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7. Continuous random variables (RVs with densities) 
 

All models are wrong but some are useful. 
George Box 

 
All things flow. 

Heraclitus 
 

7.1.  Density and distribution functions 
 

Discrete random variables take only a countable set of values. But there are 
many important questions in which we must consider random variables not 
subject to such a restriction. This means that we need a sample space that is not 
countable. Technical questions of “measurability” then arise which cannot be 
treated satisfactorily without more advanced mathematics. This kind of 
difficulty stems from the impossibility of assigning a probability to every subset 
of the sample space when it is uncountable. The matter is resolved by confining 
ourselves to sample sets belonging to an adequate class called a σ-algebra (also 
sigma-algebra, σ-field, sigma-field); see Appendix 4. Here we will take up a 
particular but very important situation that covers most applications and 
requires little mathematical abstraction. This is the case of a RV with a 
“density” (continuous RV). 

Consider a function f (·) defined on R1 = (−∞, +∞) and satisfying two 
conditions: 

 (i) ∀ u: f (u) ≥ 0;      
(ii) ∫ 𝑓(𝑢)𝑑𝑢 ∞

−∞ = 1.        (7.1) 
Such a function is called a probability density function (PDF) or shortly 

density function on R1. The integral in (ii) is the Riemann integral taught in 
calculus. You may recall that if f (·) is continuous or just piecewise continuous, 
then the definite integral ∫ 𝑓(𝑢) 𝑑𝑢 𝑏

𝑎  exists for any interval [a, b]. But in order 
that the integral over the infinite range (−∞, +∞) should exist, further conditions 
are needed to make sure that f (u) is pretty small for large |u|. In general, such a 
function is said to be “integrable over R1”. The requirement that the total 
integral be equal to 1 is less serious than it might appear, because if 
∫ 𝑓(𝑢)𝑑𝑢 ∞
−∞ = 𝑀 < ∞, we can just divide through by M and use f (·) /M instead 

of f (·).  
Density functions can be a great variety. The only constraints are that the 

curve should not lie below the x-axis anywhere, and the area under the curve 
should be equal to 1.  
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We can now define a class of random variables on a general sample space 
as follows: X is a function on Ω: ω → X(ω) ∈ R1, but its probabilities are 
prescribed by means of a density function so that for any interval [a, b] we have  

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) = ∫ 𝑓(𝑢) 𝑑𝑢 𝑏
𝑎 . 

(7.2) 
More generally, if A is the union of intervals not necessarily disjoint and 

some of which may be infinite, we have 
P(X ∈ A) = ∫ 𝑓(𝑢) 𝑑𝑢𝐴 .      (7.3) 

Such a random variable is said to have a density, and its density function 
is f(·).  

If A is a finite union of intervals, then it can be split up into disjoint ones, 
some of which may abut on each other, such as A = ⋃ [𝑎𝑗 , 𝑏𝑗]𝑘

𝑗=1 , and then the 
right-hand side of (7.3) may be written as ∑ ∫ 𝑓(𝑢) 𝑑𝑢 𝑏𝑗

𝑎𝑗
𝑘
𝑗=1 . This is a property 

of integrals which is geometrically obvious when you consider them as areas.  
Next if A = (−∞, x], then we can write 

F(x) = P(X ≤ x) = ∫ 𝑓(𝑢)𝑑𝑢 𝑥
−∞ .   (7.4) 

Such functions F(·) are called absolutely continuous. 
Formula (7.4) defines the distribution function F(·) of X. Sometimes F(·) 

is called cumulative distribution function (CDF). It follows from the 
fundamental theorem of calculus that if f (·) is continuous, then f (·) is the 
derivative of F(·): 

F'(x) = f (x).     (7.5) 

Thus in this case the two functions f (·) and F(·) mutually determine each 
other. 

If f (·) is not continuous everywhere, (7.5) is still true for every x at which 
f (·) is continuous. These things are proved in calculus. 

It has to be said that for many purposes, the detailed information about 
what exactly the outcome space Ω is where 𝑋 ∈ Ω is defined is actually 
irrelevant. For example, normal RVs arise in a great variety of models in 
statistics, but what matters is that they are jointly or individually Gaussian, i.e. 
have a prescribed PDF. Also, an exponential RV arises in many models and 
may be associated with a lifetime of an item or a time between subsequent 
changes of a state in a system, or in a purely geometric context. It is essential to 
be able to think of such RVs without referring to a particular Ω. 

Let us observe that in the definition above of a random variable with a 
density, it is implied that the sets {a ≤ X ≤ b} and {X ∈ A} have probabilities 
assigned to them; in fact, they are specified in (7.2) and (7.3) by means of the 
density function (for more details see Appendix 4). If CDF has the form (7.5) 
one says that the corresponding RV has an absolutely continuous distribution 
(with a PDF f (·)). 
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For the discrete distributions, the CDF is locally constant, with positive 
jumps at the points of a discrete set.  

So far we have encountered two types of RVs: either  
(i) with a discrete set of values (finite or countable) or  
(ii) with a PDF (on a subset of R1).  
These types do not exhaust all occurring situations. In particular, a number 

of applications require consideration of an RV X that represents a “mixture” of 
the two above types where a positive portion of a probability mass is sitting at a 
point (or points) and another portion is spread out with a PDF over an interval 
in R1. Then the corresponding CDF FX has jumps at the points xj where 
probability P(X = xj) > 0, of a size equal to the probability, and is absolutely 
continuous outside these points.  

 
7.2. Continuous as compared to discrete RVs 

 
Rather, let us remark on the close resemblance between the formulas above 

and the corresponding ones for discrete RVs. This will be amplified by a 
definition of mathematical expectation in the present case and listed below for 
comparison. 

      Countable case      Density case 
 

Range xn, n =1,2,… –∞< u <∞ 
Element of probability pn 𝑓(𝑢) 𝑑𝑢 

P(a ≤ X ≤ b) ∑
≤≤ bxa

n
n

p  
�𝑓(𝑢)𝑑𝑢 
𝑏

𝑎

 

P(X ≤ x) ∑
≤xx

nn
n

px  
�𝑓(𝑢)𝑑𝑢 
𝑥

−∞

 

E(X) ∑
n

nn px  
� 𝑓(𝑢)𝑢𝑑𝑢 
∞

−∞

 

proviso ∞<∑
n

nn px  
� 𝑓(𝑢)|𝑢|𝑑𝑢 < ∞
∞

−∞

 

More generally,  
E(ϕ(X)) = ∫ ϕ(𝑢)𝑓(𝑢)𝑑𝑢∞

−∞ .    (7.6) 
The expectation E(X) of a continuous random variable X has the same 

useful basic properties as in the discrete case:  
let X be a random variable with finite mean E(X), a and b be constants, and 

let g and h be functions, then: 
(i) E(aX + b) = aE(X) + b; 
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(ii) and generally if g(X) and h(X) have finite mean, then  
E(ag(X) + bh(X)) = aE(g(X)) + bE(h(X)); 

(iii) if P(a ≤ X ≤ b) = 1, then a ≤ E(X) ≤ b. 
Prove the properties (first, don’t forget to establish the necessary absolute 

convergence). 
Further insight into the analogy is gained by looking at the following 

picture: 

 
 

Figure 7.1 
The curve is the graph of a density function f (·). We have divided the x 

axis into m + 1 pieces, not necessarily equal and not necessarily small, and 
denote the area under the curve between xn and xn+1 by pn, thus: pn = 
∫ 𝑓(𝑢) 𝑑𝑢 𝑥𝑛+1
𝑥𝑛

, 0 ≤ n ≤ m, where x0 = −∞, xm+1 = +∞. It is clear that we have 
∀n: pn ≥ 0 and  ∑ 𝑝𝑛∞

𝑛=0 = 1. 
Hence the numbers pn satisfy the normalized conditions. Instead of a finite 

partition we may have a countable one by suitable labeling such as . . . , p−2, 
p−1, p0, p1, .... Thus we can derive a set of “elementary probabilities” from a 
density function in infinitely many ways. This process may be called 
discretization. If X has the density f (·), we may consider a random variable Y 
such that P(Y = xn) = pn, where we may replace xn by any other number in the 
subinterval [xn, xn+1). 

Now if f (·) is continuous and the partition is sufficiently fine, namely if the 
pieces are sufficiently small, then it is geometrically evident that Y is in some 
sense a discrete approximation of X. For instance, E(Y) = ∑ 𝑝𝑛𝑥𝑛𝑛  will be an 
approximation of E(X) = ∫ 𝑢𝑓(𝑢)𝑑𝑢∞

−∞ . Remember the Riemann sums defined 
in calculus lead to a Riemann integral? There the strips with curved tops in 
Figure 7.1 are replaced by flat tops (rectangles).  

From a practical point of view, it is the discrete approximations that can 
really be measured, whereas the continuous density is only a mathematical 
idealization.  
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Having dwelled on the similarity of the two cases of random variable, we 
will pause to stress a fundamental difference between them. If X has a density, 
then by (7.2) with a = b = x, we have 

P(X = x) =∫ 𝑓(𝑢) 𝑑𝑢 =  0.𝑥
𝑥     (7.7) 

Geometrically speaking, this merely states the trivial fact that a line 
segment has zero area. Since x is arbitrary in (7.7), it follows that X takes any 
preassigned value with probability zero. This is in direct contrast to a random 
variable taking a countable set of values, for then it must take some of these 
values with positive probability. It seems paradoxical that on the one hand, X(ω) 
must be some number for every ω, and on the other hand any given number has 
probability zero.  

