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9. Point estimation 
 

Remember that the random variables X1, X2, …, Xn satisfying two 
conditions: they are independent and have a common PMF/PDF );( θxf  are 
called a random sample (RS) or simply sample of size n. A specific set of 
observed values x1, x2, . . . , xn is a set of sample values assumed by the sample.  

A statistic is any function h(·) of a given sample X1, X2, …, Xn for which 
the value can be determined once the sample values x1, x2, . . . , xn have been 
observed. 

The notation );( θxf  aims to stress that the PMF/PDF under consideration 
depends on a parameter θ  varying within a given range Θ. The precise value of 
parameter θ  is unknown; our aim is to “estimate” it from the sample X1, X2, …, 
Xn. This means that we want to determine a function * ( )θ ⋅  depending on the 
sample but not on θ  (a statistic) which we could take as a projected value of θ . 
If the experiment that yielded the data set were to be repeated, we would obtain 
different values x1, x2, . . . , xn. The function * ( )θ ⋅  when applied to the new data 
set would yield a different value for θ . Such a function will be called an 
estimator of θ ; its particular value is often called an estimate. 

We thus see that an estimate is itself a random variable possessing a 
probability distribution, which depends both on the functional form defined by 

* ( )θ ⋅  and on the distribution of the underlying random variable X with 
PMF/PDF );( θxf .  

The domain of statistics that emerges is called parametric estimation. 
The problem of parameter estimation is one class in the broader topic of 
statistical inference in which our object is to make inferences about various 
aspects of the underlying distribution );( θxf  (called population distribution) 
on the basis of observed sample values.  

It is important to note that a statistic, being a function of random variables, 
is a random variable. When used to estimate a distribution parameter, its 
statistical properties, such as mean, variance, and distribution, give information 
concerning the quality of this particular estimation procedure.  

 
9.1. Sample mean and sample variance 

 
The information of a RS is usually summarized by a handful of statistics. 

Certain statistics play an important role in statistical estimation theory; the most 
important of these are the sample mean and sample variance. Some properties 
of these statistics are discussed below. 

The sample mean 𝑋� is frequently used to estimate the value of μ (the mean 
of the population). Sometimes we also need to estimate the value of the 
distribution’s variance σ2; this is done by sample variance defined by: 
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S2 = ∑ (𝑋𝑖𝑛
𝑖=1 − 𝑋�

2
/(𝑛 −  1). 

(taking its square root, one gets S, the sample standard deviation). 
Note that the numerator is the sum of squares of individual deviations from 

the sample mean; the definition intentionally avoids using the distribution mean 
μ, as its value is usually unknown. 

To find the expected value of S2, we transform its numerator first: 

�(𝑋𝑖

𝑛

𝑖=1

− 𝑋�
2

=  �(𝑋𝑖 − µ
𝑛

𝑖=1

− �𝑋 − µ��
2

= �(𝑋𝑖

𝑛

𝑖=1

− µ)2 − 2�𝑋 − µ��(𝑋𝑖

𝑛

𝑖=1

− µ) + 𝑛�𝑋 − µ�
2
 

(note that 𝑋 − μ, being free of i, is considered as a constant by the summation). 
It follows  

E�∑ (𝑋𝑖𝑛
𝑖=1 − 𝑋�

2
� = n var(X) – 2 ∑ Cov(𝑋�,𝑋𝑖)𝑛

𝑖=1  + n var(𝑋�) = 
= n var(X) – 2n Cov(𝑋�,𝑋1) + var(X), 

Cov(𝑋�,𝑋1), Cov(𝑋�, X2), Cov(𝑋�, X3), ... must have the same value, and  
Cov(𝑋�,𝑋1) = 𝑛−1 ∑ Cov(𝑋𝑖 ,𝑋1)𝑛

𝑖=1 = n−1 var(X).  
This implies that E(S2) = (nσ2 − 2σ2 + σ2)/(n − 1) = σ2. 
Thus, S2 is a so called unbiased estimator of the distribution’s variance σ2 

(meaning it has the correct expected value). Precise definition will be given 
later. 

Does this imply that S ≡ (n − 1)−1/2 �∑ (𝑋𝑖𝑛
𝑖=1 − 𝑋�

2
(the sample standard 

deviation) has the expected value of σ? The answer is “no”, S is a (slightly) 
biased estimator of the population’s standard deviation (the exact value of the 
bias depends on the shape of the corresponding distribution). 

