S. V. Kirsanov

MATERIAL CUTTING AND CUTTING TOOLS

COURSEWORK GUIDELINES

UDC 621.96; 621.9.02
Cutting Tools Design: Student's guide. Instructions and assignments for conducting coursework, designed for students enrolled in the Bachelor Degree program 150700 "Mechanical engineering" / compiled by S.V. Kirsanov. - Tomsk: Tomsk Polytechnic University Publishing House, 2012.-74 p.

Coursework guidelines are examined and recommended for publication by the methodological seminar of the Department of Automated Mechanical Manufacturing Engineering " 24 " \qquad 2012, Record № \qquad .

Head of the Department of Automated Mechanical Manufacturing Engineering Associate professor, Doctor of Science (Technical) A.Yu. Arlyapov

ANNOTATION

"Material Cutting and Cutting Tools" Coursework guidelines are designed for students enrolled in the Bachelor Degree program 150700 "Mechanical engineering". The coursework is designed to be performed in two semesters

The guidelines contain the instructions for designing of circular form cutters and round rotor-cut broaches, initial data and examples of drawings.

CONTENTS

CONTENTS 3

1. Form Cutters 4
1.1 Overview 4
1.2 Profiling of form cutters 7
2. Internal broaches 17
2.1. Overview 17
2.2. Calculation of round rotor-cut broaches 25
References 66
APPENDIXES 67

1. Form Cutters

1.1 Overview

Form cutters are applied for cutting of circular parts with profiled external or internal surfaces. The form cutters are usually used in automatic machines and turret machines in medium run production or mass production. Calibrated rolled bars are most often used as blankets for the form cutting.

Compared with other types of cutters, the from cutters have the following advantages: 1) identity of the part shapes and high dimensional accuracy independent of the qualification of the worker; 2) high productivity due to great length of the active cutting edge; 3) large number of allowable regrindings; 4) simple regrinding along the face surface; 5) do not require timeconsuming set-up and configuration of the machine tools.

The disadvantages of form cutters include: 1) complicated manufacture and high cost; 2) special design, as they are suitable for the manufacture of parts only of the specified profile; 3) large radial forces caused by radial feed, result in chatter and elastic deformation of non-rigid workpieces, thus requiring feed rate reduction, which in its turn decrease the productivity; 4) working rake and clearance angles of the form cutters vary considerably along the cutting edges from the optimal values.

Form cutters are of the following types (Fig. 1.1): radial, circular, radial prismatic and tangential prismatic. Of these, the most common are the circular and prismatic cutters working with radial feed.

Analysis of radially fed circular and prismatic cutters design shows that the circular cutters are easier to manufacture and thus, can be made of higher precision. However, the number of regrindings and mounting rigidity is limited, since the cutter bore diameter depends on the outer diameter of the cutter. The latter is recommended to assign of smaller than 100 mm in diameter, since the quality of high-speed steel used for the manufacture of cutters of such size is deteriorated. Prismatic cutters have greater stiffness and clamped with help of dovetail shank, they have a large number of permissible regrinding and, as it will be shown below, provide higher accuracy of machining.

For cutting internal form surfaces only circular shank-type form cutters are used.

Fig. 1.1 Form cutters: (a) radial; (b) circular;
(c) prismatic; (d) tangential prismatic

The clearance angle α of the circular form cutters is created by positioning the center of the tool O_{C} above the center of the workpiece O_{W} by the height h, and the rake angle γ is created by grinding the rake surface at the distance H from the center O_{C} (Fig. 4.6). In the example the points located on the outer diameter of the cutter (points 1 and 3) lie on the center line of a machine:

$$
\sin \alpha=h / R, \sin (\alpha+\gamma)=\sin \psi=H / R,
$$

where R - is the radius of the cutter outer diameter.

Fig. 1.2 Geometric parameters of a circular (right) and a prismatic (left) form cutters, which work with radial feed

At other points of the cutting edge the angles α and γ, measured in a section perpendicular to the axis of the cutter, depend on the position of the reference planes (reference plane and cutting edge plane) and tangents to the face and flank surfaces of the cutter. Tangent to the flank surface drawn at different points along the cutting edge - is a normal to the radius, drawn from the cutter center O_{C}.

It follows from the above that with the point of the cutting edge approaching to the center of the tool the coordinate planes rotate in a clockwise direction and, thus clearance angle is $\alpha_{\mathrm{i}}>\alpha$ and rake is $\gamma_{i}<\gamma$ in any $\mathrm{i}^{\text {th }}$ point located at a distance from the cutter top. Tangents to the flank of a circular cutter also rotate, but in the opposite direction, i.e. counterclockwise.

Position of the prismatic cutter during the cutting process is shown on the left side of Fig. 1.2. During the manufacture of these cutters the face is cut at an angle $\gamma+\alpha$, and the actual clearance angle α in the working position is created by tilting the tool relative to the part.

Clearance angles of the inclined cutting edges are usually measured in sections normal to these edges. In order to avoid friction between the flanks and machined surface clearance angles should be at least $1 . . .2^{\circ}$ (Fig. 1.3, a).

Fig. 1.3 Clearances of the form cutters: (a) clearance angles on inclined cutting edges; (c) undercut on the cutting edges perpendicular to the workpiece axis; (c) cutter with inclined profile

To avoid rubbing of cutter side flanks against the surface of the workpiece the cutting edges that perpendicular to the axis of the workpiece are either undercut at an angle $\varphi_{1}=1^{\circ} \ldots 2^{\circ}$, or cut away with only the narrow ribbon of width $f=0.5 \ldots 1.0 \mathrm{~mm}$ left (Fig. 1.3, b). It is also possible to manufacture cutters helical flanks or with cutter profile inclined at an angle relative to the axis of the workpiece (Fig. 1.3, c), in order to create more desirable clearance angles on such cutting edges.