The following simple example should clarify this point. 
Example 7.1. Spin a needle on a circular dial. When it stops it points at a 

random angle θ (measured from the horizontal, say). Under normal conditions it 
is reasonable to suppose that θ is uniformly distributed between 0◦and 360 
degrees. This means it has the following density function: 

f (u) = 1/360 for 0 ≤ u ≤ 360, and f (u) = 0 otherwise. 
Thus for any θ1 < θ2 we have 

P(θ1 ≤ θ ≤ θ2) =∫ 1/360 𝑑𝑢 =θ2
θ1

 (θ2 − θ1)/360.   (7.8) 
This formula says that the probability of the needle pointing between any 

two directions is proportional to the angle between them. If the angle θ2 − θ1 
shrinks to zero, then so does the probability. Hence in the limit the probability 
of the needle pointing exactly at θ is equal to zero. From an empirical point of 
view, this event does not really make sense because the needle itself must have 
a width. So in the end it is the mathematical fiction or idealization of a “line 
without width” that is the root of the paradox. 

There is a deeper way of looking at this situation which is very rich. It 
should be clear that instead of spinning a needle we may just as well “pick a 
number at random” from the interval [0, 1]. This can be done by bending the 
circle into a line segment and changing the unit. Now every point in [0, 1] can 
be represented by a decimal such as  

0.141592653589793….      (7.9) 
There is no real difference if the decimal terminates because then we just 

have all digits equal to 0 from a certain place on, and 0 is no different from any 
other digit. Thus, to pick a number in [0, 1] amounts to picking all its decimal 
digits one after another. Now the chance of picking any prescribed digit, say the 
first digit “1” above, is equal to 1/10 and the successive pickings are totally 
independent trials. Hence the chance of picking the 15 digits shown in (7.9) is 
equal to 0.115. 

If we remember that 109 is 1 billion, this probability is already so small 
that according to Emile Borel (1871–1956; great French mathematician and one 
of the founders of modern probability theory), it is terrestrially negligible and 
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should be equated to zero! But we have only gone 15 digits in the decimals of 
the number π − 3, so there can be no question whatsoever of picking this 
number itself. So here again we are up against a mathematical fiction − the real 
number system. 

We may generalize example 1 as follows. Let [a, b] be any finite, 
nondegenerate interval in R1 and put  

f (u) = 1/(b – a) for a ≤ u ≤ b, f (u) = 0 otherwise. 
This is a density function, and the corresponding distribution is called the 

uniform distribution on [a, b].  
 

7.3.  Bertrand’s paradox 
 
A chord is drawn at random in a circle. What is the probability that its 

length exceeds that of a side of an inscribed equilateral triangle? 
Let us draw such a triangle in a circle with center 0 and radius R, and make 

the following observations. The side is at distance R/2 from 0; its midpoint is on 
a concentric circle of radius R/2; it subtends an angle of 120 degrees at 0. You 
ought to know how to compute the length of the side, but this will not be 
needed. Let us denote by A the desired event that a random chord be longer than 
that side. Now the length of any chord is determined by any one of the three 
quantities: its distance d from 0; the location of its midpoint M; the angle θ it 
subtends at 0. See Figure 7.2. We are going to assume in turn that each of these 
has a uniform distribution over its range and compute the probability of A under 
each assumption. 

(1) Suppose that d is uniformly distributed in [0, R]. This is a plausible 
assumption if we move a ruler parallel to itself with constant speed from a 
tangential position toward the center, stopping somewhere to intersect the circle 
in a chord. It is geometrically obvious that the event A will occur if and only if 
(shortly iff) d < R/2. Hence P(A) = 1/2. 

 
Figure 7.2 
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(2) Suppose that M is uniformly distributed over the disk D formed by the 
given circle. This is a plausible assumption if a tiny dart is thrown at D and a 
chord is then drawn perpendicular to the line joining the hitting point to 0. Let 
D' denote the concentric disk of radius R/2. Then the event A will occur iff M 
falls within D'.  

Hence P(A) = P(M ∈ D' ) = (area of D' )/(area of D) = 1/4. 
(3) Suppose that θ is uniformly distributed between 0 and 360 degrees. 

This is plausible if one endpoint of the chord is arbitrarily fixed and the other is 
obtained by rotating a radius at constant speed to stop somewhere on the circle. 
Then it is clear from the picture (Figure 7.3) that A will occur iff θ is between 
120 and 240 degrees. Hence P(A) = (240−120)/360= 1/3. 

Thus the answer to the problem is 1/2, 1/4, or 1/3 according to the different 
hypotheses made. It follows that these hypotheses are not compatible with one 
another. Other hypotheses are possible and may lead to still other answers. This 
problem was known as Bertrand’s paradox in the earlier days of discussions 
of probability theory. 

But of course the paradox is due only to the fact that the problem is not 
well posed without specifying the underlying nature of the randomness. 

It is not surprising that the different ways of randomization should yield 
different probabilities, which can be verified experimentally by the mechanical 
procedures described.  

Here is a facile analogy. Suppose that you are asked how long it takes to 
go from your dormitory to the classroom without specifying whether we are 
talking about “walking,” “biking,” or “driving” time. Would you call it 
paradoxical that there are different answers to the question? 

 
7.4.  Exponential distribution 

 
Suppose you station yourself at a spot on a relatively serene country road 

and watch the cars that pass by that spot. With your stopwatch you can clock the 
time before the first car passes. This is a random variable T called the waiting 
time. Under certain circumstances it is a reasonable hypothesis that T has the 
density function below with a certain λ > 0: 

f (u) = λe−λu, u ≥ 0.      (7.10) 

It goes without saying that f (u) = 0 for u < 0. We see that f (·) satisfies the 
conditions in (7.1), so it is indeed a density function. 

The corresponding distribution function is obtained by integrating f (·) as 
in (7.4): 

P(T ≤ x) = F(x) = ∫ λ𝑒−λ𝑢𝑑𝑢𝑥
−∞ = 1− e−λx.           (7.11) 

The distribution defined by the PDF and the CDF is called the exponential 
distribution with parameter λ. 
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Figure 7.3. The exponential distribution with parameter λ (lambda) 

 
In this case it is often more convenient to use the so called tail 

probability: 
P(T > x) = 1 − F(x) = e−λx.   (7.12) 

For every given x, say 5 (seconds), the probability e−5λ in (7.12) decreases 
as λ increases. This means that your waiting time tends to be shorter if λ is 
larger. On a busy highway λ will indeed be large. The expected waiting time is 
given by 

E(T) = ∫ 𝑢λ𝑒−λ𝑢𝑑𝑢∞
0 = 1/λ.    (7.13) 

This result supports our preceding observation that T tends on the average 
to be smaller when λ is larger. 

The exponential distribution is a very useful model for various types of 
waiting time problems such as telephone calls, service times, splitting of 
radioactive particles, etc. It also plays a central role in reliability, where the 
exponential distribution is one of the most important failure laws. In reliability 
studies, the time to failure for a physical component or a system is expected to 
be exponentially distributed if the unit fails as soon as some single event, such 
as malfunction of a component, occurs, assuming such events happen 
independently. 

Exponential distribution has a strong connection with Poisson distribution. 
Let random variable X(0, t) be the number of arrivals in the time interval 

[0, t] and assume that it is Poisson distributed. Our interest now is in the time 
between two successive arrivals, which is, of course, also a random variable. 
Let this interarrival time be denoted by T. Its probability distribution function, 
FT (t), is, by definition, FT (t) = P(T ≤ t) = 1 − P(T > t) for t ≥ 0, FT (t) = =0 
elsewhere. 
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In terms of X(0, t), the event T > t is equivalent to the event that there are 
no arrivals during time interval [0, t], or X(0, t) = 0. Hence, since  
P(X(0, t) = 0) = e−λx, we have  

FT (t) = 1− e−λx. 
Comparing this expression with (7.11), we can establish the result that the 

interarrival time between Poisson arrivals has an exponential distribution; the 
parameter λ in the distribution of T is the mean arrival rate associated with 
Poisson arrivals. 

