + a2]− (aµX+c)2 = a2E(X2)−
a2µ2X [the rest cancel] = a2V ar(X) [note that c drops out entirely as expected,
it corresponds to the change of origin only − ’sliding’ the distribution by a fixed
amount c, which does not change its width]. This implies that

σaX+c = |a|σX
(don’t forget that

√
a2 = |a|, not a).

Moments — the bivariate case
When dealing with a joint distribution of two RVs we can always compute the
individual (single-variable) moments (means, variances, etc.) based on the
corresponding the marginal distributions.

Are there any other (joint) moments? Yes, a whole multitude of them. And
similarly to the univariate case, we can separate them into simple (joint) moments
E(Xn · Y m) and central moments: E [(X − µX)

n · (Y − µY )
m] where n and m are

integers. Thus, for example, E(X2 ·Y 3) computes the second-third simple moment
of X and Y.

ICovarianceJ

The most important of these is the first-first central moment, called the co-
variance of X and Y :

Cov(X,Y ) = E [(X − µX) · (Y − µY )] ≡ E(X · Y )− µX · µY
[the last is the ’computational’ formula]. Covariance is obviously a ’symmetric’
notion, i.e. Cov(X,Y ) = Cov(Y,X). It becomes zero when X and Y are indepen-
dent [this is an immediate consequence of what independence implies for products,
as we learned already]:

X on Y ⇒ Cov(X,Y ) = 0
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Note that this cannot be reversed: zero covariance does not necessarily imply
independence.

Based on the covariance one can define the

ICorrelation CoefficientJ

of X and Y by: ρXY =
Cov(X,Y )
σX ·σY [this is the Greek letter ’rho’]. The absolute value

of this coefficient cannot be greater than 1.

Proof: E
©
[(X − µX) + λ(Y − µY )]

2ª ≥ 0 for any value of λ [an arbitrary pa-
rameter]. Expanded, this implies V ar(X) + 2λCov(X,Y ) + λ2V ar(Y ) ≥
0. The minimum of the left hand side [considering V ar and Cov fixed]
is at λ = −Cov(X,Y )

V ar(Y )
[by simple differentiation]. Substituting this λ gives:

V ar(X)− Cov(X,Y )2

V ar(Y )
≥ 0⇒ ρ2XY ≤ 1 ¤

EXAMPLE: Using one of our previous distributions

X =
1 2 3

Y = 0 0.1 0 0.3 0.4
1 0.3 0.1 0.2 0.6

0.4 0.1 0.5
we have µX = 2.1, µY = 0.6 [done earlier] V ar(X) = 5.3 − 2.12 = .89,
V ar(Y ) = 0.6− 0.62 = 0.24, Cov(X,Y ) = 0.3+0.2+0.6− 2.1× 0.6 = −0.16
[as likely to be negative as positive] and ρXY =

−0.16√
0.89×0.24 = −0.3462 ¥

ILinear Combination of Random VariablesJ

One can simplify a variance of a linear combination of two RVs [so far we
have a formula for aX+c only]. Let’s try it: V ar(aX+bY+c) = E [(aX + bY + c)2]−
(aµX + bµB + c)2 = a2E(X2)+ b2E(Y 2)+ 2abE(X ·Y )− a2µ2X− b2µ2Y − 2abµXµY
[the c-terms cancel] =

a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

Independence would make the last term zero.

This result can be easily extended to a linear combination of any number of
random variables:

V ar(a1X1 + a2X2 + ...akXk + c) = a21V ar(X1) + a22V ar(X2) + ....+ a2kV ar(Xk) +

2a1a2Cov(X1,X2) + 2a1a3Cov(X1,X3) + ...+ 2ak−1akCov(Xk−1, Xk)

Mutual independence (if present) would make the last row of
¡
k
2

¢
covariances dis-

appear (as they are all equal to zero).

And finally a formula for a covariance of one linear combination of RVs against
another:

Cov (a1X1 + a2X2 + ...., b1Y1 + b2Y2 + ....) =

a1b1Cov(X1, Y1) + a1b2Cov(X1, Y2) + a2b1Cov(X2, Y1) + a2b2Cov(X2, Y2) + ...
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[each term from the left hand side against each term on the right - the ’distributive
law of covariance’]. Note that in the last formula the X and Y variables don’t
need to be all distinct; whenever we encounter something like Cov(U,U), we know
how to deal with it [by our definition: Cov(X,X) ≡ V ar(X)].

Correlation coefficient: Using these formulas we can easily prove that ρaX+c,bY+d =
Cov(aX+c,bY+d)
σaX+c·σbY+d = a·b·Cov(X,Y )

|a|·|b|·σX ·σY = ±ρXY [+ when a and b have the same sign, − when
they have opposite signs].

Another important special case results when we independently sample the same
bivariate X-Y distribution n times, calling the individual results X1 and Y1, X2

and Y2, ...., Xn and Yn. These constitute the so called

IRandom Independent SampleJ of size n

Note that in this case X1 on X2, Y1 on Y2, X1 on Y2, Y1 on X2, .... but
X1 and Y1,....remain dependent. Obviously then V ar(X1 + X2 + .... + Xn) =

V ar(X1) + V ar(X2) + .... + V ar(Xn) ≡ nV ar(X) and, similarly, V ar(
nP
i=1

Yi) =

nV ar(Y ). On the other hand Cov(
nP
i=1

Xi,
nP
i=1

Yi) = Cov(X1, Y1) + Cov(X2, Y2) +

..... + Cov(Xn, Yn) = nCov(X,Y ).

All this implies that the correlation coefficient between the two totals
nP
i=1

Xi

and
nP
i=1

Yi equals
nCov(X,Y )√

nV ar(X)·
√

nV ar(Y )
≡ ρX,Y (the correlation between individual

X and Y observations). The same is true for the corresponding sample meansPn
i=1Xi

n
and

Pn
i=1 Yi
n

(why?).

Moment generating function
Technically, it is defined as the following expected value [but of a very special
type, so to us, MGF is really ’something else’]:

MX(t) ≡ E
£
etX
¤

where t is an arbitrary (real) parameter [MX(t) will be our usual notation for a
MGF].

The main purpose for introducing a MGF is this: when expanded in t, it
yields:

MX(t) = 1 + tE(X) +
t2

2
E(X2) +

t3

3!
E(X3) + ....

the individual coefficients of the t-powers being the simple moments of the distri-
bution, each divided by the corresponding factorial. Quite often this is the easiest
way of calculating them! Note that this is equivalent to:

E(Xk) =M
(k)
X (t = 0)

or, in words, to get the kth simple moment differentiate the corresponding MGF k
times (with respect to t) and set t equal to zero.
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EXAMPLE: Let us consider the distribution of the number of rolls when waiting
for the first head: f(i) = (1

2
)i, i = 1, 2, 3,....To compute its expected value

and standard deviation, we first need E(X) =
∞P
i=1

i × (1
2
)i = 1 × 1

2
+ 2 ×

(1
2
)2+3×(1

2
)3+ .... and E(X2) =

∞P
i=1

i2×(1
2
)i. These infinite sums are neither

of the geometric, nor of the exponential type (the only two we know how
to handle), so unless we want to spend a lot of time learning about infinite
sums (we don’t), we have to resort to something else. Let us see how difficult

it is to build the corresponding MGF: M(t) = E
£
etX
¤
=

∞P
i=1

et i × (1
2
)i =

∞P
i=1

³
et

2

´i
= A+A2+A3+A4+ ..... where A = et

2
. This is a simple geometric

sum which has the value of A
1−A =

et

2− et
. (Displaying its graph would be

meaningless, its shape has nothing to do with the distribution.) From this
M(t) we can find the first two simple moments by:

M 0(t) =
d

dt

et

2− et
=

2et

(2− et)2

¯̄̄̄
t=0

= 2

M 00(t) =
d

dt

2et

(2− et)2
=
4et + 2e2t

(2− et)3

¯̄̄̄
t=0

= 6

The mean of the distribution is thus equal to 2 [we expected that: on the
average it should take two rolls to get a head− after all, if you keep on rolling,
half of the outcomes will be heads], the standard deviation is

√
6− 22 = √2 =

1. 414 ¥

IImportant ResultsJ concerning MGF

For two independent RVs we have: MX+Y (t) = E
£
et (X+Y )

¤
[this follows from

the basic definition] = E
£
etX · et Y ¤ = E

£
etX
¤ · E £et Y ¤ [due to independence]

=MX(t) ·MY (t), i.e. theMGF of a sum of two independent RVs is the product
of their individual MGFs. This result can be extended to any number of mutually
independent RVs:

MX+Y+Z(t) =MX(t) ·MY (t) ·MZ(t)

etc. This result is more significant than it appears because it is very difficult to
find the distribution of an independent sum directly.

EXAMPLE: Find the distribution of the total number of dots in three rolls of
a die. We have the distributions for one and two rolls, to ’add’ these, we have
to first build the joint distribution of the two
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with the corresponding table for the value of the sum

2 3 4 5 6 7 8 9 10 11 12
1 3 4 5 6 7 8 9 10 11 12 13
2 4 5 6 7 8 9 10 11 12 13 14
3 5 6 7 8 9 10 11 12 13 14 15
4 6 7 8 9 10 11 12 13 14 15 16
5 7 8 9 10 11 12 13 14 15 16 17
6 8 9 10 11 12 13 14 15 16 17 18

from which we can construct the univariate distribution of the sum by adding
probabilities corresponding to the same value [the usual procedure]:

X + Y 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Prob: 1
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216

The point being: building the distribution of the sum of two independent RVs
is far from trivial. Constructing their MGF (from the individual MGFs) is
trivial, all it takes is multiplying the two functions [nothing can be easier]. ¥

And one more formula: MaX+c(t) = E
£
e(aX+c) t

¤
[by definition] = ect ·E £eatX¤

[since, with respect to E-averaging, ect is constant] =

ect ·MX(at)

i.e. to build the MGF of a linear transformation of a single RV one takes the
original MGF (of X) (i) replaces t by at (throughout) and (ii) multiplies the result
by ect.

EXAMPLE: If X is the number of rolls till the first head, the MGF of 3X − 4
is e−4t · e3t

2−e3t =
e−t
2−e3t . ¥

Note: Even though a full information about the corresponding distribution
is ’encoded’ into a MGF, its ’decoding’ (converting MGF back into a table of
probabilities) is somehow more involved and we will be not discussed here. Instead,
we will just build a ’dictionary’ of MGFs of all distributions we encounter, so that
eventually we can recognize a distribution by its MGF.

Optional: Inverting MGF is relatively easy in one important case: When a RV
has only non-negative integers for its values, the corresponding MGF is actually a
function of z = et (i.e. t appears only in the et combination). Seen as a function of
z, MX(z) is called probability generating function which, when expanded
in z, yields the probabilities of X = 0, X = 1, X = 2, ... as coefficients of z0, z1,
z2, .... (respectively), thus: M(z) = p0 + p1z + p2z

2 + p3z
3 + .....

EXAMPLE: et

2−et ≡ z
2−z =

z
2
· 1
1− z

2
= z

2
+ z2

4
+ z3

8
+ z4

16
+ ..... We have thus

recovered probabilities of the f(i) = 1
2i
, i = 1, 2, 3, .... distribution. ¥
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Conditional expected value
is, simply put, an expected value computed (via the same ’multiply values by
probabilities, then add the results’ rule) using the corresponding conditional (rather
than ordinary) distribution, e.g.

E(X|Y = 1) =
X
i

i× fX|Y=1(i)

etc.

EXAMPLE: Using one of our old bivariate distributions X =
1 2 3

Y = 0 0.1 0 0.3 0.4
1 0.3 0.1 0.2 0.6

0.4 0.1 0.5
E(X|Y = 1) will be constructed based on the corresponding conditional dis-
tribution

X|Y = 1 1 2 3
Prob: 3

6
1
6

2
6

by the usual process: 1× 3
6
+2× 1

6
+3× 2

6
= 1.833̄ (note that this is different

from E(X) = 2.1 calculated previously).
Similarly E(X2|Y = 1) = 12 × 3

6
+ 22 × 1

6
+ 32 × 2

6
= 4.166̄ .

Based on these two, one can define V ar(X|Y = 1) = 4.166̄−1.833̄2 = 0.8056
[conditional variance].

MX|Y=1(t) = 3et+e2t+2e3t

6
[conditional MGF].

E( 1
X
|Y = 1) = 1

1
× 3

6
+ 1

2
× 1

6
+ 1

3
× 2

6
= 0.6944̄ ¥

Infinite expected value
Final beware: Not all RVs need to have a (finite) expected value.

EXAMPLE: Consider the following simple game: You bet $1 on a flip of a coin
(say you bet on heads). It you win, you collect your $2 ($1 net) and stop.
If you lose your continue, doubling your bet. And so on, until you win. We
want to compute the expected value of our net win.

Solution: The experiment is the same as flipping a coin until a head appears,
with (1

2
)i being the probability of needing exactly i flips. The RVs we need

are X: how much we bet on the ith flip, Y : how much money have we have
betted in total at that point, and Z: how much money we collect when the
head appears (in the ith flip), thus:

Simple event: Prob: X Y Z

H 1
2

1 1 2
TH 1

22
2 3 4

TTH 1
23

4 7 8
TTTH 1

24
8 15 16

...
...

...
...

...
i flips 1

2i
2i−1 2i − 1 2i

...
...

...
...

...
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Note that our net win is Z − Y ≡ 1, i.e. we always win $1 in the end!
Is this game fair (equitable)? Of course not, our probability of winning is
100% and the expected win is $1 (a fair game must have the expected net
win equal to 0). The catch is that you can play this game only if you have
unlimited resources (nobody does) because the expected value of Y (the
money you need to invest in the game before winning your $1) is infinite:

E(Y ) =
∞P
i=1

(2i−1)×(1
2
)i =

∞P
i=1

1−
∞P
i=1

(1
2
)i = ∞−1 = ∞. As soon as you put

a limit on how much money you can spend (redoing our table accordingly −
try it), the game becomes fair. ¥

Remember: Some (unusual) RVs have infinite (or indefinite: ∞−∞) expected
value (in either case they say that the expected value does not exist). Other RVs
may have a finite expected value, but their variance is infinite. These RVs behave
differently from the ’usual’ ones, as we will see in later chapters.
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Chapter 5 SPECIAL DISCRETE
DISTRIBUTIONS

We will now discuss, one by one, those discrete distributions which are most fre-
quently encountered in applications. For each of them, we derive the probability
function f(i), the distribution function F (i) [whenever possible], the mean and
standard deviation, and the moment generating function M(t). For multivariate
distributions, we also like to know the covariance between any two of its RVs.

Univariate distributions
IBernoulliJ

Consider an experiment with only two possible outcomes (we call them success
and failure) which happen with the probability of p and q ≡ 1− p respectively
[examples: flipping a coin, flipping a tack, rolling a die and being concerned only
with obtaining a six versus any other number, a team winning or losing a game,
drawing a marble from a box with red and blue marbles, shooting against a target
to either hit or miss, etc.]
We define a random variable X as the number of successes one gets in one

round, or trial, of this experiment. Its distribution is obviously

X = 0 1
Prob: q p

implying: E(X) = p, V ar(X) = p− p2 = pq, M(t) = q + pet.

IBinomialJ

Same as before, except now the experiment consists of n independent rounds
(trials) of the Bernoulli type [independence means that the team is not improv-
ing as they play more games, the n marbles are selected with replacement, etc.].
The sample space consists of all n-letter words build of letters S and F , e.g.
SSFSFSSFFF [if n is 10]. We know that there are 2n of these. They are not
equally likely, the probability of each is piqn−i where i is the number of S’s and
n− i is the number of F ’s (due to independence, we just multiply the individual
probabilities). We also know that

¡
n
i

¢
of these words have exactly i S’s, luckily

they all have the same probability piqn−i. Thus, the probability that our random
variable X [the total number of successes] will have the value of i isµ

n

i

¶
piqn−i (f)

This of course is the probability function f(i), with i = 0, 1, 2, ... , n− 1, n. Let
us verify that these probabilities add up to 1 (as a check):

nP
i=0

¡
n
i

¢
piqn−i = (p+ q)n

[the binomial expansion ’in reverse’] = 1n = 1 (X).
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The name of the formula used for such a verification usually gives name to
the distribution itself [that is why several of our distributions acquire rather puz-
zling names]. B(n, p) will be our ’shorthand’ for this distribution, n and p are its
parameters.

There are three ways of deriving the expected value of X:

1. Using the basic expected-value formula:
nP
i=0

i × ¡n
i

¢
piqn−i. Evaluating this is

actually quite tricky (see your textbook if interested) we will not even try it.

2. Note thatX can be defined as a sum of n independent random variables of the
Bernoulli type (number of successes in Trial 1, Trial 2,.... Trial n), say X1 +
X2 + ..... +Xn [X1, X2, ....,Xn are said to be independent, identically
distributed]. Then, as we know, E(X) = E(X1)+ E(X2)+ .....+E(Xn) =
p+ p+ ....+ p =

np (mean)

3. Using the corresponding MGF which, for the same reason (X being an inde-
pendent sum of X1, X2, ..., Xn) must equal to (q+pet)× (q+pet)× .....×(q+
pet) = (q + pet)n. One simple differentiation yields: n(q + pet)n−1pet −→

t=0
np

[check].

Similarly, the variance can be computed either from the basic definition (a
rather difficult summation which we choose to bypass), or from V ar(X) = V ar(X1)+
V ar(X2) + ....+ V ar(Xn) [valid for independent Xis, which ours are] = pq+ pq+
......+ pq =

npq (variance)

or from the moment generating function, thus: M 00
X(t) = n(n−1)(q+pet)n−2(pet)2+

n(q + pet)n−1pet −→
t=0

n(n − 1)p2 + np = n2p2 − np2 + np, yielding the value of

E(X2). Subtracting E(X)2 = n2p2 gives: V ar(X) = np− np2 = npq [check].

Remark: When deriving the central moments, it is often more convenient to use
MX−µ(t) = e−µ t · MX(t) [the general formula] = (qe−p t + peq t)n [in this
particular case]. Then, obviously, M 00

X−µ(0) = V ar(X), M 000
X−µ(0) = E[(X −

µ)3], etc. Verify that this also results in V ar(X) = npq. ¥

The moment generation function was already derived, based on the X =
X1+X2+ .....+Xn argument. Let us re-derive it directly from the basic definition

of MX(t) = E(eX t) =
nP
i=0

eit × ¡n
i

¢
piqn−i =

nP
i=0

¡
n
i

¢
(pet)iqn−i =

(q + pet)n (MGF)

[based on the same binomial formula] X. Surprisingly [yet typically] it is easier to
find the expected value of eX t than the expected value of X itself (this is one of
the big advantages of MGFs).

There is no formula for the distribution function F (i), which means that the
probability of any range of values can be computed only by adding the individual
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probabilities. For example, if n = 20 and p = 1
6
[rolling a die 20 times, counting the

sixes] the probability of getting at least 10 [different from more than 10, be careful
about this] equals

¡
20
10

¢
(1
6
)10(5

6
)10+

¡
20
11

¢
(1
6
)11(5

6
)9+

¡
20
12

¢
(1
6
)12(5

6
)8+ .....+

¡
20
0

¢
(1
6
)20(5

6
)0

[must evaluate, one by one, and add] = 0.05985%.

Your main task will be first to recognize a binomial RV when you see one,
and be able to correctly apply the formulas of this section to specific questions.

IGeometricJ

distribution is based on the same kind of experiment, where the independent
Bernoulli-type trials are performed, repeatedly, until the first success appears. This
time the random variable (we may as well call it X again, otherwise we would run
out of letters much too soon) is the total number of trials needed. We already
know that the simple events are S, FS, FFS, FFFS, .... with the probabilities of p,
qp, q2p, q3p, ... and the corresponding values of X equal to 1, 2, 3, 4, ... respectively.

The general formula for Pr(X = i) ≡ f(i) is thus

pqi−1 (f)

where i = 1, 2, 3, ..... To check that these probabilities add up to 1, we proceed as

follows:
∞P
i=1

pqi−1 = p(1 + q + q2 + q3 + ....) = p
1−q =

p
p
= 1. The summation was

performed using the geometric formula (thus the name of the distribution). The
distribution has a single parameter p, and will be referred to as G(p).
To evaluate E(X) directly, i.e. by means of

∞P
i=1

i×pqi−1 would be quite difficult

[try it if you like, but you must know how to add 1 + 2q + 3q2 + 4q3 + .... first], so

we will use the MGF technique instead. To deriveM(t), we need:
∞P
i=1

ei t× pqi−1 =
∞P
i=1

etp(etq)i−1 = pet[1+etq+(etq)2+(etq)3+....] which is again quite simple to deal

with (a geometric series). The answer is
pet

1− qet
. Differentiating it with respect to

t, we get pet(1−qet)−petqet
(1−qet)2 = pet

(1−qet)2 −→t=0
p
p2
=

1

p
(mean)

This is then the expected value of X [on the average it should take 1
1
6

= 6 rolls to
get a six; that seems to check, since, in an infinite sequence of trials, one sixth of
all outcomes would yield a 6].

Similarly, one more differentiation ofM(t) results in pet(1−qet)2−2(1−qet)(−qet)pet
(1−qet)4 −→

t=0
p3+2p2q

p4
= 1

p
+ 21−p

p2
= 2

p2
− 1

p
, which yields E(X2). This implies that V ar(X) =

2
p2
− 1

p
− (1

p
)2 =

1

p

µ
1

p
− 1
¶

(variance)
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e.g. the standard deviation of the number of trials to get the first 6 is
√
6× 5 =

5.477 [almost as big as the mean itself, implying large variation].

To find the distribution function F (j) we first compute Pr(X > j) =
∞P

i=j+1

Pr(X = i) = pqj + pqj+1 + pqj+2 + ... = pqj(1 + q + q2 + ....) = pqj

1−q = qj for

any j = 0, 1, 2, 3, .... From this

F (j) = Pr(X ≤ j) = 1− qj

easily follows. Thus, for example, the probability that it will take at least 10 rolls
to get the first 6 [same as more than 9] is Pr(X > 9) = (5

6
)9 = 19.38%. The

probability that it will take more than 18 rolls is (5
6
)18 = 3.756% [implying that

the geometric distribution has a long tail].

