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1. INTRODUCTION

Let (Xk)k≥0 be a sequence of random variables defined on a probability space (Ω,F,P), and let
a σ-algebra Fi,j = σ{Xk, i ≤ k ≤ j} be generated by (Xi, . . . ,Xj).

Definition 1. A strictly stationary sequence (Xk)k≥0 satisfies the strong mixing condition (no-
tation: (Xk)k≥0 ∈ S(α)) if

α(τ) = sup
A∈F0,�

B∈F�+τ,∞

|P(AB)−P(A)P(B)| ↓ 0, τ → ∞, τ > 0. (1)

The parameter α(τ) is referred to as the strong mixing coefficient.

Time series satisfying condition (1) are often used in modeling economic, financial, physical, and
technical processes [1–3].

The wide-sense identification problem for stochastic systems [4,5] is often reduced to estimating,
based on observed sequences of output and input variables, functions of the form

H(A) = H
(
{ai(x)}, {a(1j)i (x)}, i = 1, s, j = 1,m

)
= H

(
a(x), a(1j)(x)

)
, (2)

where x ∈ R
m, H(·) : R(m+1)s → R

1 is a given function, a(1j)(x) =
(
a
(1j)
1 (x), . . . , a

(1j)
s (x)

)
, and

a(x) ≡ a(0j)(x) = (a1(x), . . . , as(x)). Functionals ai(x) and their derivatives are defined as follows:

ai(x) =

∫
gi(y)f(x, y) dy, a

(1j)
i (x) =

∂ai(x)

∂xj
, i = 1, s, j = 1,m, (3)

where g1, . . . , gs are known functions, f(x, y) is an unknown density function of the observed random
vector Z = (X,Y ) ∈ R

m+1, X = (X1, . . . ,Xm) are input variables, and Y is an output variable.
Integration in (3) is over the whole number axis, and in what follows we assume that

∫
≡
∫
R1

.

1 Supported in part by the Russian Foundation for Basic Research, project no. 09-08-00595a.
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Since for gs(y) ≡ 1 we have as(x) =
∫
f(x, y) dy = p(x), where p(x) is the density function of X,

in the form (2) we can represent any function of the conditional functionals

bi(x) = ai(x)/p(x) =

∫
gi(y)f(y |x) dy (4)

and their derivatives b
(1j)
i (x) =

∂bi(x)

∂xj
, i = 1, s − 1.

In the case H(a1, a2) = a1/a2, g1(y) = ym, m ≥ 1, and g2(y) = 1 we obtain first conditional
moments µm(x) =

∫
ymf(y |x) dy, in particular, for m = 1, the regression function

r(x) = E(Y |X = x) = E(Y |x) =
∫
yf(y |x) dy =

∫
yf(x, y) dy

p(x)
. (5)

Expression (2) covers also functions of conditional central moments, for instance, the conditional
variance (volatility function)

D(x) = D(Y |x) = µ2(x)− r2(x),

H(a1, a2, a3) = a1/a3 − (a2/a3)
2, g1(y) = y2, g2(y) = y, g3(y) = 1.

In stochastic systems, the influence of input variables on the output can be studied with the
help of response functions. In particular, for the regression model (5), the response function with
respect to the jth input [6] is defined as follows:

Tj(x) =
∂r(x)

∂xj
,

H
(
a1, a2, a

(1j)
1 , a

(1j)
2

)
=
a
(1j)
1

a2
− a1a

(1j)
2

a22
= b

(1j)
1 , g1(y) = y, g2(y) = 1.

(6)

Other examples of using expressions of the form (2) can be found in [7, 8].

As recursive nonparametric estimators for the functionals a(0j)(x) ≡ a(x) and their derivatives
a(1j)(x) at x we take the statistics

a(rj)n (x) =
1

n

n∑
i=1

g(Yi)

hm+r
i

K(rj)
(x−Xi

hi

)
= a

(rj)
n−1(x)−

1

n

[
a
(rj)
n−1(x)−

g(Yn)

hm+r
n

K(rj)
(x−Xn

hn

)]
, (7)

where r = 0, 1, Z = (X, Y), " = 1, n, is an (m + 1)-dimensional sample characterized by a

density f(x, y), (Zj)j≥1 ∈ S(α), K(0j)(u) ≡ K(u) =
m∏
i=1

K(ui) is an m-dimensional product-form

kernel, K(1j)(u) =
∂K(u)

∂uj
= K(u1) . . . K(uj−1)K

(1)(uj)K(uj+1) . . . K(um), K
(1)(uj) =

dK(uj)

duj
,

(hn) ↓ 0 is a number sequence, g(y) = (g1(y), . . . , gs(y)), a
(rj)
n (x) =

(
a
(rj)
1n (x), . . . , a

(rj)
sn (x)

)
, and

a
(0j)
n (x) ≡ an(x).

Recursive procedures have a number of advantages: as a rule, they are easily computer imple-
mented, they are memory-saving, provide a finished result at every step of the algorithm, newly
obtained measurements do not lead to cumbersome re-computations; thus, real-time data process-
ing is possible.

Recursive kernel estimators were first proposed and studied in [9, 10] for a one-dimensional
density (m = 1, s = 1, g(y) = 1, and H(a1) = a1).
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Semi-recursive kernel substitution estimators for the conditional functionals b(x) = (b1(x), . . . ,
bs−1(x)) at x are of the form

bn(x) =

n∑
i=1

g(Yi)

hmi
K
(x−Xi

hi

)
n∑

i=1

1

hmi
K
(x−Xi

hi

) =
an(x)

pn(x)
, g(y) = (g1(y), . . . , gs−1(y)). (8)

For g1(y) = y, g2(y) = 1 (s = 2), and m = 1 we obtain a semi-recursive analog of the Nadaraya–
Watson kernel estimate [11, 12] for the one-dimensional regression function (3), which in the case
of independent observations was considered in [13–15]. Various types of convergence for such
estimators were studied in [13–19]. Estimators of this type are said to be semi-recursive [19], since
only the numerator and denominator are computed recursively.