 
7.5.  Multivariate continuous distribution. Independence 

 
The random vector (X, Y) is said to have a joint density function f (·,·) in 

case 
P(X ≤ x, Y ≤ y) =∫ ∫ 𝑓(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 .𝑦

−∞
𝑥
−∞   (7.14) 

for all (x, y). It then follows that for any “reasonable” subset S of the Cartesian 
plane (called a Borel set, see Appendix 5 for more detail), we have 

P((X, Y) ∈ S) =∬ 𝑓(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣𝑆 .   (7.15) 
For example, S may be polygons, disks, ellipses, and unions of such 

shapes. 
Note that (7.15) contains (7.14) as a very particular case and we can, at a 

pinch, accept the more comprehensive condition (7.15) as the definition of f as 
density for (X, Y). However, here is a heuristic argument from (7.14) to (7.15). 
Let us denote by R(x, y) the infinite rectangle in the plane with sides parallel to 
the coordinate axes and lying to the southwest of the point (x, y). The picture 
below shows that for any δ > 0 and δ' > 0:  

R(x + δ, y + δ') \ R(x + δ, y) \ 𝑅(𝑥, 𝑦 +  𝛿′) is the shaded rectangle 

 
Figure 7.4 

It follows that if we manipulate the relation (7.14) in the same way, we get  
P(x ≤ X ≤ x + δ, y ≤ Y ≤ y + δ') =∫ ∫ 𝑓(𝑢,𝑣) 𝑑𝑢 𝑑𝑣 .𝑦+𝛿′

𝑦
𝑥+𝛿
𝑥  

This means (7.15) is true for the shaded rectangle. By varying x, y as well 
as δ, δ', we see that the formula is true for any rectangle of this shape. Now any 
reasonable figure can be approximated from inside and outside by a number of 
such small rectangles (even just squares) − a fact known already to the ancient 
Greeks. Hence in the limit we can get (7.15) as asserted. 

The joint density function f (·,·) satisfies the following conditions: 
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(i) f (u, v) ≥ 0 for all (u, v); 
(ii) ∫ ∫ 𝑓(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 =  1.∞

−∞
∞
−∞  

Of course, (ii) implies that f (·,·) is integrable over the whole plane. 
Frequently we also assume that f (·,·) is continuous. Now the formulas 
analogous to discrete case (marginal distributions) are 

P(X ≤ x) =∫ 𝑓(𝑢,∗) 𝑑𝑢𝑥
−∞ , where f (u,∗) = ∫ 𝑓(𝑢,𝑣)𝑑𝑣,∞

−∞     
P(Y ≤ y) =∫ 𝑓(∗,𝑣) 𝑑𝑣𝑦

−∞ , where f (∗, v) = ∫ 𝑓(𝑢, 𝑣)𝑑𝑢.∞
−∞   (7.16) 

The functions f (u, ∗) and f (∗, v) are respectively called the marginal 
density functions of X and Y. They are derived from the joint density function 
after “integrating out” the variable that is not in question. 

For any “reasonable” (i.e. Borel) function ϕ: 
𝐸(ϕ(𝑋,𝑌 ))  = ∫ ∫ ϕ(𝑢,𝑣)𝑓(𝑢,𝑣) 𝑑𝑢 𝑑𝑣.∞

−∞
∞
−∞   (7.17) 

The class of reasonable functions includes all bounded continuous 
functions in (u, v), indicators of reasonable sets, and functions that are 
continuous except across some smooth boundaries, for which the integral above 
exists, etc. 

In the most general case the joint distribution function F(·,·) of (X, Y) is 
defined by 

F(x, y) = P(X ≤ x, Y ≤ y) for all (x, y).   (7.18) 
If we denote lim𝑦→∞ 𝐹(𝑥, 𝑦)  by F(x, ∞), we have F(x, ∞) = P(X ≤ x,  

Y < ∞) = P(X ≤ x) = FX(x) since “Y < ∞” puts no restriction on Y. Thus F(x, ∞) 
is the marginal distribution function of X. The marginal distribution function 
of Y FY(y) is similarly defined. 

Independence is an extremely important property; its definition is by now 
familiar. 

Jointly distributed random variables are independent if, for all x and y, 
P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y). 

In terms of distributions, this is equivalent to the statement that 
F(x, y) = FX(x)FY(y).      (7.19) 

For random variables with a density, it follows immediately by 
differentiating that 

f(x, y) = fX (x) fY (y) 
if X and Y are independent. The converse is obviously true (If X and Y have 
density f (x, y), and for all x and y it is true that f (x, y) = fX(x) fY(y), then X and Y 
are independent). 

If C = ((x, y): x ∈ A, y ∈ B) and X and Y are independent, then 
∬ 𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦𝐶 = ∫ 𝑓𝑋 (𝑥)𝑑𝑥𝐴 ∫ 𝑓𝑌 (𝑦)𝑑𝑦𝐵 ,  (7.20) 

assuming of course that the integrals exist. 
Finally, if the random variables U and V satisfy U = g(X), V = h(Y), and X 

and Y are independent, then U and V are independent too. To see this, just let    
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A = (x: g(x) ≤ u) and B = (g: h(y) ≤ v), and the independence follows from (7.19) 
and (7.20).  

 
7.6. Transformation of random variables 

 
We have interpreted the random vector (X, Y) as a random point Q picked 

in R2 according to some density f (x, y), where (x, y) are the Cartesian 
coordinates of Q. Of course, the choice of coordinate system is arbitrary; we 
may for some very good reasons choose to represent Q in another system of 
coordinates (u, v), where (x, y) and (u, v) are related by u = u(x, y) and v = 
v(x, y). What now is the joint density of U = u(X, Y) and V = v(X, Y)? 

Equally, given a pair of random variables X and Y, our real interest may 
well lie in some function or functions of X and Y. What is their (joint) 
distribution? 

At a symbolic or formal level, the answer is straightforward. 
For U and V above, and A = {x, y: u(x, y) ≤ w, v(x, y) ≤ z}, 

FU,V (w, z) = ∫ 𝑓𝑋,𝑌 (𝑥,𝑦) 𝑑𝑥 𝑑𝑦𝐴 . 
The problem is to turn this into a more tractable form. 
Fortunately, there are well-known results about changing variables within 

a multiple integral that provide the answer. We state without proof a theorem 
for a transformation T satisfying the following conditions. Let C and D be 
subsets of R2. Suppose that T given by T (x, y) = (u(x, y), v(x, y)) maps C one–
one onto D, with inverse T−1 given by T−1(u, v) = (x(u, v), y(u, v)), which maps 
D one–one onto C.  

We define the so-called Jacobian J as 

J (u, v) = �𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣
𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣�  = 𝜕𝑥

𝜕𝑢
𝜕𝑦
𝜕𝑣
− 𝜕𝑦

𝜕𝑢
𝜕𝑥
𝜕𝑣

 , 

where the derivatives are required to exist and be continuous in D. Then we 
have the following result. 

Theorem 7.1. Let X and Y have density f (x, y), which is zero outside C. 
Then U = u(X, Y) and V = v(X, Y) have joint density  

fU.V(u, v) = fX,Y(x(u, v), y(u, v))|J (u, v)| for (u, v) ∈ D. (7.21) 
It follows from (7.21): 
Functions (one RV): If continuous random variables X and Y are such that 

Y = g(X) for some function g(·) that is differentiable and strictly increasing, then  
fY (y) = fX (g−1(y)) 𝑑

𝑑𝑦
 [g−1(y)],   (7.22) 

where g−1(·) is the inverse function of g(·) (see Example 11 about inverse 
function).  

In general, we can write fY (y) = 𝑑
𝑑𝑦 ∫ 𝑓𝑋(𝑥)𝑑𝑥{𝑥:𝑔(𝑥)≤𝑦} . 
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Example 7.2. Suppose in a problem involving the random variable T above 
(interarrival time, see section 7.4), what we really want to measure is its 
logarithm: S = ln T. 

This is also a random variable; it is negative if T < 1, zero if T = 1, and 
positive if T > 1. What are its probabilities? We may be interested in              
P(a ≤ S ≤ b), but it is clear that we need only find P(S ≤ x), namely the 
distribution function FS(·) of S. The function ln x is monotone and its inverse is 
ex so that S ≤ x ⇔ ln T ≤ x ⇔ T ≤ ex.  

Hence by (7.11) FS(x) = P{S ≤ x} = P{T ≤ ex} = 1− 𝑒−λ𝑒𝑥. 
The density function fS is obtained by differentiating:  

fS(x) = FS
'(x) = λex𝑒−λ𝑒𝑥 = λ𝑒𝑥−λ𝑒𝑥. 

Consider among the examples some wildly used PDFs and their numerical 
characteristics. 

 
7.7. Examples 

 
Example 1. Let X be uniformly distributed on (0, 1) with density f (x) = 1 if 

0< x < 1; f (x) = 0 otherwise.  
If Y = −λ−1 ln X, where λ > 0, what is the density of Y? 
Solution. First, we seek the distribution of Y: FY (y) = P(−λ−1 ln X ≤ y) = 

P(ln X ≥ −λy) = P(X ≥ e−λy) = 1 − e−λy for y ≥ 0; FY (y) = 0 otherwise. Hence, the 
derivative exists except at y = 0, and fY (y) = λe−λy if y > 0; fY (y) = 0 if y < 0. 
This is the exponential density with parameter λ.  

Example 2. Let X have the standard normal distribution with density  
 

f (x) = (2π)− 1/2exp(− x2/2).    (7.23) 
 

Find the density of Y = σ X + μ for given constants μ and σ ≠ 0. Also, find 
the density of Z = X2. 

Solution. P(σ X + μ ≤ y) = P(σ X ≤ y − μ) =  

� 𝑃 �𝑋 ≤
𝑦 –  µ
σ � , if σ >  0; 

𝑃(𝑋 ≥  (𝑦 –  µ)/σ), if σ <  0
= � 𝐹𝑋  �

𝑦 –  µ
σ � , if σ >  0;

1 – 𝐹𝑋 ((𝑦 –  µ)/σ), if σ <  0.
 

