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8. Limit results for sequences of random variables 

I know of scarcely anything so apt to imagination  
as the wonderful form of cosmic order expressed by the law of errors.  

The huger the mob and the greater the anarchy, the more perfect is its way. 
Francis Galton 

 
Here we will consider some ideas about the long run behavior of random 

variables and their distributions.  
 

8.1. Convergence of random variables 
 

Let X be a random variable and let X1, X2, ... be a sequence of random 
variables. Since these are really just functions over Ω, we can simply apply the 
definition of convergence of a function from analysis. The sequence Xn 
converges to X (written Xn → X) if 

lim
𝑛→∞

𝑋𝑛(ω)= X(ω) for every ω ∈ Ω. 
In other words, Xn → X if for every ω ∈ Ω and ε > 0, there exists an N such 

that |Xn(ω) − X(ω)| < ε for all n  ≥  N. A more intuitive way to view the 
definition is that no matter what happens in the real world (you can think of a 
random variable X as a “black box”: you tell it what happened in the real world 
(ω ∈ Ω), and it will give you a number back X: Ω → R1), the random variables 
take on values such that the sequence converges. In probability theory, this is 
called sure convergence. 

If we weaken the requirements slightly, we arrive at a second notion of 
convergence. The sequence Xn converges almost surely (or converges with 
probability one) to X (written Xn 

a.s.
�� X) if  

P(ω ∈ Ω: 𝑋𝑛(ω) → 𝑋(ω)) = 1, 
or alternatively, if 

P(ω ∈ Ω: 𝑋𝑛(ω) ↛ 𝑋(ω)) = 0. 

In other words, Xn 
a.s.
�� X if the set of events that do not lead to convergence 

has measure zero. Almost sure convergence is used much more often in 
probability theory than sure convergence. 

There is a still weaker form of convergence which relies even more on 
probabilistic ideas. The sequence Xn converges in probability to X (written      
Xn 

𝑃
→ X) if for every ε > 0 

lim
𝑛→∞

P(|Xn − X| > ε) = 0.  

In other words, Xn 
𝑃
→ X if for every 𝛿 > 0 and ε > 0, there exists an N such 

that P(|Xn − X| > 𝜀) < δ for all n > N.  
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Convergence in probability essentially means that the probability that 
|Xn − X| exceeds any prescribed, strictly positive value converges to zero. The 
basic idea behind this type of convergence is that the probability of an 
“unusual” outcome becomes smaller and smaller as the sequence progresses. A 
sequence of random variables that converges in probability can still have an 
infinite number of violations of the convergence inequality. 

Almost sure convergence implies convergence in probability, although the 
latter is used more often in introductory textbooks because it is usually easier to 
demonstrate for a given sequence.  

The concept of convergence in probability is used very often in statistics. 
For example, an estimator is called consistent if it converges in probability to 
the parameter being estimated. 

The final mode of convergence relies exclusively on the idea of 
probability. Let Fn(a) = P(Xn ≤ a) and F(a) = P(X ≤ a). 

The sequence Xn converges in distribution to X (written Xn 
𝐷
→ X) if 

lim
𝑛→∞

𝐹𝑛(𝑎) = F(a). 
for all a such that F(a) is continuous. Convergence in distribution (also called 
weak convergence) forms the basis of the central limit theorem.  

Convergence in probability implies convergence in distribution. 
Thus, we have a “hierarchy” of convergence definitions: 

Xn 
a.s.
�� X  ⇨  Xn 

𝑃
→ X  ⇨  Xn 

𝐷
→ X. 

For convergence in distribution, it makes no difference whether the 
random variables Xn are independent or not; they do not even need to be defined 
on the same probability space. On the other hand, almost sure convergence 
implies a strong form of dependence between the random variables involved. 

 
8.2. Inequalities 

 
Calculate the exact probability that X lies in some set of interest is not 

always easy. However, simple bounds on these probabilities will often be 
sufficient for the task in hand. 