Profiling of form cutters (analytical calculation of the profile) is performed at the stage of manufacturing, as well as during designing tools of the second order, templates and reference templates that are used to check profiles of the cutters and templates respectively. Circular cutters profile is calculated in the radial section, and the prismatic cutters are calculated in a section normal to the flank. In this case, because of the variable angles α and γ the depth (height) of the cutter profile in these sections does not match the part profile depth in its axial section.

1.2 Profiling of form cutters

Initial data: part drawing (Appendix 1).

Calculation procedure

1. Selection of the tool material. The common tool material is high speed steel grade P6M5 (GOST 19265-73), hardened to HRC 63...66. For machining of hardened steels it is advised to apply HSS grades P18 and P6M5K5, P9M4K8 etc.
2. The rake γ_{1} is assigned for the top point of the cutter (Table 1.1).

Table 1.1
1.1. Rakes angles for the form cutters

Workpiece material	σ, MPa	Hardness, $H B$	Rake γ_{1}, deg.
Copper, aluminum	-	-	$20 \ldots 25$
Mild steel	до 50	до 150	25
Free-machining steel (A12, A20 etc.)	$50 \ldots 80$	$150 \ldots 235$	$20 \ldots 25$
Medium-hard steel	$80 \ldots 100$	$235 \ldots 280$	$12 \ldots 20$
Hard alloyed steel	$100 \ldots 120$	$280 \ldots 350$	$8 \ldots 12$
Malleable cast iron (ferritic)	-	до 150	15
Gray cast iron	-	$150 \ldots 200$	12
Bearing cast iron	-	$200 \ldots 250$	8

Clearance angle for the profile highest point of the prismatic cutters is taken within $\alpha_{1}=12 \ldots 15^{\circ}$, and for the circular cutters - within $\alpha_{1}=10 \ldots 12^{\circ}$. Rake γ_{i} and clearance α_{i} angles at other points of the cutting edge are variable. The farther the point of the profile is from the top of the tool, the smaller is the rake and the higher is the clearance angle. In profile sections perpendicular to the part axis the angle $\alpha=0^{\circ}$. In this case, to avoid severe friction it is required to create undercut angles equal to $1 \ldots 2^{\circ}$ (Fig. 1.4, b).
3. Dimensions and parameters of the mounting part of the cutter are assigned with respect to the maximum height $t_{\max }$ of the part profile (Tables 1.2-1.4) [2]. The tabular value of the circular form cutter radius is verified with the help of the following equation (Fig. 1.5):

$$
R_{1}=t_{\max }+K+e+d_{0} / 2
$$

where $t_{\text {max }}$ - maximum depth of cut of the part profile; K - chip room, $K=3 \ldots 12 \mathrm{~mm} ; e$ - wall thickness, $e=5 \ldots 8 \mathrm{~mm} ; d_{0}$ - diameter of the cutter bore (Table 1.5).

Further, the calculated value R_{l} is rounded to integer and is accepted as the maximum radius of the circular form cutter.

Fig. 1.4 Minor cutting edges of the from cutters:
(a) for grooving; (b) for chamfering; (c) profile turning ($a=2 \ldots 5 \mathrm{~mm}, c=1 \ldots 3 \mathrm{~mm}$,

$$
\left.\varphi_{1}=15 \ldots 20^{\circ}, b \geq 3 \ldots 8 \mathrm{~mm}, b_{1}=0.5 \ldots 1.5 \mathrm{~mm}, \varphi=15^{\circ}\right)
$$

4. Further, the altitude coordinates of the part profile points are calculated. These altitude coordinates are specified by the radii that depend on the size tolerances of the given point. Thus, the nominal radius of the $i^{t h}$ point is calculated by the equation:

$$
r_{i}=\frac{d_{i \max }-d_{i \min }}{4},
$$

where $d_{i \max }-$ maximum limit of size $; d_{i \min }-\operatorname{minimum}$ limit of size.

Fig. 1.5 Schematic for estimation of the outer radius R_{1} of circular form cutter
All calculations must be performed to three decimal places and then rounded to the two decimal places.
5. Since rake γ and clearance α angles are not zero, the cutter profile differs from the part profile, and, thus, should be corrected. Form cutter profile is calculated and checked in planes that perpendicular to the flank surface (prismatic cutters) and radial planes (circular cutter).

Table 1.2
Dimensions of prismatic form cutters

$$
\mathrm{BC}+\mathrm{Cl}
$$

Part profile height $t_{\text {max }}$, no more than	$B, \mathrm{~mm}$	H, mm	E, mm	$A \mathrm{~mm}$	$F \mathrm{~mm}$	$r \mathrm{~mm}$	$\underset{\mathrm{c}}{\mathrm{~d}}$	$\begin{gathered} M(h 9), \\ \mathrm{mm} \end{gathered}$
4	9	75	4	15	7	0.5	4	$\begin{gathered} \hline 21.31 \\ 18.577 \end{gathered}$
6	14		6	20	10		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 29.46 \\ & 24.00 \end{aligned}$
10	19	90	10	25	15	1.0	6 4	$\begin{aligned} & 34.46 \\ & 29.00 \\ & \hline \end{aligned}$
14	25			30	20		$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 45.77 \\ 34.846 \end{gathered}$
20	35			40	25		$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} 55.77 \\ 44.846 \end{gathered}$
28	45	100	15	60	40		$\begin{gathered} 15 \\ 8 \\ \hline \end{gathered}$	$\begin{array}{r} 83.66 \\ 64.536 \\ \hline \end{array}$

Note:

1. It is allowed for given part profile height $t_{\max }$ to choose cutters of bigger sizes, for example, for a part with profile height $t=7 \mathrm{~mm}$ it is permissible to choose cutters with sizes that are meant for $t_{\text {max }} \leq 14$ mм.
2. Length L_{C} relates to the part profile length.
3. The shank size M can be controlled with rollers of two diameters. For rollers of another diameter: $M=A+d\left(1+\operatorname{ctg} \frac{\lambda}{2}\right)-2 E \operatorname{ctg} \lambda$, where $\lambda=60^{\circ}$ (for a given drawing).