Hence, differentiating with respect to y, 
fY (y) = fX(y – μ)/σ)/|σ| = (2πσ2)− 1/2exp(– (y – μ)2/(2σ2)). (7.24) 

Normal densities play the important role in probability theory and statistics 
due to central limit theorem (see part 8). 

Some care is required if transformation function is not one–one as in the 
second case: 

P(X2 ≤ z) = P(X ≤ √𝑧) – P(X ≤ −√𝑧) = FX (√𝑧) – FX(−√𝑧). 
Differentiating now gives 
fZ (z) = 1/(2√𝑧)𝑓𝑋(√𝑧) + 1/(2√𝑧)𝑓𝑋�−√𝑧� = (1/√2π𝑧)exp(−z/2). (7.25) 
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Remark 7.1. The density given by (7.24) is known as the normal density 
with parameters μ and σ2, sometimes denoted by N(μ, σ2), see Figure 7.5. The 
standard normal density is N(0, 1) (see (7.23)).  

 
Figure 7.5. Normal density with parameters μ (mu) and σ2 (sigma squared) 
 
The density given by (7.25) is the gamma density with parameters 1/2 and 

1/2. This is known as the chi-squared density with parameter 1, sometimes 
denoted by χ2

1. 
Example 3. Let X be uniformly distributed on [−1, 1]. Find the density of 

Y = X r for nonnegative integers r. 
Solution. First, note that X has distribution function F(x) = (1 + x)/2 for 

−1 ≤ x ≤ 1. 
Now, if r is odd, then the function g(x) = xr maps the interval [−1, 1] onto 

itself in one–one correspondence. Hence, routinely: 
P(Y ≤ y) = P(Xr ≤ y) = P(X ≤ y1/r) = (1 + y1/r)/2 for − 1 ≤ y ≤ 1, and Y has 

density f (y) = y1/r − 1/(2r), − 1 ≤ y ≤ 1. 
If r is even, then g(x) = xr takes values in [0, 1] for x ∈ [−1, 1]. Therefore, 

P(Y ≤ y) = P(0 ≤ Xr ≤ y) = P(− y1/r  ≤ X ≤ y1/r ) = y1/r for 0 ≤ y ≤ 1. Hence, Y has 
density f (y) = y1/r − 1/r, 0 ≤ y ≤ 1. 

Finally, if r = 0, then Xr = 1, FY (y) is not continuous (having a jump from 
0 to 1 at y = 1) and so Y does not have a density in this case. Obviously, Y is 
discrete, with P(Y = 1) = 1. 

Example 4 (Expectation of uniform density). Let X be uniformly distributed 
on (a, b). Then 

E(X) = ∫ 𝑥
𝑏−𝑎

𝑏
𝑎 𝑑𝑥 =(b + a)/2. 

Example 5 (Expectation of normal density). Let X have the N(μ, σ2) 
density. Then 
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𝐸(𝑋) =
1

√2π𝜎2
�  yexp �−

(𝑦 − μ)2

2σ2
�

∞

−∞
𝑑𝑦 = 

=
1
√2π

�
𝑦 − 𝜇
𝜎  exp �−

(𝑦 − 𝜇)2

2𝜎2 �
∞

−∞
𝑑𝑦 + 

+
μ

√2πσ2
�  exp �−

(𝑦 − μ)2

2σ2
�

∞

−∞
𝑑𝑦 = 

=
1
√2π

�  y exp (−𝑦2)
∞

−∞
𝑑𝑦 +

μ
√2π

�  exp (−𝑦2)
∞

−∞
𝑑𝑦. 

on making the substitution u = (v − μ)/σ in both integrands. The first integrand 
is an odd function, so the integral over R1 is zero. The second term is μ (why?). 
Hence, E(X) = μ. 

Prove that var(X) = σ2. 
Expectation may be infinite, as the next two examples show. 
Example 6 (Pareto density). Let X have density  

f (x) = (α − 1)x−α for x ≥ 1 and α > 1. 
Then if α ≤ 2, the expected value of X is infinite because 
𝐸(𝑋) = lim𝑛→∞ ∫ 𝑥�𝛼 –  1�𝑥−𝛼d𝑥𝑛

1 = �𝛼 –  1� lim
𝑛→∞

∫ 𝑥1−𝛼d𝑥𝑛
1 , 

which diverges to ∞ for α − 1 ≤ 1. However, for α > 2, E(X) = (α − 1)/(α − 2). 
Example 7 (Cauchy density). Let X have density  

f (x) = 1/π(1 + x2)−1, −∞< x < ∞. 
Because 1

π ∫
𝑥𝑑𝑥
1+𝑥2

∞
−∞  diverges X does not have an expected value. 

The various moments of a random variable with a density are defined just 
as they were for discrete random variables: initial moments μk = E(Xk), and 
central moments σk = E[(X − E(X))k]. 

Example 8 (Initial moments of normal density). Let X have the density    
N(0, σ2). Find μk for all k. 

Solution. If k is odd, then xk exp(−x2/(2σ2)) is an odd function. Hence, μk = 
0 if k is odd. If k = 2n, then integrating by parts gives  

µ2𝑛  =
1

√2πσ2
� 𝑦2𝑛 exp �−

𝑦2

2σ2
�

∞

−∞
𝑑𝑦 = 

=
1

√2πσ2
��−σ2𝑦2𝑛−1 exp �−

𝑦2

2σ2
���

−∞

∞

+ 

+∫ (2𝑛 − 1)𝜎2 𝑦2𝑛−2 exp �− 𝑦2

2σ2
�∞

−∞ 𝑑𝑦� = (2n − 1)σ2μ2n−2 = σ
2𝑛 (2𝑛)!
2𝑛𝑛!

 
on iterating and observing that μ0 = 1.  

Hence, in particular, μ2 = σ2. 
Example 9 (Normal densities). Let X and Y be independent with common 

density f (x) = k exp (−x2/2) for all x. 
(a) Show that k = (2π)−1/2. 
(b) Show that X2 + Y2 and arc tan(Y/X) are independent random variables.  
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Solution. Because X and Y are independent, they have joint density  
f (x, y) = k2 exp(– (x2 + y2)/2). 

Make the change of variables to polar coordinates, so that the random 
variables R = (X2 + Y2)1/2 and Θ = arc tan(Y/X) have joint density  
f (r, θ) = k2r exp(–r2/2) for 0 ≤ r < ∞, 0 < θ ≤ 2π. 

Hence, R has density fR(r) = r exp(–r2/2) for 0 ≤ r < ∞, and Θ has density 
fΘ(θ) = k2 for 0 < θ ≤ 2π. It follows immediately that 

(a) k2 = (2π)−1. 
(b) f (r, θ) = fR(r ) fΘ (θ), so that Θ and R are independent. Hence, Θ and R2 

are independent. 
Example 10 (Uniform distribution). Let Q = (X, Y) has the uniform density 

over the unit circular disc C, namely,  
f (x, y) = π−1 for (x, y) ∈ C = {(x, y): x2 + y2 ≤ 1}. 

It seems more natural to use polar rather than Cartesian coordinates in this 
case. These are given by r = (x2 + y2)1/2 and θ = arc tan (y/x), with inverse x = r 
cosθ and y = r sinθ. They map C = {x, y: x2 + y2 ≤ 1} one–one onto  
D = {r, θ: 0 ≤ r ≤ 1, 0 < θ ≤ 2π}. In this case, J(r, θ) = r cos2θ + r sin2θ = r. 

Hence, the random variables R = r (X, Y) and Θ = θ(X, Y) have joint 
density given by fR,Θ (r, θ) = r/π for 0 ≤ r ≤ 1, 0 < θ ≤ 2π. Notice that f (r, θ) is 
not uniform, as was f (x, y). 

(a) Are X and Y independent? 
(b) Find fX (x) and fY (y). 
(c) If X = R cosΘ, and Y = R sinΘ, are R and Θ independent? 
Solution. (a) The set {x, y: x ≤ −1/√2, y ≤ −1/√2} lies outside C, so 

F(−1/√2, −1/√2) = 0. However, the intersection of the set {x: x ≤ −1/√2} with 
C has nonzero area, so FX(−1/√2)FY(−1/√2) > 0. Therefore, X and Y are not 
independent. 

(b) fX(x) = ∫ 𝑓 (𝑥,𝑦) 𝑑𝑦1
−1  = 1/π ((1 − x2)1/2 + (1 − x2)1/2). 

Likewise, fY (y) = 2/π(1 − y2)1/2. 
(c) R and Θ have joint density fR,Θ (r, θ) = r/π , for 0 ≤ r < 1, 0 < θ ≤ 2π. 
Hence, fΘ (θ) = ∫ 𝑓 (𝑟,θ)𝑑𝑟 =1

0  1/(2π); 0< θ ≤ 2π, and fR(r) = 

∫ 𝑓 (𝑟,θ)𝑑𝑟 =2π
0  2r; 0≤ r ≤ 1. Hence, f (r, θ) = fΘ (θ) fR(r), and so R and Θ are 

independent. 
Example 11 (Inverse functions). Let X have distribution function F(x), 

where F(x) is continuous and strictly increasing. Let g(x) be a function 
satisfying F(g) = x. Because F(x) is continuous and strictly increasing, this 
defines g(x) uniquely for every x in (0, 1). 