A semi-recursive (the functionals ai(x) and their derivatives are computed recursively) substi-
tution estimator for (1) is of the form

H(An) = H
(
{a(rj)n (x)}, j = 1,m, r = 0, 1

)
. (9)

In the present paper, problems of instability of estimators (8) and, possibly, (9) (depending
on the form of a function H) will be solved with the help of piecewise smooth approximations
H̃(An, δn) of estimators H(An) [20]:

H̃(An, δn) =
H(An)

(1 + δn|H(An)|τ )ρ
,

where τ > 0, ρ > 0, ρτ ≥ 1, and (δn) ↓ 0 as n → ∞.

Dependence of observations makes analysis of properties of estimators much more complicated:
for example, the principal part mean-square error (MSE) of the Nadaraya–Watson estimator for
strongly mixed sequences was found only in 1999 [21]; in the same paper, convergence of this
estimator with probability 1 was also proved. Estimators (9) in the case of independent observations
were considered by the authors in [8].

In the present paper we find principal parts of the MSE and find the mean-square rate (improved
by a choice of a kernel) of convergence of estimators (9) and their piecewise smooth approximation
to H(A). The obtained results are illustrated by a wide-sense identification problem for a nonlinear
autoregression process.

2. ASYMPTOTIC PROPERTIES OF ESTIMATORS OF FUNCTIONALS
AND THEIR DERIVATIVES

Let us introduce necessary definitions and notation.

Definition 2. A function H(·) : Rs → R
1 belongs to the class Nν(x) (H(·) ∈ Nν(x)) if it and all

of its partial derivatives (up to the νth inclusive) are continuous at x. We say that H(·) ∈ Nν(R)
if these properties of H(·) are satisfied for sll x ∈ R

s.

Definition 2 is related to smoothness conditions for the estimated function H, and the next two
definitions are related to the estimation procedure.

Introduce the following notation: sup
x

= sup
x∈Rm

, Tj =
∫
ujK(u) du, j = 1, 2, . . . .

Definition 3. A function K(·) belongs to the class A(r) of normalized kernels, r = 0, 1, if∫
|K(r)(u)| du < ∞ and

∫
K(u) du = 1. A function K(·) belongs to the class A(r)

ν if K(·) ∈ A(r)

and K(·) satisfies the conditions
∫
|uνK(u)| du < ∞, Tj = 0, j = 1, . . . , ν − 1, Tν �= 0, and

K(u) = K(−u).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 46 No. 1 2010
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The parameter ν in Definition 3 determines the mean-square convergence rate for estimators (9).

For simplicity, we use the notation A(0) = A and A(0)
ν = Aν .

Definition 4. A sequence (hn) belongs to the class H(α) if

1

n

n∑
i=1

hαi = Sαh
α
n + o(hαn), (10)

where α is a real number and Sα is a constant independent of n.

Condition (10) is related to the recursive structure of estimators and is satisfied, for instance,
fir hi = O(i−γ), 0 < γ < 1 (this is precisely the form of the optimal diffusion parameters (12)); the
constant Sα can be found by the Euler–Maclaurin formula [22, Section 12.6.466]. In particular, for
any p �= −1 we obtain

n∑
j=1

jp =
np+1

p+ 1
+ o(np+1);

for the case of a positive integer p, see this equality in [23, equation 0.121].

In Lemma 1, let g(·) : R1 → R
1, i.e., let a(x) be a scalar function. Introduce the following

notation: as+(x) =
∫
|gs(y)|f(x, y) dy, b(a(1j)n (x)) = E a

(1j)
n (x)−a(1j)(x) is the bias of the estimator

a
(1j)
n (x), and ω

(rj)
ν (x) =

Tν

ν!

m∑
=1

∂νa(rj)(x)

∂xν�
, r = 0, 1, j = 1,m.

Lemma 1 (bias convergence rate). Assume that (hn) is a sequence of the class H(ν) and that
sup
x
a1+(x) < ∞. Assume that for r = 1 we have sup

x
|a(1j)(x)| < ∞ and lim

|u|→∞
K(u) = 0, and for

r = 0 (or r = 1),

a(rj)(·) ∈ Nν(R), sup
x

∣∣∣∣∣ ∂νa(rj)(x)

∂x∂xt . . . ∂xq

∣∣∣∣∣ < ∞, ", t, . . . , q = 1,m, K(·) ∈ A(r)
ν .

Then, as n → ∞, for r = 0 (or, respectively, r = 1) we have∣∣b(a(rj)n (x))− Sνω
(rj)
ν (x)hνn

∣∣ = o(hνn).

In the proof of Lemma 1, dependence of sample observations Z1, . . . , Zn plays no role (see
[8, Lemmas 1–3]).

Let us find principal parts of covariances of the estimators a
(rj)
tn (x) and a

(qk)
pn (x), which we need

in the computation of the MSE of the estimator H(An) (see Theorems 2 and 3). We turn back to
a vector function g(y). Introduce the notation

ω
(rj)
iν (x) =

Tν
ν!

m∑
=1

∂νa
(rj)
i (x)

∂xν
, r, q = 0, 1, t, p, i = 1, s,

L(r,q) =

∫
K(r)(u)K(q)(u) du, at,p(x) =

∫
gt(y)gp(y)f(x, y) dy,

a1+t,p (x) =

∫
|gt(y)gp(y)|f(x, y) dy, B(r,q)

t,p = L(r,q)(L(0,0))m−1
at,p(x),

a+i(i+τ),tp(x, y) =

∫
R2

|gt(v)gp(q)|fi(i+τ)(x, v, y, q) dv dq,

where fi(i+τ), τ ≥ 1, is a 2(m+ 1)-dimensional density function of the sample variables (Zi, Zi+τ ).