Table 1.3
Dimensions of circular form cutters with pin holes

Part profile height $t_{\text {max }}$, no more than	$\begin{gathered} D(h 9), \\ m m \end{gathered}$	$\begin{gathered} d_{0}(H 8), \\ m m \end{gathered}$	$\begin{aligned} & d_{1}, \\ & m m \end{aligned}$	$\begin{gathered} b_{\max }, \\ m m \end{gathered}$	$\begin{gathered} K, \\ m m \end{gathered}$	$r, \mathrm{~mm}$	$\begin{aligned} & D_{1,}, \\ & m m \end{aligned}$	$\begin{gathered} d_{2}, \\ m m \end{gathered}$
6	50	13	20	9	3	1	28	5
8	60	16	25	11		2	34	
11	75	22	34	15	4	2	42	
14	90			18		2	45	6
18	100	27	40	23	5	2	52	8
25	125			30		3	55	

Note:

1. It is allowed for given part profile height $t_{\max }$ to choose cutters of bigger sizes (refer to Notes 1 for Table 1.2).
2. Length L_{C} relates to the part profile length.
3. Sizes: $l=L_{C}-l_{1} ; l_{1}=\left(\frac{1}{4} \ldots \frac{1}{2}\right) L_{C} ; l_{2}=\frac{1}{4} l$.

Table 1.4
Dimensions of circular form cutters with end serrations

Part profile height $t_{\text {max }}$, no more than	$\begin{gathered} D(h 9), \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} d_{0}(H 8), \\ m m \end{gathered}$	$\begin{aligned} & d_{1}, \\ & m m \end{aligned}$	$b_{\text {max }}$, mm	$\begin{gathered} \mathrm{K}, \\ m m \end{gathered}$	$\begin{gathered} r \\ m m \end{gathered}$	$\begin{aligned} & d_{2}, \\ & m m \end{aligned}$	$\begin{gathered} l_{2}, \\ m m \end{gathered}$
4	30	10	16	7	3	1	-	-
6	40	13	20	10			20	3
8	50	16	25	12	4	2	26	
10	60			14			32	
12	70	22	34	17	5	2	35	4
15	80			20			40	
18	90			23			45	5
21	100	27	40	25			50	5

Note:

1. It is allowed for given part profile height $t_{\max }$ to choose cutters of bigger sizes (refer to Notes 1 for Table 1.2).
2. Length L_{C} relates to the part profile length.
3. Sizes: $l=L_{C}-l_{1} ; l_{1}=\left(\frac{1}{4} \ldots \frac{1}{2}\right) L_{C} ; l_{3}=\frac{1}{4} l$.

Table 1.5
Bores of circular form cutters

$D^{\text {table }}, \mathrm{mm}$	30	40	50	60	75	90
$d_{0}, \mathrm{~mm}$	13	16	16	22	22	27

The profile correction is performed as follows.
a) Common part: it is necessary to calculate the height of the cutter (circular or prismatic) profile in a face plane, i.e. the distances $C_{2}, C_{3}, C_{4} \ldots$ of the corresponding part profile points $2,3,4 \ldots$ (Fig. 1.6):

1) $h=r_{1} \sin \gamma_{1}$;
2) $A_{1}=r_{1} \cos \gamma_{1}$;
3) $\sin \gamma_{2}=\frac{h}{r_{2}}$;
4) $A_{2}=r_{2} \cos \gamma_{2}$;
5) $C_{2}=A_{2}-A_{1}$;
6) $\sin \gamma_{i}=\frac{h}{r_{i}}$;
7) $A_{i}=r_{i} \cos \gamma_{i}$;
8) $C_{i}=A_{i}-A_{1}$;
and so on for the other points.

Fig. 1.6 Schematic for calculation of the cutter profile height $C_{2}, C_{3}, C_{4}, \ldots$
b) For prismatic cutters: it is necessary to calculate the height of the cutter profile in a plane perpendicular to the flank, i.e. the distances $P_{2}, P_{3}, P_{4} \ldots$ of the corresponding part profile points $2,3,4 \ldots$ (Fig. 1.7):

1) $\varepsilon_{1}=\alpha_{1}+\gamma_{1} ;$
2) $P_{2}=C_{2} \cos \varepsilon_{1}$;
3) $P_{i}=C_{i} \cos \varepsilon_{1}$.

Fig. 1.7 Schematic for calculation of the prismatic cutter profile height P_{2}, P_{3}, P_{4}, etc. in a plane perpendicular to the cutter flank
c) For circular cutters: it is necessary to calculate radii $R_{2}, R_{3}, R_{4} \ldots$ of the corresponding part profile points $2,3,4 \ldots$ (Fig. 1.8):

1) $\varepsilon_{1}=\alpha_{1}+\gamma_{1}$;
2) $h_{C}=R_{1} \sin \varepsilon_{1}$;
3) $B_{1}=R_{1} \cos \varepsilon_{1}$;
4) $B_{2}=B_{1}-C_{2}$;
5) $\operatorname{tg} \varepsilon_{2}=h_{C} / B_{2}$;
6) $R_{2}=h_{C} / \sin \varepsilon_{2}=B_{2} / \cos \varepsilon_{2}$;
7) $B_{i}=B_{1}-C_{i}$;
8) $\operatorname{tg} \varepsilon_{i}=h_{C} / B_{i}$; 9) $R_{i}=h_{C} / \sin \varepsilon_{i}=B_{i} / \cos \varepsilon_{i}$; and so on for the other points.
6. Further, the cutter cutting edges profile is drawn on $\mathrm{M} 2: 1$ scale. The outermost cutting edges of the cutter profile cut a chamfer and a groove for cut-off cutter. Here, the groove diameter should not be less than the minimum diameter of the part.