The function g(·) is called the inverse function of F(·) and is often denoted 
by g(x) = F−1(x). Clearly, F is the inverse function of g, that is  
g(F(x)) = F(g(x)) = x, and g(x) is an increasing function. 
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(a) Use this function to show that Y = F(X) is uniformly distributed on 
(0, 1). 

(b) Show that if U is uniform on (0, 1), then Z = F−1(U) has distribution 
F(·). 

Solution. (a) As usual, we seek the distribution function  
P(Y ≤ y) = P(F(X) ≤ y) = P(g(F(X)) ≤ g(y)) = P(X ≤ g(y)) = F(g(y)) = y. 

(b) Again, P(F−1(U) ≤ z) = P(F(F−1(U)) ≤ F(z)) = P(U ≤ F(z)) = F(z). 
The fact is used in simulation of RVs (see 7.13). 
 

7.8. Sums, products, and quotients of random variables 
 

The most important is the sum of two random variables. 
Theorem 7.2. Let X and Y have joint density f (x, y). If Z = X + Y, then  

fZ (z) = ∫ 𝑓 �𝑢, 𝑧 –  𝑢�𝑑𝑢,∞
−∞    (7.26) 

and if X and Y are independent, then  
fZ (z) = ∫ 𝑓𝑋 (𝑢)𝑓𝑌 (𝑧 −  𝑢)𝑑𝑢.∞

−∞   (7.27) 
Proof. First notice that the result (7.27) follows immediately from (7.26) 

when X and Y are independent. Turning to the proof of (7.26), we give two 
methods of solution. 

I. Let A be the region in which u + v ≤ z. Then P(Z ≤ z) = 
∫ 𝑓 (𝑢,𝑣)𝑑𝑢 𝑑𝑣 =  ∫ ∫ 𝑓 (𝑢,𝑣)𝑑𝑢 𝑑𝑣𝑧−𝑢

−∞
∞
−∞(𝑢,𝑣)∈𝐴  =  

∫ ∫ 𝑓 (𝑢,𝑤 −  𝑢) 𝑑𝑤𝑑𝑢 𝑧
−∞

∞
−∞   on setting v = w − u. Now differentiating with 

respect to z gives fZ (z) = ∫ 𝑓 (𝑢, 𝑧 −  𝑢) 𝑑𝑢∞
−∞ . 

II. This time we use the change of variable technique. Consider the 
transformation z = x + y and u = x, with inverse x = u and y = z − u. Here J = 1. 

This satisfies the conditions of Theorem 7.1, and so U = u(X, Y) and 
Z = z(X, Y) have joint density f (u, z − u). We require the marginal density of Z, 
which is of course just (7.26).  

Example 7.3. Let X and Y have the bivariate normal distribution, 
f (x, y) = (2πστ)–1(1 − ρ2)–1/2 exp(− (x2/σ2 − 2ρxy/(στ) + y2/τ2)/(2(1 − ρ2)). 

Find the density of aX + bY for constants a and b. 
Remark 7.2. Parameter ρ ∈ [−1, 1] can be identified with the correlation 

coefficient corr (X, Y). More precisely, varX =σ2, varY = τ2, and Cov (X, Y) = 
ρστ. Note that X and Y are independent if and only if ρ = 0. The fact is proved in 
Example 7.9. 

Solution. The joint density of U = aX and V = bY is g(u, v) = 1/(ab)×  
f (u/a, v/b). Hence, the density of Z = U + V = aX + bY is  
fZ (z) = 1/(ab)∫ 𝑓 (𝑢/𝑎, (𝑧 −  𝑢)/𝑏)∞

−∞ 𝑑𝑢. Rearranging the exponent in the 
integrand we have, after a little manipulation, 
−1/(2(1 − ρ2))[u2/(a2σ2) − 2ρu(z − u)/(abστ) + (z − u)2/(b2τ2)] =  
−1/(2(1 − ρ2))[α(u – β/αz)2 + z2/α − (1 − ρ2)/(a2b2σ2τ2)], where  
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α = 1/(a2σ2) + 2ρ/(abστ) + 1/(b2τ2) , and β = ρ/(abστ) + 1/(b2τ2). 
Setting u = v + (β/α) z in the integrand, we evaluate  

∫ exp (− 𝛼𝑣2/(2(1 −  ρ2))𝑑𝑣 ∞
−∞  = (2π(1 − ρ2)/α)1/2. 

Hence, after a little more manipulation, we find that  
fZ (z) = 1/(2πξ2)1/2exp(− z2/(2ξ2)), 

where ξ2 = a2σ2 + 2ρabστ + b2τ2. That is to say, Z is N(0, ξ2).  
One important special case arises when ρ = 0, and X and Y are therefore 

independent. 
So we have proved the following result. 
Theorem 7.3. Let X and Y be independent normal random variables having 

the densities N(0, σ2) and N(0, τ2). Then the sum Z = aX + bY has the density 
N(0, a2σ2 + b2τ2). 

Next we turn to products and quotients. 
Theorem 7.4. Let X and Y have joint density f (x, y).  

Then the density of Z = XY is 
fZ (z) = ∫ 1/|𝑢| 𝑓 (𝑢, 𝑧/𝑢) 𝑑𝑢 ∞

−∞  
and the density of W = X/Y is  

fW (w) =  ∫ |𝑢| 𝑓 (𝑢𝑤,𝑢) 𝑑𝑢.∞
−∞  

Proof. We use Theorem 7.1 again. Consider the transformation u = x and 
z = xy, with inverse x = u and y = z/u. Here, J (u, z) = u−1. This satisfies the 
conditions of Theorem 7.1 and so U = X and Z = XY have joint density  
f (u, z) = 1/|𝑢| 𝑓 (𝑢, 𝑧/𝑢). 

The result of the theorem follows immediately as it is the marginal density 
of Z obtained from f (u, z). 

What about the quotient W = X/Y? First, let V = 1/Y. Then, by definition,  
FX,V (x, v) = P(X ≤ x, V ≤ v) = P(X ≤ x, Y ≥ 1/v) = ∫ ∫ 𝑓 (𝑠, 𝑡) 𝑑𝑠𝑑𝑡.∞

1/𝑣
𝑥
−∞  

Hence, on differentiating, the joint density of X and Y−1 is given by              
fX,V(x, v) = 1/v2 f (x,1/v). Now W = XV, so by the first part of the theorem,  
fW(w) = ∫ 1/|𝑢| u2/𝑤2𝑓 (𝑢,𝑢/𝑤) 𝑑𝑢∞

−∞  = ∫ |𝑣| 𝑓 (𝑣𝑤, 𝑣) 𝑑𝑣∞
−∞  on setting 

u = vw in the integrand. Alternatively, of course, you can obtain this by using 
Theorem 7.1 directly via the transformation w = x/y and u = y. 

Here are some illustrative examples. 
Example 7.4. Let X and Y be independent with respective density functions  

fX (x) = 𝑥𝑒−𝑥2/2 for x > 0 and fY (y) = π−1(1 − y2)−1/2 for |y| < 1. Show that XY has 
a normal distribution.  

Solution. When X and Y are independent, we have f (x, y) = fX(x) fY(y), and 
f (z) = ∫ 1/|𝑢| 𝑓𝑋 (𝑢) 𝑓𝑌(𝑧/𝑢)𝑑𝑢 =∞

−∞ ∫ 1/|𝑢| 𝑢𝑒−𝑢2/2 π−1(1 −∞
𝑢>𝑧

 −𝑧2/𝑢2)−1/2𝑑𝑢 = π−1 ∫ 𝑒−𝑢2/2(1 −  𝑧2/𝑢2)−1/2 𝑑𝑢∞
𝑧 . 

Now we make the substitution u2 = z2 + v2 to find that  
f (z) = 1/π𝑒−𝑧2/2 ∫ 𝑒−𝑢2/2 𝑑𝑢∞

0  = (2π)-1/2𝑒−𝑧2/2, which is the N(0, 1) density. 
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Example 7.5. Let X and Y have density f (x, y) = e−x−y for x > 0, y > 0. 
Show that U = X/(X + Y) has the uniform density on (0, 1). 
Solution. To use Theorem 7.4, we need to know the joint density of X and 

V = X + Y. A trivial application of Theorem 7.1 shows that X and V have density  
f (x, v) = e−v for 0 < x < v < ∞. Hence, by Theorem 7.4, 

f (u) = ∫ 𝑢𝑒−𝑢  𝑑𝑢∞
0   for 0 < uv < v; f (u) = 1, for 0 < u < 1. 

Alternatively, we may use Theorem 7.1 directly by considering the 
transformation u = x/(x + y), v= x + y, with x = uv, y = v(1 − u) and |J| = v. 
Hence, U = X/(X + Y) and V = X + Y have density f (u, v) = ve−v, for v > 0 and 
0 < u < 1.  

The marginal density of U is 1, as required. 
 