Note that
∫

Rm

K(1j)(u) du =
∫

Rm

K(1k)(u) du �
∫

Rm

K(1)(u) du for any j, k = 1,m by the product

form of the kernel.
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Lemma 2 (covariance of the estimators a
(rj)
tn (x) and a

(qk)
pn (x)). Assume that an index θ takes

values t and p, index γ takes values r and q, and the following conditions are fulfilled :

(1) (Zj)j≥1 ∈ S(α), and
∞∫
0
[α(τ)]λ dτ < ∞ for some λ ∈ (0, 1/2);

(2) at,p(·) ∈ N0(R), aθ(·) ∈ N0(R), and a
2

1−2λ
+

θ (·) ∈ N0(x);

(3) sup
x
a1+θ (x) < ∞, sup

x
a

2
1−2λ

+

θ (x) < ∞, sup
x
a1+t,p (x) <∞, and sup

x,y
a+i(i+τ),tp(x, y) < C;

(4) K(·) ∈ A(γ), sup
u∈R1

|K(γ)(u)| < ∞, and sup
u∈R1

|K(u)| < ∞ for m > 1 and rq = 1;

(5) (hn) ∈ H(−m− r − q) 1/(nhm+r+q
n ) ↓ 0.

Then, as n → ∞, we have∣∣∣∣cov(a(rj)tn (x), a(qk)pn (x)
)
− S−m−r−q

nhm+r+q
n

B(r,q)
t,p (x)

∣∣∣∣ = o

(
1

nhm+r+q
n

)
, (11)

in particular, for t = p,

D a
(rj)
tn (x) ∼ S−m−2r

nhm+2r
n

B(r,r)
t,t (x). (12)

Lemma 2 shows that principal parts of variances of the estimators a
(rj)
tn (x) for independent

(see[8, corollary]) and strongly mixed (equation (12)) estimators coincide. Thus, since for the MSE

u2
(
a
(rj)
tn (x)

)
we have u2

(
a
(rj)
tn (x)

)
= D a

(rj)
tn (x) + b2(a

(rj)
tn (x)), we obtain the following result.

Theorem 1 (MSE of optimal estimators of functionals). If the conditions of Lemma 1, condi-

tions of Lemma 2 for q = r and θ = p = t, and an extra condition ω
(rj)
tν (x) �= 0 are satisfied,

then, as n → ∞, principal parts of the mean-square optimal parameters h
(rj)o
tn and of the MSE

u2
(
a
(rj)o
tn (x)

)
are given by

h
(rj)o
tn = argmin

h
(rj)
tn >0

u2(a(rj)tn (x)
)
∼

 (m+ 2r)(m+ ν + 2r)B(r,r)
t,t

4nν(m+ 2ν + 2r)
[
ω
(rj)
tν (x)

]2


1
m+2(ν+r)

, (13)

u2
(
a
(rj)
tn (x)

∣∣
h
(rj)
tn =h

(rj)o
tn

)
= u2(a(rj)otn (x)

)
∼ (m+ 1 + 2r)

[
m+ 2(ν + r)

m+ ν + 2r

] 2(m+ν+2r)
m+2(ν+r)

[B(r,r)
t,t

4nν

] 2ν
m+2(ν+r)

[[
ω
(rj)
tν (x)

]2
m+ 2r

] m+2r
m+2(ν+r)

= O
(
n
− 2ν

m+2(ν+r)
)
. (14)

The proof of Theorem 1 for strongly mixed sequences completely follows the proof of Theorem 1
for independent sequences from [8]. According to Theorem 1, the convergence rate of optimal

nonparametric estimators a
(rj)o
in (x) for strongly mixed observations, which equals n

− 2ν
m+2(ν+r) , for

large ν approaches the usual convergence rate of parametric estimators, equal to n−1.

Introduce the following notation: f1(i+1)(i+j+1)(i+j+k+1) is the density function of the sample
variables (Z1, Zi+1, Zi+j+1, Zi+j+k+1);

a+1(i+1)(i+j+1)(i+j+k+1),t(x, y, x
′, y′)

=

∫
R4

|gt(v)gt(u)gt(v′)gt(u′)|f1(i+1)(i+j+1)(i+j+k+1)(x, v, y, u, x
′, v′, y′, u′) dv du dv′ du′,

1 ≤ i, j, k < n, i+ j + k ≤ n− 1;

a
(2+δ)+
1(1+j)(1+j+k),t(x, y, x

′) =
∫
R3

|gt(v)gt(u)gt(v′)|2+δf1(1+j)(1+j+k)(x, v, y, u, x
′, v′) dv du dv′,
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a
(2+δ)+
1(i+1),t(x, x

′) =
∫
R2

|gt(v)gt(u)|2+δf1(1+i)(x, v, u, x
′) dv du,

M4
(
a
(rj)
tn

)
= E

[
a
(rj)
tn (x)− a

(rj)
t (x)

]4
, S

(rj)
tn = a

(rj)
tn (x)−E a

(rj)
tn (x).

Let us find the order of convergence of M4(a
(rj)
tn ) to zero (see Theorem 3, condition (3)). To this

end, we first formulate the following lemma.

Lemma 3 (convergence order of the fourth central moments of the estimators a
(rj)
tn (x)). Let

for r = 0 (or r = 1) the following conditions be fulfilled :

(1) (Zj)j≥1 ∈ S(α), and
∞∫
0
τ2[α(τ)]

δ
2+δ dτ < ∞ for some 0 < δ < 2;

(2) sup
u∈R1

|K(r)(u)| < ∞,
∫
|K(r)(u)| du <∞;

(3) (hn) is monotone nonincreasing and 1/(nhm+2r
n ) ↓ 0;

(4) sup
x
aβ+t (x) < ∞, β = 0, 4;

(5) sup
x
a+1(i+1)(i+j+1)(i+j+k+1),t(x, x, x, x) < ∞, sup

x
a
(2+δ)+
1(1+j)(1+j+k),t(x, x, x) < ∞, and

sup
x
a
(2+δ)+
1(i+1),t(x, x) < ∞.

Then, as n → ∞, for r = 0 (or, respectively, r = 1) we have

E
(
S
(rj)
tn

)4
= O

(
1

n2h
2(m+2r)
n

)
. (15)

Lemma 4 (convergence order of the fourth moments of the deviations M4
(
a
(rj)
tn

)
). If the con-

ditions of Lemmas 1 and 3 are fulfilled for r = 0 (or r = 1), then, as n → ∞, we have

M4

(
a
(rj)
tn

)
= O

(
1

n2h
2(m+2r)
n

+ h4νn

)
. (16)

Proofs of Lemmas 2 and 3 are given in the Appendix, and Lemma 4 follows from Lemma 3 (see
the proof of [8, Lemma 6]).