INegative BinomialJ

distribution is [in spite of its name] a simple extension of the geometric (not bi-
nomial) distribution. This time the random variable X is the number of trials
until (and including) the kth success. It can be expressed a sum of k independent
[a die cannot remember] random variables of the previous, geometric type, thus:
X = X1 +X2 + ....+Xk where X1 is the number of trials to get the first success,
X2 is the number of trials to get the second success (from that point on), etc.
This simplifies getting themean and variance of X to mere multiplication of the
’geometric’ answers by k, resulting in k

p
and k

p
(1
p
− 1) respectively. Similarly, the

new MGF is obtained by raising the old MGF to the power of k: ( pet

1−qet )
k. The

distribution’s parameters are k and p, its symbolic name will be NB(k, p).
To get the individual probabilities of the Pr(X = i) type we must proceed

differently: we break the experiment into two uneven parts, namely: (i) the first
i − 1 rolls, and (ii) the last roll. To get the kth success in this last roll we must
first get the first k− 1 successes anywhere within the first i− 1 rolls, followed by a
success in the last, ith roll. The former event has a probability of the binomial type:¡
i−1
k−1
¢
pk−1qi−k, the latter one’s probability is simply p. To get the overall answer we

multiply these two (due to independence), to getµ
i− 1
k − 1

¶
pkqi−k ≡

µ
i− 1
i− k

¶
pkqi−k (f)

where i = k, k + 1, k + 2, ... It helps to display these in an explicit table:

X = k k + 1 k + 2 k + 3 ....
Prob: pk kpkq

¡
k+1
2

¢
pkq2

¡
k+2
3

¢
pkq3 ....

To verify that these probabilities add up to 1 we proceed as follows: 1 ≡ pk(1 −
q)−k = pk

£
1− ¡−k

1

¢
q +

¡−k
2

¢
q2 − ¡−k

3

¢
q3 + ...

¤
= pk

£
1 + kq +

¡
k+1
2

¢
q2 +

¡
k+2
3

¢
q3 + ...

¤
.

The main part of this proof was the generalized binomial expansion of (1−q)−k [an
expression with a negative exponent], which explains the name of the distribution.
We can now easily deal with questions like: what is the probability that it will take
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exactly 5 flips of a coin to get the third head [answer:
¡
4
2

¢
(1
2
)3(1

2
)5−3 = 18.75%] and:

what is the probability of requiring exactly 10 rolls to get the second 6 [answer:¡
9
1

¢
(1
6
)2(5

6
)8 = 5.814%].

To be able to answer questions like: ’what is the probability that we will need
more than 10 rolls to get a second 6’, the distribution function F (j) would come
handy [otherwise we would have to add the individual probabilities of this event,
or its complement − neither of which is very practical]. To answer the general
question of ’requiring more than j trials to get the kth success’ we realize that this
is identical to ’getting fewer than k successes in the first j trials’. And the problem
is solved, as we know how to deal with the second question: we just need to add
the corresponding binomial probabilities [of 0, 1, 2, ....k − 1 successes in j trials]:
k−1P
i=0

¡
j
i

¢
piqj−i. This implies that

Pr(X ≤ j) ≡ F (j) = 1−
k−1X
i=0

µ
j

i

¶
piqj−i

EXAMPLE: More than 10 rolls of a die will be needed to get the second 6 with
the probability of (5

6
)10 +

¡
10
1

¢
(5
6
)9(1

6
)1 = 48.45% [≡ fewer than 2 successes

in 10 rolls]. ¥

IHypergeometricJ

distribution relates to the following experiment: Suppose there are N objects, K
of which have some special property, such as being red (marbles), being spades,
aces (cards), defective (items of some kind), women (people), etc. [let’s call the
remaining N −K objects ’ordinary’]. Of these N objects [in total], n [distinct] are
randomly selected [sampling without replacement]. Let X be the number
of ’special’ objects found in the sample. The sample space consists of a list of all
possible ways of selecting n objects out of N (order irrelevant). We know that
the total number of these is

¡
N
n

¢
and that they are [when the selection is perfectly

random] equally likely. We also know (having solved many questions of this type)
that

¡
K
i

¢× ¡N−K
n−i

¢
of these simple events contains exactly i ’special’ objects. Thus

Pr(X = i) ≡ f(i) =

¡
K
i

¢× ¡N−K
n−i

¢¡
N
n

¢
with max(0, n − N +K) ≤ i ≤ min(n,K) [i cannot be any bigger than either n
or K, and it cannot be any smaller than either 0 or n − (N − K); the last re-
striction corresponds to the situation when the sample size n is bigger than the
total number of ’ordinary’ objects]. It is sufficient to remember that, whenever
the evaluation of the above formula would lead to negative factorials, we are out
of range! The formula which verifies that these probabilities add up to 1 is called
hypergeometric. Since we never studied this formula, we must skip the correspond-
ing proof [we will simply trust that our derivation of f(i) was correct]. The only
bad news is: if we don’t know how to do this (hypergeometric) summation, we
can derive the corresponding MGF either. Also, there is no ’shortcut’ formula for
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the cumulative probabilities F (j), which implies that the probability of a range of
values must be computed by a tedious addition of the individual probabilities.

Note that if we change the experiment slightly to make it a sampling with
replacement [we select a marble, observe its color, put it back in the box, shake
and sample again], X will have the exact binomial distribution (with parameters
n and p = K

N
) instead. Naturally, when both N and K are large (hundreds or

more), it makes little difference whether we sample with or without replacement,
and the hypergeometric distribution can be approximated (quite accurately) by
the somehow simpler binomial distribution, using K

N
for p.

The expected value of X is a bit of a challenge: we don’t know how to deal
with the direct summation, we could not derive the MGF, could we possibly try
theX = X1+X2+ ...+Xn approach [which requires selecting the objects, without
replacement, one by one, and definingX1. X2, .... as the number of ’special’ objects
obtained in the first, second,.... draw]? The individual Xi’s are of the Bernoulli
type, with p = K

N
, but this time they are not independent [trouble!?]. Well, let

us proceed, anyhow: The expected value of X is easy: E(X) = E(X1) + E(X2) +
.....+ E(Xn) =

K
N
+ K

N
+ ....+ K

N
=

n
K

N
(mean)

[an exact analog of the binomial np formula] since we don’t have to worry about
independence and the Xis are identically distributed with the same mean of K

N
.

To understand the marginal distribution of each of the Xi’s it helps to
visualize the experiment done as follows: as the n sample objects (say, marbles)
are drawn, they are placed under individual cups labelled 1, 2, 3, ....., n without
observing their color! ThenXi is the number of red marbles under Cup i, regardless
of what the other cups contain. This prevents us from confusing the marginal
[unconditional] distributions (which we need) from conditional distributions (which
would be incorrect).

To establish the variance ofX,we use: V ar(X) =
nP
i=1

V ar(Xi)+ 2
P
i<j

Cov(Xi,Xj) =

n ·V ar(X1)+ 2
¡
n
2

¢ ·Cov(X1,X2) as all the n variances, and all the
¡
n
2

¢
covariances,

must have the same value due to the symmetry of the experiment (the third cup
must have the same probability of containing a red marble as the first cup, etc.).
We know from Bernoulli distribution that V ar(Xi) ≡ K

N
· N−K

N
[the pq formula].

To find Cov(X1,X2) we first build the joint distribution of X1 and X2:
X1=

X2=
0 1

0 N−K
N

· N−K−1
N−1

K
N
· N−K
N−1

1 N−K
N

· K
N−1

K
N
· K−1
N−1

from which it easily follows that E(X1 ·X2) =
K (K−1)
N (N−1) ⇒ Cov(X1,X2) =

K (K−1)
N (N−1)−¡

K
N

¢2
= K2N−KN−K2N+K2

N2(N−1) = −K (N−K)
N2(N−1) . This enables us to complete the previous

computation: V ar(X) = nK (N−K)
N2 − n(n− 1)K (N−K)

N2(N−1) = nK (N−K)
N2

£
1− n−1

N−1
¤
=

n
K

N

N −K

N

N − n

N − 1 (variance)
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which is our final variance formula. Note that it is an analog of the binomial
npq, further multiplied by an extra ’correction factor’ of N−n

N−1 [sampling without
replacement makes the variance a bit smaller]. When n = 1 the two formulas
naturally agree, when n = N the variance becomes 0 (as X has then the so called
degenerate distribution with only one possible value of X, namelyK). These
two extreme cases help us remember what the correction factor should be.

EXAMPLE: There are 30 red and 70 blue marbles in a box. If 10 marbles are
randomly drawn (without replacement), what is the probability that exactly
4 of these are red?

Answer: (
30
4 )·(706 )
(10010 )

= 20.76%.

If done with replacement, the binomial formula would have been used instead:¡
10
4

¢ × 0.34 × 0.76 = 20.01%, the two answers are already quite similar
[starting with 300 red and 700 blue marbles, and the two answers would be
20.08% and 20.01%, respectively, i.e. practically identical]. ¥

IPoissonJ

distribution relates to the following type of experiment: Suppose a man is fishing
at a large lake knowing, from past experience, that he will catch a fish on the
average every 50 minutes (the reciprocal, ϕ = 1

50
/min . ≡ 60

50
= 1.2 /hour is the

rate at which the fishes are caught). Let X be the number of fishes he catches
during the next hour (T minutes in general). We would like to build a good model
for the distribution of X.
We may start by assuming that the probability of catching a fish during any 5

minute interval is 0.1 (= 5min ./50min .) and then use the corresponding binomial
distribution:

¡
12
i

¢ × 0.1i × 0.912−i, i = 0, 1, 2, ..., 12. Or we may break one hour
into 1 min. intervals, take the probability of catching a fish during any of these
subintervals to be 1

50
, and use

¡
50
i

¢
( 1
50
)i(49

50
)50−i, i = 0, 1,...,50. In general we may

divide T into n subintervals, take the probability of catching a fish during any of
these to be Tϕ

n
and use

¡
n
i

¢
(Tϕ
n
)i(1− Tϕ

n
)n−i, i = 0, 1, ....n. Each of these binomial

distributions is just an approximation to what the correct distribution should look
like, since none of them can prevent the possibility of catching two or more fishes
during a single subinterval and thus violating the basic assumption of the binomial
distribution (a trial can result in either zero or one success only).
The correct description can be reached in the limit of n → ∞ (infinite num-

ber of subintervals): lim
n→∞

¡
n
i

¢
(Tϕ
n
)i(1− Tϕ

n
)n−i = lim

n→∞
1
i!
n
n
n−1
n

n−2
n
....n−i+1

n
(Tϕ)i(1−

Tϕ
n
)n−i = (Tϕ)i

i!
e−Tϕ where i = 0, 1, 2, ..... Introducing a single parameter λ for

Tϕ, the formula simplifies to
λi

i!
e−λ (f)

where i = 0, 1, 2, .... (all non-negative integers). This is the probability function
f(i) of our new (one-parameter) Poisson distribution [P(λ) for short]. We can easily
verify that these probabilities add up to 1 as

∞P
i=0

λi

i!
= 1 + λ + λ2

2
+ λ3

3!
+ ... is the

expansion of eλ.
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There is no ’shortcut’ formula for F (j), we again must add the individual
probabilities to deal with a range of values.
The Poisson distribution provides a good description of: the number of arrivals

to a store, library, gas station, etc., the number of accidents at an intersection, the
number of phone calls received by on office, during some fixed period of time.

The corresponding MGF is e−λ
∞P
i=0

λi

i!
ei t = e−λ

∞P
i=0

(λet)i

i!
= e−λ · eλet = eλ(e

t−1).

This time it is more convenient to work with the natural logarithm of MGF, let us
call it RX(t) = ln (MX(t)) =

λ(et − 1) (R)

One can easily derive that in general R0(0) = M 0(0)
M(0)

= µX [getting the corresponding

expected value] and R00(0) = M 00(0)M(0)−M 0(0)M 0(0)
M(0)2

= E(X2)−µ2x = V ar(X) [getting
the variance more directly then through M(t)]. In our case this results in R0(t) =
λet −→

t=0
λ [the mean of the Poisson distribution] and R00(t) = λet −→

t=0
λ [the

corresponding variance].

One can also show that a sum of two independent RVs of the Poisson type
[with λ1 and λ2 as the individual means], has a MGF equal to eλ1(e

t−1) · eλ2(et−1) =
e(λ1+λ2)(e

t−1), implying that the corresponding distribution is also Poisson, with the
mean of λ1+λ2. This is a rather special property of the Poisson distribution [note
that by adding two binomial-type RVs with arbitrary parameters one does not get
a binomial distribution as a result, similarly adding two geometric-type RVs does
not result in any simple distribution unless p1 ≡ p2, etc.].

Optional: One can extend the previous results concerning R(t) to: R000(0) =
E [(X − µ)3] [the third central moment] andR0v(0) = E [(X − µ)4]−3V ar(X)2
[now it gets a bit more complicated: this is the so called forth cumulant
of the distribution; R(n)(0) yields the nth cumulant]. One can show that a
cumulant of a sum of independent RVs equals the sum of corresponding cu-
mulants of the individual contributions [we knew this was so for the mean
and variance, now we can extend it to the third central moment and higher
cumulants]. ¥

EXAMPLE: Customers arrive at an average rate of 3.7/hour.

1. What is the probability of exactly 1 arrival during the next 15 min.

Solution: λ = Tθ = 1
4
× 3.7 = 0.925 [make sure to use the same units of time

for both T and θ].

Answer: e−0.925 × 0.925
1!
= 36.68%.

2. What is the probability of at least 4 arrival during the next 30 min.

Answer [through the complement, λ will of course double]: 1 − Pr(X =
0)−Pr(X = 1)−Pr(X = 2)−Pr(X = 3) = 1−(1+1.85+1.852

2
+1.853

6
) e−1.85 =

11.69%.
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3. If the store opens at 8:00 what is the probability that their second customer
arrives between 8:20 and 8:45 ?

Solution: Define A: at least two arrivals by 8:45, and B: at least two arrivals
by 8:20. We need Pr(A ∩ B̄) = Pr(A)− Pr(B) since B ⊂ A.

Answer:
£
1− e−λ1(1 + λ1)

¤− £1− e−λ2(1 + λ2)
¤
where λ1 = 3

4
×3.7 = 2.775

and λ2 = 1
3
×3.7 = 1.23333, i.e. e−1.23333×2.23333− e−2.775×3.775 = 41.52%.

¥

Multivariate distributions
IMultinomialJ

distribution is an extension of the binomial distribution, in which each trial can
result in 3 (or more) possible outcomes (not just S and F ). The trials are still
repeated, independently, n times; this time we need three RVs X, Y and Z, which
count the total number of outcomes of the first, second and third type, respectively
[we will develop our formulas assuming that there are 3 possibilities, the extension
to 4 or more possible outcomes is then quite obvious].
Examples: A team playing a series of n games, each of which they either win,

lose or tie (3 possibilities). A die is rolled n times, keeping track of the ones, twos,
..., sixes (6 possibilities).
The sample space (in the case of three possible outcomes) consists of 3n simple

events [all possible n-letter words build out of thee letters, w, c and t say]. If X
counts the wins, Y the losses, and Z the ties, Pr(X = i ∩ Y = j ∩ Z = k) is the
sum of probabilities of all simple events consisting of exactly i w’s, j c’s and k
t’s, we know that there are

¡
n

i,j,k

¢
of these, each of them [luckily] having the same

probability of piX pjY pkZ where pX , pY and pZ are the probabilities of a win, a loss
and a tie, respectively, in a single trial (game) [obviously pX + pY + pZ ≡ 1]. The
joint probability function is thus

Pr(X = i ∩ Y = j ∩ Z = k) =

µ
n

i, j, k

¶
piX pjY pkZ

for any non-negative integer values of i, j, k which add up to n. This formula can
be easily extended to the case of 4 or more possible outcomes.
The marginal distribution of X is obviously binomial (with n and p ≡

pX being the two parameters), and similarly for Y and Z [this can be verified
algebraically by summing the above formula over j and k, try it]. This yields the
individual means and variances [E(X) = npX and V ar(X) = npX · (1 − pX),
etc.].

EXAMPLES:

1. A team plays a series of 10 games. The probability of winning a game is
0.40, losing a game: 0.55, and tying a game: 0.05. What is the probability
of finishing with 5 wins, 4 losses and 1 tie?

Answer:
¡
10
5,4,1

¢× 0.45 × 0.554 × 0.05 = 5.90%.
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Suplimentary: What is the probability that they win the series (more wins
than losses)?

Answer: Pr(X > 5) [binomial probabilities] + Pr(X = 5)− Pr(X = 5∩ Y =
5) + Pr(X = 4) − Pr(X = 4 ∩ Y ≥ 4) + Pr(X = 3 ∩ Y < 3) + Pr(X =
2 ∩ Y < 2) + Pr(X = 1 ∩ Y = 0) = 23.94%.

2. Roll a die 18 times, what is the probability of getting 3 ones, twos, ..., sixes
[this should be the most likely outcome]?

Answer:
¡

18
3,3,3,3,3,3

¢
(1
6
)18 = 0.135% [why is it so small?]. ¥

An important issue now is to find the covariance between X and Y (or any
other two RVs of a multinomial distribution). First we break each X and Y into
their individual ’components’: X = X1+X2+ ....+Xn and Y = Y1+Y2+ ....+Yn
where X1, X2, ... is the number of wins in Game 1, Game 2, .... [each obviously
of Bernoulli type], and similarly Y1, Y2, .... is the number of losses. We know

that Cov(X,Y ) =
nP
i=1

nP
j=1

Cov(Xi, Yj) =
nP
i=1

Cov(Xi, Yi)+
nP
i6=j

Cov(Xi, Yj) [the first

term corresponds to Xi, Yi from the same game, the second term corresponds
to Xi, Yj from two different games]. We are assuming the games to be played
independently of each other, thus Xi and Yj (i 6= j) are independent RVs, and
their covariance must equal to zero. Furthermore, due to the symmetry of the
experiment, Cov(X1, Y1) = Cov(X2, Y2) = .... = Cov(Xn, Yn). Thus we need to
know Cov(X1, Y1) only, to complete the exercise. First we build a table of the

required bivariate probabilities:

X1=
Y1=

0 1
0 pZ pX
1 pY 0

⇒ Cov(X1, Y1) = E(X1 ·Y1)−

E(X1) · E(Y1) = 0− pX · pY = −pXpY ⇒
Cov(X,Y ) = −npX pY

Similarly, Cov(X,Z) = −npX pZ etc. Note that our derivation was fully general
and did not assume the case of three possible outcomes (with the understanding
that pZ ≡ 1− pX − pY ).

EXAMPLES:

1. Referring to the previous Example 1, what is the covariance between the
number of wins and the number of losses (in a 10 game series)?

Answer: −10× 0.40× 0.55 = −2.2 .
2. Rolling a die 18 times, what is the covariance between the number of 3’s and
the number of 6’s obtained?

Answer: −18× 1
6
× 1

6
= −0.5 .

3. 10 dice are rolled and we are paid $5 for each six, but have to pay $6 for each
one. What is the expected value and the standard deviation of our net win?

Solution: introduce X for the (total) number of 6’s and Y for the number of
1’s, our net win is 5X−6Y. Its expected value is 5×10× 1

6
−6×10× 1

6
= −1.6̄
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[both X and Y are binomial, we use the np formula to get their means], its
variance equals: 52 × 10 × 1

6
× 5

6
+ (−6)2 × 10 × 1

6
× 5

6
+ 2 × 5 × (−6) ×

(−10) × 1
6
× 1

6
= 101.38̄ [using our old formula for V ar(aX + bY ), the npq

formula for the two binomial variances, and the latest −npXpY formula for
the covariance].

Answer: −1.667 ± 10.07 [=
√
101.38̄] dollars (we normally express the mean

and the corresponding standard deviation as µ ± σ; note that a negative
mean implies that, on the average, we lose $1.667; the big standard deviation
implies that in a single game we may occasionally win $20 or more, if we are
lucky).

4. A die is rolled 18 times, U is the number of ’small’ outcomes (meaning ≤ 3),
V is the number of even outcomes (2, 4 and 6). Find Cov(U, V ).