7.9. Moment generating function 
 

The moment-generating function (MGF) of a random variable is in some 
cases an alternative definition of its probability distribution. It provides the basis 
of an alternative route to analytical results without working directly with 
probability distributions. So we can consider MGF as a technical tool (useful 
workhorse) for receiving some mathematical results. 

Definition 7.1. The moment generating function MX(t) (or M(t)) is given 
by  

M(t) = MX(t) = E(etX). 
If X has density f, then  

MX(t) = ∫ 𝑒𝑡𝑢𝑓(𝑢)𝑑𝑢∞
−∞ , 

if X is discrete RV then  
MX(t) = ∑ 𝑒𝑥𝑖𝑖 𝑝𝑖. 

MGF does not always exist. We are only interested in MX(t) for those 
values of t for which it is finite; this includes t = 0, of course.  

Example 7.6 (MGF of uniform RV). Let X be uniform on [0, a]. Find E(etX). 
Where does it exist? 

Solution. E(etX ) = ∫ 𝑒𝑡𝑥

𝑎
𝑎
0 𝑑𝑥 = (eat – 1)/(at). This exists for all t, including 

t = 0, where it takes the value 1. 
Example 7.7 (MGF of normal RV). Let X be a standard normal random 

variable. Then √2πMX(t) = ∫ 𝑒𝑡𝑥−𝑥2/2∞
−∞ 𝑑𝑥 = ∫ 𝑒𝑡2/2−(𝑥−𝑡)2/2∞

−∞ 𝑑𝑥 =
=  𝑒𝑡2/2 ∫ 𝑒−(𝑥−𝑡)2/2∞

−∞ 𝑑𝑥 = 𝑒𝑡2/2√2π. 
So MX(t) = 𝑒𝑡2/2. 
Now by properties of MGF (see Exercise 14) if Y=σX +µ (which is 

N (μ, σ2)), then MY(t) = eμt𝑒𝑡2σ2/2. 



104 
 

Why is MX(t) called the moment generating function? There are relations 
between the behavior of the MGF of a distribution and properties of the 
distribution, such as the existence of moments. 

Consider the following formal expansion: 
E(etX) = E(∑ 𝑋𝑘∞

𝑘=0 𝑡𝑘/𝑘!) = ∑ 𝐸(𝑋𝑘)𝑡𝑘/𝑘!∞
𝑘=0 =  ∑ µ𝑘𝑡𝑘/𝑘!∞

𝑘=0 , (7.28) 
provided the interchange of expectation and summation at (7.28) is justified. 
The required interchange at (7.28) is permissible if MX(t) exists in an interval 
that includes the origin. 

The individual coefficients of the t-powers in (7.28) are the initial 
moments of the distribution, each divided by the corresponding factorial. Quite 
often this is the easiest way of calculating them. Note that this is equivalent to: 

E(Xk) = 𝑀𝑋(𝑡)(𝑘)�Rt=0 

or, in words, to get the k-th initial moment differentiate the corresponding MGF 
k times (with respect to t) and set t equal to zero. 

We state the following inversion theorem without proof. 
Theorem 7.5. If X has moment generating function MX(t), where for some 

a > 0, MX(t) < ∞ for |t| < a, then the distribution of X is determined uniquely. 
Furthermore, the expansion (7.28) holds. 

Remark 7.3. Even though a full information about the corresponding 
distribution is “encoded” into a MGF, its ’decoding’ (converting MGF back into 
a table of probabilities or density function) is somehow more involved and will 
not be discussed here. 

MGF is especially useful in dealing with sequences of random variables; 
the following theorem is the basis of this assertion. We state it without proof. 

Theorem 7.6 (Continuity theorem). Let (Fn(x); n ≥ 1) be a sequence of 
distribution functions with corresponding MGFs (Mn(t); n ≥ 1) that exist for 
|t| < b. Suppose that as n→∞ Mn(t) → M(t) for |t| ≤ a < b, where M(t) is the 
MGF of the distribution F(x). Then, as n→∞, Fn(x) → F(x) at each point x 
where F(x) is continuous. 

The main application of this theorem arises when M(t) = 𝑒𝑡2/2
P

 (MGF of 
what distribution?) and F(x) = 1

√2π∫  exp �− 𝑦2

2
�𝑥

−∞ 𝑑𝑦 = Φ(x) (so called 
probability integral) being the CDF of normal RV. 
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Figure 7.6. Normal (Gaussian) distribution functions with parameters μ 

(mu) and σ2 (sigma squared) 
 

Function Φ(x) is an object of paramount importance in probability theory 
and statistics. It is also called a Gaussian distribution function, named after 
K.F. Gauss (1777–1855), the famous German mathematician, astronomer and 
physicist, who made a profound impact on a number of areas of mathematics. 
He identified the distribution while working on the theory of errors in 
astronomical observations. Gaussian distribution fitted the pattern of errors 
much better than “double-exponential” distribution previously used by Laplace. 

The values of Φ(x) have been calculated with a great accuracy for a narrow 
mesh of values of x and constitute a major part of the probabilistic and statistical 
tables. See Table A6.1 (Appendix 6). 

 
7.10. Distributions concerning normal 

 
A significant part of the statistics course is concerned with iid N(0,1) RVs 

X1, X2, … and their functions. The simplest functions are linear combinations, 
i.e. ∑ 𝑎𝑖𝑋𝑖𝑛

𝑖=1 . 
It is easy to see using MGF that if X1, X2, …, Xn are independent N(µi, σi

2) 
RVs then ∑ 𝑎𝑖𝑋𝑖𝑛

𝑖=1  is normal N(∑ 𝑎𝑖µ𝑖
𝑛
𝑖=1 , ∑ (𝑎𝑖σ𝑖)

2𝑛
𝑖=1 ). 

Another example is the sum of squares. Let X1, X2, …, Xn be iid N(0,1) 
RVs. The distribution of the sum ∑ 𝑋𝑖2𝑛

𝑖=1  is called the chi-square (or chi-
squared) distribution denoted by 2

nχ , the parameter n is called degrees of 
freedom. It has the PDF )(2 ⋅

χn
f  concentrated on the positive half-axis (0, ∞): 

0,)( 2/12/
2 >= −−

χ
xeCxxf xn

n
 

with the constant of proportionality ( ) 1/2/ 2 2 ,nC n
−

 = Γ   here  



106 
 

( ) .
2
1

0

2/1∫
∞

−−=Γ dxexu xu
u  

A useful property of the family of 2
nχ  distributions is that it is closed under 

independent summation as normal distribution. That is if Z ∈ 2
nχ  and Y ∈ 2

mχ  
independently, then Z + Y ∈ .2

mn+χ  
The mean value of the 2

nχ  distribution equals n and the variance 2n. All 2χ  
PDFs are unimodal. A sample of graphs of PDF )(2 xf

nχ
is shown in Figure 7.7. 

See Table A6.2 (Appendix 6) for tabulation of chi-squared distribution. 
If, as above, X1, X2, …, Xn+1 is iid N(0,1) RVs then the distribution of the 

ratio 

nX

X
n

i
i

n

/
1

2

1

∑
=

+  

is called the Student’s distribution, with n degrees of freedom, or the tn 
distribution for short. It has the PDF )(⋅

nt
f  spread over the whole axis R1 and is 

an even function: 

( ) 2/)1(2 /1)(
+−

+=
n

t ntCtf
n

 

with the proportionality constant ( )
( ) .

2/
2/)1(1

n
n

n
C

Γ
+Γ

π
=  

Figure 7.7. Chi-square distributions with n degrees of freedom 
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For n > 1 it has, obviously, the mean value 0. For n > 2, the variance is 
n/(n − 2). All Student’s PDFs are unimodal. A sample of graphs of PDF )(xf

nt
 

is shown in Figure 7.8. 
These PDFs resemble normal PDFs and )(xf

nt
 approaches 

π=ϕ − 2/)( 2/2xex  as n → ∞ and the percentage points for tn tend to those for 
N(0,1). In practice we can use normal approximation for 30≥n , see Table 
A6.3. 

However, for finite n, the “tails” of )(xf
nt

 are “thicker” than those of the 
normal PDF. In particular, the MGF of a t distribution does not exist (except at 
zero point). Note that for n = 1, the t1 distribution coincides with the Cauchy 
distribution. 

Figure 7.8. Student distributions with n degrees of freedom 
 

7.11. Conditional density and expectation 
 

Suppose that X and Y have joint density f (x, y), and we are given the value 
of Y. We make the following definition. 

Definition 7.2. If X and Y have joint density f (x, y), then the conditional 
density of X given Y = y is given by fX|Y (x|y) = f (x, y)/fY (y), if 0 < fY(y) < ∞, 
fX|Y (x|y) = 0 elsewhere. 

When X and Y are discrete the definition is analogous. 
We observe immediately that fX|Y (x|y) is indeed a density, because it is 

nonnegative and  
∫ 𝑓𝑋|𝑌 (𝑥|𝑦)𝑑𝑥∞
−∞  = ∫ 𝑓 (𝑥,𝑦)/𝑓𝑌 (𝑦)𝑑𝑥∞

−∞ = 𝑓𝑌 (𝑦)/𝑓𝑌 (𝑦) = 1.   (7.29) 
The corresponding conditional distribution function is  
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FX|Y (x, y) = ∫ 𝑓𝑋|𝑌 (𝑥|𝑦)𝑑𝑥𝑥
−∞  = P(X ≤ x|Y = y), 

and we have the rule 
P(X ∈ A|Y = y) = ∫ 𝑓𝑋|𝑌 (𝑥|𝑦)𝑑𝑥𝐴 . 