We start with a basic inequality. 
Theorem 8.1 (Basic inequality). If h(·) is a nonnegative function, then, for 

any a > 0 
P(h(X) ≥ a) ≤ E(h(X))/a.    (8.1) 

Proof. Define the following function: 

𝐼(ℎ ≥ 𝑎) (ω)  = �1, ℎ(𝑋) ≥  𝑎,
0, otherwise. 

IA is an indicator of a set A, and E(I) = P(h(X) ≥ a). Now, by its construction 
the indicator I satisfies h(X) − aI ≥ 0, and E(h(X)) ≥ aE(I) = aP(h(X) ≥ a).  
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The following useful inequalities can all be proved using Theorem 8.1 or 
by essentially the same method. You should do them as exercises. For any 
a > 0, we have: 

Markov’s inequality 
P(|X| ≥ a) ≤ E(|X|)/a;    (8.2) 

Chebyshov’s inequalitiy† 
P(|X| ≥ a) ≤ E(X2)/a2.    (8.3) 

Chebyshov’s inequality is perhaps the most famous in the whole 
probability theory (and probably the most famous achievement of the prominent 
Russian mathematician P.L. Chebyshov (1821–1894)). 

It follows from (8.3) 
P(|X − E(X)| ≥ a) ≤ var (X)/a2.       (8.4) 

The domain of applications of these inequalities is huge (and not restricted 
to probability theory). 

The names of P.L. Chebyshov and A.A. Markov (Chebyshov’s pupil 
A.A. Markov (1856–1922) is another prominent Russian mathematician) are 
associated with the rise of the Russian (more precisely, St. Petersburg) school of 
probability theory. Neither of them could be described as having an ordinary 
personality. P.L. Chebyshov had wide interests in various branches of 
contemporary science (and also in the political, economical and social life of the 
period). This included the study of ballistics in response to demands by his 
brother who was distinguished artillery general in the Russian Imperial Army. 
A.A Markov was a well-known liberal opposed to the tsarist regime: in 1913, 
when Russia celebrated the 300th anniversary of the Imperial House of 
Romanov, he and some of his colleagues defiantly organized a celebration of 
the 200th anniversary of the law of large numbers. 

Here is one important application. 
Example. Let X be a random variable such that var (X) = 0. Show that X is 

constant with probability one, i.e., P(X = E(X)) = 1. 
Solution. By (8.4), for any integer n ≥ 1, 

P[|X − E(X)| >1/n]≤ n2var (X) = 0.   (8.5) 
Hence, defining the events Cn = {|X − E(X)| > 1/n}↑, we have (see 

Appendix 5) 

P(X ≠ E(X)) = P(⋃ 𝐶𝑛∞
𝑛=1 ) = 𝑃 � lim

𝑛→∞
𝐶𝑛� = lim

𝑛→∞
𝑃(𝐶𝑛) =0. 

Another example of a powerful inequality used in more than one area of 
mathematics is Jensen’s inequality. It is named after J.L. Jensen (1859–1925), 
a Danish analyst who used it in his 1906 year paper.  

It is connected with an important concept of convexity that crops up in 
many areas of pure and applied mathematics.  
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Definition. A function g( ⋅) (from R1 to R1) is called convex if, for all a, 
there exists λ(a) such that 

g(x) ≥ g(a) + λ(a)(x − a), for all x.    (8.6) 
If g(∙) is differentiable, then a suitable λ is given by λ(a) = g'(a) and (8.6) 

takes the form 
g(x) ≥ g(a) + g'(a)(x − a).    (8.7) 

This says that a convex function lies above all its tangents. If g(∙) is not 
differentiable, then there may be many choices for λ; draw a picture of g(x) = |x| 
at x = 0 to see this. (There are several other definitions of a convex function, all 
equivalent to this.) We are interested in the following property of convex 
functions. 