This S is useful when estimating the value of the population mean μ. We 
know that 𝑋� is the unbiased estimator of μ, having the standard deviation of 
σ/√𝑛. We would like to express this as μ ≈ 𝑋� ± σ/√𝑛 (the so called confidence 
interval for estimating μ) but since we ordinarily don’t know the exact value of 
σ either, we have to substitute its estimator S, thus: μ ≈ 𝑋� ± S/√𝑛. Later we 
investigate these issues in more detail. 

To be able to say anything more about 𝑋�  and S2, we need to know the 
distribution form which we are sampling. We will assume that the distribution is 
normal, with mean μ and variance σ2.  

The distribution of 𝑋� must also be normal (with mean µ and standard 
deviation of σ/√𝑛, as we already know) for any sample size n (not just “large”). 

Regarding S2, one can show that it is independent of 𝑋�, and that the 
distribution of (n−1)S2/σ2 is .2

1−χn  The proof of the independence is rather 
complex and so is omitted here. It is follows that (𝑋� − µ)/(S/√𝑛) has the tn−1 
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distribution because (𝑋� − µ)/(S/√𝑛) = [(𝑋� − µ)/(σ/√𝑛)]/[(S/√𝑛)/(σ/√𝑛)], 
where (𝑋� − µ)/(σ/√𝑛) has standard normal distribution and  
(S/√𝑛)/(σ/√𝑛) = �(𝑛 − 1) 𝑆2/σ2 /√𝑛 − 1.  

The sample mean and sample variance are examples of point estimators. 
 

9.2. Properties of the estimators 
 
You could see that some important families of PMFs/PDFs depend on a 

parameter (or several parameters forming a vector). For instance, Poisson PMFs 
are parameterized by λ > 0, and so are exponential PDFs, normal PDFs are 
parameterized by pair µ and σ2, where µ is the mean and σ2 is the variance. The 
“true” value of a parameter (or several parameters) is considered unknown and 
we will have to develop the means to make a judgment about what it is. 

For example, it is well known that the number of hops by a bird before it 
takes off is described by a geometric distribution. Similarly, emission of alpha-
particles by radioactive material is described by a Poisson distribution (this 
follows immediately if one assumes that the emission mechanism works 
independently as time progresses). However, the parameter of the distribution 
may vary with the type of bird or the material used in the emission experiment 
(and also other factors). 

We observe a sample of values of a given number n of iid RVs (X1, X2, …, 
Xn) with a common PMF/PDF );( θxf . The joint PDF/PMF of the random 
vector X is denoted by );( θxXf  and is given by the product 
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Here, and below vector x is a sample value of X. The subscript X in 
notation );( θxXf  are often omitted. 

In principle, any function of x can be considered as an estimator, but in 
practice we want it to be “reasonable”. We therefore need to develop criteria for 
which estimator is good and which bad.  

Example 9.1. Let X1, X2, …, Xn be iid and Xi has Poisson distribution with 
parameter λ. 

Consider the sample mean 𝑋� =𝑋�𝑛 as an estimator of parameter λ. 
We already knew that the sample mean has the following useful properties: 
(i) The random value 𝑋� is grouped around the true value of the parameter: 

( ) .λ=XE  
This property is called unbiasedness. 
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(ii) 𝑋� approaches the true value as n → ∞: 




 λ→λ→

..saP

XX  – the weak 

(strong) LLN. 
Property (ii) is called consistency (strong consistency). 

(iii) For large n, )1,0(Ν→
λ
λ− FXn  (the CLT). 

This property is often called asymptotic normality. 
We are also able to see that 𝑋� has another important property: 
(iv) 𝑋� has the minimal mean square error in a wide class of estimators ∗λ : 

( ) ( )22 λ−λ≤λ− ∗EXE . The proof is below. 
Give some general definitions. 
Definition 9.1. An estimator ∗θ = ( )∗θ x  of a parameter θ  is consistent 

(strongly consistent) if as n → ∞ for all Θ∈θ  

.
..








θ→θθ→θ ∗∗

saP

 
It is thus a large-sample concept and is a good quality for an estimator to 

have. Usually we are not interesting in the estimators that are not consistent.  
How to check the consistency of the estimator? We can use the 

Chebyshov’s inequality, from which follows that if ( ) θ→θ∗E  and ( ) 0var →θ∗  
as n → ∞ then ∗θ  is a consistent estimator. It is important to note that it gives a 
sufficient but not necessary condition for consistency. 