Solution: We have to realize that, because of the ’overlap’ between U and
V (2 will contribute to both U and V ), our basic covariance formula no
longer applies. We can easily extend it to cover the ’overlap’ case as follows:
We define T as the RV which counts the overlap outcomes, U0 = U − T
and V0 = V − T [note that U0, V0 and T are now of the multinomial, non-
overlapping type]. Then Cov(U, V ) = Cov(U0+ T, V0+ T ) = Cov(U0, V0) +
Cov(U0, T )+ Cov(T, V0)+ V ar(T ) = −n(pU−pT )(pV −pT )− n(pU−pT )pT−
npT (pV − pT ) + npT (1− pT ) = .... =

−n(pUpV − pT )

(a) Answer: −18× (1
2
× 1

2
− 1

6
) = −1.5 ¥

IMultivariate HypergeometricJ

distribution is again a simple extension of the hypergeometric distribution to the
case of having thee (or more) types of objects (rather than just ’special’ and ’ordi-
nary’), e.g. red, blue and green marbles or hearts, diamonds, spades and clubs, etc.
We now assume that the total number of objects of each type is K1, K2 andK3 (we
again develop the formulas for three types only) whereK1+K2+K3 = N. The sam-
ple space will still consist of

¡
N
n

¢
possible selections of n of these [unordered, without

duplication] which are all equally likely. We also know that
¡
K1

i

¢× ¡K2

j

¢× ¡K3

k

¢
of

these will contain exactly i objects of Type 1, j objects of Type 2 and k objects of
Type 3. Thus, the joint probability function is

Pr(X = i ∩ Y = j ∩ Z = k) =

¡
K1

i

¢¡
K2

j

¢¡
K3

k

¢¡
N
n

¢
where X, Y and Z count the number of objects of Type 1, 2 and 3, respectively, in
the sample. Naturally, i+j+k = n. Otherwise, i, j and k can be any non-negative
integers for which the above expression is meaningful (i.e. no negative factorials).
The marginal distribution of X (and Y, and Z) is univariate hypergeomet-

ric (of the old kind) with obvious parameters. Thus, the individual means and
variances follow from our old formulas.
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The only joint quantity we usually need is the covariance between X and Y.
We again break X into its individual components X1 + X2 + ... + Xn and sim-
ilarly Y = Y1 + Y2 + ... + Yn [visualize placing the drawn marbles under cups,
labelled 1, 2, ...n, with X1 and Y1 being the number of red and blue marbles,

respectively, under Cup 1, etc.]. This implies: Cov(X,Y ) =
nP
i=1

Cov(Xi, Yi) +

nP
i6=j

Cov(Xi, Yj) = n × Cov(X1, Y1) + n(n − 1) × Cov(X1, Y2) since all covari-

ances of the Cov(Xi, Yi) type (same cup) must equal to each other, similarly,
all Cov(Xi, Yj) with i 6= j (different cups) are identical. Now we need the joint

distribution of X1 and Y1:

X1=
Y1=

0 1
0 N−K1−K2

N
K1

N

1 K2

N
0

⇒ Cov(X1, Y1) = 0− K1

N
· K2

N
,

and of

X1=
Y2=

0 1
0 rest K1

N
· N−1−K2

N−1
1 K2

N
· N−1−K1

N−1
K1

N
· K2

N−1

⇒ Cov(X1, Y2) =
K1K2

N (N−1)− K1

N
· K2

N
=

K1K2

N2 (N−1) . Putting it together yields Cov(X,Y ) = −nK1K2

N2 + n(n− 1) K1K2

N2 (N−1) =

−nK1

N

K2

N

N − n

N − 1
Note that this is an analog of the multinomial covariance [−npX pY ], further mul-
tiplied by the correction factor of the old V ar(X) formula.

One can easily extend the covariance formula to the case of ’overlapping’ RVs
U and V [e.g. counting spades and aces, respectively]:

Cov(U, V ) = −n
µ
K1

N

K2

N
− K12

N

¶
N − n

N − 1
whereK1 andK2 is the total (including the overlap) number of objects contributing
to U and V respectively [spades and aces] K12 is the number of objects which
contribute to both U and V [the ’overlap’: ace of spades]. The proof would pretty
much duplicate the multinomial case (Example 4).

EXAMPLES:

1. Pay $15 to play the following game: 5 cards are dealt from the ordinary deck
of 52 and you get paid $20 for each ace, $10 for each king and $5 for each
queen. Find the expected value of ’net win’ (loss if negative) and its standard
deviation.

Solution: we introduce X, Y and Z for the number of aces, kings and queens,
respectively, found in the dealt five-card hand. The net win is the following
RV: W = 20X + 10Y + 5Z − 15. Its expected value is 20E(X) + 10E(Y ) +
5E(Z)− 15 = 20×5× 4

52
+ 10×5× 4

52
+ 5×5× 4

52
− 15 = −1.538 [with the help

of the nK
N
formula], its variance equals 202V ar(X)+ 102V ar(Y )+ 52V ar(Z)+

2×20×10×Cov(X,Y )+ 2×20×5×Cov(X,Z)+ 2×10×5×Cov(Y, Z) =
[ 5×(400+100+25)× 1

13
× 12
13
− 5×(400+200+100)× 1

13
× 1
13
]× 47

51
= 152.69

[with the help of the nK
N

N−K
N

N−n
N−1 and −nK1

N
K2

N
N−n
N−1 formulas].

Answer: −1.538± 12.357 dollars.
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2. Five cards are dealt; we get $1 for each spade and $2 for each diamond,
but we have to pay $10 for each ace. Find the expected value and standard
deviation of the net win.

Solution: introduceX, Y and U for the number of spades, diamonds and aces.
W = X+ 2Y − 10U ⇒ E(W ) = 5× 13

52
+ 2×5× 13

52
− 10×5× 4

52
= −0.09614

and V ar(W ) = 5×[1
4
× 3
4
+ 22× 1

4
× 3
4
+ (−10)2× 1

13
× 12
13
− 2×2× 1

4
× 1
4
]× 47

51
=

35.886 [note that Cov(X,U) = Cov(Y,U) = 0 as the ’overlap’ formula has a
1
4
· 1
13
− 1

52
≡ 0 factor].

Answer: −0.0961± 5.9905. ¥

Comprehensive examples
1. A die is rolled 5 times and we are paid $2 for each dot obtained; then a coin
is flipped 10 times and we have to pay $7 for each head shown. Find the
expected value and standard deviation of the game’s net win (overall).

Solution: Let X1, X2, ....X5 represent the number of dots obtained in each
roll, and Y be the total number of heads shown (a binomial RV with n = 10
and p = 1

2
). Then W = 2(X1 + X2 + ... + X5) − 7Y ⇒ E(W ) = 2(3.5 +

3.5 + .... + 3.5) + 7× 10× 1
2
= 0 [a fair game] and V ar(W ) = 22 × (35

12
+

35
12
+ ... + 35

12
) + 72 × 10 × 1

2
× 1

2
= 180.83̄ [note that all the X’s and Y are

independent of each other ⇒ zero covariance].

Answer: 0± 13.45 dollars.
2. Pay $35, then roll a die until the 3rd six is obtained and be paid $2 for each
roll. Find µW and σW , where W is your net win.

Solution: This time we introduce onlyX: the number of rolls to get the 3rd six
[it has the negative binomial distribution with k = 3 and p = 1

6
]. Obviously

W = 2X − 35⇒ E(W ) = 2× 3
1
6

− 35 = 1 and V ar(W ) = 22 × 3× 6× 5.
Answer: 1± 18.97 dollars.
Supplementary: What is the expected value and standard deviation of the
total net win after 15 rounds of this game?

Solution: The games are obviously played independently of each other, there-
fore E(W1 + W2 + .... +W15) = 15µW and V ar(W1 + W2 + ... +W15) =
15σ2W ⇔ σW1+W2+...+W15 =

√
15σW .

Answer: 15± 73.485 dollars. ¥

Sampling from a distribution — Central Limit Theorem
(In your textbook this topic is discussed in Sections 8.1 and 8.2). By now we
know what a random variable is, how to define one (based on a specific random
experiment), how to give it a name (X say) and find its distribution. Performing
the actual experiment will give us a single random value of X, repeating this
independently n times will give us the so called

IRandom Independent SampleJ
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(we shorten this to RIS) of size n. The individual values are called X1, X2, ....Xn,
they are independent, identically distributed (IID) random variables (vi-
sualize them as the would-be values, before the experiment is actually performed].

The sample mean is (unlike the old ’means’ which were constant parameters)
a random variable, defined by:

X̄ =

Pn
i=1Xi

n

Its expected value equals: E(X̄) = 1
n
E(X1) +

1
n
E(X2) + .... + 1

n
E(Xn) =

1
n
µ +

1
n
µ + ... + 1

n
µ = µ, where µ is the expected value of the distribution (in this

sampling context sometimes also called ’population’) from which the sample is
taken [not surprisingly, X̄ is often used as an estimator of µ when its value is
uncertain].

Similarly V ar(X̄) = ( 1
n
)2V ar(X1) + ( 1

n
)2V ar(X2) + ... + ( 1

n
)2V ar(Xn) =

( 1
n
)2σ2 + ( 1

n
)2σ2 + ... + ( 1

n
)2σ2 = σ2

n
where σ is the standard deviation of the

original distribution. This implies that

σX̄ =
σ√
n

[the standard deviation of X̄ is
√
n smaller than σ; sometimes it is also called the

standard error of X̄]. Note that the standard error tends to zero as the sample
size n increases.

So now we know how the mean and standard deviation of X̄ relate to the
mean and standard deviation of the distribution from which we are sampling. How
about the shape of the X̄-distribution, how does it relate to the shape of the
sampling distribution? The surprising answer is: It doesn’t (for n more than a
handful), instead, the distribution of X̄ has always the same regular shape (yet
to be discovered by us), common to all distributions, from which we may sample!
More about this later.

We already mentioned that X̄ is frequently used to estimate the value of µ
[the mean of the sampling distribution/population]. Sometimes we also need to
estimate the value of the distribution’s variance σ2; this is done by the so called
sample variance (also a random variable!) defined by:

s2 =

Pn
i=1(Xi − X̄)2

n− 1
[taking its square root, one gets s, the so called sample standard deviation].
Note that the numerator is the sum of squares of individual deviations from the
sample mean; the definition intentionally avoids using the distribution mean µ, as
its value is usually unknown.
To find the expected value of s2, we simplify its numerator first:

Pn
i=1(Xi −

X̄)2 =
Pn

i=1[(Xi − µ) − (X̄ − µ)]2 =
Pn

i=1(Xi − µ)2 + n · (X̄ − µ)2 − 2(X̄ −
µ)
Pn

i=1(Xi−µ) [note that X̄−µ, being free of i, is considered constant by the sum-
mation]⇒ E

£Pn
i=1(Xi − X̄)2

¤
=
Pn

i=1 V ar(Xi)+n·V ar(X̄)−2Pn
i=1Cov(X̄,Xi) =

nσ2 + n · σ2
n
− 2n · σ2

n
= σ2(n − 1), since Cov(X̄,X1) =

1
n

Pn
i=1Cov(Xi, X1) =
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1
n
Cov(X1,X1)+ 0 =

1
n
V ar(X1) =

σ2

n
, and Cov(X̄,X2), Cov(X̄,X3), ... must have

the same value. This implies that

E(s2) =
σ2 (n− 1)
n− 1 = σ2

Thus, s2 is a so called unbiased estimator of the distribution’s variance σ2

[meaning it has the correct expected value].

Does this imply that s ≡
rPn

i=1(Xi − X̄)2

n− 1 (the sample standard devia-

tion) has the expected value of σ? The answer is ’no’, s is a (slightly) biased
estimator of the population’s standard deviation [the exact value of the bias de-
pends on the shape of the corresponding distribution].

This s is useful when estimating the value of the population mean µ. We
know that X̄ is the unbiased estimator of µ, having the standard deviation (error)
of σ√

n
. We would like to express this as µ ≈ X̄ ± σ√

n
[the so called confidence

interval for estimating µ] but since we ordinarily don’t know the exact value of
σ either, we have to substitute the next best thing, namely its estimator s, thus:
µ ≈ X̄ ± s√

n
. In later chapters we investigate these issues in more detail.

Proving Central Limit Theorem
Let us now return to the main topic of this section, which is investigating the
distribution of X̄. We already know the mean and standard deviation of this dis-
tribution are µ and σ√

n
respectively, now we would like to establish its asymptotic

(i.e. large-n) shape. This is, in a sense, trivial: since σ√
n
−→
n→∞

0, we get in the

n→∞ limit a degenerate (single-valued, with zero variance) distribution, with
all probability concentrated at µ.
We can prevent this distribution from shrinking to a zero width by standard-

izing X̄ first, i.e. defining a new RV

Z ≡ X̄ − µ
σ√
n

and investigating its asymptotic (n → ∞) distribution instead [the new random
variable has the mean of 0 and the standard deviation of 1, thus its shape cannot
’disappear’ on us].
We do this by constructing theMGF of Z and finding its n→∞ limit. Since

Z =

Pn
i=1(Xi−µ)

n
σ√
n

=
Pn

i=1

³
Xi−µ
σ
√
n

´
[a sum of independent, identically distributed

RVs], its MGF is the MGF of X1−µ
σ
√
n
≡ Y, raised to the power of n.

We know that MY (t) = 1 + E(Y ) · t + E(Y 2) · t2
2
+ E(Y 3) · t3

3!
+ ... = 1 +

t2

2n
+ ct3

6n3/2
+ dt4

24n2
+ .... where c, d,... is the skewness, kurtosis, ... of the original

distribution. Raising MY (t) to the power of n and taking the n→∞ limit results

in e
t2

2 regardless of the values of c, d, .... (since they are divided by higher-than-one
power of n). Thus, we get a rather unexpected result: the distribution of Z has
(for large n) the same symmetric shape (described by the above MGF limit), not in
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the least affected by the shape of the original distribution (form which the sample
is taken).
What exactly is the common shape of the distribution of all these Z’s, regardless

of what sampling distribution they came from? Well, so far we have not yet seen

a random variable whose MGF would equal to e
t2

2 , we can only hope that we
will ’discover’ it soon, as its distribution will supply the answer (some of you may
already know that it is the so called normal or Gaussian distribution which we
study in the next chapter). ¤
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Chapter 6 CONTINUOUS RANDOM
VARIABLES

We are now returning to Section 3.3 of your textbook. First we introduce the
concept of

Univariate probability density function
As we already know, for continuous-type RVs Pr(X = x) [where x is some specific
number − we used to call it i in the discrete case] is always equal to zero and
thus of no help to us. Yet the probability of X falling into any interval, such as
Pr(x ≤ X < x + ε) [where ε > 0] is nonzero. We can now take the ratio of this
probability to the length of the interval, making this length go down to zero:

lim
ε→0

Pr(x ≤ X < x+ ε)

ε
≡ f(x)

getting a non-negative function of x which is called probability density function
(pdf) of the random variable X (the same f(x) notation was used earlier for the
probability function of the discrete case− luckily, these two can never be confused).
Its argument will normally be a small letter corresponding to the variable’s name,
due to this, there will be less need for my old notational extension of the fX(x)
type.
Based on such an f(x), the probability of X falling into any interval (a, b)

say can be computed by integrating f(x) from a to b:

Pr(a < X < b) =

bZ
a

f(x) dx

This immediately implies that
∞R
−∞

f(x) dx = 1 [the total probability of X having

any value].

Note that:

• Probability is now directly represented by the corresponding area [between
the x-axis and f(x)].

• Pr(a ≤ X ≤ b) = Pr(a ≤ X < b) = Pr(a < X ≤ b) = Pr(a < X < b) as, for
continuous RVs one extra value (included or excluded) does not make any
difference.

• The individual values of f(x) do not directly represent a probability of any
event, thus some of these values may, quite legitimately, exceed 1. ¥

An important part of a definition of f(x) is its range (the interval of permissible
values). As we will see in our examples, some RVs allow any real value as an
outcome, some are limited to a finite range, say (L,H) beyond which f(x) drops
down to 0.
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IDistribution FunctionJ

usually called F (x) returns

Pr(X ≤ x) =

xZ
−∞

f(u) du

which has the following, rather obvious properties:

(i) it is flatly equal to zero until L (the lowest possible value) is reached

(ii) it increases, between the x-values of L and H, until 1 is reached (at H)

(iii) stays equal to 1 for all x beyond H [when H = ∞, F (x) reaches 1 in the
x→∞ limit]. ¥

The distribution function is very convenient for computing probabilities (of an
interval), as Pr(a < X < b) = F (b)− F (a) [we no longer need to integrate].

Sometimes we have to deduce f(x) from F (x), which is of course quite trivial:
f(x) = dF (x)

dx
.

EXAMPLES:

1. Consider our old example of a spinning wheel with a pointer where X is the
final value of the resulting angle (measured from some fixed direction), in
radians. We know that all angles [0, 2π) must be equally likely, thus f(x)
must be, in this range, a constant which, when integrated between 0 and 2π,
yields 1 [and is equal to zero otherwise]:

f(x) =

 0 x ≤ 0
1
2π

0 < x ≤ 2π
0 x > 2π

We will normally simplify this to: f(x) = 1
2π
for 0 < x ≤ 2π, with the

understanding of ’zero otherwise’. Note that this f(x) is not continuous.
The corresponding distribution function is:

F (x) =

 0 x ≤ 0
x
2π

0 < x ≤ 2π
1 x > 2π

[note that each F (x) must be continuous⇒ adjacent ’pieces’ of the function
must agree at the common boundary e.g., in this case, x

2π
−→
x=0

0 and x
2π
−→
x=2π

1]. Again, we will shorten this to F (x) = 1
2π
for 0 < x ≤ 2π with the

understanding that F (x) ≡ 0 for x < 0 (the smallest possible value), and
F (x) ≡ 1 for x > 2π (the largest possible value).
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2. Consider the following pdf: f(x) = e−x for x > 0 [zero otherwise − this

goes without saying]. Since f(x) ≥ 0 and
∞R
0

e−x dx = 1, this pdf is certainly

’legitimate’ [later on we will call the distribution of this type ’exponential’].

The corresponding distribution function is F (x) =
xR
0

e−u du = [−e−u]xu=0 =
1− e−x for x > 0 (note that this approaches 1 as x→∞).

3. The non-zero part of f(x) is sometimes itself defined in a ’piece-wise’ manner,
e.g.:

f(x) =

½
2
3
(1 + x) − 1 ≤ x < 0
4
3
(1− x) 0 ≤ x < 1

[zero otherwise − the last reminder].

Integration of this function (to verify that its total area − probability −
equals to 1) must be done a ’piece-wise’ manner as well:

1R
−1

f(x) dx =

0R
−1

2
3
(1 + x) dx+

1R
0

4
3
(1− x) dx = 2

3
[x− x2

2
]0x=−1 +

4
3
[x− x2

2
]1x=0 =

1
3
+ 2

3
= 1

(check).

Building the distribution function must be done even more carefully [we dis-
play it over the full range of real values, not using our simplifying convention

in this case]: F (x) =


0 x ≤ −1

1
3
(1 + x)2 − 1 < x ≤ 0
1− 2

3
(1− x)2 0 < x ≤ 1

1 x > 1

[note that each of the

individual results is constructed as the indefinite integral of the correspond-
ing expression for f(x), plus a constant designed to match the function’s
values at each boundary − usually to the previous ’piece’]. Also note that
our F (x), in spite of consisting of several ’pieces’ (expressions), is a single
function [that goes for f(x), too].

Based on this F (x) we can easily answer questions of the type: Pr(−1
2
<

X < 1
2
) = F (1

2
) − F (−1

2
) = 1 − 2

3
(1
2
)2 − 1

3
(1
2
)2 = 75% [just make sure to

select the appropriate expression for each evaluation]. ¥

Bivariate (multivariate) pdf
Now we extend the concept of ’probability density function’ to two and more RVs
of the continuous type.

IJoint Probability Density FunctionJ

of X and Y will be, by definition,

f(x, y) = lim
ε→0
δ→0

Pr(x ≤ X < x+ ε ∩ y ≤ Y < y + δ)

ε · δ

i.e. the probability of the X, Y pair ’falling’ (i.e. having their values) inside a
rectangle with the point (x, y) at one of its corners, divided by the area of this
rectangle, in the limit of this rectangle shrinking to the point itself [instead of a
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rectangle, we could have used any 2-D region, with (x, y) located within the region
− not necessarily on its boundary].
Automatically, f(x, y) ≥ 0. The bivariate pdf must also ’add up’ (integrate) to

1, i.e. ZZ
R

f(x, y) dxdy ≡ 1

whereR is the two-dimensional region of definition [sometimes we visualize it as
a ’target’] of the (X,Y )-distribution, i.e. the set of all possible (x, y)-values [those
for which f(x, y) 6= 0].
The probability that the (X,Y )-values will fall inside any other two-dimensional

set (region) A is computed by ZZ
A

f(x, y) dxdy

The main challenge here is to understand 2-D regions, their mathematical descrip-
tion, and the corresponding double integration. Note that now, the probability of
a region is the corresponding volume between the x-y plane and f(x, y).

Similarly, a three-dimensional pdf f(x, y, z) is defined as the probability of
X, Y and Z having their values fall (occur) in some specific [small] 3-D region
containing (x, y, z) [usually a cube with (x, y, z) at one of its corners], divided by
the volume of this region, in the limit of this region shrinking to the (x, y, z) point
itself. The probability of X, Y and Z having their values fall in a subset A of the
3-D space equals ZZZ

A

f(x, y, z) dx dy dz

The extension to four or more RVs is quite obvious.

EXAMPLE:

Consider the following bivariate pdf: f(x, y) = x+ y for
½
0 ≤ x ≤ 1
0 ≤ y ≤ 1 , zero

otherwise (eventually, this too will go without saying). Thus, the resulting 2-
D point can occur only in the unit square with corners at (0,0) and (1, 1), but
not with the same probability [points near (1, 1) are the most likely, points
near (0, 0) are very unlikely to happen].

Obviously, in its region of definition, f(x, y) ≥ 0. Let us verify the second
condition of ’legitimacy’, namely that

RR
R

f(x, y) dxdy = 1. The double inte-

gration can be converted to two consecutive single-variable integrals, thus:
1R

y=0

µ
1R

x=0

(x+ y) dx

¶
dy which we usually write as

1R
0

1R
0

(x + y) dxdy [it is un-

derstood that dx goes with the inner set of limits and dy corresponds to
the outer set, similar to nesting parentheses]. The inner (dx) integration
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must be performed first:
1R
0

h
x2

2
+ xy

i1
x=0

dy =
1R
0

(1
2
+ y)dy followed by the

dy-integration:
h
y
2
+ y2

2

i1
y=0

= 1 (check).

Let us now compute Pr(X < 1
2
∩Y < 1

2
). First we must be able to visualize the

corresponding region, then its overlap with the region of definition [getting

the (0, 0)-(1
2
, 1
2
) square]. The pdf is then integrated over this overlap:

1
2R
0

1
2R
0

(x+

y) dxdy =

1
2R
0

h
x2

2
+ xy

i 1
2

x=0
dy =

1
2R
0

(1
8
+ y

2
) dy = [y

8
+ y2

4
]
1
2
y=0 =

1
8
. Note that

the area of the (0, 0)-(1
2
, 1
2
) square is 1

4
of the area of the region of definition

(the unit square), but its probability is only 1
8
of the total probability, as it

covers the least likely part of the ’target’.

Moral: For bivariate distributions, probability is, in general, not proportional
to the corresponding area [this is possible only in a very special case of a
constant pdf, i.e. all points of the target are equally likely to be ’hit’].