Theorem 8.2 (Jensen’s inequality). Let X be a random variable with finite 
mean and g(∙) be a convex function. Then, 

E(g(X)) ≥ g(E(X)).       (8.8) 
Proof. Choosing a = E(X) in (8.6), we have g(X) ≥ g(E(X)) + λ(X − E(X)). 
Taking the expected value of each side gives (8.8).  
For example, g(x) = |x| and g(x) = x2 are both convex, so E(|X|) ≥ |E(X)| and 

E(X2) ≥(E(X))2, E(log X) ≤ logE(X) (because −log x is convex).  
The inequality has many important applications. Here is one to begin with.  
Example (Arithmetic–geometric means inequality). Let (xi, 1 ≤ i ≤ n) be 

any collection of positive numbers and (pi; 1 ≤ i ≤ n) any collection of positive 
numbers such that ∑ 𝑝𝑖𝑛

𝑖=1 . Show that 
p1x1 + p2x2 +· · ·+ pnxn ≥ 𝑥1

𝑝1𝑥2
𝑝2 · · ·𝑥𝑛

𝑝𝑛.  (8.9) 
Solution. Let X be the random variable with probability mass function      

P(X = xi ) =pi; 1 ≤ i ≤ n. Then, from the inequality logE(X) = log(p1x1 +· · ·+ 
pnxn) ≥ E(log X) = p1 log x1 +· · ·+ pn log xn = log(𝑥1

𝑝1𝑥2
𝑝2 · · · 𝑥𝑛

𝑝𝑛) the result 
(8.9) follows because log x is an increasing function.  

In the special case when pi = 1/n, 1 ≤ i ≤ n, then (8.9) takes the form  

1
𝑛�𝑥𝑖

𝑛

𝑖=1

≥ ��𝑥𝑖

𝑛

𝑖=1

�

1
𝑛

. 

 
8.3. The law of large numbers (The law of averages) 

 
To begin with popular interpretation of the law of large numbers (LLN) it 

states that:  
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If the probability of a given outcome to an event is P and the event is 
repeated N times, then the larger N becomes, so the likelihood increases that the 
closer, in proportion, will be the occurrence of the given outcome to N× P. 

For example, if the probability of throwing a double 6 with two dice is 
1/36, then the more times we throw the dice, the closer, in proportion, will be 
the number of double 6s thrown to of the total number of throws. This is what in 
everyday language is known as the law of averages. The overlooking of the 
vital words “in proportion” in the above definition leads to much 
misunderstanding.  

The “gambler's fallacy” lies in the idea that “in the long run” chances will 
even out. Thus if a coin has been spun 100 times, and has landed 60 times head 
uppermost and 40 times tails, many gamblers will state that tails are now due 
for a run to get even. There are fancy names for this belief. The theory is called 
the “maturity” of chances, and the expected run of tails is known as a 
“corrective”, which will bring the total of tails eventually equal to the total of 
heads. The belief is that the law of averages really is a law which states that in 
the longest of long runs the totals of both heads and tails will eventually become 
equal.  

In fact, the opposite is really the case. As the number of tosses gets larger, 
the probability is that the percentage of heads or tails thrown gets nearer to 
50 %, but that the difference between the actual number of heads or tails thrown 
and the number representing 50 % gets larger.  

Let us return to our example of 60 heads and 40 tails in 100 spins, and 
imagine that the next 100 spins result in 56 heads and 44 tails. The percentage 
of heads has now dropped from 60 % to 58 %. But there are now 32 more heads 
than tails, where there were only 20 before. The law of averages follower who 
backed tails is 12 more tosses to the bad. If the third hundred tosses result in 50 
heads and 50 tails, there are now 166 heads in 300 tosses, down to 
approximately 55 %, but the tails backer is still 32 tosses behind.  

Put another way, we would not be too surprised if after 100 tosses there 
were 60 % heads. We would be astonished if after a million tosses there were 
still 60 % heads, as we would expect the deviation from 50 % to be much 
smaller. Similarly, after 100 tosses, we are not too surprised that the difference 
between heads and tails is 20. After a million tosses we would be very surprised 
to find that the difference was not very much larger than 20. 