Every “decent” estimator must be consistent; but that by itself does not 
make it particularly “good”. For example ( ) )2//(...ˆ 42 nXXX n+++=µ  (for n 
even) is a consistent estimator of μ. Yet, we are wasting one half of our sample, 
which is unacceptable. 

Definition 9.2. An estimator ∗θ = )(x∗θ  of a parameter θ  is unbiased if 
for all Θ∈θ  

( ) .θ=θ∗E  
If only ( ) θ→θ∗E  as n → ∞ then ∗θ  is called asymptotically unbiased. 
The value ( ) ( ) θ−θ=θ ∗∗ Eb  is called the bias of the estimator ∗θ , usually 

proportional to 1/n for asymptotically unbiased estimators.  
Unbiasedness is a desirable property of the estimator but making an 

estimator unbiased (or at least asymptotically so) is not enough to make it even 
acceptable. Consider estimating μ of a distribution by taking µ̂= X1 (the first 
observation only), throwing away X2, …, Xn. We get a fully unbiased estimator 
which is evidently unacceptable, since we are wasting nearly all the information 
contained in our sample. Also sometimes biased estimators have less mean 
square errors, so unbiasedness can be outweighed by other considerations (see 
Soong, Example 9.5, p. 272). 
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Definition 9.3. The mean square error of an estimator ∗θ = )(x∗θ  is  
MSE ( )∗θ  = ( ) .2θ−θ∗E  

Show that MSE ( )∗θ  = ( ) ( ).var2 ∗∗ θ+θb  

The minimum value of the mean square error of an estimator is often a 
criteria the “best” estimator.  

A “good” estimator should not only be unbiased, but it should also have a 
variance which is as small as possible.  

The result concerning the problem is given by the Cramér–Rao (CR) 
inequality, or CR bound. When an estimator achieves this bound, it is 
automatically the “best”. The relevant details are summarized in the following  

Theorem (Cramér-Rao inequality). Assume that a PDF/PMF );( θxf  
depends smoothly on parameter θ . Take an unbiased estimator ( )X∗θ  of θ . Let 
some regularity conditions on );( θxf and ( )X∗θ  hold. Then for any such 
estimator, the following bound holds: 

( ) ,
)(

1var
θΙ

≥θ∗
n

 

where 







θ

θ∂
∂

−=





 θ
θ∂
∂

=θΙ );(ln);(ln)( 2

22

xfExfE . 

The quantity )(θΙ  is often called the Fisher information and features in 
many areas of probability theory and statistics. 

The analog theorem can be formulated for the estimates with some fixed 
bias.  

C.R. Rao (1920–) is an Indian mathematician who studied in India and 
Britain (he took his Ph.D. at Cambridge University and was Fisher’s only 
formal Ph.D. student in statistics), worked for a long time in India and currently 
lives and works in the USA. Rao’s contributions in statistics are now widely 
recognized. 

The CR inequality is named also after C.H. Cramér (1893–1985), a 
prominent Swedish analyst, number theorist, probabilist and statistician, and 
C.R. Rao. One story is that the final form of the inequality was proved by Rao, 
then a young (and inexperienced) lecturer at the Indian Statistical Institute, 
overnight in 1943 in response to a student enquiry about some unclear places in 
his presentation. 

Remark. The regularity conditions imply interchanging the derivation 
θ∂
∂  

and the integration (or summation) in the equalities  
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1) ( ; ) 0 or ( ; ) 0i
iR

f x dx f x∂ ∂ 
θ = θ = ∂θ ∂θ 

∑∫  the equality holds as 

( ; ) 1 or ( ; ) 1i
iR

f x dx f x 
θ = θ = 

 
∑∫  ; 

2) ( ),1 ∗θ
θ∂
∂

=θ
θ∂
∂

= E  as ( )( ) ( ) ( ; )
nR

E f d∗ ∗θ = θ θ∫X x x x

( )( ) ( )or ( ; ) .E f∗ ∗ θ = θ θ 
 

∑
x

X x x   

Emphasize the fact: to hold the conditions estimated parameter θ should 
not appear in the limits of the distribution (for example for continuous uniform 
distribution the conditions do not hold). 