Fig. 1.8 Schematic for calculation of the circular cutter radii $R_{2}, R_{3}, R_{4} \ldots$

In the drawing the altitude coordinates of the profile points are positioned with respect to the datum that is the highest profile point; and the axial coordinates, which are converted from the axial dimensions of the part, are plotted with respect to the rightmost profile point.

The accuracy of the height dimensions is set equal to $\pm 1 / 3 \Delta$, where $\Delta-$ tolerance value of the corresponding dimension of the part. The accuracy of the cutter axial dimensions is set equal to $\pm I T 12 / 2$.
7. Finally, the drawing of the form cutter is made and the calculations report is written. The prismatic form cutter is drawn in three projections (App. 2). The circular form cutter is represented in two projections with obligatory designation of the parameters h and H, which define values of the angles α_{1} and γ_{1} in the highest point of the cutter (App. 3).

2. Internal broaches

2.1. Overview

Broaches are multiple-point high productive cutting tools, widely used in the medium run production and especially in mass production. Broaches have inherent feed motion, since the machine performs only the pulling motion without feed available. The allowance distribution between the teeth of a broach is implemented by the progressive increase of height or width of each subsequent tooth relative to the previous one. The increase in height, which specifies thickness of chip a_{z}, is called feed per tooth or rise per tooth. The chips are divided by width with the help of chipbreakers to facilitate the process of cutting and chip removal.

Fig. 2.1 Broaching types: (a) pull broaching (b) push broaching

The primary motion of broaching, that performs process of cutting, is often straight-line linear motion. Less common types of broaches involve rotational or helical primary motion.

The process of broaching is carried out in special horizontal or vertical broaching machines.

Round holes can be cut with pull broaches (Fig. 2.1, a) or push broaches (Fig. 2.1, b). The pull broaches work in tension and push broaches work in compression. Thus, the push broach length is limited by 15 diameters to ensure buckling stability. The structure of the push and pull broaches is similar.

The broaches spread widely due to the following advantages of the broaching process:

1) high productivity. The active length of the cutting edges is very large, although the cutting speed is low ($6 \ldots 12 \mathrm{~m} / \mathrm{min}$). In general the productivity of broaching is in $3 \ldots 12$ times higher than for other types of machining;
2) high accuracy (IT7...IT8) and surface finish (Ra $0.32 \ldots 2.5 \mu \mathrm{~m}$) of the machined surface, due to broach design with separate roughing, finishing and sizing teeth, and in some cases even with burnishing buttons;
3) high tool life, which is up to several thousands of parts. This is achieved by the optimal cutting conditions and large stock for regrinding;
4) simple design of broaching machines, since there is no need for feed motion, so the machines do not have feed gearboxes, and the primary motion is performed by hydraulic rams.

The disadvantages of broaches include:

1) high labor and cost of a broach due to complex design and high accuracy requirements;
2) broaches are special-purpose tools, designed for manufacture of parts of only one size and given shape;
3) the high cost of regrinding, caused by the complexity of the broach design.

Therefore, cost-effectiveness of applications of broaches is achieved only in medium-production and mass production. Nevertheless, even small enterprises working in conditions of single-part or medium run productions can achieve significant economic efficiency provided that the broaching is used for production of complex shaped precision holes.

During the design of broaches the following peculiarities of the broaching process should be considered:

1) broaches experience large tensile loads, and therefore internal broaches should be checked for strength of the weakest crosssections;
2) the entire chip produced by a broaching must be freely contained in the gullets for the whole period of broaching, and should be easily leave the gullets after the broaching process is finished. Therefore, issues of chip breaking and accommodation require a lot of attention. So, for example, the ring-shaped chips are not allowed in broaching round holes, since it would be quite time-consuming to release broaches from them;
3) the length of broaches is limited by the broaching machine stroke and technological capabilities of machines and equipment used for machining and heat-treatment of the broaches. Moreover, broaches must be stiff and rigid enough for the manufacture and operation, so rests and other supporting devices are sometimes used in broaching.

Fig. 2.22 Construction of an internal broach: (1) pull-end; (2) neck; (3) front pilot; (4) cutting part; (5) sizing part; (6) rear pilot; (7) retriever

The broaches for round holes are the most widespread (60%) of all internal broaches. The construction of internal broaches includes: pull-end, neck, front pilot, cutting and sizing parts and retriever (Fig. 2.22).

The pull end is used to couple the broach to the puller of the broaching machine. Basic types and sizes of a pull end are standardized (GOST 404470). The diameter of the pull end should be smaller by $1 . . .2 \mathrm{~mm}$ than the diameter of the starter hole for broaching.

The neck and the following transition cone play a supplementary role. Their length should ensure broach coupling with the machine puller before the broaching has started. Transition cone provides free entry of the front pilot to the starter hole. Neck diameter is taken smaller than the shank diameter by $0.3 . . .1 .0 \mathrm{~mm}$.

Front pilot aligns the axis of the workpiece relative to the axis of the broach before pulling. The length of the front guide is equal to the workpiece
hole length L_{0}, and for longer holes it is equal to $0.6 L_{0}$. Tolerance of the front pilot diameter is $e 8$.

Rear pilot ensures broach alignment as the final teeth exit the workpiece hole. The length of the rear pilot is slightly smaller than the front pilot length, and its diameter is machined with $f 7$ tolerance zone.

A retriever is used to return the broach to starting position automatically after the broaching, especially if a broach of large length and diameter is used.

Cutting part of a broach contains roughing and finishing teeth, with intermediate teeth added for the rotor-cut broach, which are located on a stepconical surface. The length of the cutting part is the result of the number of teeth multiplied by their pitch, which, in turn, depends on the required accuracy and surface finish of the hole, as well as on the volume of material to be cut.

Sizing part contains $4 \ldots 10$ teeth of the same diameter, i.e. with zero rise per tooth. It is used to size or calibrate the hole, reduce the hole size distribution, and is a reserve for finishing teeth regrinding, thereby increasing the broach overall life.