A chance event is uninfluenced by the events which have gone before (we 
speak about independent events). If a true die has not shown 6 for 30 throws, 
the probability of a 6 is still 1/6 on the 31st throw.  

It is interesting that despite significant statistical evidence and proof of all 
of the above people will go to extreme lengths to fulfill their belief in the fact 
that a “corrective” is due. The number 53 in an Italian lottery had failed to 
appear for some time and this lead to an obsession with the public to bet ever 
larger amounts on the number. People staked so much on this “corrective” that 
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the failure of the number 53 to occur for two years was blamed for several 
deaths and bankruptcies.  

In more precise and general mathematical setting we have following 
results. 

Theorem 8.3 (Weak law of large numbers). Let (Xn; n ≥ 1) be a sequence 
of independent random variables having the same finite mean and variance,              
μ = E(X1) and σ2 = var(X1). Then, as n→∞, 

(X1 +·…·+ Xn)/n 
𝑃
→ μ. 

It is customary to write 𝑋𝑛 = n−1 ∑ 𝑋𝑖𝑛
𝑖=1  (the sample mean). 

Proof. Recall (8.4) inequality: for any random variable Y and a > 0, 
P(|Y − E(Y)| ≥ a) ≤ var(Y)/a2. Hence, letting Sn = ∑ 𝑋𝑖𝑛

𝑖=1 , Y = (Sn − nμ)/n, we 
have ∀ 𝜀 > 0  P(|Sn − nμ|/n > ε) ≤ n−2𝐸(∑ (𝑋𝑖 − µ)𝑛

𝑖=1 )2/ε2  P= 
n−2ε−2 ∑ var (𝑋𝑖𝑛

𝑖=1 ) = n−1ε−2 σ2 →0 as n→∞, and the theorem is proved. 
The law essentially states that for any nonzero margin specified, no matter 

how small, with a sufficiently large sample there will be a very high probability 
that the average of the observations will be close to the expected value, that is, 
within the margin. 

An assumption of finite variance var(X1) = var(X2) = ... = σ2 < ∞ is not 
necessary. Large or infinite variance will make the convergence slower, but the 
LLN holds anyway. This assumption is often used because it makes the proof 
easier and shorter. 

The strong law of large numbers states that the sample average 
converges almost surely to the expected value as n→∞, 

(X1 +· ·+ Xn)/n 
a.s.
�� μ. 

That is, P�𝑋𝑛 → µ� = 1. 
This law justifies the intuitive interpretation of the expected value of a 

random variable as the "long-term average when sampling repeatedly". 
Moreover, if the summands are independent but not identically distributed, 

then 𝑋𝑛 − 𝐸�𝑋𝑛�
𝑎.𝑠.
�� 0  provided that each Xk has a finite second moment and 

∑ 𝑘−2var(𝑋𝑘) < ∞.∞
𝑘=1  This statement is known as Kolmogorov's strong law. 

The weak law states that for a specified large n, the average 𝑋𝑛 is likely to 
be near μ. Thus, it leaves open the possibility that the event                         
�𝑋𝑛 − µ� > ε   happens an infinite number of times, although at infrequent 
intervals. 

The strong law shows that this almost surely will not occur. In particular, it 
implies that with probability 1, we have that for any ε > 0 the inequality          
�𝑋𝑛 − µ� < ε holds for all large enough n. 

We can consider LLN as the linkage between the theoretical and 
experimental probabilities. Consider Xn in LLN as Bernoulli RVs and you 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
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receive that relative frequency m/n 
a.s./𝑃
�⎯⎯� P(A) (the strong/weak LLN in 

Borel/Bernoulli forms respectively). Remember the statistical definition of 
probability ((1.2.1) formula). 