3. MSE OF SUBSTITUTION ESTIMATORS AND OF THEIR
PIECEWISE SMOOTH APPROXIMATIONS

To find the MSE, we use results of [20], where a function H(t) = H(t1, . . . , ts) is considered,
t = t(x) = (t1(x), . . . , ts(x)) being a bounded vector function, x ∈ R

α. Under certain conditions,
there are found asymptotics of moments of deviations of H(tn) from H(t), where tn = tn(x) =
(t1n, . . . , tsn) = (t1n(x), . . . , tsn(x)) is a vector statistic constructed from a sample X1, . . . ,Xn,
Xi ∈ R

α, of not necessarily independent but identically distributed random variables.

Denote Hj(t) = ∂H(z)/∂zj |z=t
, j = 1, s; let ‖t‖ be the Euclidean norm of a vector t.

Following [20], we formulate a theorem which allows us to find the MSE of estimator (9).

Theorem 2 ([20, Theorem 1] with k = 2 and m = 4). Assume that

(1) H(z) ∈ N2(t);

(2) For any values of the variables X1, . . . ,Xn, the sequence {|H(tn)|} is majorized by a number
sequence (C0d

γ
n), (dn) ↑ ∞, C0 being a constant, 0 ≤ γ ≤ 1/4;

(3) E ‖tn − t‖4 = O(d−2
n ).
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28 KITAEVA, KOSHKIN

Then, as n → ∞, we have

u2(H(tn)) =
s∑

j,p=1

HjHp[cov(tjn, tpn) + b(tjn)b(tpn)] +O(d−3/2
n ).

Introduce the following notation (r = 0, 1, j = 1,m, i = 1, s):

Hijr = ∂H(A)/∂a
(rj)
i , Q =


{0} if ∀j r = 0,

{1} if ∀j r = 1,

{0, 1} if ∃j r = 0 ∧ r = 1,

max(r) = max
r∈Q

(r), dn =

[
1

nh
m+2max(r)
n

+ h2νn

]−1

.

Theorem 2, taking into account Lemmas 1, 2, and 4, implies the following result.

Theorem 3 (MSE of the estimator H(An)). Assume that for t, p = 1, s, j = 1,m, and r ∈ Q
we have

(1) (Zi)i≥1 ∈ S(α), and
∞∫
0
τ2[α(τ)]

δ
2+δ dτ < ∞ for some 0 < δ < 2;

(2) at,p(·) ∈ N0(R), a
(2+δ)+
t (·) ∈ N0(x), sup

x
a+t,p(x) < ∞, and sup

x
aβ+t (x) < ∞, β = 0, 4;

(3) K(·) ∈ A(r)
ν ; sup

u∈R1

|K(r)(u)| < ∞; if 1 ∈ Q, then lim
|u|→∞

K(u) = 0; for m > 1, sup
u∈R1

|K(u)| < ∞;

(4) a
(rj)
t (·) ∈ Nν(R), sup

x

∣∣a(rj)t (x)
∣∣ < ∞, and sup

x

∣∣∣ ∂νa
(rj)
t (x)

∂x� . . . ∂xq

∣∣∣ < ∞, ", . . . , q = 1,m;

(5) A monotone nonincreasing sequence (hn) belongs to the class H(ν), (hn) ∈ H(−m − 2k) for
integers 0 ≤ k ≤ max(r), and if Q = {1}, then k = 1;

(6) sup
x
a1(i+1)(i+j+1)(i+j+k+1),t(x, x, x, x) < ∞, sup

x
a
(2+δ)+
1(i+1)(i+j+1),t(x, x, x) < ∞,

sup
x
a
(2+δ)+
1(i+1),t(x, x) < ∞, and sup

x,y
a+1(i+1),tp(x, y) < ∞, for any i, j, k ≥ 1;

(7) H(·) ∈ N2(A);
(8) For any values of the sample Z1, . . . , Zn, the sequence {|H(An)|} is majorized by a number

sequence (C0d
γ
n), (dn) ↑ ∞, C0 being a constant, 0 ≤ γ ≤ 1/4.

Then

u2(H(An)) =
∑

t,p,r,q,j,k

HtjrHpkq

[
S−(m+r+q)

B(r,q)
t,p (x)

nhm+r+q
n

+ S2
νω

(rj)
tν (x)ω(qk)

pν (x)h2νn

]
+O

(
d−3/2
n

)
. (17)

Note that validity of the condition

∞∫
0

τ2[α(τ)]
δ

2+δ dτ < ∞, 0 < δ < 2,

implies the validity of the condition of Lemma 2

∞∫
0

[α(τ)]λ dτ < ∞, 0 < λ < 1/2,

and the condition sup
x
aβ+t (x) < ∞, β = 0, 4, implies sup

x
a
(2+δ)+
t (x) < ∞. Conditions (1)–(6) of

Theorem 3 ensure the validity of condition (3) of Theorem 2.
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Theorem 4 (MSE of the estimator H̃(An, δn)). Assume that the conditions of Theorem 3 are
fulfilled, with condition (8) replaced by the condition

(8∗) H(A) �= 0 or τ = 4, 6, . . . .

Then, as n → ∞, we have

u2(H̃(An, δn)
)
∼ u2(H(An)).

Optimal sequences of the diffusion parameter and the corresponding MSE of the estimators
H(An) and their piecewise smooth approximations H̃(An, δn) for strongly mixed observations can
be found in the same way as in Theorem 1 and are not presented here because of awkwardness of
expressions.

Theorem 4 follows from [20, Corollary 4] with k = 2 and m = 4.