The design of the cutting part is determined by the cutting pattern adopted, which refers to the procedure for successive allowance removal.

There are the following cutting patterns: a) by the method of dividing the thickness and width of the allowance - there are standard and rotor-cut patterns; b) by the method of a hole profile forming - there are full-form, generating and combination patterns.

The standard cutting pattern is characterized by the fact that each tooth of a broach cuts allowance of a certain thickness around the whole perimeter of the hole, with the diameter of each subsequent tooth being larger than the diameter of the previous by the value $2 a_{z}$, where a_{z} - is rise or feed per tooth $\left(a_{z}=f_{z}\right)$.

Since the ring-shaped chip is unacceptable, the chips are to be divided by its width with the help of the V-shaped notches (Fig. 2.3, a), which are arranged in a staggered fashion on the adjacent teeth. Thus the chips removed by the tooth are separate segments with an incorporated stiffening rib with thickness $2 a_{z}$ due to the fact that the notch of the previous tooth leaves this part of the chip uncut. The ribs impair chips curling in the gullets between the teeth, thus the rise per tooth (RPT) is considerably reduced, which in its turn leads to an undesirable increase in the length of a broach.

To create clearance angles on the bottom edges of the chip breaking notches, the latter are cut by a grinding wheel with the broach rear part ramped at a $2 \ldots 3^{\circ}$ angle.

a

Fig. 2.3 Cutting patterns of broaching: (a) standard; (b) rotor-cut; (c) full-form; (d) generating; (e) combination

The rotor-cut pattern (also known as rotary-cut, rotor-kut, jump-cut) differs from the above by the fact that all cutters are divided into groups or rows, consisting of $2 \ldots 5$ teeth, within the limits of which the teeth have the same diameter (Fig. 2.3, b). The allowances thickness is divided between the rows of teeth, and the width of chip is divided between the teeth of a row with the help of chip breaking notches or slots, which are deeper and wider compared to the notches of a standard broach, and a positioned in a staggered fashion. Each tooth removes segments of chip by its cutting edges. Due to wider slots, the chip being cut has no stiffening ribs, providing improved chip curling in the gullets between the teeth even with the RPT considerably increased.

The rotor-cut broaches are significantly shorter compared to the standard ones.

The last tooth in a row is a cleaning tooth with no slots and $0.02 \ldots 0.04$ mm reduce in diameter relative to the other teeth of a row. This is necessary to avoid the formation of ring-shaped chip, which is the result of elastic spring back of the machined surface after the passage of slotted teeth.

The disadvantage of the rotor-cut pattern is the increased complexity of the broach manufacture compared to the standard pattern.

In the full-form pattern (Fig. 2.3, c) the profile of the cutting edges is similar to the profile of the hole being broached. Here the final formation of the surface is performed only by the last tooth, and the rest serve to remove the stock. The application of the full-form pattern for complex shapes of the workpiece hole is impractical, since it complicates the manufacture of the broach. Full-form pattern is generally used for surfaces of simple form, such as round or flat.

In generating (or nibbling) pattern of broaching (Fig. 2.3, d) the form of the cutting edges is not identical with the workpiece hole profile, which is formed as the envelope of a series of all teeth cutting edges. In this case, the production of a broach is simplified, since all the teeth are shaped by the same grinding wheel of a single profile. However, the broached surface may incorporate scratches (steps) due to the errors of teeth grinding, which degrades the finish of the machined surface.

In case of high requirements for surface finish it is recommended to apply a combination broach (Fig. 2.3, e), which two or three last cutting and sizing teeth are full-form, and the rest are generating.

Broach performance is attributed to the selected teeth form and dimensions of the chip breaking grooves.

Teeth of a broach must meet the following basic requirements:

1) the size of the teeth should provide the greatest possible number of regrindings;
2) the tooth must have a certain margin of safety, and thus resist the acting forces;
3) the shape and size of gullets should provide chip curling into a tight coil, and the volume of the gullets must provide sufficient room for chips cut during tooth contact with the workpiece;
4) have a geometry with the greatest broach life provided.

The size of teeth and gullets is limited by the permissible values of the broach length and strength.

Fig. 2.4 shows the most common forms of teeth and gullets: tooth with a straight back, circular back, flat bottomed gullet.

Fig. 2.4 Profiles of teeth and gullets:
(a) tooth with straight back; (b) circular back; (c) flat bottomed gullet

The teeth with straight back are simple to produce, but impair chip curling and accommodation in a gullet and thus are inferior to circular gullet. This form is applied in broaches of standard type used to cut steels and brittle materials (cast iron, bronze etc.)

For cutting steels and other ductile materials by rotor-cut broaches when thick chips are severed, it is recommended to use circular gullets.

The flat-bottomed gullets are recommended for broaching of deep holes and for ratios $h / t \leq 0.35$.

The gullet surface is polished to facilitate the chip curling and its evacuation from gullets after the broaching is finished.

Rake angle γ of a broach is chosen according to the workpiece material. So, for steels of different machinability the $\gamma=10 \ldots 20^{\circ}$, for cast-irons with various hardness $\gamma=4 \ldots 10^{\circ}$, for aluminum and copper $\gamma=12 \ldots 15^{\circ}$.

Considering that the teeth of the internal broaches are reground only along the face and resharpening decreases their diameter, the roughing teeth clearance angle $\alpha=3^{\circ}$, for finishing teeth $\alpha=2^{\circ}$, and for sizing teeth $\alpha=0 \ldots 1^{\circ}$. These values of the clearance angles are much smaller than optimal, resulting in reduced tool life.