Jakob Bernoulli (1659–1705) was the first to recognize the connection 
between long-run proportion and probability. In 1705, the year of his death, he 
provided a mathematical proof of the LLN in his book “Ars Conjectandi” (“The 
Art of Conjecturing”). This principle also plays a key role in the understanding 
of sampling distributions, enabling pollsters and researchers to make predictions 
based on statistics. 

 
8.4.  Sampling from a distribution. Central limit theorem 

 
Performing the experiment will give us a single value of a random variable 

X. Repeating the experiment independently n times will give us the so called 
random sample of size n. The word “random” is usually omitted for the sake of 
brevity. The individual values X1, X2, ..., Xn are independent, identically 
distributed (iid) random variables (think about them as the would-be values, 
before the experiment is actually performed). A specific set of observed values 
(x1, x2, ..., xn) is a set of sample values assumed by the sample. 

The sample mean is (unlike the old “means” which were constant 
parameters) a random variable, defined by: 𝑋𝑛 = 𝑋� = n−1 ∑ 𝑋𝑖𝑛

𝑖=1 . Its expected 
value E(𝑋�) = μ, where μ is the expected value of the distribution from which the 
sample is taken (sometimes also called “population” or “parent distribution”). 

Similarly var(𝑋�) = σ2/n where σ is the standard deviation of the original 
distribution. This implies that σ(𝑋�) = σ/√𝑛 (the standard deviation of 𝑋� is √𝑛 
smaller than σ; sometimes it is also called the standard error of 𝑋�). Note that the 
standard error tends to zero as the sample size n increases. 

So now we know how the mean and standard deviation of 𝑋� relate to the 
mean and standard deviation of the population.  

How about the shape of the 𝑋�  distribution, how does it relate to the shape 
of the original distribution? The surprising answer is: it doesn’t (for large n, in 
practice for n more than a handful, under some general conditions), instead, the 
distribution of 𝑋� has always the same regular shape, common to many 
distributions, from which we may sample!  

We already know that the mean and standard deviation of this distribution 
are μ and σ/√𝑛 respectively, now we would like to establish its asymptotic (i.e. 
large n) shape. This is, in a sense, trivial: since σ/√𝑛 →0 as n →∞, we get in 
the n → ∞ limit a degenerate (single-valued, with zero variance) distribution, 
with all probability concentrated at μ. 

We can prevent this distribution from shrinking to a zero width by 
standardizing 𝑋�  first, i.e. defining a new random variable                                    
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Z = �𝑋� –  μ�/(σ/√𝑛 ) and investigating its asymptotic (n → ∞) distribution 
instead (the new random variable has the mean of 0 and the standard deviation 
of 1, thus its shape cannot “disappear” on us). 

We do this by constructing the MGF of Z and finding its n → ∞ limit. 
Since Z = ∑ (𝑋𝑖𝑛

𝑖=1 − µ)/(σ/√𝑛) is the sum of independent, identically 
distributed random variables, its MGF is the MGF of (X1 – μ)/(σ/√𝑛 ) ≡ Y, 
raised to the power of n. 

We know that MGF MY(t) = 1+ E(Y)t + E(Y2)t2/2 + E(Y3)t3/3! + ... = 1 + 
t2/(2n) + st3/(6n3/2) + kt4/(24n2) + .... where s, k,... is the skewness, kurtosis,… of 
the original distribution. Raising MY(t) to the power of n and taking the n → ∞ 
limit results in 𝑒𝑡2/2 regardless of the values of s, k, .... (assuming they exist), 
since they are divided by higher than one power of n.  

Thus, we get a rather unexpected result: the distribution of Z has (for large 
n) the same symmetric shape (described by the above MGF limit), not in the 
least affected by the shape of the original distribution (from which the sample is 
taken). 

At the end of the section we give a precise formulation of the central limit 
theorem in the simplest form. 

The following theorem was proved in 1900–1901 by a Russian 
mathematician A.M. Lyapunov (1857–1918). 