Based on this CR bound we define the so called efficiency of an unbiased 

estimator θ̂  as the ratio of the theoretical variance bound 1CRV
( )nθ = Ι θ

 to the 

actual variance of ∗θ , thus:  

( ) ( )
CRV

var
eff ∗ θ

∗
θ =

θ
 

usually expressed in percent (we know that its value cannot be bigger that 1, i.e. 
100 %). An estimator θ̂  whose variance is as small as CRVθ  is called efficient. 
An estimator which reaches 100 % efficiency only in the n → ∞ limit is called 
asymptotically efficient.  

Here we run into two difficulties: 
1. The variance of an estimator is, in general, a function of the unknown 

parameter (to see that, go back to the S2 example), so we are comparing 
functions, not values. It may easily happen that two unbiased estimators have 
variances such that one estimator is better in some range of θ values and worse 
in another.  

2. Even when the “best” estimator exists, how do we know that it does and, 
more importantly, how do we find it? CR inequality does not give us the 
method of obtaining the estimators. 

Examples: 
1. How good is X  as an estimator of μ of the Normal distribution N(μ, σ)? 
Solution: We know that its variance is 2 / nσ . To compute the CR bound 

we do 

( ) ( )
2 2

2 2
2 2 2

ln 2 1ln ( ) ln / 2 .
2

f x x∂ ∂ π − = + σ + −µ σ = ∂µ ∂µ σ 
 

Thus CRV equals 2 / nσ  implying that X  is the best (unbiased) estimator 
of μ. 
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2. Let us find the efficiency of X  to estimate the mean β of the 
exponential distribution, with f (x) = 1/β e− x/β for x > 0. 

Solution: ( )
2 2

2 2 2 3

1 2ln ( ) ln / ,xf x x∂ ∂
− = − β + β = − +
∂β ∂β β β

  

E 2 3 2

1 2 1X 
− + = β β β 

. It follows CRV = β2/n. 

We know that E( X ) = β and var( X ) = β2/n. Conclusion: X  is the best 
estimator of β. 

We must point out that efficient estimators exist only under certain 
conditions.  

It is not always possible to calculate MSE (or asymptotic MSE). In these 
cases the following definition can help us. 

Definition 9.4. An estimator ∗θ = )(x∗θ  of a parameter θ  is 
asymptotically normal with a coefficient ( )θvar  if  

( ) ( ) ).1,0(var/ Ν→θθ−θ∗
F

n  
The asymptotic normality is an important property of the sequence of the 

estimators. It can be used not only for comprising the estimators (choosing the 
“best” one, i.e. with the minimum coefficient), but for construction of 
confidence intervals and hypotheses testing. 

Example 9.2. A frequent case is where X1, X2, …, Xn are iid and Xi are 
),( 2σµΝ . When speaking of normal samples, one usually distinguishes three 

situations: 
(i) the mean µ is unknown and variance 2σ  known (say, 2σ  = 1); 
(ii) µ is known (say, equal to 0) and 2σ  > 0 unknown; 
(iii) neither µ nor 2σ  is known. 
In cases (i) and (iii), an estimator for µ is the sample mean 𝑋� with 

( ) µ=XE  (unbiasedness) and normal distribution N(µ,σ2/n). 
In case (ii), an unbiased estimator for σ2 is S2, the distribution of  

(n − 1)S2/σ2 is .2
1−χn  

In case (iii), the pair (𝑋�, S2) can be taken as an estimator for vector (µ, σ2) 
and we obtain joint unbiasedness, joint consistency and joint asymptotic 
normality. 

What about the methods of obtaining the estimators? The following 
concept is very useful. 

 
9.3. Sufficient statistics 

 
Remind that a statistic is an arbitrary function of sample vector x or its 

random counterpart X.  
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We call a function T of x (possibly, with vector values) a sufficient 
statistic for parameter Θ∈θ  if the conditional distribution of random sample X 
given T(X) does not depend on θ .  

The significance of this concept is that the sufficient statistic encapsulates 
all knowledge about sample x needed to produce a “good” estimator for θ . 

The most efficient way to check the sufficiency is to use the factorization 
criterion. 

The factorization criterion is a general statement about sufficient statistics. 
It says: T is sufficient for θ  iff the PMF/PDF ),( θxXf  can be written as a 
product g(T(x),θ ) h(x) for some functions g and h. 