Another important consideration of the internal broach design is the gullet sizes in terms of chip accommodation. This is due to the fact that the chips produced in the process of broaching have no free evacuation. The chip produced in broaching should curl in a roll, which diameter is approximately equal to the tooth height h. Thus, the gullet space necessary and sufficient for chip accommodation is calculated based on the ratio of the gullet volume V_{G} to the chip volume V_{C}. This ratio is called the occupation factor:

$$
K=V_{G} / V_{C} .
$$

Considering that the chip widening ratio is close to 1 , the calculation of the volume ratio can be simplified to the calculation of the area ratio. Here, as the gullet area F_{G} is taken only the active gullet area equal to the area of the circle of h diameter, rather than entire gullet space. And the chip area is $F_{\mathrm{C}}=a_{\mathrm{z}} \cdot L_{0}$, where L_{0} is the length of the part hole (Fig. 2.5). Thus:

$$
K=V_{G} / V_{C}=\pi h^{2} / 4 a_{z} L_{0}
$$

Since the chip can not accommodate the entire gullet area, and can not be curled tightly, the permissible value for the ratio K is found experimentally. The poorer is the chip curling the higher is ratio.

For a standard-type broach the $K=1.5 \ldots 4.5$, and for a rotor-cut broach, though the chip in this case is thicker, it is advised to adopt the $K=2 \ldots 3$, which is due to the fact that no stiffening rib is produced on the chip surface.

Fig. 2.5 Chip accommodation in a gullet

The length of the broach cutting part and the number of the simultaneously working teeth depends on the teeth pitch and the length of broaching. Moreover, to prevent broach drifting in the hole, the number of simultaneously cutting teeth should be: a) for a standard-type broach $-z_{p} \geq 2$; b) for a rotorcut broach $-z_{\mathrm{p}} \geq 3$.

To prevent chatter and tooth marks on the machined surface caused by sharp cutting force fluctuation when the teeth leave the part, it is recommended to make the pitch of the sizing teeth variable with $\pm 0.5 \mathrm{~mm}$ deviations.

Accounting to high tensile stresses found in broaching, the internal broaches are checked for strength

$$
\sigma=P_{z} / F_{O P} \leq[\sigma]
$$

where P_{z} - is tensile force; F_{OP} - is an area of the weakest section; $[\sigma]$ - is allowable tensile stress (for solid HSS broaches $[\sigma]=350 \ldots 400 \mathrm{MPa}$, for constructional steels $[\sigma]=250 \mathrm{MPa}$).

Broach weakest sections include two sections with minimum areas: 1) F_{1} - area of the section that runs through the notched pull-end; 2) F_{2} - area of the root diameter, measured in a gullet between teeth.
F_{1} is found in the tables of GOST 4044-70, and F_{2} is calculated as:

$$
F_{2}=\pi\left(d_{1}-2 h\right)^{2} / 4
$$

where d_{1} - is a diameter of the first tooth of a broach.

2.2. Calculation of round rotor-cut broaches

Initial data: workpiece material, hole diameters before and after the broaching, length of broaching, broaching machine model, type of production (App. 4).

Calculation procedure [2]

1. Determine the workpiece material machinability group (Table 2.1) and broached surface finish group (Table 2.2).
2. Select the cutting tool material for the broach (Table 2.3).
3. Choose the construction of the broach. HSS broaches with diameters up to 15 mm , and broaches of all diameters made of tool steels (ХВГ) are made solid, broaches of $15 \ldots 40 \mathrm{~mm}$ in diameter are made welded or assembled. The weld joint is placed at the distance $15 \ldots .25 \mathrm{~mm}$ from the transition cone. Shank material is made of constructional steels (45X or 40X GOST 4543-71). Shank dimensions are according to GOST 4044-70 (Table 2.4). The shank diameter is the nearest smaller to the starting hole diameter before the broaching. The dimensions of the center holes of B or T type are selected from Table 2.5.
4. Calculate the force permissible by the strength of the pull end:

$$
\begin{equation*}
P_{P E}=[\sigma] \cdot F_{O P} \tag{2.1}
\end{equation*}
$$

where $[\sigma]$-the permissible tensile stress, MPa (HSS $-[\sigma]=400 \mathrm{MPa}$, steels $\mathrm{XB} \Gamma$ and $40 \mathrm{X}-[\sigma]=300 \mathrm{MPa}) ; F_{\mathrm{OP}}-$ the an area of the pull end weakest section, mm (Table 2.4).
5. Assign the rake γ and clearance α angles for the broach teeth (Table 2.6).
6. Select the broaching speed (Table 2.7) and compare with the broaching machine pulling speed. If the machine is not capable to provide the calculated value then for the further calculations the speed value from the machine list is adopted.