4. IDENTIFICATION OF A NONLINEAR AUTOREGRESSION

Let a sequence (Xt)t=m,m+1,... be generated by a nonlinear autoregression of order m

Xt = Ψ(Xt−1, . . . ,Xt−m) + Φ(Xt−1, . . . ,Xt−m)ξt, (18)

where ξt is a sequence of zero-mean i.i.d. random variables with unit variance, and Ψ and Φ > 0
are unknown functions defined on R

m.

Denote Ut−1 = (Xt−1, . . . ,Xt−m). Note that for x ∈ R
m we have the conditional expectation

E(Xt |Ut−1 = x) = Ψ(x) and conditional variance D(Xt |Ut−1 = x) = Φ2(x). Thus, the function
Ψ(x) can be interpreted as a prognostic value of the process (18), and Φ(x) reflects the prognosis
risk.

We presume that assumptions 3.1 and 3.2 from [24, p. 263] are fulfilled (here we have a sequence
of indices (i1, i2, . . . , iq+1) = (0, 1, . . . ,m), g1(·) � Ψ(·), g2(·) � Φ(·), Y � X, and e � ξ). In this
case, according to [24, Lemma 3.1], (Xt) is a strictly stationary process satisfying the strong mixing
condition with a strong mixing coefficient

α(τ) ∼ e−δτ , δ > 0. (19)

Sufficient conditions of geometric ergodicity of a nonlinear autoregression process, implying
strong mixing with geometrically decaying coefficients, were considered, e.g., in [25–27].

The strong mixing coefficients (19), as well as those geometrically decaying, satisfy the conditions
of Theorems 3 and 4.

Let f(x, y) be a stationary density function of the vector (Ut−1,Xt). In the framework of
model (4), we have Ψ(x) = H(a(x)) = a1(x)/a2(x), a(x) = (a1(x), a2(x)), where a1(x) =∫
yf(x, y) dy and a2(x) = p(x).

We estimate Ψ(x) by the statistic

Ψn(x) =
n+m∑

t=m+1

Xt

hmt
K

(
x− Ut−1

ht

) / n+m∑
t=m+1

1

hmt
K

(
x− Ut−1

ht

)
=
a1n(x)

pn(x)
. (20)

A piecewise smooth approximation for (20) is of the form

Ψ̃n(x) =
Ψn(x)

(1 + δn|Ψn(x)|τ )ρ
, (21)

where by Theorems 2 and 3 we have δn = O
( 1

nhmn
+ h2νn

)
, (δn) ↓ 0 as n→ ∞.
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We estimate the conditional variance for model (18) by a statistic similar to (20):

Dn(x) =
n+m∑

t=m+1

X2
t

hmt
K

(
x− Ut−1

ht

) / n+m∑
t=m+1

1

hmt
K

(
x− Ut−1

ht

)
−Ψ2

n(x), (22)

and estimate the response functions, which show the degree of relationship between variations of
the input, xt−j , and output, xt, variables of model (18), j = 1, . . . ,m, by the statistics

T(t−j)n(x) =


n+m∑

t=m+1

Xt

hm+1
t

K(1j)
(x− Ut−1

ht

)
n+m∑

t=m+1

1

hmt
K
(x− Ut−1

ht

)

−

n+m∑
t=m+1

Xt

hmt
K
(x− Ut−1

ht

) n+m∑
t=m+1

1

hm+1
t

K(1j)
(x− Ut−1

ht

)
[

n+m∑
t=m+1

1

hmt
K
(x− Ut−1

ht

)]2
 . (23)

Estimator (22) is a semi-recursive analog of kernel estimators (3.6) and (6) of the volatility function
considered, respectively, in [3] and [28].

To find the MSE of the estimator Ψn(x), we use Theorem 3. In formula (20), let the kernel
be K(·) ∈ Aν , sup

u∈R1

|K(u)| < ∞, and (hn) ∈ H(ν) ∩ H(−m). Assume that the functions ai(x),

i = 1, 2, and their derivatives of orders up to ν inclusive are continuous and bounded on R
m, the

functions
∫
y2f(x, y) dy and

∫
y4f(x, y) dy are bounded on R

m, and, moreover,
∫
y2f(x, y) dy and∫

|y|2+δf(x, y) dy are continuous at x. Then conditions (1)–(5) of Theorem 3 are fulfilled; we also
assume that condition (6) holds. If p(x) > 0, then condition (7) is also fulfilled.

If the random variable Xt is bounded and a nonnegative kernel is chosen, then it is easy to show
that Ψn(x) is bounded for ν = 2, which is equivalent to existence of a majorizing sequence with
γ = 0, and hence condition (8) of Theorem 3 holds. As a result, we obtain

u2(Ψn(x)) =
2∑

i,p=1

HiHp

(
S−m

B(0,0)
i,p (x)

nhmn
+ S2

2ω
(0)
i2 (x)ω

(0)
p2 (x)h

4
n

)
+O

([
1

nhmn
+ h4n

]3/2)

as n → ∞, where

H1 =
1

p(x)
, H2 = −Ψ(x)

p(x)
, B(0,0)

i,p (x) =
(
L(0,0))mai,p(x), L(0,0) =

∫
K2(u) du,

a1,1(x) =

∫
y2f(x, y) dy, a1,2(x) = a2,1(x) =

∫
yf(x, y) dy, a2,2(x) = p(x),

ω
(0)
12 (x) =

T2
2

m∑
=1

∂2a1(x)

∂x2
, ω

(0)
22 (x) =

T2
2

m∑
=1

∂2p(x)

∂x2
.

For ν > 2, computing the MSE by methods presented in [11, 29] is impossible. The possibility
of vanishing of the denominator of (20) makes it difficult to find a majorizing sequence (dn) in
condition (8) of Theorem 3.

In this case, the problem can be solved by using the piecewise smooth approximation (21), for
which, according to Theorem 4, condition (8*) is fulfilled if we take an even τ ≥ 4. Then, as
n → ∞, we have

u2(Ψ̃n(x)
)
=

2∑
i,p=1

HiHp

(
S−m

B(0,0)
i,p (x)

nhmn
+ S2

νω
(0)
iν (x)ω(0)

pν (x)h
2ν
n

)
+O

([
1

nhmn
+ h2νn

]3/2)
,
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where

ω
(0)
1ν (x) =

Tν
ν!

m∑
=1

∂νa1(x)

∂xν
, ω

(0)
2ν (x) =

Tν
ν!

m∑
=1

∂νp(x)

∂xν
.