The proof in the discrete case is straightforward (you can do it as an 
exercise). In the continuous case we need some elements of measure theory.  

The idea behind the factorization criterion goes back to a 1925 paper by 
R.A. Fisher (1890–1962), the outstanding UK applied mathematician, 
statistician and genetist. 

We can take the criterion as the definition of sufficient statistic. 
Clearly, sufficient statistics are not unique. So the next useful step is to 

consider a minimal sufficient statistic. Any sufficient statistic is a function of 
the minimal one. In other words, the minimal sufficient statistic represents the 
least amount of detail we should know about sample x. Any further suppression 
of information about the sample would result in the loss of sufficiency. 

In all examples below, sufficient statistics are minimal. 
Examples:  
1. Bernoulli distribution: )...(... 2121 )1(),( nn xxxnxxx ppf ++−++ −=θxX  is a 

function of p and of a single combination of the sample values, namely ∑
=

n

i
ix

1
.       

A sufficient statistic for estimating p is thus ∑
=

n

i
iX

1
.  

2. Normal distribution (the mean µ is unknown and variance 2σ  known): 

( ) ( ) ( ) ,2/2exp2/exp2),( 2

1

2

1

222/2 




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 σ


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− n

i
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n

i
i

n xnxf xX  

where the first factor (to the left of ×) contains no μ and the second factor is a 
function of only a single combination of the sample values, namely their sum. 
This leads to the same conclusion as in the previous example. 

When neither µ nor 2σ  is known T(x) = 







∑∑
==

n

i
i

n

i
i xx

1

2

1
,  is sufficient statistic 

for (µ, σ2). 
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3. Exponential distribution: n
n

i
ixf λ




 λ−=θ ∑

=

/exp),(
1

xX . A sufficient 

statistic for estimating λ is ∑
=

n

i
iX

1
. 

4. Poisson distribution: in example 9.1 the sample mean 𝑋� is a sufficient 
statistic for λ: 
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And we know how to make the statistics in previous examples into 
unbiased estimators. 

4. The function X(n) = max(X1, X2, …, Xn) is a sufficient statistic for 
estimating θ of the uniform on [0, θ] distribution: 

( )θ≤θ=θ −
)(:),( n

n XIf xxX , 
where )(⋅I  is an indicator. 

Is X(n) an unbiased estimator of θ? Consider the distribution function 

( ) ( ) nn
n

i
inX xxXPxXPxF

n
−

=
θ=<=<= ∏

1
)()(

)(
 for ],0[ θ∈x , 

PDF nn
XX nxxFxf

nn
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and ( ) θ
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== ∫∫
θθ

1
)(

00
)( )( n

ndxxndxxfxXE n

n

Xn n
. 

So X(n) is asymptotically unbiased and )(
1

nX
n

n +
=θ∗  is unbiased estimator 

of θ.  
In practice if we find the sufficient statistic all we have to do to convert it 

into the best possible estimator of θ is to make it unbiased (by some 
transformation, which is usually easy to design).  

The only difficulty with the approach arises when a sufficient statistic does 
not exist (try finding it for the Cauchy distribution). 

One can resort to using one of the following two techniques for finding an 
estimator. 

 
9.4. Method of moments 

 
The oldest systematic method of point estimation − method of moments − 

was proposed by K. Pearson (1894) and was extensively used by him and his 
co-workers. It was neglected for a number of years because of its general lack 
of optimum properties. The method of moments is simple in concept. 
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Consider a selected probability PMF/PDF );( θxf  for which parameters 

( )1,...,
T

m= θ θθ  are to be estimated based on sample X1, X2, …, Xn. The 
theoretical or population moments of distribution ),( θxf  are  

( ; ) , 1.j
j x f x dx j

∞

−∞

α = ≥∫ θ  

They are, in general, functions of the unknown parameters 
( )1,..., .j j mα = α θ θ  However, sample moments of various orders can be found 

from the sample by  

1,/
1

≥= ∑
=

jnXM
n

i

j
ij . 

The method of moments suggests that, in order to determine estimators 

( )1
ˆ ˆ ˆ,...,

T

m= θ θθ  from the sample, we equate a sufficient number of sample 

moments to the corresponding population moments. By establishing and solving 
as many resulting moment equations as there are parameters to be estimated, 
estimators for the parameters are obtained. Hence, the procedure for 
determining mθθ ˆ,...,ˆ

1  consists of the following steps: 
1. Let  

( ) mjM jmj ,1,ˆ,...,ˆ
1 ==θθα .   (9.1) 

These yield m moment equations with m unknowns mθθ ˆ,...,ˆ
1 . 