And the final question: Compute Pr(X + Y < 1
2
).

First we realize that the condition represents a half-plane below the x+ y =
1
2
straight line, then take its overlap with the unit-square ’target’, getting

a triangle [with corners at (0, 0), (0, 1
2
) and (1

2
, 0)]. To get the answer, we

integrate the pdf over this triangle:

1
2R
0

1
2
−yR
0

(x+y) dxdy =

1
2R
0

h
x2

2
+ xy

i 1
2
−y

x=0
dy =

1
2R
0

(1
8
− y2

2
) dy = [y

8
− y3

6
]
1
2
y=0 =

1
24
.

Note how the triangle is sliced in the x-direction: the x-limits follow from
the equations of the two boundaries (where x enters and leaves the triangle),
and the y-limits are established from the projection of the triangle into the
y-axis [its y-’shadow’] and are [must always be] free of x. Also note that the
answer is not one half of the previous answer (even though the corresponding
areas are in that ratio). ¥

IMarginal DistributionsJ

To get the marginal pdf of Y from a joint pdf of X and Y one has to integrate
f(x, y) over the conditional range of x-values given y. The answer (a function of
y) is valid (i.e. non-zero) over the marginal range of y [the idea of piercing the
region of definition by x-parallel lines, and observing its y-axis shadow].

Similarly, to get the X-marginal, one does

f(x) =

Z
All y|x

f(x, y) dy

[the integration is over the conditional range of y given x], valid over the marginal
range of the x values.
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EXAMPLES:

1. Using the joint pdf of the previous example, we get f(x) =
1R
0

(x + y) dy =

xy + y2

2

¯̄̄1
y=0

= x+ 1
2
for 0 < x < 1 [zero otherwise]. Note that spelling out the

marginal range of x is an important part of the answer! The answer must be

a regular, univariate pdf:
1R
0

(x + 1
2
) dx = x2

2
+ x

2

¯̄̄1
x=0

= 1 (check). Since the

original bivariate pdf and its region of definition are symmetric with respect
to the x↔ y interchange, it’s obvious that f(y) = y + 1

2
for 0 < y < 1.

2. Consider f(x, y) = 1
y
for
½
0 < x < y
0 < y < 1

[zero otherwise]. It is essential to be

able to visualize the region of definition [a triangle with corners at (0,0), (0, 1)
and (1, 1)]. Note that this region has been described by ’horizontal-lines’, i.e.
specifying the conditional range of x-values first, followed by the marginal

range of y. One can of course reverse this:
½

x < y < 1
0 < x < 1

covers exactly the

same triangle. This is the crucial thing to understand, as we often need to
switch from one description to the other.

To get the Y marginal, we do
yR
0

dx
y
= 1

y
· [x]yx=0 = 1 for 0 < y < 1 [here

we needed the horizontal-line description], to get the X marginal:
1R
x

dy
y
=

ln y|1y=x = − lnx for 0 < x < 1 [vertical lines]. Let us check that f(x)
is a legitimate pdf: − lnx is positive (since 0 < x < 1), it integrates to

−
1R
0

lnx dx = x(1− lnx)|1x=0 = 1 (check) [recall that lim
x→0

x lnx = 0].

3. Consider f(x, y) = 1
π
for x2 + y2 < 1 (zero otherwise) [i.e. the pdf has a

constant value of 1
π
inside the unit disk centered on the origin]. Recall that

1
π

RR
x2+y2<1

dx dy = 1
π
·Area(x2 + y2 < 1) = 1 [check].

To get the Y marginal: 1
π

√
1−y2R

−
√
1−y2

dx = 2
π

p
1− y2 for −1 < y < 1 [draw

a picture of the disk and the x-parallel segments ’shading’ it]. Obviously
f(x) = 2

π

√
1− x2 for −1 < x < 1 based on the x↔ y symmetry.

Remember:
RR
A

c dx dy = c ·Area(A), i.e. integrating a constant can be done
’geometrically’, bypassing the integration!

4. Consider f(x, y) = 2x(x− y) for
½

0 < x < 1
−x < y < x

[this is a triangle with cor-

ners at (0, 0), (1, 1) and (1,−1); also note that we are not always consistently
starting with the conditional range, here we first quote the marginal range
of x]. Since we want to build both marginals, the most difficult part will be
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expressing the same region in the ’horizontal-line’ representation. Here we
have one extra difficulty: describing the triangle by horizontal lines is impos-
sible in ’one sweep’ as we have to switch between formulas to spell out the
lower conditional limit of x [these things are short of impossible to visualize
unless you draw a picture]. Thus, the horizontal-line description is a union

of two ’sub-regions’:
½· −1 < y < 0
−y < x < 1

¸
∪
·
0 < y < 1
y < x < 1

¸
. Now we can easily

find the marginal pdf’s:

f(x) = 2x
xR
−x
(x− y) dy = 2x[xy − y2

2
]xy=−x = 4x3 for 0 < x < 1.

The Y marginal has to be build in two parts: When −1 < y < 0, the

expression for f(y) is 2
1R
−y
(x2−xy) dx = 2[x

3

3
− x2

2
y]1x=−y =

2
3
−y+ 5

3
y3.When

0 < y < 1, we get f(y) = 2
1R
y

(x2− xy) dx = 2[x
3

3
− x2

2
y]1x=y =

2
3
− y+ y3

3
. To

summarize: f(y) =
½ 2

3
− y + 5

3
y3 − 1 < y < 0

2
3
− y + y3

3
0 < y < 1

.

Let us also compute some probabilities:

Pr(X + Y < 1). The joint pdf needs to be integrated over the intersection of
the original triangle and the half-plane below x+ y = 1. This can be done in
several distinct ways:

(a) Starting with the y-integration (vertical lines) and then integrating x
over its marginal (projection) range, but only when broken into two

sub-regions:

1
2R
0

xR
−x

f(x, y) dy dx+
1R
1
2

1−xR
−x

f(x, y) dy dx

(b) Starting with the (conditional) x-integration [still two sub-regions]:
1
2R
0

1−yR
y

f(x, y) dx dy +
0R
−1

1R
−y

f(x, y) dx dy

(c) Using Pr(A) = 1 − Pr(Ā): 1 −
1
2R
0

1R
1−y

f(x, y) dx dy −
1R
1
2

1R
y

f(x, y) dx dy

[horizontal segments] ≡ 1−
1R
1
2

xR
1−x

f(x, y) dy dx [vertically].

One can verify that all four distinct ways of computing the probability
yield the same answer, but the last approach is obviously the most

economical, resulting in 1 − 2
1R
1
2

x
xR

1−x
(x − y) dy dx = 1 − 2

1R
1
2

x[xy −

y2

2
]xy=1−x dx = 1− 2

1R
1
2

x(2x2 − 2x+ 1
2
) dx = 1− 2[2x4

4
− 2x3

3
+ x2

4
]1
x=1

2

=

41
48
= 85.42%.
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Pr(Y > 0) [the upper half of the original triangle]. Depending on whether

we want to ’sweep’ the region vertically or horizontally, we have: 2
1R
0

x
xR
0

(x−

y) dy dx = 2
1R
0

x[xy − y2

2
]xy=0 dx = 2

1R
0

x(x
2

2
) dx = x4

4

¯̄̄1
x=0

= 1
4
or 2

1R
0

1R
y

x(x−

y) dx dy = 2
1R
0

[x
3

3
− x2

2
y]1x=y dy = 2

1R
0

(1
3
− y

2
+ y3

6
) dy = 2[y

3
− y2

4
+ y4

24
]1y=0 =

1
4

(the same answer).

5. Let’s try a three-dimensional problem. Consider the following tri-variate pdf:

f(x, y, z) = c(x + y + z) where


x > 0
y > 0
z > 0

x+ y + z < 1

[c being an appropriate

constant]. First, we want to find the value of c. The tricky part is that
the region of definition is not described in a manner which would readily
translate into the corresponding limits of consecutive integration. What we
need is first the conditional range of x given both y and z [think of piercing
the structure by a straight line parallel to x to establish where it enters
and where it leaves the volume, getting, in this case, 0 < x < 1 − y − z],
followed by partly marginal (as x is already out and we are looking at the
y-z projection of the original tetragonal region) partly conditional (given z)
range of y [0 < y < 1 − z], and finally the fully marginal (the y-z ’shadow’
is itself projected into z only) range of the z-values [0 < z < 1]. Depending
on the order in which we do this (x, y, z, or y, x, z, ....) we end up with
altogether 3! distinct ways of performing the integration [they all have to
result in the same answer, but some of them may be a lot more difficult − or
outright impossible − than others]. In this case both the region and f(x, y, z)
are symmetrical, and all 6 choices are effectively identical.

We now integrate our pdf in the indicated manner:
1R
0

1−zR
0

1−y−zR
0

c(x + y +

z) dx dy dz = c
1R
0

1−zR
0

1−y−zR
0

[x
2

2
+(y+z)x]1−y−zx=0 dy dz = c

1R
0

1−zR
0

³
1
2
− (y+z)2

2

´
dy dz =

c
1R
0

h
y
2
− (y+z)3

6

i1−z
y=0

dz = c
2

1R
0

(2
3
− z + z3

3
) dz = c

2
[2
3
z − z2

2
+ z4

12
]1z=0 =

c
8
which

must be equal to 1 (total probability). This implies that c = 8.

6. Finally, we do an example of a 2-D problem which can be easily solved only
with the help of polar coordinates. Suppose we want to establish the
value of c of the following bivariate pdf:

f(x, y) =
cp

x2 + y2
when

½
x2 + y2 < 1

y > 0

The region of definition is clearly the upper half of the unit disk centered on
the origin.
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To perform the implied integration, we introduce two new variables r and ϕ,
replacing the old x and y pair according to the following formulas

x = r cosϕ

y = r sinϕ

By substitution these into f(x, y), we make it a function of r and ϕ, to be
integrated over the same half disk (which, in the new coordinates, becomes

the
½
0 < r < 1
0 < ϕ < π

rectangle. The only question is: What becomes of the in-

finitesimal area dx dy of the original double integral? The answer is: J dr dϕ,
where J is the so called Jacobian of the transformation, computed as follows

J =

¯̄̄̄
¯ dx

dr
dx
dϕ

dy
dr

dy
dϕ

¯̄̄̄
¯ =

¯̄̄̄
cosϕ −r sinϕ
sinϕ r cosϕ

¯̄̄̄
= r cos2 ϕ+ r sin2 ϕ = r

(the bar around the 2×2 matrix implies taking the absolute value of its
determinant). Geometrically, J dr dϕ represents the area of the near rectangle
created by increasing ϕ by dϕ and increasing r by dr.

We can thus evaluate the original integral by

ZZ
x2+y2<1

y>0

dx dyp
x2 + y2

=

ZZ
0<r<1
0<ϕ<π

r dr dϕ

r
=

πZ
0

dϕ×
1Z
0

dr = π

The value of c is thus equal to 1
π
. ¥

IConditional DistributionJ

is the distribution of X given that Y has been observed to result in a specific value
y. The corresponding conditional pdf f(x|Y = y) should be defined, according

to the general definition, via lim
ε→0

Pr(x ≤ X < x+ ε|Y = y)

ε
which unfortunately

leads to 0
0
[as Pr(Y = y) ≡ 0]. We can make this expression meaningful by first

allowing Y to be in a [y, y + δ) interval and then taking δ → 0.

This leads to f(x|Y = y) = lim
δ→0

lim
ε→0

Pr(x ≤ X < x+ ε|y ≤ Y < y + δ)

ε
=

lim
δ→0

lim
ε→0

Pr(x ≤ X < x+ ε ∩ y ≤ Y < y + δ)

εPr(y ≤ Y < y + δ)
[by the general definition of condi-

tional probability]= lim
δ→0

lim
ε→0

Pr(x ≤ X < x+ ε ∩ y ≤ Y < y + δ)

ε · δ · δ

Pr(y ≤ Y < y + δ)
=

f(x, y)

f(y)

by our previous definition of joint (the numerator) and univariate (the denom-
inator) pdf, where x varies over its conditional range, given y. Note that the
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denominator, representing the marginal pdf of Y at y, is normally computed byR
All x|y

f(x, y) dx.

This definition can be extended to define a conditional pdf of X given that
Y and Z have been already observed to result in a specific value of y and z,
respectively:

f(x|Y = y ∩ Z = z) =
f(x, y, z)

f(y, z)

where x varies over the corresponding conditional range (found by piercing the
original region of definition by a straight line parallel to x), and the denominator
is computed from

R
All x|y|z

f(x, y, z) dx.

Similarly, the joint conditional pdf of X and Y given an (observed) value of
Z is:

f(x, y|Z = z) =
f(x, y, z)

f(z)

with x and y varying over the corresponding conditional two-dimensional range
(the Z = z ’slice’ of the original three-dimensional region of definition), where the
denominator is

RR
All (x,y)| z

f(x, y, z) dx dy.

Note that the most difficult part of these formulas is always the denominator
containing amarginal pdf which needs to be constructed first by the corresponding
multivariate integration.

EXAMPLES:
1. Let us go back to the bivariate pdf of the previous Example 4. We want
to construct f(x|Y = 1

2
). Luckily, we already have the formula for not only

f(x, y) = 2x(x − y) but also for fY (y) = 2
3
− y + y3

3
(when 0 < y < 1).

Thus f(x|Y = 1
2
) =

2x(x−1
2
)

2
3
−1
2
+ 1
24

= 48
5
x(x− 1

2
), where 1

2
< x < 1 [cut the original

triangle by a horizontal line at y = 1
2
and observe the resulting conditional

range of x]. To verify the answer: 48
5

1R
x= 1

2

x(x − 1
2
) dx = 48

5
[x

3

3
− x2

2
]1
x= 1

2

= 1

(check − a conditional pdf must also ’add up’ to 1).
Secondly, let us find f(y|X = 1

3
) =

2×1
3
×( 1

3
−y)

4×( 1
3
)3

= 9
2
(1
3
− y), where −1

3
< y < 1

3

[zero otherwise] (cut the original triangle along x = 1
3
to understand the

conditional range of y). To verify: 9
2

1
3R

− 1
3

(1
3
− y) dy = 9

2
[y
3
− y2

2
]
1
3

y=−1
3

= 1

(check).

2. Using the tri-variate distribution of the previous section, we find the condi-
tional distribution of X given that Y = 1

2
and Z = 1

4
by

f(x |Y =
1

2
∩ Z = 1

4
) =

x+ 1
2
+ 1

4R 1/4
0
(x+ 3

4
) dx

=
x+ 3

4
7
32

=

=
32

7
x+

24

7
for 0 < x <

1

4
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Similarly, the conditional (still bivariate) pdf of X and Y given that Z = 1
2

is constructed as follows:

f(x, y |Z =
1

2
) =

x+ y + 1
2RR

x+y< 1
2

x,y> 0

(x+ y + 1
2
) dA

=
x+ y + 1

2
1
2R
0

1
2
−yR
0

(x+ y + 1
2
)dx dy

=

=
x+ y + 1

2
1
2R
0

(3
8
− y

2
− y2

2
) dy

=
x+ y + 1

2
5
48

=

=
48(x+ y) + 24

5
where

 x+ y < 1
2

x > 0
y > 0

IMutual IndependenceJ

of two or more RVs can be easily established just by inspecting the corresponding
joint pdf.
In the bivariate case, X and Y are independent iff

(i) f(x, y) can be written as a product of a constant, times a function of x, times
a function of y,

and

(ii) the region of definition can be expressed as
½

a < x < b
c < y < d

where a, b, c, d are

constant numbers (i.e. a and b are free of y, and c and d are free of x). Note
that in some cases a and/or c can have the value of −∞, and b and/or d can
equal to ∞. I like to call any such region (with fixed but potentially infinite
limits) a ’generalized rectangle’. ¥

The extension of these independence criteria to the case of several RVs should
be obvious.

As in the discrete case, mutual independence of RVs implies that any con-
ditional distribution is identically equal to the corresponding [ignoring the condi-
tion(s)] marginal distribution.

Expected value
of a continuous RV is computed via

E(X) =
Z

All x

x · f(x) dx

[as always, the formula is fully analogous to the discrete case, only summation is
replaced by integration].
Similarly:

E[g(X)] =
Z

All x

g(x) · f(x) dx
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where g(x) is an arbitrary function of x, and

E[g(X,Y )] =

ZZ
R

g(x, y) · f(x, y) dx dy

for any bivariate function g(x, y).

Simple moments, central moments, variance, covariance, etc. are defined in
exactly same manner as in the discrete case. Also, all previous formulas for dealing
with linear combinations of RVs (expected value, variance, covariance) still hold,
without change.

EXAMPLES:

1. f(x) = 1
2π
for 0 < x < 2π [the spinning wheel]. E(X) = 1

2π

2πR
0

x dx =

1
2π
[x

2

2
]2πx=0 = π [not surprisingly, the mean is at the distribution’s ’center’].

In general, if the pdf is symmetric [i.e. f(α+ x) = f(α− x) for some α -a
graph will reveal the symmetry better than any formula] then the center of
symmetry α must be the expected value of X, provided that the expected
value exists!

Symmetry does not help though when we want to evaluate E(X2) = 1
2π

2πR
0

x2dx =

1
2π
[x

3

3
]2πx=0 =

4π2

3
. This implies the variance of 4π

2

3
− π2 = π2

3
⇒ σ = π√

3
. The

µ ± σ range thus contains 1√
3
= 57.74% of all probability, confirming our

’bulk’ rule.

Similarly, E( 1
1+X2 ) =

1
2π

2πR
0

dx
1+x2

= 1
2π
[arctanx]2πx=0 = 0.22488.

2. f(x) = e−x for x > 0. E(X) =
∞R
0

xe−x dx =
∞R
0

x(−e−x)0 dx = −xe−x|∞x=0 +
∞R
0

e−x dx = [−e−x]∞x=0 = 1.

To find V ar(X) we first need E(X2) =
∞R
0

x2e−x dx. The general formula

for dealing with these type of integrals is:
∞R
0

xne−x dx =
∞R
0

xn(−e−x)0 dx =

0 + n
∞R
0

xn−1e−x dx = n(n− 1)
∞R
0

xn−2e−x dx = ..... = n(n − 1)(n − 1)....2 ×

1
∞R
0

e−x dx = n! [where n is a non-negative integer]. Thus E(X2) = 2! and

V ar(X) = 2 − 12 = 1. The probability of falling inside the µ ± σ range is
thus 1− e−2 = 86.47%.

3. f(x) =
½

2
3
(1 + x) − 1 < x < 0
4
3
(1− x) 0 < x < 1

The integration needs to be done in

two parts to be added together [a common mistake is to display them as
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two separate expected values, one for each of the two ranges − this is totally
nonsensical, a piece-wise f(x) still corresponds to only one X and therefore

one expected value]: E(X) = 2
3

0R
−1

x(1 + x) dx + 4
3

1R
0

x(1 − x) dx = 2
3
[x

2

2
+

x3

3
]0x=−1 +

4
3
[x

2

2
− x3

3
]1x=0 =

1
9
.

4. Consider the bivariate pdf of Example 4 from the ’Marginal Distributions’
section. Find:

a) E( Y
X
)

Solution: 2
1R
0

xR
−x

y
x
· x(x − y) dy dx = 2

1R
0

[y
2

2
x − y3

3
]xy=−x dx = 2

1R
0

(−2x3
3
)dx =

−x4

3

¯̄̄1
x=0

= −1
3
.

b) Cov(X,Y )

Solution: First we compute E(X ·Y ) = 2
1R
0

xR
−x

xy·x(x−y) dy dx = 2
1R
0

x2[y
2

2
x−

y3

3
]xy=−xdx = 2

1R
0

(−2x5
3
)dx = −2x6

9

¯̄̄1
x=0

= −2
9

E(X) = 2
1R
0

xR
−x

x · x(x − y) dy dx = 2
1R
0

x2[xy − y2

2
]xy=−xdx = 2

1R
0

2x4 dx =

4x5

5

¯̄̄1
x=0

= 4
5

and E(Y ) = 2
1R
0

xR
−x

y·x(x−y) dy dx = 2
1R
0

x[y
2

2
x−y3

3
]xy=−xdx = 2

1R
0

(−2
3
x4) dx =

−4x5
15

¯̄̄1
x=0

= − 4
15
⇒

Answer: Cov(X,Y ) = −2
9
+ 4

5
× 4

15
= −0.008̄.

c) V ar(X), V ar(Y ) and ρXY .

Solution: The extra moments we need are E(X2) = 2
1R
0

xR
−x

x2 ·x(x−y) dy dx =

2
1R
0

x3[xy − y2

2
]xy=−xdx = 2

1R
0

2x5 dx = 2x6

3

¯̄̄1
x=0

= 2
3

and E(Y 2) = 2
1R
0

xR
−x

y2·x(x−y) dy dx = 2
1R
0

x[y
3

3
x−y4

4
]xy=−xdx = 2

1R
0

(2
3
x5) dx =

2x6

9

¯̄̄1
x=0

= 2
9
⇒

V ar(X) = 2
3
− (4

5
)2 = 0.026̄, V ar(Y ) = 2

9
− ( 4

15
)2 = 0.151̄ and ρXY =

−0.008̄√
0.026̄×0.151̄ = −0.1400. ¥

IMoment Generating FunctionJ
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is defined via:
MX(t) ≡ E(etX) =

Z
All x

etx · f(x) dx

[again, the old definition with summation replaced by integration].
The

MaX+b(t) = ebtMX(at)

formula still holds true [its proof would be practically identical to the discrete case],
and independence of X1 and X2 still implies

MX1+X2(t) =MX1(t) ·MX2(t)

(which can be extended to any number of mutually independent RVs).

EXAMPLE:

f(x) = e−x when x > 0 ⇒ M(t) =
∞R
0

etx ·e−x dx =
·
e−x(1−t)

−(1− t)

¸∞
x=0

=
1

1− t
.

Since this MGF can be readily expanded, thus: 1
1−t = 1 + t + t2 + t3 + ... ,

we instantly know all the simple moments of X: E(X) = 1, E(X2) = 2,
E(X3) = 3!, E(X4) = 4!, ..., etc.