For the response function Tt−j(x) =
∂Ψ(x)

∂xt−j
, difficulties related to finding a majorizing sequence

force one to use a piecewise smooth approximation

T̃(t−j)n(x) =
T(t−j)n(x)(

1 + δn|T(t−j)n(x)|τ
)ρ ,

where T(t−j)n(x) is given by formula (23), δn = O
(
h2νn + 1/(nhm+2

n )
)
.

Here K(u) must additionally satisfy the conditions sup
u∈R1

|K(1)(u)| < ∞ and lim
|u|→∞

K(u), and

(hn) ∈ H(ν) ∩ H(−m − 2). To use the result of Theorem 4 and find u2
(
T̃(t−j)n(x)

)
, we also have

to require that the functions a1(x) and a2(x) have continuous and bounded on R
m derivatives of

order ν + 1.

APPENDIX

Let ‖X‖p = (E |X|p)
1
p . We need an auxiliary statement.

Proposition [30]. If random variables X and Y are measurable with respect to the σ-algebras
F0,t and Ft+τ,∞, τ > 0, respectively, and satisfy the strong mixing condition (1), 1 ≤ p, q, r ≤ ∞,
p−1 + q−1 + r−1 = 1, then

|E(XY )−EX EY | ≤ 12α
1
r (τ)‖X‖p‖Y ‖q.

Proof of Lemma 2. Denote

ξ
(rj)
ti (x) =

1

hm+r
i

gt(Yi)K
(rj)
(
x−Xi

hi

)
.

We represent the covariance in the form

cov
(
a
(rj)
tn (x), a(qk)pn (x)

)
=

1

n2

n∑
i=1

n∑
=1

cov
(
ξ
(rj)
ti (x), ξ

(qk)
pl (x)

)
=

1

n

n∑
i=1

cov
(
ξ
(rj)
ti (x), ξ

(qk)
pi (x)

)
+

2

n2

n−1∑
τ=1

n−τ∑
i=1

cov
(
ξ
(rj)
ti (x), ξ

(qk)
p(τ+i)(x)

)
= An(x) +Rn(x). (24)

By Lemma 4 from [8], for the term An(x) as n → ∞ we have∣∣∣∣An(x)−
S−(m+r+q)

nhm+r+q
n

B(r,q)
t,p (x)

∣∣∣∣ = o

(
1

nhm+r+q
n

)
.

Denoting U = ξ
(rj)
ti (x) and V = ξ

(qk)
p(τ+i)(x), let us estimate the term Rn(x). Applying the

auxiliary proposition with r =
2 + δ

δ
and p = q = 2 + δ, where δ > 0 is arbitrary, we obtain

|cov(U, V )| ≤ 12[α(τ)]
δ

2+δ
[
E |U |2+δ E |V |2+δ] 1

2+δ . (25)
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Since

E |U |2+δ =
1

h
(m+r)(2+δ)
i

∫
Rm+1

∣∣∣gt(z)K(rj)
(x− t

hi

)∣∣∣2+δ
f(t, z) dt dz,

we obtain, as in the case of Lemma 1 from [8],

E |U |2+δ =
1

h
(m+r)(2+δ)−m
i

a
(2+δ)+
t (x)

∫
Rm

|K(r)(z)|2+δ dz + o

(
1

h
(m+r)(2+δ)−m
i

)
,

E |V |2+δ =
1

h
(m+q)(2+δ)−m
τ+i

a(2+δ)+
p (x)

∫
Rm

|K(q)(z)|2+δ dz + o

(
1

h
(m+q)(2+δ)−m
τ+i

)
.

(26)

Choose δ =
4λ

1− 2λ
, 0 < λ < 1/2. Then, taking into account that α(τ) ↓ 0, we have

∞∑
τ=1

[α(τ)]
δ

2+δ ≤
1∫

0

[α(τ)]
δ

2+δ dτ +

2∫
1

[α(τ)]
δ

2+δ dτ + . . . =

∞∫
0

[α(τ)]2λ dτ < ∞. (27)

Let us prove (11). Equation (24) implies

|Rn(x)| ≤
2

n2

c(n)−1∑
τ=1

n−τ∑
i=1

∣∣∣cov(ξ(rj)ti (x), ξ
(qk)
p(τ+i)(x)

)∣∣∣
+

2

n2

n∑
τ=c(n)

n−τ∑
i=1

∣∣∣cov(ξ(rj)ti (x), ξ
(qk)
p(τ+i)(x)

)∣∣∣ = J1 + J2.

Let c(n) be positive integers such that c(n)hmn → 0 and c(n)h2mλ
n → ∞ as n → ∞ (for instance,

we may take c(n) ∼ h
m(ε−1)
n , 0 < ε < 1− 2λ, 0 < λ < 1/2). Then, as n→ ∞, we have

J1 ≤
2

n2

c(n)−1∑
τ=1

n−τ∑
i=1

1

hm+r
i hm+q

τ+i

∫
R2(m+1)

∣∣∣∣gt(z)K(rj)
(x− u

hi

)
gp(y)K

(qk)
(x− v

hτ+i

)∣∣∣∣
×
∣∣fi(i+τ)(u, z, v, y) − f(u, z)f(v, y)

∣∣ du dz dv dy
≤ 2

n2

c(n)−1∑
τ=1

n−τ∑
i=1

1

hm+r
i hm+q

τ+i

[
sup
x
a+i(i+τ),tp(x, x) + sup

x
a1+t (x) sup

x
a1+p (x)

]
×
∫

R2m

∣∣∣∣K(rj)
(x− u

hi

)
K(qk)

(x− v

hτ+i

)∣∣∣∣ du dv
≤ C

n2

c(n)−1∑
τ=1

n−τ∑
i=1

1

hrih
q
τ+i

∫
Rm

|K(r)(u)|du
∫
Rm

|K(q)(u)|du

≤ Cc(n)

n

1

hr+q
n

= O

(
hmn c(n)

nhm+r+q
n

)
= o

(
1

nhm+r+q
n

)
.