2. Solve for mθθ ˆ,...,ˆ
1  from this system of equations. These are called the 

moment estimators for mθθ ,...,1 . 
Remark. It is not necessary to consider m consecutive moment equations as 

indicated by (9.1), any convenient set of m equations that lead to the solution for 
mθθ ˆ,...,ˆ

1  is sufficient. Lower-order moment equations are preferred, however, 
since they require less manipulation of observed data. 

An attractive feature of the method of moments is that the moment 
equations are straightforward to establish, and there is seldom any difficulty in 
solving them. However, a shortcoming is that such desirable properties as 
unbiasedness or efficiency are not generally guaranteed for estimators so 
obtained. 

Consistency of moment estimators can be established under general 
conditions (see Soong, p. 279). 

The advantage of the method is that it requires only the moments of 
population, the knowledge of its distribution are not necessary. 

Examples: 
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1. Normal distribution: ( ) ( ) ( )( )1/2 22 2 2( ; , ) 2 exp / 2 ,f x x
−

µ σ = πσ − − µ σ  

estimate parameters 
 

µ=θ1  and 2
2 σ=θ . 

Following the method of moments, we need two moment equations, and 
the most convenient ones are obviously µ=α1  and 22

2 µ+σ=α , corresponding 

sample moments nxM
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Hence, the first of these moment equations gives Xnx
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1
. 

The properties of this estimator have already been discussed above. It is 
unbiased and has minimum variance among all unbiased estimators for µ. We 
see that the method of moments produces desirable results in this case. 

The second moment equation gives 22
2 ˆˆˆ µ+σ=α nx
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This, as we have shown, is a biased estimator for 2σ . 
2. Uniform on ),0( θ  distribution. We wish to estimate parameter θ  from a 

sample of size n. 
The density function is [ ]( , ) 1 / , 0,f x xθ = θ ∈ θ  and the first moment is 

/ 2.θ  
It follows from the method of moments that, on letting X = ˆ / 2θ we obtain  

ˆ 2Xθ = .      (9.2) 
Upon little reflection, the validity of this estimator is somewhat 

questionable because, by definition, all values assumed by population value are 
supposed to lie within interval ),0( θ . However, we see from (9.2) that it is 
possible that some of the samples are greater than θ̂ . Intuitively, a better 
estimator might be the nth-order statistic )(nX . This is the outcome following the 
method of maximum likelihood, to be discussed below. 

 
9.5. Method of maximum likelihood 

 
First introduced by R. Fischer in 1922, the method of maximum likelihood 

has become the most important general method of estimation from a theoretical 
point of view. 



140 
 

Consider the joint distribution ∏
=

θ=θ
n

i
ixff

1
);();(xX  where, for simplicity, 

is the only parameter to be estimated from a set of sample values x1, x2, . . . , xn. 
We call it the likelihood function and denote L );( θx . When the sample values 
are given, likelihood function L becomes a function of a single variable θ . The 
estimation procedure for θ  based on the method of maximum likelihood 
consists of choosing as an estimate of θ  the particular value of that maximizes 
L(∙). The maximum of L(∙) occurs in most cases at the value of θ  where  
dL );( θx /dθ is zero. Hence, in a large number of cases, the maximum 
likelihood estimate (MLE) of θ  based on sample values x1, x2, . . . , xn  can be 
determined from  

dL )ˆ;( θx /d θ̂  =0. 
Since function L is always nonnegative and attains its maximum for the 

same value of θ  as ln L, it is generally easier to obtain MLE by solving  
dlnL )ˆ;( θx /d θ̂  =0        (9.3) 

because ln L is in the form of a sum rather than a product. 
Equation (9.3) is referred to as the likelihood equation. The desired 

solution is one where root is a function of x1, x2, . . . , xn  if such a root exists. 
When several roots of (9.3) exist, the MLE is the root corresponding to the 
global maximum of L or ln L. 

By choosing a value of that maximizes L, or ln L, we in fact say that we 
prefer the value of θ̂  that makes as probable as possible the event that the 
sample values indeed come from the population. 