Table 2.1
Workpiece material machinability groups

Steel		$H B$ of the machinability group				
Type	Grade	I	II	III	IV	V
1	2	3	4	5	6	7
free-machining structural GOST1414-75	A12, A20, A30	≤ 229	-	-	-	-
Quality carbon steel GOST 1050-74	$\begin{aligned} & 10^{*}, 15^{*}, 20^{*}, 25^{*} \\ & 30,35,40,50 \\ & 60,70,80 \end{aligned}$	$\begin{aligned} & \leq 229 \\ & \leq 255 \\ & \leq 229 \end{aligned}$	$\begin{aligned} & 255 \ldots 285 \\ & 229 \ldots 255 \end{aligned}$	$\begin{aligned} & 285 \ldots 321 \\ & 255 \ldots 285 \end{aligned}$	$\begin{aligned} & 321 \ldots 364 \\ & 285 \ldots 321 \end{aligned}$	$321 \ldots 364$
Alloyed steel GOST 4543-71 Chromium	$\begin{aligned} & 15 \mathrm{X}^{*}, 15 \mathrm{XA}^{*}, 20 \mathrm{X}^{*}, 30 \mathrm{X}^{*} \\ & 35 \mathrm{X}^{*}, 30 \mathrm{XPA}^{*}, 38 \mathrm{XA}^{*} \\ & 40 \mathrm{X}^{*}, 45 \mathrm{X}^{*}, 50 \mathrm{X}^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \leq 255 \\ & \leq 229 \end{aligned}$	$\begin{aligned} & 255 \ldots 302 \\ & 229 \ldots 269 \end{aligned}$	$\begin{gathered} - \\ 269 \ldots 302 \end{gathered}$	$\stackrel{-}{-}$	$\begin{gathered} - \\ 340 \ldots 364 \end{gathered}$
Manganese	$\begin{aligned} & 15 \Gamma^{*}, 20 \Gamma^{*}, 25 \Gamma^{*}, 30 \Gamma^{*}, 33 \Gamma \\ & 40 \Gamma, 45 \Gamma, 35 \Gamma 2,45 \Gamma 2,50 \Gamma 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \leq 241 \\ & \leq 229 \end{aligned}$	$\begin{aligned} & \hline 241 \ldots 269 \\ & 229 \ldots 255 \\ & \hline \end{aligned}$	$\begin{aligned} & 269 \ldots 302 \\ & 255 \ldots 285 \end{aligned}$	$285 \ldots 321$	$321 \ldots 364$
Manganese (GOST 1050-74)	60Г, 65Г, 70Γ		≤ 241	241... 269	269... 321	321...340
Chromium-manganese	$\begin{aligned} & 18 \text { ХГ*, 20ХГР* } \\ & \text { 18ХГТ } \\ & \text { 30ХГТ, 35ХГФ, 40ХГТР } \end{aligned}$	$\begin{aligned} & \leq 229 \\ & \leq 255 \\ & \leq 229 \end{aligned}$	$\begin{aligned} & 229 \ldots 269 \\ & 255 \ldots 302 \\ & 229 \ldots 269 \end{aligned}$	$\begin{aligned} & 269 \ldots 321 \\ & 302 \ldots 321 \\ & 269 \ldots 302 \end{aligned}$	$\begin{gathered} 321 \ldots 340 \\ - \\ 302 \ldots 321 \end{gathered}$	$\begin{gathered} \hline 340 \ldots 364 \\ - \\ 321 \ldots 340 \end{gathered}$
Chromium-silicon	33XC, 38XC, 40XC	-	≤ 229	229... 269	269...302	302...340
Chromium-molybdenum	$\begin{array}{\|l\|} \hline \text { 15XM } \\ \text { 30XMA, 35XM } \\ \hline \end{array}$	≤ 229	$\begin{gathered} 229 \ldots 269 \\ \leq 229 \\ \hline \end{gathered}$	$\begin{aligned} & 269 \ldots 302 \\ & 229 \ldots 269 \end{aligned}$	$\begin{aligned} & 302 \ldots 340 \\ & 269 \ldots 321 \end{aligned}$	$321 \ldots 340$
Chromium-vanadium	$\begin{array}{\|l\|} \hline \text { 15ХФ } \\ \text { 40ХФА } \end{array}$	≤ 229	$\begin{gathered} 229 \ldots 269 \\ \leq 255 \\ \hline \end{gathered}$	$\begin{aligned} & 269 \ldots 302 \\ & 255 \ldots 285 \end{aligned}$	$\begin{aligned} & 302 \ldots 321 \\ & 285 \ldots 321 \end{aligned}$	$\begin{aligned} & 321 \ldots 364 \\ & 321 \ldots 340 \end{aligned}$

Table 2.1 - continued

1	2	3	4	5	6	7
Chromium-nickel and chromium-nickel-boron	$\begin{aligned} & \text { 12XH2*, 12XH3A*, } \\ & \text { 12X2H4A*, 20XH*, 20XHP*, } \\ & \text { 20XP3A*, 20X2H4A*, } \\ & \text { 30XH3A*, 40XH, 45XH, 50XH } \end{aligned}$	≤ 241	241... 269	269... 302	302... 321	321... 364
Chromium-silicon-manganese	$\begin{aligned} & \text { 20ХГСА, } 25 \mathrm{XГСА,} 30 \mathrm{XГС,} \\ & 35 \mathrm{X} Г С А ~ \end{aligned}$	-	≤ 229	229... 269	269... 321	321... 340
Chromium-manganese-nickel and chromium-manganese-nickel with boron and titanium	$\begin{array}{\|l\|} \hline 20 \mathrm{X} \mathrm{HP}^{*} \\ 38 \mathrm{X} \mathrm{H} \\ \text { 15ХГН2TA* } \end{array}$	$\begin{aligned} & \leq 241 \\ & \leq 229 \\ & \leq 229 \end{aligned}$	$\begin{aligned} & 241 \ldots 269 \\ & 229 \ldots 255 \\ & 229 \ldots 269 \end{aligned}$	$\begin{aligned} & 269 \ldots 302 \\ & 255 \ldots 285 \\ & 269 \ldots 302 \end{aligned}$	$\begin{aligned} & 302 \ldots 321 \\ & 285 \ldots 302 \\ & 302 \ldots 321 \end{aligned}$	$\begin{gathered} 321 \ldots 364 \\ 302 \ldots 321 \\ - \\ \hline \end{gathered}$
Chromium-nickel-molybdenum	$\begin{aligned} & \text { 25X2H4MA, 18X2H4MA* } \\ & \text { 40X2H2MA, 38X2H2MA } \\ & \text { 14X2H, 3MA*, 20XH2M } \\ & \text { 40XH2MA } \end{aligned}$	-	≤ 229	$\begin{gathered} \leq 255 \\ 229 \ldots 269 \\ \leq 255 \\ \leq 269 \end{gathered}$	$\begin{aligned} & 255 \ldots 285 \\ & 269 \ldots 302 \\ & 255 \ldots 269 \\ & 269 \ldots 321 \end{aligned}$	$\begin{aligned} & 285 \ldots 321 \\ & 302 \ldots 340 \\ & 269 \ldots 321 \\ & 321 \ldots 340 \end{aligned}$
Chromium-nickel-vanadium	20ХН4ФА	-	-	≤ 255	255... 285	285... 321
Chromium-aluminum and chro-mium-aluminum-molybdenum	38X2Ю, 38X2MЮА	-	-	≤ 269	269... 302	302... 340
$\begin{aligned} & \text { Ball bearing } \\ & \text { GOST } 801-60 \end{aligned}$	ШХ15	-	-	-	≤ 229	-
High speed steel GOST 19265-73	P18, P9, P6AM5	-	-	-	-	207... 255