A.M. Lyapunov and A.A. Markov were contemporaries and close friends. 
A.M. Lyapunov considered himself as Markov’s follower (although he was only 
a year younger). He made his name through Lyapunov’s functions, a concept 
that proved to be very useful in analysis of convergence to equilibrium in 
various random and deterministic systems. A.M. Lyapunov died tragically, 
committing suicide after the death of his beloved wife, amid deprivation and 
terror during the civil war in Russia. 

Theorem 8.4. Suppose X1, X2,..., Xn, are independent, identically 
distributed random variables, with finite mean µ and variance σ2.  

If Sn = ∑ 𝑋𝑖𝑛
𝑖=1 , then ∀ y ∈ R1 

lim
𝑛→∞

𝑃� �𝑆𝑛 – 𝐸(𝑆𝑛)�/�var(𝑆𝑛) < 𝑦� = 

= lim
𝑛→∞

𝑃 ��𝑋� –  μ�/(σ/√𝑛 )  < 𝑦�= Φ(y) = 1
√2π∫  exp �− 𝑥2

2
�𝑦

−∞ 𝑑𝑥. 
In fact, the convergence in previous equation is uniform in y. 
Here, the CLT was stated for iid RVs, but modern methods can extend it to 

a much wider situation and provide an accurate bound on the speed of 
convergence. 

Sometimes the CLT is called the law of errors. 
The bean machine, also known as the quincunx or Galton box, is a device 

invented by Sir Francis Galton to demonstrate the law of errors and the normal 
distribution. See http://www.youtube.com/watch?v=AUSKTk9ENzg.  

http://www.youtube.com/watch?v=AUSKTk9ENzg.
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See also a good video about central limit theorem (empirical proof) 
http://www.youtube.com/watch?v=NUClFiP0Nhc&feature=related. 

 
8.5. Exercises 

 
1. Suppose that it is known that the number of items produced at a factory per 
week is a random variable X with mean 50.  
(i) What can we say about the probability X ≥ 75?  
(ii) Suppose that the variance of X is 25. What can we say about P(40< X < 60)? 
2. Let X is binomial (4, 1/2). Use Chebyshov’s inequality to estimate 
P(|X − 2| ≥ 2) and compare with the exact probability. 
3. Let X10000 be the fraction of heads in 10,000 tosses. Use Chebyshov’s 
inequality to bound P(|Xn − 1/2| ≥ 0.01) and the normal approximation to 
estimate this probability. 
4. Let X have a Poisson distribution with mean 16. Estimate P(X ≥ 28) using 
(i) Chebyshov’s inequality, (ii) the normal approximation. 
5. Suppose that each of 300 patients has a probability of 1/3 of being helped 
by a treatment. Find approximately the probability that more than 120 patients 
are helped by the treatment. 
6. A person bets you that in 100 tosses of a fair coin the number of heads will 
differ from 50 by 4 or more. What is the probability you will win this bet? 
7. Suppose we toss a coin 100 times. Which is bigger, the probability of 
exactly 50 heads or at least 60 heads? 
8. Suppose that 10 % of a certain brand of jelly beans is red. Use the normal 
approximation to estimate the probability that in a bag of 400 jelly beans there 
are at least 45 red ones. 
9. To estimate the percent of voters who oppose a certain ballot measure, a 
survey organization takes a random sample of 200 voters. If 45 % of the voters 
oppose the measure, estimate the chance that (i) exactly 90 voters in the sample 
oppose the measure, (ii) more than half the voters in the sample oppose the 
measure. 
10. A basketball player makes 80 % of his free throws on the average. Use the 
normal approximation to compute the probability that in 25 attempts he will 
make at least 23. 
11. In a 162 game season find the approximate probability that a team with a 
0.5 chance of winning will win at least 87 games. 
12. Suppose we roll a die 600 times. What is the approximate probability that 
the number of 1’s obtained lies between 90 and 110? 
13. British Airways and United offer identical service on two flights from New 
York to London that leave at the same time. Suppose that they are competing 
for the same pool of 400 customers who choose an airline at random. What is 
the probability United will have more customers than its 230 seats? 