The extension to the case of several parameters is straightforward. In the 
case of m parameters the MLEs of θ  = (θ 1, ...,θ m)T, are obtained by solving 
simultaneously the system of likelihood equations 

∂ lnL )ˆ;( θx /∂ jθ̂  =0, .,1 mj =    (9.4) 
The universal appeal enjoyed by maximum likelihood estimators stems 

from the optimal properties they possess when the sample size becomes large. 
Under mild conditions imposed on the PMF/PDF of population, the MLEs are 
asymptotically unbiased, efficient and normal. However, these important 
properties are large-sample properties.  

Unfortunately, very little can be said in the case of a small sample size; it 
may be biased and nonefficient.  

Let us also make an observation on the solution procedure for solving 
likelihood equations. Although it is fairly simple to establish (9.3) or (9.4), they 
are frequently highly nonlinear in the unknown estimates, and close-form 
solutions for the MLE are sometimes difficult, if not impossible, to achieve. In 
many cases, iterations or numerical schemes are necessary. 
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Examples: 
1. Let us consider again the normal distribution

( ) ( ).2/ln
2
2ln),,(lnln

1

222 ∑
=

σµ−−σ−
π

−=σµ=
n

i
ixnnfL x  Let µ=θ1  and 

2
2 σ=θ  as before; the likelihood equations are 

( ) ( )

( ) ( )

2
21 2

11

2
2 41 2

2 2
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∂ θ θ ∂ µ σ
= = − µ σ =

∂µ∂θ

∂ θ θ ∂ µ σ
= = − + − µ σ =

∂σ σ∂θ

∑

∑
 

Solving the above equations simultaneously, the MLEs of µ and 2σ  are 

found to be Xnx
n

i
i ==µ ∑

=
/ˆ

1
 and ( ) nXx

n

i
i /ˆ

1

22 ∑
=

−=σ which coincide with their 

moment estimators in this case. 
2. Consider uniform on ),0( θ  distribution. Likelihood function 

nfL −θ=θ= ),(x  if θ≤)(nX  is monotonic decreasing and therefore takes the 

maximum value at point =θ̂ )(nX . 
This estimator is seen to be different from that obtained by using the 

moment method and, as we already commented, it is a more logical choice. 
Let us also note that we did not obtain the result by solving the likelihood 

equation. The likelihood equation does not apply in this case as the maximum of 
L occurs at the boundary and the derivative is not zero there. 

 
9.6. Exercises 

 
1. Consider a sample of size 3 from N(μ, σ). What is the relative efficiency of 
(X1 + 2X2  + X3)/4 (obviously unbiased) with respect to X  when estimating μ? 

The relative efficiency of 1θ̂  compared to 2θ̂  is the ratio 
( )
( )

2

1

ˆvar
ˆvar

θ

θ
. 

2. For uniform distribution U(a,b) estimate both a and b by the method of 
moments.  
3. For U(a,b) estimate both a and b by the likelihood method. What can you 
say about the relative efficiency of the estimators compared with the ones of the 
previous exercise? 
4. For binomial distribution estimate both n and p by the method of moments. 
5. Consider a sample from a distribution with a finite variance 2σ . Proof that 
the sample mean is asymptotically normal with the coefficient 2σ . 
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6. Consider uniform on (0, )θ  distribution. Are the estimators 1
ˆ 2Xθ =  and 

2 ( )
ˆ

nXθ =  of the parameter θ  asymptotically normal? 
7. Find the MLE for the parameter of Poisson distribution. How good is X  in 
estimating λ of the Poisson distribution? Proof the asymptotic normality of the 
estimator and find the coefficient. 
8. Let X1, X2, …, Xn  be a sample from Poisson distribution with parameter λ. 
Consider X1 as the estimator of the parameter. Is the estimator unbiased? Is it 
consistent? 
9. Distribution given by f(x) = 

323 xx e−θθ  for x > 0; estimate θ  by the 
likelihood method. 

10.* Distribution given by f(x) = 
2 /2 x ax e

a
−  for x > 0; estimate a by the method of 

moments. Find the expectation. Is the estimator unbiased? Construct the 
unbiased estimator. 
Hint: use Gamma function.  
11. Consider consistency and unbiasedness of two estimators of the mean

1
1ˆ X
n

θ = +  and ( )2
ˆ / / .X nθ = σ  

 
 