Example 7.8. Let (X, Y) be the coordinates of the point Q uniformly 
distributed on a circular disc of unit radius. What is fY |X (y|x)? 

Solution. Recall that for the marginal density fX (x) = (2/π)(1 − x2)1/2. 
Hence, by definition,  

fY |X(y|x) = f (x, y)/fX (x) = 1/π(2/π)–1(1 − x2)–1/2 = (1 − x2)−1/2/2 
for |y| < (1 − x2)1/2. 

This conditional density is uniform on (− (1 − x2)1/2, (1 − x2)1/2).  
Example 7.9. Let X and Y be independent and exponential with 

parameter λ. Show that the density of X conditional on X + Y = v is uniform on 
(0, v). 

Solution. To use (7.29), we need to take some preliminary steps. First note 
that the joint density of X and Y is f (x, y) = λ2e−λ(x+y) for x > 0, y > 0. 

Next we need the joint density of X and X + Y so we consider the 
transformation u = x and v = x + y, with inverse x = u and y = v − u, so that 
J = 1. 

Hence, by Theorem 7.1,  
fU,V (u, v) = λ2e−λv for 0 < u < v < ∞. 

It follows that fV(v) = ∫ λ2𝑒−λ𝑣 𝑑𝑢𝑣
0 = 𝜆2𝑣𝑒−λ𝑣  and so by definition  

fU|V (u|v) = f (u, v)/fV (v) = 1/v for 0 < u < v. This is the required uniform density.  
This striking result is related to the lack-of-memory property 

(P(X > x + y | X > x) = P(X > y) for any x and y) of the exponential density. 
Example 7.10 (Bivariate normal). Let X and Y have the bivariate normal 

density 
f (x, y) = (2πστ)–1(1 − ρ2)–1/2 exp[− (x2/σ2 − 2ρxy/(στ) + y2/τ2)/(2(1 − ρ2))]. 

Find the conditional density of X given Y = y. 
Solution. fX (x) = ∫ 𝑓 (𝑥,𝑦)𝑑𝑦 ∞

−∞  =  

= (2πστ)-1(1 − ρ2)-1/2∫ exp − � �𝑥
2

σ2
− ρ2𝑥2

σ2
+ �𝑦

τ
− ρ𝑥

σ
�
2
� /(2(1 −  ρ2))�𝑑𝑦∞

−∞ . 

Now setting  𝑦
τ
− ρ𝑥

σ
= 𝑢, and recalling that  

∫ exp �−  𝑥2

2(1 − ρ2)σ2
� 𝑑𝑦 ∞

−∞  = (2π(1 − ρ2))1/2  yields fX (x) = (2πσ2)–1/2exp(−x2/σ2).  
This is N(0, σ2) density. Interchanging the roles of x and y in the above 

integrals shows that fY (y) is the N(0, τ2) density.  
Hence, fX|Y (x|y) = f (x, y)/fY(y) = (2πστ)–1(1 − ρ2)–1/2×  

×exp(−(x2/σ2 − 2ρxy/(στ) + y2/τ2)/(2(1 − ρ2)) (2πτ2)–1/2 exp(y2/(2τ2)) =  
= (2πσ2 (1 − ρ2))–1/2 exp(− 1/(2(1 − ρ2))(xσ− ρy/τ)2). 
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Hence, the conditional density of X given Y = y is N(ρσy/τ, σ2(1 − ρ2)). 
Note that if ρ = 0, then this does not depend on y, which is to say that X is 
independent of Y. 

Now, because fX|Y (x|y) is a density it may have an expected value, which 
naturally enough is called conditional expectation. 

Definition 7.3. If ∫ |𝑥| 𝑓𝑋|𝑌 (𝑥|𝑦) 𝑑𝑥 <  ∞𝑅+ , then the conditional 
expectation of X given Y = y is given by 

E(X|Y = y) = ∫ 𝑥 𝑓𝑋|𝑌 (𝑥|𝑦)𝑑𝑥 .𝑅  
If the value of Y is left unspecified, we write E(X|Y) = ψ(Y) on the 

understanding that when Y = y, ψ(Y) takes the value E(X|Y = y) = ψ(y). By 
writing ψ(y) = E(X|Y = y) we emphasize the fact that the conditional expectation 
of X given Y = y is a function of y.  

Example 7.11. If X and Y are independent and exponential, then we showed 
that the density of X given X + Y = v is uniform on (0, v). Hence,                 
E(X|X + Y = v) = v/2. 

Actually, this is otherwise obvious because, for reasons of symmetry, 
E(X|X + Y = v) = E(Y|X + Y = v), and trivially E(X + Y|X + Y = v) = v. Hence the 
result follows, provided it is true that for random variables X, Y and V, we have 
E(X + Y|V = v) = E(X|V = v) + E(Y|V = v). In fact, this is true. 

The conditional expectation has all properties of usual expectation. Among 
the most important is that  

E(Xg(Y)|Y = y) = g(y)ψ(y)    (7.30) 
for any function g(Y). 

It is natural to think of E(X|Y) as a random variable that is a function of Y. 
(A more rigorous analysis can indeed justify this assumption.) 

We give the following theorem without proof.  
Theorem 7.7. The expected value of ψ(Y) is E(X); thus, EX = E(E(X|Y)). 

Finally, we stress that conditional expectation is important in its own right, it 
should not be regarded merely as a stage on the way to calculating something 
else. Conditional expectation is a concept of great importance and utility. 

For example, suppose that X and Y are random variables, and we want to 
record the value of X. Unfortunately, X is inaccessible to measurement, so we 
can only record the value of Y. Can this help us to make a good guess at X? 
First, we have to decide what a “good” guess g(Y) at X is. We decide that g1(Y) 
is a better guess than g2(Y) if E[(g1(Y) − X)2] < E[(g2(Y) − X)2]. 

According to this (somewhat arbitrary) rating, it turns out that the best 
guess at X given Y is ψ(Y) = E(X|Y). 

Theorem 7.8. For any function g(Y) of Y, E[(X − g(Y))2] ≥ E[(X − ψ(Y))2]. 
Proof. Using Theorem 7.7 and (7.30), we have E[(X − ψ)(ψ − g)] =  

E[(ψ − g)E(X − ψ|Y)] = 0. Hence,  
E[(X − g)2] = E[(X − ψ + ψ − g)2] = E[(X − ψ)2] + E[(ψ − g)2] ≥ E[(X − ψ)2]. 
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7.12. The median, quartiles, percentiles. Skewness and kurtosis 
 

The median of a continuous distribution is the number which will be 
exceeded with a 50 % probability; consequently, a smaller result is obtained 
with the complementary probability of 50 %, i.e. the median divides the 
distribution in two equally probable halves. Mathematically, we can find it as a 
solution of F (med) = 1/2, or (equivalently) to 1 − F (med) = 1/2 (med will be 
our usual notation for the median). For a symmetric distribution (uniform, 
normal) the mean and median must be both at the center of symmetry (yet, there 
is an important distinction: the mean may not always exist, the median always 
does). 

The median of the exponential distribution is thus the solution to 
e−λmed = 1/2 ⇔ 𝜆med = ln2, yielding med = (ln2)/λ (≈ 0.6931λ–1) (substantially 
smaller that the corresponding mean λ–1).  

Suppose that the waiting time to catch a fish in the pond has exponential 
distribution. This means that if it takes, on the average, 1 hour to catch a fish, 
50 % of all fishes are caught in less than 41 min. and 35 sec. 

The lower quartile l and the upper quartile u are similarly defined by    
F(l) = 1/4, F(u) = 3/4. 

Thus, the probability that X lies between l and u is 3/4−1/4 = 1/2, so the 
quartiles give an estimate of how spread-out the distribution is.  

More generally, we define the nth percentile of X to be the value of xn 
such that F(xn) = n/100, that is, the probability that X is smaller than xn is n %. 

These values are the particular cases of so called quantiles: the quantile of 
level q is the value qα such that F ( qα ) = q. Here and above in this section we 
assume that F( ⋅ ) is strictly monotonic distribution function, otherwise the 
solutions of the quantiles’ equations can be indeterminate. 

The skewness is a measure of the asymmetry of the probability 
distribution. The skewness value can be positive or negative, or even undefined. 
Qualitatively, a negative skew indicates that the tail on the left side of the 
probability density function is longer than the right side and the bulk of the 
values (possibly including the median) lie to the right of the mean. A positive 
skew indicates that the tail on the right side is longer than the left side and the 
bulk of the values lie to the left of the mean. A zero value indicates that the 
values are relatively evenly distributed on both sides of the mean, typically but 
not necessarily implying a symmetric distribution. 

If the distribution is symmetric then the mean equals median and there is 
zero skewness. 