Hereafter, by C we denote any constant, which need not be the same even within a single reasoning.
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Using relations (25)–(27) and expressing δ through λ, we obtain

J2 =
2

n2

n∑
τ=c(n)

n−τ∑
i=1

|cov(ξ(rj)ti (x), ξ
(qk)
p(τ+i)(x))|

≤ 24

n2
[a

(2+δ)+
t (x)a(2+δ)+

p (x)]
1

2+δ

 ∫
Rm

|K(r)(z)|2+δ dz

∫
Rm

|K(q)(z)|2+δ dz


1

2+δ

×
n∑

τ=c(n)

n−τ∑
i=1

[α(τ)]
δ

2+δ

h
[(m+r)(2+δ)−m]/(2+δ)
i

1

h
[(m+q)(2+δ)−m]/(2+δ)
τ+i

+ o

(
1

nh
[(2m+r+q)(2+δ)−2m]/(2+δ)
n

)

≤ 24

n2

[
a

2
1−2λ

+

t (x)a
2

1−2λ
+

p (x)
] 1−2λ

2

 ∫
Rm

|K(r)(u)|
2

1−2λ du

∫
Rm

|K(q)(u)|
2

1−2λ du


1−2λ

2

×
n∑

τ=c(n)

[α(τ)]2λ
n∑

i=τ

1

h
m(1+2λ)+r+q
i

+ o

(
1

nh
m(1+2λ)+r+q
n

)

≤
24
[
a

2
1−2λ

+

t (x)a
2

1−2λ
+

p (x)
] 1−2λ

2

nh
m(1+2λ)+r+q
n

 ∫
Rm

|K(r)(u)|
2

1−2λ du

∫
Rm

|K(q)(u)|
2

1−2λ du


1−2λ

2

×
n∑

τ=c(n)

[α(τ)]2λ + o

(
1

nh
m(1+2λ)+r+q
n

)
.

Furthermore,

J2 ≤
C

c(n)nh
m(1+2λ)+r+q
n

∞∑
τ=c(n)

c(n)[α(τ)]2λ

≤ C

c(n)nh
m(1+2λ)+r+q
n

∞∑
τ=c(n)

τ [α(τ)]2λ

≤ C

c(n)nh
m(1+2λ)+r+q
n

∞∑
τ=1

τ [α(τ)]2λ.

Since α(τ) is nonincreasing, i.e., 1 ≥ α(1) ≥ α(2) ≥ . . . , it follows from

∞∑
τ=1

[α(τ)]λ < ∞, 0 < λ <
1

2
,

that
∞∑
τ=1

τ [α(τ)]2λ =
∞∑
γ=1

∞∑
t=γ

[α(t)]2λ ≤
∞∑
γ=1

[α(γ)]λ
∞∑
t=γ

[α(t)]λ ≤
[ ∞∑
τ=1

[α(τ)]λ
]2

< ∞.

Thus,

J2 = O

(
1

c(n)nh
m(1+2λ)+r+q
n

)
= O

(
1

nhm+r+q
n c(n)h2mλ

n

)
= o

(
1

nhm+r+q
n

)
. �
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Proof of Lemma 3. We use methods of the proofs of Lemmas 4 and 1 from [31, Sections 4.20
and 4.22]. Denote

ηir =
1

hm+r
i

[
gt(Yi)K

(rj)
(
x−Xi

hi

)
−E

[
gt(Yi)K

(rj)
(
x−Xi

hi

)]]
.

The sequence (Zj)j≥1 is stationary, and therefore

E
(
S
(rj)
tn

)4
=

1

n4
E

(∑
i=1

ηir

)4

≤ 4!

n4

∑
s,i,j,k

|E ηsrη(i+s)rη(i+j+s)rη(i+j+k+s)r|, (28)

where the sum is over s, i, j, k ≥ 1, s + i + j + k ≤ n. By the proposition with r =
2 + δ

δ
and

p = q = 2 + δ, taking into account condition (2) of the lemma and the fact that E ηsr = 0, upon
changing variables in the integrals we obtain∣∣E{ηsr(η(i+s)rη(i+j+s)rη(i+j+k+s)r)

}∣∣
≤ 12[α(i)]

δ
2+δ

[
E |ηsr|2+δ E

∣∣η(i+s)rη(i+j+s)rη(i+j+k+s)r

∣∣2+δ
] 1

2+δ

≤ C[α(i)]
δ

2+δ h
4m
2+δ

−4(m+r)
n

 ∫
Rm

|K(r)(u)|2+δ du


4

2+δ

× sup
x

[
a
(2+δ)+
t (x)a

(2+δ)+
s(s+j)(s+j+k),t(x, x, x)

] 1
2+δ ≤ Ch

4m
2+δ

−4(m+r)
n [α(i)]

δ
2+δ

and ∣∣E{(ηsrη(i+s)rη(i+j+s)r)η(i+j+k+s)r

}∣∣ ≤ Ch
4m
2+δ

−4(m+r)
n [α(k)]

δ
2+δ .

Similarly,∣∣E{(ηsrη(i+s)r)(η(i+j+s)rη(i+j+k+s)r)
}∣∣ = ∣∣E{(ηsrη(i+s)r)(η(i+j+s)rη(i+j+k+s)r)

}
−E(ηsrη(i+s)r)E(η(i+j+s)rη(i+j+k+s)r) +E(ηsrη(s+i)r)E(η(i+j+s)rη(i+j+k+s)r)

∣∣
≤ Ch

4m
2+δ

−4(m+r)
n [α(j)]

δ
2+δ +

∣∣E(ηsrη(s+i)r)E(η(i+j+s)rη(i+j+k+s)r)
∣∣. (29)

Also, we have ∣∣E(ηsrη(i+s)r)
∣∣ ≤ Ch

2m
2+δ

−2(m+r)
n [α(i)]

δ
2+δ ,∣∣E(η(i+j+s)rη(i+j+k+s)r)

∣∣ ≤ Ch
2m
2+δ

−2(m+r)
n [α(k)]

δ
2+δ .