To find the MGF of 2X − 3 is equally trivial, resulting in e−3t
1−2t . ¥

IConditional Expected ValueJ

is again (as in the discrete case) an expected value computed using the correspond-
ing conditional pdf:

E(g(X)|Y = y) =

Z
All x|y

g(x) · f(x|Y = y) dx =

Z
All x|y

g(x)
f(x, y)

f(y)
dx

EXAMPLES:

1. Consider, again, the bivariate pdf of Example 4 from the ’Marginal Distri-
butions’ section. Find E( 1

X
|Y = 1

2
).

Solution: This equals 48
5

1R
1/2

1
x
· x(x − 1

2
) dx = 48

5
[x

2

2
− x

2
]1
x=1

2

= 6
5
[we utilized

f(x|Y = 1
2
) constructed earlier].

2. Consider f(x, y) = 2e−x−y when
½

x > 0
y > x

. Find E(eY2 |X = 1).

Solution: First, we must construct the corresponding f(x)-marginal, by:

2e−x
∞R
x

e−ydy = 2e−x · [−e−y]∞y=x = 2e−2x when x > 0. Then, we build

f(y|X = 1) by: 2e−1−y
2e−2 = e1−y when y > 1 [the ranges can be easily read off

the appropriate graph]. Finally: E(eY2 |X = 1) =
∞R
1

e
y
2 ·e1−y dy =

∞R
1

e1−
y
2 dy =

e · [−2e− y
2 ]∞y=1 = 2

√
e = 3.2974. ¥



95

Chapter 7 SPECIAL CONTINUOUS
DISTRIBUTIONS

Univariate (single RV) case
IUniformJ

f(x) =
1

b− a
[constant] when a < x < b. F (x) =

x− a

b− a
when a < x < b,

E(X) = 1

b− a

bR
a

x dx =
1

b− a

·
x2

2

¸b
x=a

=
b2 − a2

2(b− a)
=

a+ b

2
[center of symme-

try], E(X2) =
1

b− a

bR
a

x2 dx =
1

b− a

·
x3

3

¸b
x=a

=
b3 − a3

3(b− a)
=

a2 + ab+ b2

3
⇒

V ar(X) =
a2 + ab+ b2

3
−
µ
a+ b

2

¶2
=
4(a2 + ab+ b2)− 3(a2 + 2ab+ b2)

12
=

a2 − 2ab+ b2

12
=

(b− a)2

12
⇒

σX =
b− a

2
√
3

This implies that µX±σX , being an interval of length
b− a√
3
, contains

1√
3
= 57.74%

of the total probability (consistent with our rough rule that this should be between
50 and 90%). Note that µX ± 2σX already covers the whole possible range, and
thus contains 100% of the total probability.
For this distribution, we use the following symbolic notation: U(a, b). Thus,

for example, X ∈ U(0, 1) implies that the distribution of X is uniform, going from
0 to 1.

I’Standardized’(i.e. µ = 0 and σ = 1) NormalJ

distribution (the corresponding RV will be called Z − a ’reserved’ name from now
on).
In the last chapter we discovered that, when sampling from ’almost’ any pop-

ulation, the distribution of X1+X2+....+Xn−nµ√
nσ

approaches, for large n, a unique dis-

tribution whose MGF is e
t2

2 .
We will now show that this MGF corresponds to the following pdf : f(z) = c ·

e−
z2

2 for−∞ < z <∞ [any z], where c is an appropriate constant. To find its value,

we need I ≡
∞R
−∞

e−
z2

2 dz. Unfortunately, e−
z2

2 is one of the functions we don’t know

how to analytically integrate; to evaluate I we need to use the following trick (going

to two dimensions): I2 =
∞R
−∞

e−
x2

2 dx ×
∞R
−∞

e−
y2

2 dy =
RR

x−y plane
e−

x2+y2

2 dx dy = [in

polar coordinates]
2πR
0

∞R
0

e−
r2

2 r dr dϕ = 2π
∞R
0

e−u du = 2π (we will review the change-

of-variables technique in more dimensions soon, let me just briefly mention that½
x = r cosϕ
y = r sinϕ

is the basic relationship between rectangular and polar coordinates,
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and

¯̄̄̄
¯ ∂x

∂r
∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

¯̄̄̄
¯ =

¯̄̄̄
cosϕ −r sinϕ
sinϕ r cosϕ

¯̄̄̄
= r is the Jacobian of the transformation).

This implies that I =
√
2π, which makes it clear that we need c = 1√

2π
:

f(z) =
1√
2π

e−
z2

2 −∞ < z <∞

(a symmetric ’bell-shaped’ curve).

First we have to verify that this is the pdf whose MGF equals e
t2

2 : MZ(t) =

1√
2π

∞R
−∞

e−
z2

2 ·ezt dz = 1√
2π

∞R
−∞

e−
z2

2
+zt dz = 1√

2π
e
t2

2

∞R
−∞

e−
(z−t)2

2 dz = 1√
2π
e
t2

2

∞R
−∞

e−
u2

2 du =

e
t2

2 [check].

From the expansion M(t) = 1 + t2

2
+

³
t2

2

´2
2
+ ... we can immediately establish

that µZ = 0 [all odd moments equal to 0], σZ = 1, and the kurtosis of Z is equal
to 3.

Since we don’t know how to integrate e−
z2

2 , we cannot find an expression for
the corresponding distribution function F (z). But without F (z), how do we
compute probabilities related to Z (a task so crucial to us)? Well, instead of
evaluating F (z) based on some formula, we must now look up its values in Table
III of our textbook (p.581). Note that this table contains Pr(0 < Z < z) ≡ F (z)− 1

2

for values of z from 0 to 3, in steps of 0.01. Now, we need to learn how to use it
(some of you may have the corresponding function available in your calculator, feel
free to use it, bypassing the ’look up’ technique).

EXAMPLES:

1. Pr(0 < Z < 1.24) = 0.3925 [just look it up in the 1.2-row and 0.04-column].

2. Pr(−1.3 < Z < 0.5) = Pr(−1.3 < Z < 0) + Pr(0 < Z < 0.5) = 0.4032 +
0.1915 = 0.5947 [since Pr(−1.3 < Z < 0) ≡ Pr(0 < Z < 1.3); the distribu-
tion is symmetric].

3. Pr(0.12 < Z < 0.263) = Pr(0 < Z < 0.263)− Pr(0 < Z < 0.12).

We can just look up the second probability (= 0.0478), to find the first
one (accurately enough) we have to resort to a so called linear inter-

polation:
½
Pr(0 < Z < 0.26) = 0.1026
Pr(0 < Z < 0.27) = 0.1064

. Going from z = 0.26 to 0.27

the corresponding probability increased by 0.0038. Assuming this increase
(’increment’) follows a straight line (a sufficiently accurate approxima-
tion over this interval), to find Pr(0 < Z < 0.263) we have to add, to
the first probability of 0.1026, 30% [i.e. 0.263−0.26

0.01
] of the increment, thus:

0.1026+0.3×0.0038 = 0.1037 [quoting only 4 digits after the decimal point,
the result cannot get it any more accurate].

Answer: Pr(0.12 < Z < 0.263) = 0.1037− 0.0478 = 0.0559.
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4. Pr(0 < Z < 1.386429).

Solution:
½
Pr(0 < Z < 1.38) = 0.4162
Pr(0 < Z < 1.39) = 0.4177

[increment of 0.0015]⇒

Answer: 0.4162 + 0.6429 × 0.0015 = 0.4172 [note that 0.6429 was obtained
from 1.386429 by moving the decimal point two digits to the right and drop-
ping 1.38]. ¥

I’General’ NormalJ

RV results from a linear transformation of Z, thus:

X = σZ + µ

where σ > 0 and µ are two constants. From what we know about linear transfor-
mations, we can deduce immediately that E(X) = µ, V ar(X) = σ2 [our notation

anticipated that], and MX(t) = eµtMZ(σt) = eµt · eσ2t22 =

eµt+
σ2t2

2 MGF

[i.e. when the exponent of e is a quadratic polynomial in t, the distribution is
(general) normal; furthermore, based on the polynomial’s linear and quadratic
coefficients, one can establish the distribution’s mean and variance].

EXAMPLE: Based on M(t) = e−2t+t
2
, identify the distribution:

Answer: N (−2,√2) [N (µ, σ) will be our symbolic notation for ’Normal,
with mean µ and standard deviation σ’ − note that your textbook uses the
variance as the second ’argument’]. ¥

Note that any further linear transformation of X ∈ N (µ, σ), such as Y =
aX + b, keeps the result Normal [this follows fromMY (t)]. Furthermore, the mean
and standard deviation of Y are aµ+ b and |a|σ, respectively.
Also: When X1 and X2 are independent Normal RVs with any (mismatched)

parameters [i.e. X1 ∈ N (µ1, σ1) and X2 ∈ N (µ2, σ2)], then their sum X1 +

X2 is also Normal [follows from MX1+X2(t) = e(µ1+µ2)t+
σ21 +σ

2
2

2
t2], with the mean

and standard deviation of µ1 + µ2 and
p
σ21 + σ22, respectively. (This is a very

unique property of the Normal distribution, note that Uniform plus Uniform is not
Uniform, etc.).

To get the pdf of a general Normal RV X (≡ σZ + µ), we correspondingly
transform the pdf of Z [we will learn how to do this in the next chapter, suffice to

say that z → x−µ
σ
and dz → dx

σ
]. 1√

2π
e−

z2

2 (dz) thus becomes

1√
2πσ

e−
(x−µ)2
2σ2 (dx) f

with−∞ < x <∞ [we have quoted both pdfs with the corresponding infinitesimal,
in parentheses, to emphasize the logic of the conversion]. An alternate derivation
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of f(x) would differentiate FX(x) = Pr(X < x) = Pr(σZ + µ < x) = Pr(Z <
x−µ
σ
) = FZ(

x−µ
σ
) with respect to x, try it.

The new pdf (of X) has the same bell-shaped curve (as that of Z), but it is
centered on µ (instead of the old 0) and it is σ times wider (horizontally) and σ
times ’shorter’ (vertically), keeping the total area equal to 1. Since we don’t know
how to directly integrate it, it is of not much use to us, with one exception: we
can now identify a Normal distribution based on its pdf, from which we can also
establish the value of µ and σ.

EXAMPLE: Based on f(x) = 1
3
√
2π
e−

x2 +4x+4
18 (any x), identify the distribution.

Answer: N (−2, 3) [there are two ways of establishing the value of σ, they
must check]. ¥

Finally, the main question is: How do we compute probabilities related to
the general Normal distribution?
Answer: By converting X back to Z (standardized), because only those tables

are readily available.

EXAMPLE: If X ∈ N (17, 3), find Pr(10 < X < 20).

Solution: The last probability equals Pr(10−17
3

< X−17
3

< 20−17
3
) = Pr(−2.3̄ <

Z < 1) where Z is the RV of our Normal tables. Since Pr(0 < Z < 2.3̄) =
0.4901+0.3̄×0.0003 = 0.4902 and Pr(0 < Z < 1) = 0.3413, the final answer
is 0.4902 + 0.3413 = 0.8315 ¥

For any Normally distributed RV the µ ± σ interval contains 68.26% of the
total probability, µ± 2σ contains 95.44%, and µ± 3σ raises this to a ’near certain’
99.74%. Thus, even though theoretically the outcome of such RV can yield any
real value, its practical range is limited to a finite interval (none of us will ever see
a value outside µ± 4σ).
Applications related to Central Limit Theorem:
We learned in the previous chapter that, when sampling, independently, from

(almost) any population, the distribution of the standardized sample mean is, for
large n, approximately standardized Normal (our Z):

X̄ − µ
σ√
n

∈̃ N (0, 1)

This is of course the same X̄ ∈̃ N (µ, σ√
n
) or, equivalently: X1 + X2 + .... +

Xn ∈̃ N (nµ,√nσ). Since some of our old distributions were built in the X1 +
X2 + .... +Xn manner, they too will have to be approximately Normal when n is
large. Let us make a list of them:

1. Binomial (a sum of n RVs of Bernoulli type).

It will acquire the Normal shape when the mean np is not too close to either
the smallest possible value of 0 or the largest possible value of n. Ordinarily,
it is sufficient to require that np ≥ 5 and nq ≥ 5 [note that, when p = 0.5,
this is met by n as small as 10].
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2. Negative Binomial (a sum of k Geometric-type RVs).

Here the mean k
p
must be substantially bigger than the lowest possible value

of k, they usually require kq
p
≥ 30 (since the original distribution is not

symmetric, we have to make the distance higher than in the Binomial case).

3. Poisson (can be seen as a sum of n Poisson-type RVs, each with the mean
of λ

n
).

Here we require λ ≥ 30 [clear of the smallest possible value of 0].

4. Hypergeometric becomes approximately Binomial when K and N−K are
large (hundreds). This in turn becomes Normal, when it meets the np ≥ 5
and nq ≥ 5 conditions.
[Thus, practically all of our common discrete distributions become Normal
in special circumstances].

5. And of course any other distribution (typically a game of some sort) which
is sampled, independently, many times.

EXAMPLES:

1. Roll a die 100 times, what is the probability of getting more than 20 sixes?

The total number of sixes obtained in this experiment is a RV (let us call it
X) having the binomial distribution with n = 100 and p = 1

6
. Since np = 16.6̄

and nq = 83.3̄, our two criteria are amply met, and the distribution of X will
closely follow the corresponding Normal curve.

One has to realize that the exact distribution will always consist of individual
rectangles [centered on positive integers] which can match the Normal (con-
tinuous) curve only at their mid points. Also, the probability of a specific
value [e.g. Pr(X = 21)] is represented by the whole area of the corresponding
rectangle [which extends from 20.5 to 21.5]; the corresponding approximation
[to Pr(X = 21)] will be computed as the area under the Normal curve over the
same interval [i.e. from 20.5 to 21.5]. This means that the following Binomial
probability: Pr(X > 20) = Pr(X = 21)+ Pr(X = 22)+ Pr(X+23)+ ... will
be approximated by Pr(20.5 < X < 21.5)+ Pr(21.5 < X < 22.5)+ Pr(22.5 <

X < 23.5)+ ... = Pr(20.5 < X), where X ∈ N (100
6
,
q

500
36
) [Normal distribu-

tion with the matching mean of np and the standard deviation of
√
npq].

This adjustment of the integer value to the corresponding half-integer is
called continuity correction [yet another one of those illogical names −
the correction relates to being discrete].

Solution: Pr(20 < XBinomial) ≈ Pr(20.5 < XNormal) = Pr

µ
20.5− 100

6√
500
36

<
X− 100

6√
500
36

¶
=

Pr(1.0285913 < Z) = 0.5000−Pr(0 < Z < 1.0285913) = 0.5000− (0.3461+
0.85913× 0.0024) = 15.18% [coincidentally, the exact answer is 15.19% − in
this case, one would expect to be within 0.5% of the exact answer].
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2. If X has the Poisson distribution with λ = 35.14, approximate Pr(X ≤ 30).
Assuming that X ∈̃ N (35.14,√35.14) [the same mean and σ] and using the
’continuity’ correction, our probability ≈ Pr(X < 30.5) [30, 29, 28, ... are

to be included] = Pr
³
X−35.14√
35.14

< 30.5−35.14√
35.14

´
= Pr(Z < −0.782739) = Pr(Z >

0.782739) = 0.5000− (0.2823+0.2739×0.0029) = 21.69% [the exact answer
is 22.00% − one has to add 31 individual Poisson probabilities to get it].

3. Consider rolling a die repeatedly until obtaining 100 sixes. What is the
probability that this will happen in fewer than 700 rolls?

Solution: The RV which counts the number of rolls (X say) has the Negative
Binomial distribution with p = 1

6
and k = 100. Since qk

p
= 500, the Nor-

mal approximation is fully justified: Pr(X < 700) [i.e. 699, 698, 697,...0] =

Pr(XNormal < 699.5) [to include 699 but exclude 700]= Pr
³
XN−600√
3000

< 699.5−600√
3000

´
[using k

p
and

q
k
p
(1
p
− 1) for the mean and standard deviation] = Pr(Z <

1.816613) = 0.5000 + (0.4649 + 0.6613× 0.007) = 96.54% [the exact answer
is 96.00%, but it takes a computer to evaluate it].

4. If 5 cards are deal [from a standard deck of 52] repeatedly and independently
100 times, what is the probability of dealing at least 50 aces in total?

Solution: We need Pr(X1 +X2 + .... +X100 ≥ 50), where the Xi’s are inde-
pendent, hypergeometric (with N = 52, K = 4 and n = 5 ⇒ µ = 5

13
and

σ =
q

5
13
× 12

13
× 47

51
each). Adding, independently 100 of them justifies the

Normal approximation [let us introduce Y ≡
100P
i=1

Xi where µY =
500
13
= 38.462

and σY =
q

500
13
× 12

13
× 47

51
= 5.7200], thus: Pr(Y ≥ 50) [i.e. 50, 51, 52,...]

= Pr
¡
Y−38.462
5.7200

> 49.5−38.462
5.7200

¢
= Pr(Z > 1.9297) = 0.5000− (0.4726 + 0.97×

0.0006) = 2.68% [the exact answer is 3.00%].

5. Consider a random independent sample of size 200 form the uniform distri-
bution U(0, 1). Find Pr(0.49 ≤ X̄ ≤ 0.51).

Solution: We know that X̄ ∈̃ N
³
0.5,

q
1

12×200
´
⇒ Pr

µ
0.49−0.5√

1
2400

< X̄−0.5√
1

2400

< 0.51−0.5√
1

2400

¶
=

Pr(−0.4899 < Z < 0.4899) = 2 × 0.1879 = 37.58%. Since the uniform dis-
tribution is continuous, no ’continuity’ correction was required. [The exact
answer is 37.56%; the approximation is now a lot more accurate for two
reasons: the uniform distribution is continuous and symmetric].

6. Consider a random independent sample of size 100 from

X = -1 0 1 2
Prob: 3

6
2
6
0 1

6

What is the probability that the sample total will be negative (losing money,
if this represents a game)?
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Solution: First we compute a single-X mean and variance: E(X) = −3+2
6
=

−1
6
and V ar(X) = 3+4

6
− 1

36
= 41

36
, then we introduce Y =

100P
i=1

Xi and find

µY = −1006 and σY =
q

4100
36

. Note that Y can have [within certain limits]
any integer value.

Answer: Pr(Y < 0) [i.e. -1, -2, -3, ...] ≈ Pr

µ
YNormal+

100
6√

4100
36

<
−0.5+ 100

6√
4100
36

¶
[con-

tinuity correction applied] = Pr(Z < 1.5149) = 0.5000 + 0.4345 + 0.49 ×
0.0012 = 93.51% [probability of losing money after 100 rounds of the game;
in each round the probability of losing money is only 50%]. The exact com-
putation would yield 93.21%.

7. Pay $10 to play the following game: 5 cards are dealt from a standard deck,
and you receive $10 for each ace and $5 for each king, queen and jack. Find:

(a) The expected value and standard deviation of your net win.
Solution: W = 10X+ 5Y −10 (where X is the number of aces dealt; Y
correspondingly counts the total of kings, queens and jacks). E(W ) =
10 × 5

13
+ 5 × 5×3

13
− 10 = − 5

13
dollars (≈ −38 cents) and V ar(W ) =

5(102 × 1
13
× 12

13
+ 52 × 3

13
× 10

13
− 2× 10× 5× 1

13
× 3

13
)47
51
= 44.988 ⇒

σW =
√
44.988 = $6.7073.

(b) The probability of losing more that $50 after 170 rounds of this game.
Solution: Pr(W1+W2+ ....+W170 < −50) amply justifies using the Nor-
mal approximation. Defining T ≡

170P
i=1

Wi with µT = −170×513
= −65.385

and σT = 6.7073 × √170 = 87.452 we get: Pr(T < −50) [i.e. −55,
-60, -65, ...] ≈ Pr(TNormal < −52.5) [note the unusual ’continuity’ cor-
rection] = Pr(TN +65.385

87.452
< −52.5+65.385

87.452
) = Pr(Z < 0.14734) = 0.5000 +

0.0557 + 0.734× 0.0042 = 55.88%. The exact answer is 56.12% (we are
a quarter percent off, which is not bad, considering that the individual
probabilities of a specific loss − say $50 − are well over 2%). ¥

IExponentialJ

distribution relates to the ’fishing’ experiment, where ϕ (say 1.2/hour) is the rate
at which the fishes are caught and β = 1

ϕ
(50 min.) is the average time to catch a

fish. This time the random variable (as always, we call it X) is the length of time
from the beginning of the experiment until the first catch.
To find its pdf, we start by subdividing each hour into N subintervals (of, say,

60 minutes), assuming that the probability of a catch during any one of these is
p = ϕ

N
(2%) and using the geometric distribution to approximate the answer (note

that p has been adjusted to correspond to the average catch of ϕ fishes per hour).
At the same time, this necessitates introducing a new RV Y which (unlike X)
measures time till the first catch in number of subintervals.
This model has the shortcoming of not being able to prevent catching more

than one fish during any such subinterval (which invalidates our assumption of
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dealing with Bernoulli-type trials − this was discussed when introducing Poisson
distribution two chapters ago). One thus obtains the correct answer only in the
N →∞ limit.
To be able to take this limit properly, we first construct Pr(X < x), where x

must be measured in proper time units (hours), and not in the [ultimately mean-
ingless] subinterval count. Based on the geometric distribution, we know that
Pr(Y ≤ i) = 1 − qi ≡ 1 − (1 − ϕ

N
)i, where i ≥ 0. Since the real time x equals

to i · 1
N
, we replace i of the previous formula by xN to obtain: Pr(Y ≤ xN) =

Pr(X ≤ x) = 1− (1− ϕ
N
)Nx −→

n→∞
1− e−ϕx where x > 0.