http://www.youtube.com/watch?v=NUClFiP0Nhc&feature=related
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14. An insurance company has 10,000 automobile policy-holders. The 
expected yearly claim per policyholder is $240 with a standard deviation of 
$800. Approximate the probability that the yearly claim exceeds $2.7 million. 
15. On each bet a gambler loses $1 with probability 0.7, loses $2 with 
probability 0.2, and wins $10 with probability 0.1. Estimate the probability that 
the gambler will be losing after 100 bets. 
16. Suppose we roll a die 10 times. What is the approximate probability that 
the sum of the numbers obtained lies between 30 and 40? 
17. An airline knows that in the long run only 90 % of passengers who book a 
seat show up for their flight. On a particular flight with 300 seats there are 324 
reservations. (i) Assuming passengers make independent decisions what is the 
chance that the flight will be over booked? (ii) Redo (i) assuming passengers 
travel in pairs and each pair flips a coin with probability 0.9 of heads to see if 
they will both show up or both stay home. 
18. A student is taking a true/false test with 48 questions. (i) Suppose she has a 
probability p = 3/4 of getting each question right. What is the probability she 
will get at least 38 right? (ii) Answer the last question if she knows the answers 
to half the questions and flips a coin to answer the other half. Notice that in each 
case the expected number of questions she gets right is 36. 
19. The number of students who enroll in a psychology class is Poisson with 
mean 100. If the enrollment is > 120 then the class will be split into two 
sections. Estimate the probability that this will occur. 
20. A gymnast has a difficult trick with a 10 % chance of success. She tries the 
trick 25 times and wants to know the probability she will get exactly two 
successes. Compute the (i) exact answer, (ii) Poisson approximation, (iii) 
normal approximation. 
21. Suppose that we roll two dice 180 times and we are interested in the 
probability that we get exactly 5 double sixes. Find (i) the normal 
approximation, (ii) the exact answer, (iii) the Poisson approximation. 
22. A seed manufacturer sells seeds in packets of 50. Assume that each seed 
germinates with probability 0.99 independently of all the others. The 
manufacturer promises to replace, at no cost to the buyer, any packet with 3 or 
more seeds that do not germinate. (a) Use the Poisson to estimate the probability 
a packet must be replaced. (b) Use the normal to estimate the probability that 
the manufacturer has to replace more than 70 of the last 4000 packets sold. 
23. A probability class has 30 students. As part of an assignment, each student 
tosses a coin 200 times and records the number of heads. What is the probability 
no student gets exactly 100 heads? 
24. A die is rolled repeatedly until the sum of the numbers obtained is larger 
than 200. What is the probability that you can do this in 66 rolls or fewer? 
25. Suppose that the checkout time at a grocery store has a mean of 5 minutes 
and a standard deviation of 2 minutes. Estimate the probability that a checker 
will serve at least 49 customers during her 4-hour shift. 
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26. A fair coin is tossed 2500 times. Find a number m so that the chance that 
the number of heads is between 1250 − m and 1250 + m is approximately 2/3. 
27. Members of the Beta Upsilon Tau fraternity each drink a random number 
of beers with mean 6 and standard deviation 3. If there are 81 fraternity 
members, how much should they buy so that using the normal approximation 
they are 93.32 % sure they will not run out? 
28. For a class project, you are supposed to take a poll to forecast the outcome 
of an election. How many people do you have to ask so that with probability 
0.95 your estimate will not differ from the true outcome by more than 5 %?  
29. Suppose we take a poll of 2,500 people. What percentage should the leader 
have for us to be 99 % confident that the leader will be the winner? 
30. An electronics company produces devices that work properly 95 % of the 
time. The new devices are shipped in boxes of 400. The company wants to 
guarantee that k or more devices per box work. What is the largest k so that at 
least 95 % of the boxes meet the warranty? 