Substituting these two inequalities into (29), we obtain∣∣E{(ηsrη(i+s)r)(η(i+j+s)rη(i+j+k+s)r)
}∣∣ ≤ Ch

4m
2+δ

−4(m+r)
n

(
[α(i)]

δ
2+δ [α(k)]

δ
2+δ + [α(j)]

δ
2+δ

)
.

Thus,

C−1h
−4m
2+δ

+4(m+r)
n

∑
s,i,j,k

∣∣E{ηsrη(i+s)rη(i+j+s)rη(i+j+k+s)r

}∣∣
≤ 2n

n∑
i=1

i∑
j,k=1

[α(i)]
δ

2+δ + n
n∑

j=1

∞∑
i,k=1

[α(i)]
δ

2+δ [α(k)]
δ

2+δ

≤ n
n∑

i=1

i2[α(i)]
δ

2+δ + n2
∞∑
i=1

[α(i)]
δ

2+δ

∞∑
k=1

[α(k)]
δ

2+δ
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≤ n
∞∑
i=1

i2[α(i)]
δ

2+δ + n2
( ∞∑
i=1

[α(i)]
δ

2+δ

)2

≤ n

∞∫
1

τ2[α(τ)]
δ

2+δ dτ + n2
( ∞∫

1

[α(τ)]
δ

2+δ dτ

)2

, (30)

where we have taken into account that 1 ≥ α(0) ≥ α(1) ≥ α(2) ≥ . . . .

Equations (28) and (30) imply

E
(
S
(rj)
tn

)4 ≤ 4!nCh
4m
2+δ
n

n4h
4(m+r)
n

[
n

( ∞∑
i=1

[α(i)]
δ

2+δ

)2

+ 3
∞∑
k=1

k2[α(k)]
δ

2+δ

]

≤ Ch
− 2mδ

2+δ
n

n2h
2(m+2r)
n

( ∞∑
i=1

[α(i)]
δ

2+δ

)2

+
Ch

m(2−δ)
2+δ

n

n2h
2(m+2r)
n nhmn

∞∑
k=1

k2[α(k)]
δ

2+δ . (31)

Consider the first term on the right-hand side of inequality (31). Choose a sequence of pos-
itive integers c(n) such that c(n) = o(n) and c(n) = O(h−m

n ). Then, taking into account that

c2(n)h
2mδ
2+δ
n → ∞ as n → ∞, we obtain

h
− 2mδ

2+δ
n

n2h
2(m+2r)
n

( ∞∑
i=c(n)

[α(i)]
δ

2+δ

)2

=
h
− 2mδ

2+δ
n

n2h
2(m+2r)
n c2(n)

( ∞∑
i=c(n)

c(n)[α(i)]
δ

2+δ

)2

≤ C

n2h
2(m+2r)
n c2(n)h

2mδ
2+δ
n

( ∞∑
τ=1

τ [α(τ)]
δ

2+δ

)2

= o

(
1

n2h
2(m+2r)
n

)
.

Now we show that

Ch
− 2mδ

2+δ
n

n2h
2(m+2r)
n

(c(n)∑
i=1

[α(i)]
δ

2+δ

)2

≤ O

(
1

n2h
2(m+2r)
n

)
.

Taking into account conditions (2) and (5) of the lemma, we find

∣∣E{ηsr(η(i+s)rη(i+j+s)rη(i+j+k+s)r)
}∣∣ ≤ Ch−4r

n

(∫
|K(r)(u)| du

)4

× sup
x
a+s(i+s)(i+j+s)(i+j+k+s),t(x, x, x, x) ≤ Ch−4r

n asi(··),t,∣∣E{(ηsrη(i+s)rη(i+j+s)r)η(i+j+k+s)r

}∣∣ ≤ Ch−4r
n as(··)k,t,∣∣E{(ηsrη(i+s)r)(η(i+j+s)rη(i+j+k+s)r)

}∣∣ ≤ Ch−4r
n as(·)j(·),t,

where

asi(··),t = max
j,k

sup
x
a+s(i+s)(i+j+s)(i+j+k+s),t(x, x, x, x),

as(··)k,t = max
i,j

sup
x
a+s(i+s)(i+j+s)(i+j+k+s),t(x, x, x, x),

as(·)j(·),t = max
i,k

sup
x
a+s(i+s)(i+j+s)(i+j+k+1s),t(x, x, x, x).
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Similarly to (30), we obtain

∑
s,i,j,k

∣∣E ηsrη(i+s)rη(i+j+s)rη(i+j+k+s)r

∣∣ ≤ 3Ch−4r
n

n∑
s=1

s∑
i,j,k=1

asi,t

≤ 3Ch−4r
n

n∑
s=1

s3as,t ≤ 3Ch−4r
n n

∞∑
k=1

k2ak,t

= 3Ch−4r
n n

(c(n)−1∑
k=1

k2ak,t +
∞∑

k=c(n)

k2ak,t

)
, (32)

where asi,t = max
(
asi(··),t, as(··)i,t, as(·)i(·),t

)
and as,t = max

i=1,s
asi,t.

The second term on the right-hand side of (32) is of the order of o

(
1

n2h
2(m+2r)
n

)
, and the first

term satisfies
c(n)−1∑
k=1

k2ak,t ≤ Cnc2(n). Since lim
n→∞

c(n)hn = o(1), we have

E
(
S(rj)
nr

)4 ≤ n2Cc2(n)h4n

n4h
4(m+r)
n

+ o

(
1

n2h
2(m+2r)
n

)
= O

(
1

n2h
2(m+2r)
n

)
. �
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vol. 24, no. 4, pp. 61–73.

11. Nadaraya, E.A., On Estimation of Regression, Teor. Veroyatnost. i Primenen., 1964, vol. 9, no. 1,
pp. 157–159.

12. Watson, G.S., Smooth Regression Analysis, Sankhyā, Ser. A, 1964, vol. 26, pp. 359–372.
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