The last expression represents the distribution function of X; we prefer to
use β as the basic parameter, thus:

F (x) ≡ Pr(X ≤ x) = 1− e−
x
β

when x > 0. Note that Pr(X > x) = e−
x
β ⇒ [with β = 50 min.], Pr(X > 1

hr.) = e−
60
50 [same units must be used] = 30.12%, Pr(X > 3 hr.) = e−

180
50 = 2.73%,

etc. The µ ± σ interval now contains 1 − e−2 ≡ Pr(X < 2β) = 86.47% of the
whole distribution.

Based on the distribution function we can easily derive the corresponding pdf :

f(x) =
dF (x)

dx
=
1

β
e−

x
β

for x > 0 andMGF: M(t) = 1
β

∞R
0

e−
x
β · etx dx = 1

β

∞R
0

e−x(
1
β
−t) dx = 1

β ( 1
β
−t) =

1
1−β t .

Expanding this results in 1+βt+β2t2+β3t3+β4t4+ ..., which immediately yields
all simple moments of the distribution. Based on these, we construct: E(X) = β
[expected, i.e. average time to catch one fish], V ar(X) = 2β2−β2 = β2 (⇒ σX =

β, don’t confuse with the Poisson result of
√
λ), skewness = 6β3−3×2β3+2β3

β3
= 2, and

kurtosis = 24β4−4×6β4+6×2β4−3β4
β4

= 9.

The exponential distribution shares, with the geometric distribution (from
which it was derived), the ’memory-less’ property of Pr(X − a > x|X > a) =
Pr(X > x), i.e. given we have been fishing, unsuccessfully, for time a, the prob-
ability that the first catch will take longer than x (from now) is the same for all
values of a [including 0, i.e. we are no closer to it than someone who has just
started − this is similar to rolling a die to get the first six].

Proof: Pr(X − a > x|X > a) = Pr(X>x+a∩X>a)
Pr(X>a)

= Pr(X>x+a)
Pr(X>a)

= e
−x+a

β

e
− a
β
= e−

x
β =

Pr(X > x). ¤

The exponential distribution is a good description of how long it takes to catch
the first fish, but also, from then on, the second fish, the third fish, etc. [fur-
thermore, these random time intervals are independent of each other; this again is
inherited from the geometric distribution].
The potential applications of this distribution include: time intervals between

consecutive phone calls, accidents, customer-arrivals, etc. (all those discussed in
connection with the Poisson distribution).
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E(β) will be our symbolic notation for the exponential distribution with the
mean of β.

The Median

of a continuous distribution is the number which, when a sample is drawn, will be
exceeded with a 50% probability; consequently, a smaller result is obtained
with the complementary probability of 50%, i.e. the median divides the
distribution in two equally probable halves. Mathematically, we can find it is
a solution to F (µ̃) = 1

2
, or (equivalently) to 1−F (µ̃) = 1

2
[µ̃ will be our usual

notation for the median]. For a symmetric distribution (uniform, Normal)
the mean and median must be both at the center of symmetry [yet,
there is an important distinction: the mean may not always exit, the median
always does]. ¥

The median of the exponential distribution is thus the solution to e−
µ̃
β =

1
2
⇔ µ̃

β
= ln 2, yielding µ̃ = β ln 2 (= 0.6931β) [substantially smaller that the

corresponding mean]. This means that if it takes, on the average, 1 hour to catch
a fish, 50% of all fishes are caught in less than 41 min. and 35 sec. [you should
not see this as a contradiction].

Smallest-value distribution:
To conclude our discussion of the exponential distribution we discuss a problem

which will give us a head start on the topic of the next chapter, namely: taking
several RVs and combining them to define (usually by some mathematical formula)
a new RV whose distribution is then to be found:
Suppose there are n fishermen at some lake fishing independently of each other.

What is the distribution of the time of their first catch (as a group)? We will
assume that their individual times to catch a fish are exponential, with the same
value of β.

Solution: If X1, X2,....Xn are the individual times (of the first catch), then Y ≡
min(X1, X2, ....Xn) is the new RV of the question. We can find Pr(Y > y) =
Pr(X1 > y∩X2 > Y ∩....∩Xn > y) = Pr(X1 > y)· Pr(X2 > y)· .... ·Pr(Xn >

y) =
³
e−

y
β

´n
= e−

ny
β ⇒ FY (y) = 1− e−

ny
β for y > 0. This clearly identifies

the distribution of Y as exponential with the mean (βNEW say) equal to β
n

[things happen n times faster now]. This could have been done (equally easily,
try it) using distinct [individual] values of β [β1, β2, ...βn]; the result would

have been an exponential distribution with βNEW =
1

1
β1
+ 1

β2
+ ....+ 1

βn

[sim-

pler in terms of rates: ϕNEW = ϕ1 + ϕ2 + ...+ ϕn].

IGammaJ

distribution relates to the previous ’fishing’ experiment. The corresponding RV
XG is defined as the time of the kth catch (of a single fisherman), and is obviously
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equal to an independent sum of k RVs X1+X2+ ....+Xk, all of them exponential
with the same mean β.
The parameters of this distribution are k and β, the symbolic notation for

this distribution is γ(k, β). Since XG was defined as an independent sum of RVs
of a known (exponential) type, we know immediately its mean: E(XG) = kβ,
variance: V ar(XG) = kβ2 [⇒ σ =

√
kβ] andMGF: M(t) = 1

(1−β t)k .
We would now like to derive the corresponding pdf and F (x), which is a chal-

lenging task as we have not yet learned how to add RVs (in terms of their pdf).
We must proceed indirectly, by going back to the Poisson distribution and recalling
that we do know how to find, for a fixed time period x, the probability of achieving
fewer than k catches. This of course equals to

e−λ[1 + λ+
λ2

2
+

λ3

3!
+ ... +

λk−1

(k − 1)! ] (1− F )

where λ = x
β
. In terms of our XG, this represents the probability that the kth

catch will take longer than x, namely: Pr(XG > x) = 1 − F (x), yielding the
corresponding distribution function. From this, we can easily derive f(x) by a
simple x-differentiation: dF (x)

dx
= {e−λ[1+ λ+ λ2

2
+ λ3

3!
+ ... + λk−1

(k−1)! ]− e−λ[1+ λ+
λ2

2
+ ....+ λk−2

(k−2)! ]} · 1β [the chain-rule] = e−λ λk−1
(k−1)! · 1β =

xk−1e−
x
β

βk (k − 1)! (f)

for x > 0.
We can verify the correctness of this answer by computing the corresponding

MGF: M(t) = 1
βk (k−1)!

∞R
0

xk−1e−
x
β · ext dx = 1

βk (k−1)!
∞R
0

xk−1e−x(
1
β
−t) dx = 1

βk (k−1)! ·
(k−1)!
( 1
β
−t)k [using the general formula

∞R
0

xn−1e−
x
a dx = (n− 1)!an developed earlier] =

1
(1−β t)k (check).
You should be able to identify the pdf of the gamma distribution when you

see one (based on the numerator alone, the denominator is just an automatic
normalizing constant).

EXAMPLES:

1. If X ∈ γ(4, 20 min.), find:

(a) Pr(X < 30 min.) = 1− e−
30
20 [1 + 30

20
+

( 30
20
)2

2
+

( 30
20
)3

3!
] = 6.56% [catching 4

fishes in less than half an hour].

(b) Pr(X > 2 hr.) = e−
120
20 [1 + 6 + 62

2
+ 63

6
] = 15.12% [make sure to use,

consistently, either minutes or hours].

2. A fisherman whose average time for catching a fish is 35 minutes wants to
bring home exactly 3 fishes. What is the probability he will need between 1
and 2 hours to catch them?
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Solution: Pr(1 hr.< X < 2 hrs) = F (120 min.)−F (60 min.) = e−
60
35 [1+ 60

35
+

( 60
35
)2

2
]− e−

120
35 [1 + 120

35
+

( 120
35
)2

2
] = 41.92%

3. If a group of 10 fishermen goes fishing, what is the probability that the second
catch of the group will take less than 5 min. Assume the value of β = 20
min. for each fisherman; also assume that the one who catches the first fish
continues fishing.

Solution: This is equivalent to having a single ’super’fisherman who catches
fish at a 10 times faster rate, i.e. βNEW = 2 min.

Answer: 1− e−
5
2 [1 + 5

2
] = 71.27%. ¥

It is possible to extend the definition of the gamma distribution and allow k
to be a positive non-integer (we will call it α, to differentiate). The expression

for f(x) is still legitimate if we replace (k − 1)! ≡
∞R
0

xk−1e−x dx by
∞R
0

xα−1e−x dx

which, by definition, is called Γ(α) [the gamma function]. One can easily prove
(integrate by parts) that

Γ(α) = (α− 1)Γ(α− 1)

We normally need the values of Γ(α) with half-integer arguments only. With the

help of Γ(1
2
) =

∞R
0

x−
1
2 e−x dx =

∞R
0

q
2
z2
e−

z2

2 z dz [substitute x = z2

2
] =
√
2
∞R
0

e−
z2

2 dz

[remember the standardized normal pdf and its normalizing constant] =
√
2 ·

√
2π
2

=
√
π, and using the previous formula, we can deal with any half-integer argument.

EXAMPLE: Γ(5
2
) = 3

2
× Γ(3

2
) = 3

2
× 1

2
× Γ(1

2
) = 3

√
π
4
¥

Using this generalized pdf

f(x) =
xα−1 e−

x
β

βα Γ(α)

when x > 0, one obtains the old (after the k → α replacement) formula for the
mean (= αβ), variance (= αβ2) and theMGF: 1

(1−β t)α [the proof would be quite
simple]; there is no simple extension of F (x) [we cannot have half-integer number
of terms]. Without F (x), we don’t know how to compute probabilities; this is a
serious shortcoming to be corrected in the next chapter.

Finally, since the gamma-type RV was introduced as a sum of k exponential
RVs, we know that, when k is large (say bigger than 30), the gamma distribution
is also approximately Normal (with the mean of kβ and the standard deviation
of
√
kβ).

EXAMPLE: Phone calls arrive at the rate of 12.3/hour. What is the probability
that the 50th phone call will arrive after 1 p.m. if the office opens at 8 a.m.
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1. Solution: If X is the time of the arrival of the 50th phone call, in hours
(setting our stop watch to 0 at 8 a.m.) we have to find Pr(X > 5 hr.). The
distribution of X is γ(50, 1

12.3
hr.) which implies that the exact answer would

require using a 49-term formula (too long). We are thus forced to apply the

Normal approximation: Pr
µ

X− 50
12.3√
50

12.3

>
5− 50

12.3√
50

12.3

¶
= Pr(Z > 1.6263) = 5.19%.

Alternate solution: We can also introduce Y as the number of phone calls re-
ceived during the 8 a.m.-1 p.m. time interval. Its distribution is Poisson, with
λ = 5×12.3 = 61.5. The question can be reformulated as Pr(Y < 50) which,
when evaluated exactly, requires the same 49-term formula as the previous
approach. Switching to Normal approximation gives: Pr(Y−61.5√

61.5
< 49.5−61.5√

61.5
)

[this time we needed the ’continuity’ correction] = Pr(Z < −1.5302) =
6.30%.

(The exact answer, obtained with a help of a computer, is 5.91%). ¥

In the next chapter we introduce some more distributions of the continuous
type, namely ’beta’, χ2 [read ’chi-squared’], t and F [another unfortunate name, in
conflict with our F (x) notation].

Bivariate (two RVs) case
This time we discuss only one (the most important) case of the (bivariate) Nor-
mal distribution:

Its importance follows from the following

I(Bivariate) Extension of the Central Limit TheoremJ

Consider a random independent sample of size n from a bivariate distribution of
two RVs X and Y, say. We know that, individually, both ZX ≡ X1+X2+....+Xn−nµX√

nσX

and ZY ≡ Y1+Y2+....+Yn−nµY√
nσY

have (in the n → ∞ limit) the standardized normal
distribution N (0, 1). We would like to know what happens to them jointly.

To investigate this, we have to introduce a new concept of joint MGF of X
and Y, thus: MX,Y (t1, t2) = E(et1X+t2Y ) =

RR
R

et1x+t2y ·f(x, y) dx dy. One can show
that, when expanded in both t1 and t2 [generalized Taylor series], one gets:

M(t1, t2) = 1 + µXt1 + µY t2 + E(X2)
t21
2
+ E(Y 2)

t22
2
+ E(X · Y ) t1t2 + ...

[dots representing terms involving third and higher moments].
Based on such joint MGF, it is quite trivial to obtain the marginal MGF of

X, thus: MX(t1) = MX,Y (t1, t2 = 0) [i.e. substitute zero for t2], and similarly for
the Y -marginal.
TheMGF of a linear combination of X and Y can be derived equally easily:

MaX+bY+c(t) = ect ·MX,Y (t1 = at, t2 = bt)

When X and Y are independent of U and V , the MGF of the X+U and Y +V
pair is: MX+U,Y+V (t1, t2) = MX,Y (t1, t2) ·MU,V (t1, t2). A special case of this arises
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when U and V have also the same distribution as X and Y (we will rename the two
pairs X2 and Y2, and X1 and Y1, respectively). Then, the MGF of the X1+X2 and
Y1+Y2 pair is simply [MX,Y (t1, t2)]

2 . And finally, if (X1, Y1), (X2, Y2), ..., (Xn, Yn)
is a random independent sample of size n from a bivariate distribution whose MGF
is M(t1, t2), the MGF of the X1 +X2 + ... +Xn and Y1 + Y2 + ... + Yn pair is

[M(t1, t2)]
n

Proof: E {exp [t1(X1 +X2 + ... +Xn) + t2(Y1 + Y2 + ... + Yn)]} =
E [exp(t1X1 + t2Y1) · exp(t1X2 + t2Y2) · ... · exp(t1Xn + t2Yn)] =

E [exp(t1X1 + t2Y1)] · E [exp(t1X2 + t2Y2)] · ... · E [exp(t1Xn + t2Yn)] =

M(t1, t2) ·M(t1, t2) · ... ·M(t1, t2) = [M(t1, t2)]
n ¤

Wewould like to investigate nowwhat happens to the joint MGF of X1+X2+....+Xn−nµX√
nσX

≡
ZX and

Y1+Y2+....+Yn−nµY√
nσY

≡ ZY in the n→∞ limit. By the previous formula [ap-

plied to
³
Xi−µX√

nσX
, Yi−µY√

nσY

´
, rather than the original (Xi, Yi) pairs], we know that

MZX ,ZY (t1, t2) =

·
M X−µX√

nσX
,
Y −µY√
nσY

(t1, t2)

¸n
SinceM X−µX√

nσX
,
Y −µY√
nσY

(t1, t2) can be expanded to yield 1+
t21
2n
+

t22
2n
+ ρ

n
t1t2+ ...[terms

with n
3
2 and higher powers of n in the denominator], we need to take the limit of³

1 +
t21
2n
+

t22
2n
+ ρ

n
t1t2 + ...

´n
as n→∞. This of course equals to

exp

µ
t21 + 2ρt1t2 + t22

2

¶
where ρ is the correlation coefficient between X and Y of the original (sampling)
distribution.

Having thus found the MGF limit, we would like to find the corresponding
bivariate pdf [both of its marginals will have to be standardized Normal]. One
can show that

f(z1, z2) =
1

2π
p
1− ρ2

· exp
·
−z

2
1 − 2ρz1z2 + z22
2(1− ρ2)

¸
where both z1 and z2 are arbitrary real numbers, is the desired answer.

Proof: To verify that this is a legitimate pdf we evaluate:
∞R
−∞

∞R
−∞

exp
h
−z21−2ρz1z2+z22

2(1−ρ2)
i
dz1dz2 =

∞R
−∞

exp
³
−z22

2

´ ∞R
−∞

exp
h
− (z1−ρz2)2

2(1−ρ2)
i
dz1dz2 =

√
2π·p2π(1− ρ2) = 2π

p
1− ρ2

(check).

To prove that this pdf results in the correct MGF, we need: 1

2π
√
1−ρ2

∞R
−∞

∞R
−∞

exp(t1z1+

t2z2)·exp
h
−z21−2ρz1z2+z22

2(1−ρ2)
i
dz1dz2 =

1

2π
√
1−ρ2 · exp

³
t21+2ρt1t2+t

2
2

2

´ ∞R
−∞

exp
³
− [z2−(t2+ρt1)]2

2

´
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∞R
−∞

exp
³
−{z1−[t1(1−ρ2)+ρz2]}2

2(1−ρ2)
´
dz1dz2 = exp

³
t21+2ρt1t2+t

2
2

2

´
(check). Confirm-

ing that the two [total] exponents (of the first step) agree follows from some
simple [even though tedious] algebra. ¤

The graph of this pdf is a Normal ’hill’, stretched in the z1 = z2 (z1 = −z2)
direction when ρ > 0 (ρ < 0). This hill becomes a narrow ’ridge’ when |ρ| ap-
proaches 1, acquiring a zero thickness (and infinite height − its volume is fixed)
at |ρ| = 1. For ρ = 0 the hill is perfectly round, and the corresponding Z1 and Z2
are independent of each other [for the bivariate Normal distribution independence
implies zero correlation and reverse].

The related conditional pdf of Z1|Z2 = z2 can be derived based on the stan-

dard prescription:
f(z1, z2)

fZ2(z2)
= 1

2π
√
1−ρ2 exp

h
−z21−2ρz1z2+z22

2(1−ρ2)
i
÷
exp

³
−z22

2

´
√
2π

=

exp
h
− (z1−ρz2)2

2(1−ρ2)
i

√
2π
p
1− ρ2

where −∞ < z1 < ∞. This conditional distribution can be easily identified as
N
³
ρz2,

p
1− ρ2

´
[try to visualize the corresponding cross-section of the hill].

This concludes our discussion of the standardized (in terms of its marginals)
bivariate Normal distribution. Now, we need to extend the results to cover the
so called

IGeneral Bivariate Normal DistributionJ

It is the distribution of U ≡ ρ1Z1+µ1 and V ≡ σ2Z2+µ2, where Z1 and Z2 are
the RVs of the previous section. This implies that the new bivariate pdf (quoted
below) will have exactly the same shape and properties as the old one, only its two
horizontal axes (called u and v now) will be ’re-scaled’.
We already know that, individually, U and V will be (univariate) Normal,

N (µ1, σ1) and N (µ2, σ2), respectively. We also know that correlation coefficient of
the U , V pair will be the same as that of Z1 and Z2 (linear transformation does
not change its value).
The joint pdf of U and V can be derived from that of Z1 and Z2 by the

following replacement: z1 → u−µ1
σ1

, z2 → v−µ2
σ2
, dz1 → du

σ1
and dz2 → dv

σ2
, thus:

f(u, v) =
1

2π
p
1− ρ2σ1σ2

exp

"
−(

u−µ1
σ1
)2 − 2ρ(u−µ1

σ1
)(v−µ2

σ2
) + (v−µ2

σ2
)2

2(1− ρ2)

#
(du dv)

for any u and v. The resulting expression is obviously a lot more complicated (and
clumsier to use) than old one (for Z1 and Z2). This is the reason why, whenever we
have to deal with the generalized Normal distribution, we usually convert the cor-
responding RVs to the standardized Z1 and Z2 (by a simple linear transformation),
and answer the original question in terms of these.
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Only when dealing with conditional probabilities, we bypass this approach
(introducing Z1 and Z2), and proceed as follows: Assume that U and V are bi-
variate Normal RVs, with the mean of µ1 and µ2 and the standard deviation of
σ1 and σ2, respectively, and the correlation coefficient of ρ (this is a 5-parameter
distribution). We know that we can express U as σ1Z1 + µ1 and V as σ2Z2 + µ2,
where Z1 and Z2 are standardized Normal and have the same correlation coefficient
of ρ.
We want to derive the conditional distribution of V (≡ σ2Z2+µ2), given U = u

(⇔ Z1 =
u−µ1
σ1
) or, symbolically: Distr(σ2Z2 + µ2|Z1 = u−µ1

σ1
).

We know that Distr(Z2|Z1 = u−µ1
σ1
) is N (ρu−µ1

σ1
,
p
1− ρ2) [from the previous

paragraph], which implies that Distr(σ2Z2+µ2|Z1 = u−µ1
σ1
) isN (µ2+σ2ρu−µ1σ1

, σ2
p
1− ρ2)

[by our linear-transformation formulas].

This lead to the following conclusion:

Distr(V |U = u) ≡ N (µ2 + σ2ρ
u− µ1
σ1

, σ2
p
1− ρ2)

And of course, the other way around:

Distr(U |V = v) ≡ N (µ1 + σ1ρ
v− µ2
σ2

, σ1
p
1− ρ2)

[same proof].

The joint MGF of U and V is, by the linear-combination formula of the last
section

M(t1, t2) = exp (µ1t1 + µ2t2) · exp
µ
σ21t

2
1 + 2ρσ1σ2t1t2 + σ22t

2
2

2

¶
This implies that any linear combination of U and V remains Normal.

Proof: MaU+bV+c(t) = exp(ct)· exp(µ1at+µ2bt)· exp
h
(σ21a

2 + 2ρσ1σ2ab+ σ22b
2) t

2

2

i
,

which can be identified as theMGF ofN
³
aµ1 + bµ2 + c,

p
a2σ21 + b2σ22 + 2abσ1σ2ρ

´
.

¤

EXAMPLES:

1. X and Y are jointly Normal with µx = 13.2, σx = 5.4, µy = 136, σy = 13
and ρ = −0.27 [the names and notation may vary from case to case − we are
no longer calling them U and V ]. Find:

(a) E(X|Y = 150) and V ar(X|Y = 150).
Solution: Our formulas clearly imply that E(X|Y = 150) = µx +

σxρ
150−µy

σy
= 13.2 − 5.4 × 0.27 × 150−136

13
= 11.63 and V ar(X|Y ) =

σ2x(1− ρ2) = 5.42 × (1− 0.272) = 27.034.
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(b) Pr(X > 15|Y = 150).
Solution: We know that the corresponding conditional distribution is
N (11.63,√27.034) ⇒ Pr(X−11.63√

27.034
> 15−11.63√

27.034
|Y = 150) = Pr(Z >

0.64815) = 0.5000− (0.2389+0.815× 0.0033) = 25.84% [Note that un-
conditionally, i.e. not knowing the value of Y, Pr(X > 15) = Pr(X−13.2

5.4
>

15−13.2
5.4

) = Pr(Z > 0.3̄) = 36.94%].