The skewness of a random variable X is the third standardized moment 
defined as 

Skew(X) = μ3 /σ3, 
where μ3 is the third central moment, σ is the standard deviation. 

http://en.wikipedia.org/wiki/Standard_deviation
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The kurtosis is any measure of the “peakedness” of the probability 
distribution. In a similar way to the concept of skewness, kurtosis is a descriptor 
of the shape of a probability distribution.  

Kurtosis is commonly defined as the fourth standardized moment of the 
probability distribution minus 3 

Kurt(X) = μ4 /σ4 – 3. 
The “minus 3” at the end of this formula is often explained as a correction 

to make the kurtosis of the normal distribution equal to zero. 
A high kurtosis distribution has a sharper peak and longer, fatter tails, 

while a low kurtosis distribution has a more rounded peak and shorter, thinner 
tails. 

For more details see http://en.wikipedia.org/wiki/Skewness 
and http://en.wikipedia.org/wiki/Kurtosis. 

 
7.13. Simulation of random variables 

 
A random variable is a mathematical concept (having no other existence) 

that is suggested by the outcomes of real experiments. Thus, tossing a coin leads 
us to define an X(·) such that X(H) = 1, X(T) = 0, and X is the number of heads. 
The coin exists, X is a concept. 

A natural next step, having developed theorems about mathematical coins 
is to test them against reality. However, the prospect of actually tossing a large 
enough number of coins to check the theoretical laws is rather forbidding. 

Luckily, we have machines to do large numbers of boring and trivial tasks 
quickly, namely, computers. These can be persuaded to produce many numbers 
(ui; i ≥ 1) that are sprinkled evenly and “randomly” over the interval (0, 1). The 
word randomly appears in quotations because each ui is not really random. 
Because the machine was programmed to produce it, the outcome is known in 
advance, but such numbers behave for many practical purposes as though they 
were random. They are called pseudorandom numbers. 

Now if we have a pseudorandom number u from a collection sprinkled 
uniformly in (0, 1), we can look to see if u < 1/2, in which case we call it 
“heads”, or u > 1/2 in which case we call it “tails.” This process is called 
simulation; we have simulated tossing a coin. 

Different problems produce different random variables, but computers find 
it easiest to produce uniform pseudorandom numbers. We are thus forced to 
consider appropriate transformations of uniform random variables.  

Here there are two real life examples answering the question why might 
we want to simulate such random variables? 

Example 7.12 (Epidemic). An infection is introduced into a population. For 
each individual the incubation period is a random variable X, the infectious 
period is a random variable Y, and the number of further individuals infected is 

http://en.wikipedia.org/wiki/Standardized_moment
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
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a random variable N, depending on Y and the behavior of the infected 
individual. What happens?  

Unfortunately, exact solutions to such problems are rare and, for many 
diseases (e.g., the so-called “slow viruses” or prions), X and Y are measured in 
decades so experiments are impractical. However, if we could simulate X and Y 
and the infection process N, then we could produce one simulated realization 
(not a real realization) of the epidemic. With a fast computer, we could do this 
many times and gain a pretty accurate idea of how the epidemic would progress 
(if our assumptions were correct). 

Example 7.13 (Toll Booths). Motorists are required to pay a fee before 
entering a toll road. How many toll booths should be provided to avoid 
substantial queues? Once again an experiment is impractical. However, simple 
apparatus can provide us with the rates and properties of traffic on equivalent 
roads. If we then simulate the workings of the booth and test it with the actual 
traffic flows, we should obtain reasonable estimates of the chances of 
congestion. 

 
7.14. On using tables  

 
We end this section with a few comments about using tables, not tied 

particularly to the normal distribution (though the examples will come from 
there). 

Interpolation. Any table is limited in the number of entries it contains. 
Tabulating something with the input given to one extra decimal place would 
make the table ten times as bulky. Interpolation can be used to extend the range 
of values tabulated. 

Suppose that some function F is tabulated with the input given to three 
places of decimals. It is probably true that F is changing at a roughly constant 
rate between, say, 0.28 and 0.29. So F(0.283) will be about three-tenths of the 
way between F(0.28) and F(0.29). 

For example, if F is the CDF of the normal distribution, then 
F(0.28) = 0.6103 and F(0.29) = 0.6141, so F(0.283) = 0.6114. (Three-tenths of 
0.0038 is 0.0011.) 

Using tables in reverse. This means, if you have a table of values of F, use 
it to find x such that F(x) is a given value c. Usually, c won’t be in the table and 
we have to interpolate between values x1 and x2, where F(x1) is just less than c 
and F(x2) is just greater. 

For example, if F is the CDF of the normal distribution, and we want the 
upper quartile, then we find from tables F(0.67)=0.7486 and F(0.68)=0.7517, so 
the required value is about 0.6745 (since 0.0014/0.0031 = 0.45). 

Nowadays we can use computers instead of tables. 
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7.15. Exercises 
 

1. If X is a random variable (on a countable sample space), is it true that  
X + X = 2X, X − X = 0? Explain in detail. 
2. Let Ω = {ω1, ω2, ω3}, P(ω1) = P(ω2) = P(ω3) = 1/3, and define X, Y, and Z 
as follows: 
X(ω1) = 1, X(ω2) = 2, X(ω3) = 3; 
Y(ω1) = 2, Y (ω2) = 3, Y (ω3) = 1; 
Z(ω1) = 3, Z(ω2) = 1, Z(ω3) = 2. 
Show that these three random variables have the same probability distribution. 
Find the probability distributions of X + Y, Y + Z, and Z + X. 
3. In Ex. 2 find the probability distribution of X + Y − Z,  �(𝑋2  +  𝑌2)𝑍, 
Z/|X − Y|. 
4. Take Ω to be a set of five real numbers. Define a probability measure and a 
random variable X on it that takes the values 1, 2, 3, 4, 5 with probabilities 1/10, 
1/10, 1/5, 1/5, 2/5 respectively; another random variable Y that takes the value 
√2, √3, π with probabilities 1/5, 3/10, 1/2. Find the probability distribution of 
XY. (Hint: the answer depends on your choice and is not unique.) 
5. Generalize Exercise 4 by constructing Ω, P, X so that X takes the values 
v1, v2, . . . , vn with probabilities p1, p2, . . . , pn where the sequence of 
probabilities satisfies the normalized condition. 
6. Let λ > 0 and define function f as follows: f (u) =0.5λe−λu if u ≥ 0; 0.5λe+λu 
if u < 0. 
This distribution is called bilateral exponential. If X has density f, find the 
density of |X|. (Hint: begin with the distribution function.) 
7. If X is a positive random variable with density f, find the density of +√𝑋. 
Apply this to the distribution of the side length of a square when its area is 
uniformly distributed in [a, b]. 
8. If X has density f, find the density of (i) aX + b where a and b are 
constants; (ii) X2. 
9. If f and g are two density functions, show that λf +μg is also a density 
function, where λ + μ = 1, λ ≥ 0, μ ≥ 0. 
10. In the figure below an equilateral triangle, a trapezoid, and a semidisk are 
shown: 

 
Determine numerical constants for the sides and radius to make these the graphs 
of density functions. 
11. Suppose a target is a disk of radius 10 feet and that the probability of 
hitting within any concentric disk is proportional to the area of the disk. Let R 
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denote the distance of the bullet from the center. Find the distribution function, 
density function, and mean of R. 
12. Agent 009 was trapped between two narrow abysmal walls. He swung his 
gun around in a vertical circle touching the wall, and fired a wild (random) shot. 
Assume that the angle his pistol makes with the horizontal is uniformly 
distributed between 0◦and π/2. Find the distribution of the height where the 
bullet landed and the mean. 
13. Pick two numbers at random from [0, 1]. Let X denote the smaller, Y the 
larger of the two numbers so obtained. Describe the joint distribution of (X, Y), 
and the marginal ones. Find the distribution of Y − X from the joint distribution. 
(Hint: draw the picture and compute areas.) 
14. Prove the following properties of MGF using the properties of expectation: 
if X and U are independent and have MGFs MX(t) and MU(t) correspondently, 
then i) Y = aX + b has MGF MY(t) = MX(at) ebt, ii) Z = aX + bU has MGF MZ(t) 
= MX(at)MU(bt), where a and b are some constants. 
15. Find the expectation and variance of normal distribution using MGF. 
16. Find MGF of exponential distribution. 
17. Proof  
i) the properties of Φ(x): Φ(x) = 1– Φ(–x) ∀ 𝑥 ∈ 𝑅1,  and Φ(0) = 1/2; 
ii) the equations 1

√2π∫  yexp �−𝑦2

2
�∞

−∞ 𝑑𝑦 = 0, which means that the mean value 

of the standard Gaussian distribution is 0, and 1
√2π∫  y2exp �− 𝑦2

2
�∞

−∞ 𝑑𝑦 = 1, 
which means that the variance of the standard Gaussian distribution is 1. 
18. Take two related continuous random variables and draw what you think 
would be their densities. For example, you can take:  
(i) distributions of income in a wealthy neighborhood and in a poor 
neighborhood, (ii) distributions of temperature in winter and summer in a given 
geographic location;  
(iii) distributions of electricity consumption in two different locations at the 
same time of the year.  
Don’t forget that the “total” density is 1! 