2. The conditional probabilities often arise in the context of CLT: An airline
knows (based on their extensive past records) that their passengers travel (in
a single trip) 1275±894 miles (the average and the standard deviation) and
bring 32±17.3 lb. of check-in luggage. The correlation coefficient between the
two variables is 0.22. A plane has been booked by 300 passengers who will
travel (for many, this is just a connecting flight) the (sample) average of 1410
miles. What is the probability that the total weight of their check-in luggage
will not exceed 10,000 lb.?

Solution: Let us call the individual distances these 300 people travel X1,
X2, ..., X300 (we will assume that these are independent − no couples or
families), and the corresponding weight of their luggage Y1, Y2, ..., Y300. The

question is: Find Pr(
300P
i=1

Yi < 10000|X̄ = 1410).

We know that X̄ and
300P
i=1

Yi have, to a good approximation, the bivariate

Normal distribution [CLT − note that the distribution of the individual Xs
and Y s in anything but Normal] with the mean of 1275 and 300×32 (respec-
tively), the standard deviation of 894√

300
and 17.3×√300 (respectively), and

the correlation coefficient of 0.22. This implies that the corresponding con-
ditional distribution is N (300× 32 + 17.3×√300× 0.22× 1410−1275

894√
300

, 17.3×
√
300×√1− 0.222) ≡ N (9772.4, 292.3).

Answer: Pr(Z < 10000−9772.4
292.3

) = Pr(Z < 0.77865) = 78.18%.

Note that unconditionally [not knowing anything yet about their length of

travel] Pr(
300P
i=1

Yi < 10000) = Pr
³P300

i=1 Yi−300×32
17.3×√300 < 10000−300×32

17.3×√300

´
= Pr(Z <

1.3349) = 90.90%. ¥

IEnd-of-Section ExamplesJ

1. Suppose that (X,Y ) are coordinates of an impact of a bullet in a target plane
(the target itself being 20cm×20cm in size, centered on the origin). It is a
good model to assume that X and Y are bivariate Normal; furthermore, in
this particular case µx = 3cm, µy = −2cm [our rifle’s sights have not been
properly adjusted], σx = 5cm, σy = 4cm [the horizontal scatter is higher than
the vertical one], and ρxy = 0. (Note that a nice graphical representation of
this distribution would be created by firing many shots against the target.)
We want to compute the probability of hitting the target (by a single shot).

Solution: Pr(−10 < X < 10 ∩ −10 < Y < 10) = Pr(−10 < X < 10) ×
Pr(−10 < Y < 10) [independence] = Pr(−10−3

5
< X−3

5
< 10−3

5
)× Pr(−10+2

4
<
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Y+2
4

< 10+2
4
) = Pr(−2.6 < Zx < 1.4) × Pr(−2 < Zy < 3) [Zx and Zy

are independent standardized Normal RVs] = (0.4953 + 0.4192)× (0.4772 +
0.4987) = 89.25%.

2. Let us modify the previous example: The target is now a circle whose radius
is 12cm, the rifle has been properly adjusted [µx = 0 and µy = 0], the
vertical scatter equals the horizontal [σx = σy = 5cm], and X and Y remain
independent.

The probability of hitting the target is now: Pr(
√
X2 + Y 2 < 12) =

Pr(
q
(X
5
)2 + (Y

5
)2 < 12

5
) = Pr(

p
Z21 + Z22 < 2.4) where again Z1 and Z2

are independent standardized Normal. This leads to the following two-
dimensional integration: 1

2π

RR
√

z21+z
2
2<2.4

exp
³
−z21+z

2
2

2

´
dz1 dz2. Using polar co-

ordinates, i.e.
½

z1 = r cos θ
z2 = r sin θ

we get, for the corresponding Jacobian:

¯̄̄̄
∂z1
∂r

∂z1
∂θ

∂z2
∂r

∂z2
∂θ

¯̄̄̄
=¯̄̄̄

cos θ −r sin θ
sin θ r cos θ

¯̄̄̄
= r. This implies that dz1 dz2 → r dr dθ when rewriting

the above integral to get the equivalent 1
2π

2πR
0

2.4R
0

exp
³
−r2

2

´
r dr dθ [note that

the new limits are covering the same target region as the original integration].

The last double integral is separable, thus: 1
2π
×

2πR
0

dθ×
2.4R
0

exp
³
−r2

2

´
r dr =

1
2π
× 2π ×

2.42

2R
0

e−u du = 1− e−
2.42

2 = 94.39%.

3. Consider a random independent sample of size 200 from the following distri-

bution:

X =
Y =

0 1

0 0.1 0.2
1 0.3 0.4

. Find: Pr(
200P
i=1

Yi ≥ 150 |
200P
i=1

Xi = 108).

Solution: An exact solution would require a computer, so we have to resort
to the Normal approximation. First we need the five basic parameters of the
given distribution, namely: µx = 0.6, µy = 0.7, σ2x = 0.6 − 0.62 = 0.24,
σ2y = 0.7 − 0.72 = 0.21 and ρxy =

0.4−0.6×0.7√
0.24×0.21 = −0.089087. This implies

immediately: E(
200P
i=1

Xi) = 200 × 0.6 = 120, E(
200P
i=1

Yi) = 200 × 0.7 = 140,

V ar(
200P
i=1

Xi) = 200 × 0.24 = 48, and V ar(
200P
i=1

Yi) = 200 × 0.21 = 42. The

correlation coefficient between
200P
i=1

Xi and
200P
i=1

Yi will be the same as ρXY ,

namely−0.089087. The conditional distribution of
200P
i=1

Yi will be thusN (140−
√
42 × 0.089087 × 108−120√

48
,
√
42 × √1− 0.0890872) = N (141.00, 6.455) ⇒

Pr(
200P
i=1

Yi ≥ 150 |
200P
i=1

Xi = 108) ∼= Pr(
P200

i=1 Yi−141
6.455

> 149.5−141
6.455

|
200P
i=1

Xi = 108)
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[note the continuity correction] = Pr(Z > 1.3168) = 9.39%. The exact an-
swer (quite difficult to evaluate even for a computer) would be 9.14% (the
exact conditional mean and variance are 141.00 and 6.423). [Unconditionally,

Pr(
200P
i=1

Yi ≥ 150) ∼= Pr(
P200

i=1 Yi−140√
42

> 149.5−140√
42

) = Pr(Z > 1.4659) = 7.13% —

the exact answer being 6.95%] ¥

Appendix
Let us, very informally, introduce the following definitions: An event is called rare
(extremely unlikely, practically impossible) if its probability is less than 1

2
%

(10−6, 10−12) [if every person on Earth tries the experiment once, thousands of
them will still get the ’extremely unlikely’ event, none are expected to get the
’practically impossible’ one − on the other hand, a single individual should not
expect an ’extremely unlikely’ event ever happen to him].

EXAMPLES:

• Rolling a die and getting 3 sixes in a row is rare, getting 8 is extremely
unlikely (it will never happen to us), getting 15 is practically impossible (no
one will ever see that happen). Note that µ and σ in this experiment are
0.20 and 0.49, respectively.

• Seeing a random value from the standardized Normal distribution (Z) exceed,
in absolute value, 2.8 is rare, fall beyond ±4.9 is extremely unlikely, beyond
±7 practically impossible.

• If we go fishing in a situation where β = 5 min. (expected time between
catches), having to wait more than 26 min. for our first catch is rare, having
to wait more than 1 hr. 9 min. is extremely unlikely, any longer than 2 hr.
18 min. is practically impossible. [Both µ and σ equal 5 min. here]. ¥
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Chapter 8 TRANSFORMING RANDOM
VARIABLES

of continuous type only (the less interesting discrete case was dealt with earlier).

The main issue of this chapter is: Given the distribution of X, find the distri-
bution of Y ≡ 1

1+X
(an expression involving X). Since only one ’old’ RV variable

(namely X) appear in the definition of the ’new’ RV, we call this a univariate
transformation. Eventually, we must also deal with the so called bivariate trans-
formations of two ’old’ RVs (say X and Y ), to find the distribution of a ’new’
RV, say U ≡ X

X+Y
(or any other expression involving X and Y ). Another simple

example of this bivariate type is finding the distribution of V ≡ X + Y (i.e. we
will finally learn how to add two random variables).

Let us first deal with the

Univariate transformation
There are two basic techniques for constructing the new distribution:

IDistribution-Function (F ) TechniqueJ

which works as follows:

When the new random variable Y is defined as g(X), we find its distribution
function FY (y) by computing Pr(Y < y) = Pr[g(X) < y]. This amounts to solving
the g(X) < y inequality for X [usually resulting in an interval of values], and then
integrating f(x) over this interval [or, equivalently, substituting into F (x)].

EXAMPLES:

1. Consider X ∈ U(−π
2
, π
2
) [this corresponds to a spinning wheel with a two-

directional ’pointer’, say a laser beam, where X is the pointer’s angle from
a fixed direction when the wheel stops spinning]. We want to know the
distribution of Y = b tan(X) + a [this represents the location of a dot our
laser beam would leave on a screen placed b units from the wheel’s center,
with a scale whose origin is a units off the center]. Note that Y can have any
real value.

Solution: We start by writing down FX(x) = [in our case] x+π
2

π
≡ x

π
+ 1

2

when −π
2
< x < π

2
. To get FY (y) we need: Pr[b tan(X) + a < y] = Pr[X <

arctan(y−a
b
)] = FX [arctan(

y−a
b
)] = 1

π
arctan(y−a

b
) + 1

2
where −∞ < y < ∞.

Usually, we can relate better to the corresponding fY (y) [which tells us what
is likely and what is not] = 1

πb
· 1
1+(y−a

b
)2
=

b

π
· 1

b2 + (y − a)2
(f)

[any real y]. Graphically, this function looks very similar to the Normal pdf
(also a ’bell-shaped’ curve), but in terms of its properties, the new distribu-
tion turns out to be totally different from Normal, [as we will see later].



114

The name of this new distribution is Cauchy [notation: C(a, b)]. Since the
∞R
−∞

y · fY (y) dy integral leads to ∞−∞, the Cauchy distribution does not

have a mean (consequently, its variance is infinite). Yet it possesses a clear
center (at y = a) and width (±b). These are now identified with the median
µ̃Y = a [verify by solving FY (µ̃) =

1
2
] and the so called semi-inter-quartile

range (quartile deviation, for short) QU−QL

2
where QU and QL are the

upper and lower quartiles [defined by F (QU) =
3
4
and F (QL) =

1
4
]. One

can easily verify that, in this case, QL = a− b and QU = a+ b [note that the
semi-inter-quartile range contains exactly 50% of all probability], thus the
quartile deviation equals to b. The most typical (’standardized’) case of the
Cauchy distribution is C(0, 1), whose pdf equals

f(y) =
1

π
· 1

1 + y2

Its ’rare’ values start at±70, we need to go beyond±3000 to reach ’extremely
unlikely’, and only ∓300 billion become ’practically impossible’. Since the
mean does not exist, the central limit theorem breaks down [it is no longer
true that Ȳ → N (µ, σ√

n
), there is no µ and σ is infinite]. Yet, Ȳ must have

some well defined distribution. We will discover what that distribution is in
the next section.

2. Let X have its pdf defined by f(x) = 6x(1− x) for 0 < x < 1.Find the pdf
of Y = X3.

Solution: First we realize that 0 < Y < 1. Secondly, we find FX(x) = 6
xR
0

(x−

x2) dx = 6(
x2

2
− x3

3
) = 3x2 − 2x3. And finally: FY (y) ≡ Pr(Y < y) =

Pr(X3 < y) = Pr(X < y
1
3 ) = FX(y

1
3 ) = 3y

2
3 − 2y.This easily converts to

fY (y) = 2y−
1
3 − 2 where 0 < y < 1 [zero otherwise]. (Note that when y → 0

this pdf becomes infinite, which is OK).

3. Let X ∈ U(0, 1). Find and identify the distribution of Y = − lnX (its range
is obviously 0 < y <∞).
Solution: First we need FX(x) = x when 0 < x < 1. Then: FY (y) =
Pr(− lnX < y) = Pr(X > e−y) [note the sign reversal] = 1 − FX(e

−y) =
1 − e−y where y > 0 (⇒ fY (y) = e−y). This can be easily identified as the
exponential distribution with the mean of 1 [note that Y = −β · lnX would
result in the exponential distribution with the mean equal to β].

4. If Z ∈ N (0, 1), what is the distribution of Y = Z2.

Solution: FY (y) = Pr(Z2 < y) = Pr(−√y < Z <
√
y) [right?] = FZ(

√
y)−

FZ(
√
y). Since we don’t have an explicit expression for FZ(z) it would appear

that we are stuck at this point, but we can get the corresponding fY (y) by a
simple differentiation: dFZ(

√
y)

dy
− dFZ(−√y)

dy
= 1

2
y−

1
2fZ(
√
y) + 1

2
y−

1
2fZ(−√y) =

y−
1
2 e−

y
2√

2π
where y > 0. This can be identified as the gamma distribution with
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α = 1
2
and β = 2 [the normalizing constant is equal to Γ(1

2
) · 2 12 = √2π,

check].

Due to its importance, this distribution has yet another name, it is called
the chi-square distribution with one degree of freedom, or χ21 for short.
It has the expected value of (α · β =) 1, its variance equals (α · β2 =) 2,
and the MGF is M(t) = 1√

1−2t . To answer a probability question concerning
Y , we have to convert it back to Z (and use the corresponding tables). For
example: Pr(1 < Y < 2) = Pr(−√2 < Z <

√
2) − Pr(−1 < Z < 1) =

2× 0.42135− 2× 0.34135 = 16.00%. ¥

General Chi-square distribution:

(This is an extension of the previous example). We want to investigate the RV
defined by U = Z21 + Z22 + Z23 + ....+ Z2n, where Z1, Z2, Z3, ...Zn are independent
RVs from the N (0, 1) distribution. Its MGF must obviously equal to M(t) =

1

(1− 2t)n2 ; we can thus identify its distribution as gamma, with α = n
2
and β = 2

(⇒mean= n, variance= 2n). Due to its importance, it is also called the chi-square
distribution with n (integer) degrees of freedom (χ2n for short).

When n is even we have no difficulty calculating the related probabilities, us-
ing F (x) of the corresponding gamma distribution. Thus, for example, if U ∈ χ210,

Pr(U < 18.307) = 1− e−
18.307
2

h
1 + 9.1535 + 9.15352

2
+ 9.15353

6
+ 9.15354

24

i
= 95.00%.

When n is odd (equal to 2k + 1), we must switch to using the following new
formula:

Pr(U < u) = Pr(Z2 < u)− e−
u
2

"
(u
2
)
1
2

Γ(3
2
)
+
(u
2
)
3
2

Γ(5
2
)
+ ....+

(u
2
)k−

1
2

Γ(k + 1
2
)

#

Proof: [Un represents a random variable having the χ2n-distribution] Pr(U2k+1 <

u) =
1

Γ(k + 1
2
)2k+

1
2

uZ
0

xk+
1
2
−1e−

x
2 dx =

1

Γ(k + 1
2
)2k+

1
2

uZ
0

xk+
1
2
−1(−2e−x

2 )0 dx =

− uk−
1
2 e−

u
2

Γ(k + 1
2
)2k−

1
2

+
1

Γ(k − 1
2
)2k−

1
2

uZ
0

xk−
1
2
−1e−

x
2 dx = − uk−

1
2 e−

u
2

Γ(k + 1
2
)2k−

1
2

+Pr(U2k−1 <

u).Used repeatedly, this yields: Pr(U2k+1 < u) = − uk−
1
2 e−

u
2

Γ(k + 1
2
)2k−

1
2

− uk−
3
2 e−

u
2

Γ(k − 1
2
)2k−

3
2

−

.....− u
1
2 e−

u
2

Γ(3
2
)2

1
2

+ Pr(U1 < u). And we already know that U1 ≡ Z2. ¤

EXAMPLE:

Pr(U9 < 3.325) =Pr(Z
2 < 3.325)− e−1.6625

h
1.6625

1
2

1
2

√
π
+ 1.6625

3
2

3
2
· 1
2

√
π
+ 1.6625

5
2

5
2
· 3
2
· 1
2

√
π
+ 1.6625

7
2

7
2
· 5
2
· 3
2
· 1
2

√
π

i
=

Pr(−1.8235 < Z < 1.8234)− 0.8818 = 5.00%. ¥
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If, in this context, we need a value of Pr(0 < Z < z) which is outside the Z
tables (i.e. z > 3), the following approximation may come handy: Pr(Z > z) =

1√
2π

∞Z
z

e−
u2

2 du =
1√
2π

∞Z
z

(−1
u
)·(e−u2

2 )0 du = [by parts] 1√
2π
·e
− z2

2

z
− 1√

2π

∞Z
z

e−
u2

2

u2
du =

1√
2π
· e
− z2

2

z

µ
1− 1

z2

¶
+

1√
2π

∞Z
z

e−
u2

2

u3
du = .... =

1√
2π
· e
− z2

2

z

µ
1− 1

z2
+
3

z4
− 5× 3

z6
+
7× 5× 3

z8
− ...

¶
(1− F )

This is a so called asymptotic expansion which diverges for every value of z,
but provides a good approximation to the above probability when truncated to the

first two terms, e.g. Pr(Z > 3.27) ' e−
3.272

2√
2π×3.27 × (1 − 1

3.272
) = 0.00053 [the exact

answer being 0.00054]. The expansion becomes meaningless when z is small [use
with z > 3 only].

IProbability-Density-Function (f) TechniqueJ
is a bit faster and usually somehow easier (technically) to carry out, but it works
for one-to-one transformations only (e.g. it would not work in our last Y = Z2

example). The procedure consists of three simple steps:

(i) Express X (the ’old’ variable) in terms of y the ’new’ variable [getting an
expression which involves only Y ].

(ii) Substitute the result [we will call it x(y), switching to small letters] for the
argument of fX(x), getting fX [x(y)] − a function of y!

(iii) Multiply this by
¯̄̄
dx(y)
dy

¯̄̄
. The result is the pdf of Y. ¥

In summary

fY (y) = fX [x(y)] ·
¯̄̄̄
dx(y)

dy

¯̄̄̄
EXAMPLES (we will redo the first three examples of the previous section):

1. X ∈ U(−π
2
, π
2
) and Y = b tan(X) + a.

Solution: (i) x = arctan(y−a
b
), (ii) 1

π
, (iii) 1

π
· 1
b
· 1
1+( y−a

b
)2
= b

π
· 1
b2+(y−a)2 where

−∞ < y <∞ [check].

2. f(x) = 6x(1− x) for 0 < x < 1 and Y = X3.

Solution: (i) x = y1/3, (ii) 6y1/3(1 − y1/3), (iii) 6y1/3(1 − y1/3) · 1
3
y−2/3 =

2(y−1/3 − 1) when 0 < y < 1 [check].

3. X ∈ U(0, 1) and Y = − lnX.

Solution: (i) x = e−y, (ii) 1, (iii) 1 · e−y = e−y for y > 0 [check].

This does appear to be a fairly fast way of obtaining fY (y). ¥
And now we extend all this to the
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Bivariate transformation
IDistribution-Function TechniqueJ

follows essentially the same pattern as the univariate case:

The new random variable Y is now defined in terms of two ’old’ RVs, say X1

and X2, by y ≡ g(X1, X2). We find FY (y) = Pr(Y < y) = Pr[g(X1, X2) < y] by
realizing that the g(X1, X2) < y inequality (for X1 and X2, y is considered fixed)
will now result in some 2-D region, and then integrating f(x1, x2) over this region.

Thus, the technique is simple in principle, but often quite involved in terms of
technical details.

EXAMPLES:

1. Suppose that X1 and X2 are independent RVs, both from E(1), and Y = X2

X1
.

Solution: FY (y) = Pr

µ
X2

X1
< y

¶
= Pr(X2 < yX1) =

RR
0<x2<yx1

e−x1−x2 dx1 dx2 =

∞R
0

e−x1
yx1R
0

e−x2 dx2 dx1 =
∞R
0

e−x1(1 − e−yx1) dx1 =
∞R
0

(e−x1 − e−x1(1+y)) dx1 =

1 − 1

1 + y
, where y > 0. This implies that fY (y) =

1

(1 + y)2
when y > 0.

(The median µ̃ of this distribution equals to 1, the lower and upper quartiles

are QL =
1

3
and QU = 3).

2. This time Z1 and Z2 are independent RVs from N (0, 1) and Y = Z21 + Z22
[here, we know the answer: χ22, let us proceed anyhow].

Solution: FY (y) = Pr(Z21+Z
2
2 < y) = 1

2π

RR
z21+z

2
2<y

e−
z21+

2
2

2 dz1 dz2 =
1
2π

2πR
0

√
yR
0

e−
r2

2 ·

r dr dθ =[substitution: w = r2

2
]

y
2R
0

e−w dw = 1−e−y
2 where (obviously) y > 0.

This is the exponential distribution with β = 2 [not χ22 as expected, how
come?]. It does not take long to realize that the two distributions are iden-
tical.

3. (Sum of two independent RVs): Assume thatX1 andX2 are independent
RVs from a distribution having L and H as its lowest and highest possible
value, respectively. Find the distribution of X1+X2 [finally learning how to
add two RVs!].

Solution: FY (y) = Pr(X1 + X2 < y) =
RR

x1+x2<y
L<x1,x2<H

f(x1) · f(x2) dx1 dx2 =
y−LR
L

y−x1R
L

f(x1) · f(x2) dx2dx1 when y < L+H

1−
HR

y−H

HR
y−x1

f(x1) · f(x2) dx2dx1 when y > L+H

. Differentiating this with
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respect to y (for the first line, this amounts to: substituting y − L for x1
and dropping the dx1 integration — contributing zero in this case — plus:
substituting y − x1 for x2 and dropping dx2; same for the first line, ex-
cept that we have to subtract the second contribution) results in fY (y) =

y−LR
L

f(x1) · f(y − x1) dx1 when y < L+H

HR
y−H

f(x1) · f(y − x1) dx1 when y > L+H

or, equivalently,

fY (y) =

min(H,y−L)Z
max(L,y−H)

f(x) · f(y − x) dx

where the y-range is obviously 2L < y < 2H. The right hand side of the
last formula is sometimes referred to as the convolution of two pdfs (in
general, the two fs may be distinct).

Examples:

• In the specific case of the uniform U(0, 1) distribution, the last formula
yields, for the pdf of Y ≡ X1 +X2:

fY (y) =
min(1,y)R

max(0,y−1)
dx =


yR
0

dx = y when 0 < y < 1

1R
y−1

dx = 2− y when 1 < y < 2
[’triangular’

distribution].

• Similarly, for the ’standardized’ Cauchy distribution £f(x) = 1
π
· 1
1+x2

¤
, we

get: fX1+X2(y) =
1
π2

∞R
−∞

1
1+x2

· 1
1+(y−x)2 dx =[partial fractions]

1
π2

∞R
−∞

h
A+Bx
1+x2

+ C+D(x−y)
1+(y−x)2

i
dx.

We find A, B, C and D from (A+ Bx) [1 + (x− y)2] + [C +D(x− y)] (1 +
x2) ≡ 1 by first substituting x = i and getting Ay2 + 2By = 1 (real part)
and −2Ay +By2 = 0 (purely imaginary) ⇒ A = 1

4+y2
and B = 2

y(4+y2)
, then

substituting x = y + i and similarly getting C = 1
4+y2

and D = −2
y(4+y2)

. The
B and D parts of the dx integration cancel out, the A and C contributions
add up to 2

π
· 1
4+y2

[where −∞ < y <∞].
The last result can be easily converted to the pdf of X̄ = X1+X2

2
[the sample

mean of the two random values], yielding fX̄(x̄) =
2
π
· 1
4+(2x̄)2

· 2 = 1
π
· 1
1+x̄2

.

Thus, the sample mean X̄ has the same Cauchy distribution as do the two
individual observations (the result can be extended to any number of obser-
vations). We knew that the Central Limit Theorem [X̄ e∈ N (µ, σ√

n
)] would

not apply to this case, but the actual distribution of X̄ still comes as a big
surprise. This implies that the sample mean of even millions of values (from a
Cauchy distribution) cannot estimate the center of the distribution any bet-
ter than a single observation [one can verify this by actual simulation]. Yet,
one feels that there must be a way of substantially improving the estimate (of
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the location of a laser gun hidden behind a screen) when going from a single
observation to a large sample. Yes, there is, if one does not use the sample
mean but something else; later on we discover that the sample median will
do just fine. ¥

IPdf (Shortcut) TechniqueJ
works a bit faster, even though it may appear more complicated as it requires the
following (several) steps:

1. The procedure can work only for one-to-one (’invertible’) transformations.
This implies that the new RV Y ≡ g(X1, X2) must be accompanied by yet
another arbitrarily chosen function of X1 and/or X2 [the original Y will be
called Y1, and the auxiliary one Y2, or vice versa]. We usually choose this
second (auxiliary) function in the simplest possible manner, i.e. we make it
equal to X2 (or X1):

2. Invert the transformation, i.e. solve the two equations y1 = g(x1, x2) and
y2 = x2 for x1 and x2 (in terms of y1 and y2). Getting a unique solution
guarantees that the transformation is one-to-one.

3. Substitute this solution x1(y1, y2) and x2(y2) into the joint pdf of the ’old’
X1, X2 pair (yielding a function of y1 and y2).

4. Multiply this function by the transformation’s Jacobian

¯̄̄̄
¯ ∂x1

∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

¯̄̄̄
¯ . The

result is the joint pdf of Y1 and Y2. At the same time, establish the region
of possible (Y1, Y2) values in the (y1, y2)-plane [this is often the most difficult
part of the procedure].

5. Eliminate Y2 [the ’phoney’, auxiliary RV introduced to help us with the
inverse] by integrating it out (finding the Y1 marginal). Don’t forget that
you must integrate over the conditional range of y2 given y1.

EXAMPLES:

1. X1, X2 ∈ E(1), independent; Y = X1

X1+X2
[the time of the first ’catch’ relative

to the time needed to catch two fishes].

Solution: Y2 = X2 ⇒ x2 = y2 and x1y1+x2y1 = x1 ⇒ x1 =
y1·y2
1−y1 . Substitute

into e−x1−x2 getting e−y2
³
1+

y1
1−y1

´
= e

− y2
1−y1 ,multiply by

¯̄̄̄
y2
1−y1+y1
(1−y1)2

y1
1−y1

0 1

¯̄̄̄
=

y2
(1−y1)2 getting f(y1, y2) =

y2
(1−y1)2 e

− y2
1−y1 with 0 < y1 < 1 and y2 > 0. Elim-

inate Y2 by
∞R
0

y2
(1−y1)2 e

− y2
1−y1 dy2 =

1
(1−y1)2 · (1 − y1)

2 ≡ 1 when 0 < y1 < 1

[recall the
∞R
0

xk e−
x
a dx = k! · ak+1 formula]. The distribution of Y is thus

U(0, 1). Note that if we started with X1, X2 ∈ E(β) instead of E(1), the
result would have been the same since this new Y = X1

X1+X2
≡

X1
β

X1
β
+
X2
β

where
X1

β
and X2

β
∈ E(1) [this can be verified by a simple MGF argument].
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2. Same X1 and X2 as before, Y = X2

X1
.

Solution: This time we reverse the labels: Y1 ≡ X1 and Y2 =
X2

X1
⇒ x1 = y1

and x2 = y1·y2. Substitute into e−x1−x2 to get e−y1(1+y2), times
¯̄̄̄
1 0
y2 y1

¯̄̄̄
= y1

gives the joint pdf for y1 > 0 and y2 > 0. Eliminate y1 by
∞R
0

y1e
−y1(1+y2) dy1 =

1
(1+y2)2

, where y2 > 0. Thus, fY (y) = 1
(1+y)2

with y > 0 [check, we have
solved this problem before].

3. In this example we introduce the so called IBeta distributionJ

Let X1 and X2 be independent RVs from the gamma distribution with pa-
rameters (k, β) and (m,β) respectively, and let Y1 = X1

X1+X2
.

Solution: Using the argument of Example 1 one can show that β ’cancels out’,
and we can assume that β = 1 without affecting the answer. The definition of
Y1 is also the same as in Example 1⇒ x1 =

y1 y2
1−y1 , x2 = y2, and the Jacobian=

y2
(1−y1)2 . Substituting into f(x1, x2) =

xk−11 xm−12 e−x1−x2
Γ(k)·Γ(m) and multiplying by the

Jacobian yields f(y1, y2) =
yk−11 yk−12 ym−12 e

− y2
1−y1

Γ(k)Γ(m)(1− y1)k−1
· y2
(1− y1)2

for 0 < y1 < 1

and y2 > 0. Integrating over y2 results in:
yk−11

Γ(k)Γ(m)(1− y1)k+1

∞R
0

yk+m−12 e
− y2
1−y1 dy2 =

Γ(k +m)

Γ(k) · Γ(m) · y
k−1
1 (1− y1)

m−1 (f)

where 0 < y1 < 1.

This is the pdf of a new two-parameters (k and m) distribution which is
called beta. Note that, as a by-product, we have effectively proved the follow-

ing formula:
1R
0

yk−1(1 − y)m−1dy = Γ(k)·Γ(m)
Γ(k+m)

for any k,m > 0. This enables

us to find the distribution’s mean: E(Y ) = Γ(k+m)
Γ(k)·Γ(m)

1R
0

yk(1 − y)m−1 dy =

Γ(k+m)
Γ(k)·Γ(m) · Γ(k+1)·Γ(m)Γ(k+m+1)

=

k

k +m
(mean)

and similarly E(Y 2) = Γ(k+m)
Γ(k)·Γ(m)

1R
0

yk+1(1−y)m−1 dy = Γ(k+m)
Γ(k)·Γ(m) · Γ(k+2)·Γ(m)Γ(k+m+2)

=

(k+1) k
(k+m+1) (k+m)

⇒ V ar(Y ) = (k+1) k
(k+m+1) (k+m)

− ( k
k+m

)2 =

km

(k +m+ 1) (k +m)2
(variance)

Note that the distribution of 1 − Y ≡ X2

X1+X2
is also beta (why?) with

parameters m and k [reversed].

We learn how to compute related probabilities in the following set of Ex-
amples:
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(a) Pr(X1 <
X2

2
) whereX1 andX2 have the gamma distribution with param-

eters (4, β) and (3, β) respectively [this corresponds to the probability
that Mr.A catches 4 fishes in less than half the time Mr.B takes to catch
3].
Solution: Pr(2X1 < X2) = Pr(3X1 < X1 + X2) = Pr( X1

X1+X2
< 1

3
) =

Γ(4+3)
Γ(4)·Γ(3)

1
3R
0

y3(1− y)2dy = 60×
h
y4

4
− 2y5

5
+ y6

6

i 1
3

y=0
= 10.01%.

(b) Evaluate Pr(Y < 0.4) where Y has the beta distribution with parameters
(3
2
, 2) [half-integer values are not unusual, as we learn shortly].

Solution: Γ( 7
2
)

Γ( 3
2
)·Γ(2)

0.4R
0

y
1
2 (1− y) dy = 5

2
· 3
2
·
·
y
3
2

3
2

− y
5
2

5
2

¸0.4
y=0

= 48.07%.

(c) Evaluate Pr(Y < 0.7) where Y ∈ beta(4, 5
2
).

Solution: This equals [it is more convenient to have the half-integer first]

Pr(1−Y > 0.3) =
Γ( 13

2
)

Γ( 5
2
)·Γ(4)

1R
0.3

u
3
2 (1−u)3 du = 11

2
· 9
2
· 7
2
· 5
2

3!

·
y
5
2

5
2

− 3y
7
2

7
2

+ 3y
9
2

9
2

− y
11
2

11
2

¸1
y=0.3

=

1− 0.3522 = 64.78%.

The main challenge arises when both parameters are half-integers. Sug-
gested substitution is y = sin2 u, 1− y = cos2 u and dy = 2 sinu cosudu. Let
us try it:

(d) Pr(Y < 0.5) when Y ∈ beta(3
2
, 1
2
).

Solution: Γ(2)

Γ( 3
2
)·Γ( 1

2
)

0.5R
0

y
1
2 (1−y)−1

2dy = 1
1
2
·√π·√π

arcsin
√
0.5R

0

sinu· 1
cosu

·2 sinu cosudu =

4
π

arcsin
√
0.5R

0

sin2 u du = 2
π

arcsin
√
0.5R

0

(1−cos 2u) du = 2
π

£
u− sin 2u

2

¤0.785398
0

=

18.17%.

The beta distribution turns out to be a convenient means of evaluating prob-
abilities of two other important distributions (yet to be discussed).

4. In this example we introduce the so called ’Student’ or It-distributionJ

[notation: tn, where n is called ’degrees of freedom’ − the only parameter].
We start with two independent RVsX1 ∈ N (0, 1) andX2 ∈ χ2n, and introduce

a new RV by Y1 =
X1q
X2

n

.

To get its pdf we take Y2 ≡ X2, solve for x2 = y2 and x1 = y1·
p

y2
n
, substitute

into f(x1, x2) =
e−

x21
2√
2π
· x

n
2
−1

2 e−
x2
2

Γ(n
2
) · 2n2 and multiply by

¯̄̄̄ py2
n

1
2
· y1√

ny2

0 1

¯̄̄̄
=
p

y2
n

to get f(y1, y2) =
e−

y21y2
2n√
2π

· y
n
2
−1

2 e−
y2
2

Γ(n
2
) · 2n2 ·

p
y2
n
where −∞ < y1 < ∞ and
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y2 > 0. To eliminate y2 we integrate:
1√

2πΓ(n
2
) 2

n
2
√
n

∞R
0

y
n−1
2

2 e−
y2
2
(1+

y21
n
)dy2 =

Γ(n+1
2
) 2

n+1
2

√
2πΓ(n

2
) 2

n
2
√
n
³
1 +

y21
n

´n+1
2

=

Γ(n+1
2
)

Γ(n
2
)
√
nπ
· 1³
1 +

y21
n

´n+1
2

(f)

with −∞ < y1 < ∞. Note that when n = 1 this gives 1
π
· 1
1+ y21

(Cauchy),

when n→∞ the second part of the formula tends to e−
y21
2 which is, up to the

normalizing constant, the pdf of N (0, 1) [implying that Γ(n+1
2
)

Γ(n
2
)
√
nπ
−→
n→∞

1√
2π

,

why?].

Due to the symmetry of the distribution [f(y) = f(−y)] its mean is zero
(when is exists, i.e. when n ≥ 2).

To compute its variance we first realize that
∞R
−∞

dy³
1+ y2

n

´ n+1
2
=

Γ(n
2
)
√
nπ

Γ(n+1
2
)
which

implies (after the y2

n
= x2

a
substitution) that

∞R
−∞

dx¡
1 + x2

a

¢n+1
2

=
Γ(n

2
)
√
aπ

Γ(n+1
2
)

for any a > 0 and n > 0. With the help of this formula we get V ar(Y ) =

E(Y 2) =
Γ(n+1

2
)

Γ(n
2
)
√
nπ

∞R
−∞

(y2 + n− n) dy³
1 + y2

n

´n+1
2

=
Γ(n+1

2
)

Γ(n
2
)
√
nπ

·
n · Γ(

n−2
2
)
√
nπ

Γ(n−1
2
)
− n · Γ(

n
2
)
√
nπ

Γ(n+1
2
)

¸
=

n · n−1
2

n−2
2

− n =

n

n− 2 (variance)

for n ≥ 3 (for n = 1 and 2 the variance is infinite).

The main task again is to learn how to compute the corresponding proba-
bilities. We can see immediately that Y ∈ tn implies that

Y 2

Y 2 + n
(beta)

=

nZ2

χ2n
nZ2

χ2n
+ n
≡ Z2

Z2+χ2n
≡ χ21

χ21+χ
2
n
≡ gamma( 1

2
,2)

gamma( 1
2
,2)+ gamma(n

2
,2)
has the beta distribu-

tion with parameters 1
2
and n

2
. And that distribution we know how to deal

with.

Examples:

(a) Compute Pr(Y < 1.4) where Y ∈ t6.
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Solution: = 1
2
+ Pr(0 < Y < 1.4) = 1

2
+ 1

2
Pr(−1.4 < Y < 1.4) =

1
2
+ 1
2
Pr(Y 2 < 1.42) = 1

2
+ 1
2
Pr( Y 2

Y 2+6
< 1.42

1.42+6
) = 1

2
+ 1

2
Pr(U < 0.24623)

where U ∈ beta(1
2
, 3).

Answer: 1
2
+1
2

Γ( 7
2
)

Γ( 1
2
)Γ(3)

0.24623R
0

u−
1
2 (1−u)2 du = 1

2
+

5
2
· 3
2
· 1
2

4

h
u
1
2
1
2

− 2u
3
2
3
2

+ u
5
2
5
2

i0.24623
u=0

=

89.45%.

(b) Find Pr(Y < −2.1) where Y ∈ t7.
Solution: = 1

2
− 1

2
Pr(−2.1 < Y < 2.1) = 1

2
− 1

2
Pr( Y 2

Y 2+7
< 0.38650) =

1
2
− 1

2
Γ(4)

Γ( 1
2
)Γ( 7

2
)

0.3865R
0

u−
1
2 (1−u)

5
2du = 1

2
− 1

2
· 6
5
2
· 3
2
· 1
2
·π
arcsin

√
0.3865R

0

1
sin t
· cos5 t ·

2 sin t cos t dt = 1
2
− 16
5π

0.6709R
0

cos6 t dt = 1
2
− 16
5π

0.6709R
0

cos 6t+6cos 4t+15 cos 2t+10
32

dt =

3.69% [the coefficients of the cos6 t expansion correspond to one half row
of Pascal’s triangle, divided by 26−1].

Note that when n ≥ 30 the t-distribution can be closely approximated by
N (0, 1).

5. And finally, we introduce the Fisher’s IF-distributionJ

(notation: Fn,m where n and m are its two parameters, also referred to as

’degrees of freedom’), defined by Y1 =
X1

n
X2

m

where X1 and X2 are inde-

pendent, both having the chi-square distribution, with degrees of freedom n
and m, respectively.

First we solve for x2 = y2 and x1 = n
m
y1 y2 ⇒ Jacobian equals to n

m
y2. Then

we substitute into
x
n
2
−1

1 e−
x1
2

Γ(n
2
) 2

n
2

·x
m
2
−1

2 e−
x2
2

Γ(m
2
) 2

m
2

and multiply by this Jacobian to get

( n
m
)
n
2

Γ(n
2
)Γ(m

2
) 2

n+m
2

y
n
2
−1

1 ·y
n+m
2
−1

2 e−
y2 (1+

n
my1)

2 with y1 > 0 and y2 > 0. Integrating

over y2 (from 0 to∞) yields the following formula for the corresponding pdf

f(y1) =
Γ(n+m

2
)

Γ(n
2
)Γ(m

2
)
(
n

m
)
n
2 · y

n
2
−1

1

(1 + n
m
y1)

n+m
2

for y1 > 0. As a by-product we get (after the n
m
y1 → ax substitution) the

value of the following integral:
∞R
0

x
N
2
−1

(1 + ax)
N +M
2

dx =
Γ(N

2
)Γ(M

2
)

Γ(N +M
2
) a

N
2

for any

N > 0, M > 0 and a > 0.

With its help we can find E(Y ) =
Γ(n+m

2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2

∞R
0

y
n
2 dy

(1+ n
m
y)

n+m
2

= [take

N = n + 2, M = m − 2 and a = n
m
]

Γ(n+m
2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2 · Γ(n+2

2
)Γ(m−2

2
)

Γ(n+m
2
) ( n

m
)
n+2
2

=
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n
2

(m
2
− 1) · n

m

=

m

m− 2 (mean)

for m ≥ 3 (the mean is infinite for m = 1 and 2).

Similarly E(Y 2) =
Γ(n+m

2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2

∞R
0

y
n
2 +1 dy

(1+ n
m
y)

n+m
2

= [take N = n + 4, M =

m − 4 and a = n
m
]

Γ(n+m
2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2 · Γ(

n+4
2
)Γ(m−4

2
)

Γ(n+m
2
) ( n

m
)
n+4
2

=
(n
2
+1)·n

2

(m
2
−1)·(m

2
−2)·( n

m
)2
=

(n+2)m2

(m−2) (m−4)n ⇒ V ar(Y ) = (n+2)m2

(m−2) (m−4)n− m2

(m−2)2 =
m2

(m−2)2 ·
h
(n+2) (m−2)
(m−4)n − 1

i
=

2m2 (n+m− 2)
(m− 2)2 (m− 4)n (variance)

for m ≥ 5 [infinite for m = 1, 2, 3 and 4].

Note that the distribution of
1

Y
is obviously Fm,n [degrees of freedom reversed],

also that F1,m ≡ χ21
χ2m
m

≡ Z2

χ2m
m

≡ t2m, and finally when both n and m are large (say

> 30) then Y is approximately normal N
µ
1,
q

2(n+m)
n·m

¶
.

The last assertion can be proven by introducing U =
√
m · (Y − 1), getting its

pdf: (i) y = 1+ u√
m
, (ii) substituting:

Γ(n+m
2
)

Γ(n
2
)Γ(m

2
)
( n
m
)
n
2 ·

(1 + u√
m
)
n
2
−1

(1 + n
m
+ n

m
u√
m
)
n+m
2

·

1√
m
[the Jacobian] =

Γ(n+m
2
)

Γ(n
2
)Γ(m

2
)
√
m
· ( n

m
)
n
2

(1 + n
m
)
n+m
2

·
(1 + u√

m
)
n
2
−1

(1 + n
n+m

u√
m
)
n+m
2

where

−√m < u < ∞. Now, taking the limit of the last factor (since that is
the only part containing u, the rest being only a normalizing constant)
we get [this is actually easier with the corresponding logarithm, namely

(n
2
− 1) ln(1 + u√

m
) − n+m

2
ln(1 + n

n+m
u√
m
) = − u√

m
−
h
(n
2
− 1)− n2

2(n+m)

i
·

u2

2m
− .... = − u√

m
+ u2

2m
− n

n+m
u2

4
− .... −→

n,m→∞
− 1

1 + m
n

u2

4
[assuming that

the m
n
ratio remains finite]. This implies that the limiting pdf is C · e−

u2n
4(n+m)

where C is a normalizing constant (try to establish its value). The limiting

distribution is thus, obviously, N
µ
0,
q

2(n+m)
n

¶
. Since this is the (approxi-

mate) distribution of U, Y = U√
m
+ 1 must be also (approximately) normal

with the mean of 1 and the standard deviation of
q

2(n+m)
n·m . ¤

We must now learn to compute the corresponding probabilities. We use the
following observation: n

m
Y ≡ χ2n

χ2m
⇒

n
m
Y

1 + n
m
Y

(beta)
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≡ χ2n
χ2n+χ

2
m
∈ beta(n

2
, m
2
). And we know how to deal with the last distribution.

Example:

Find Pr(Y < 4) where Y ∈ F9,4.

Solution: = Pr
n

9
4
Y

1+ 9
4
Y
<

9
4
·4

1+9
4
·4

o
= Pr(U < 0.9) where U ∈ beta(9

2
, 2).

Answer: Γ( 13
2
)

Γ( 9
2
)·Γ(2)

0.9R
0

u
7
2 (1− u) du = 11

2
· 9
2
·
h
u
9
2
9
2

− u
11
2
11
2

i0.9
0
= 90.25%. ¥

We will see more examples of the F, t and χ2 distributions in the next chapter,
which discusses the importance of these distributions to Statistics, and the context
in which they usually arise.