Table 2.1 - continued

Cast-iron, bronze, copper alloys, aluminum alloys, copper		$H B$ of the machinability group				
Type	Grade	VI	VII	VIII	IX	X
1	2	3	4	5	6	7
Gray cast iron GOST 1412-79	$\begin{aligned} & \text { СЧ10, СЧ15, СЧ18, СЧ20, } \\ & \text { СЧ21, СЧ24, СЧ25, СЧ30, } \\ & \text { СЧ35, СЧ40 } \end{aligned}$	≤ 197	197... 285	-	-	-
Malleable cast iron (ferritic) по GOST 1215-79	$\begin{aligned} & \text { КЧ30-6, КЧ33-8, КЧ35-10, } \\ & \text { КЧ37-12 } \end{aligned}$	≤ 163	-	-	-	-
Malleable cast iron GOST 1215-79	КЧ40-3, КЧ45-6, КЧ50-4	≤ 241	-	-	-	-
Malleable cast iron GOST 1215-79	КЧ50-4	-	≤ 269	-	-	-
Antifriction malleable cast iron GOST 1585-79	АЧК-1, АЧК-2	187... 229	-	-	-	-
\qquad 79	АЧС-1, АЧС-2, АЧС-3	160... 241	-	-	-	-
Tinless bronze (aluminium bronze, silicon bronze) GOST 18175-78	БрА5, БрА7, БрАЖ9-4, БрАЖ9-4, БрАЖН10-4-4, БрАЖМц10-3-1,5, БрАМц9-2, БрКМц3-1, БрКН1-3	-	-	65... 140	140... 200	-
Tin bronze and leaded tin bronze GOST 5017-74	БрОЦС5-5-5, БрОЦСЗ-12-5, БрОЦСН3-7-5-1, БрОЦС6-6-3, БрОЦС4-4-17, БрОЦСЗ,5-6-5, БрОЦС4-4-4-2,5, БрОФ6,5-0,15 БрОФ4-0,25, БрОФ6,5-1,5			$\begin{gathered} \leq 70 \\ \leq 130 \end{gathered}$	130... 200	

Table 2.1 - continued

Type	Grade	VI	VII	VIII	IX	X
,	2	3	4	5	6	7
Brass GOST 17711-80	ЛЦ40С, ЛЦ40Сд, ЛЦ40Мц1,5 ЛЦ40Мц3Ж, ЛЦ38Мц2С2, ЛЦ30АЗ, ЛЦ25С2, ЛЦ23А6Ж3Мц2, ЛЦ16К3, Л63, ЛС59-1, ЛМц58-2, ЛАЖ60-1-1, ЛС62-1				≤ 165	
Aluminium alloys GOST 4784-74 и GOST 2685-75	АЛ1, АЛ2, АЛЗ, АЛ4, АЛ5, АЛ6, АЛ7, АЛ8, АЛ9, АЛ10, АЛ19, АЛ20, АЛ21, Д1, Д6, Д16, Б95, АВ, АК2, АК4, АК6, АК8, АД, АД1, АМг2, АМц, АМг3					50... 100
Copper	M1, M2, M3					70... 80

* These steels, which carbon content less than 0.25%, regardless of the heat treatment, and steels with carbon content more than 0.25% in annealed condition provide worse surface finish of the machined surface

Surface finish group of the broached hole

Surface finish group	Requirements	
	Roughness	Accuracy grade
1	$R a \leq 1.25$	$I T 5 \ldots 6$
2	$R a \leq 2.5$	$I T 7 \ldots 8$
3	$R a \leq 20$	$I T 9 \ldots 10$
4	$R a \geq 20$	$I T$ 11 and lower accuracy

Note:
Surface finish group is chosen depending on the most severe requirement (surface finish requirement or accuracy requirement)

Table 2.3
Cutting part material

Machinability group	Production	
	arge production run, large- lot production, medium- scale production	small-scale production, sin- gle-part production
I-III, VI, VIII-X	P6AM5, P12Ф3, P6M5	XBГ
IV, V, VII and difficult-to- machine steels and alloys	P18, P12Ф5М, P9K10, P6M5К5, P6ФК8M5	P18, P6AM5, P12Ф3

Table 2.4
Broach round pull end GOST 4044-70
Type 2, Version 1

$\begin{gathered} d_{1}(e 8), \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} d_{2}(c 11), \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{d}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} l_{2}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} l_{3}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} l_{4}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} l_{6}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} r_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} r_{2}, \\ \mathrm{~mm} \end{gathered}$	$\underset{c}{c,} \underset{\mathrm{~mm}}{c}$	$\alpha,{ }^{\circ}$	Crosssection area for $d_{2}, \mathrm{~mm}^{2}$
12	8.0	12	20	20	12	100	0.2	0.6	0.5	10	50.3
14	9.5	14					0.3			20	70.9
16	11.0	16									95.0
18	13.0	18									132.7
20	15.0	20	25	25	16	120		1.0		30	176.7
22	17.0	22									227.0
25	19.0	25									233.5
28	22.0	28									380.1
32	25.0	32	32	32	20	140	0.4	1.6			490.9
36	28.0	36							1.5		615.7
40	32.0	40									804.2
45	34.0	45				160	0.5	2.5			907.9
50	38.0	50									1134.1
56	42.0	56	40	40	25	190	0.6	4.0			1385.4
63	48.0	63									1809.6
70	53.0	70									2206.4
80	60.0	80	50	50	32	220	0.8	6.0	2.0		2827.4
90	70.0	90									3848.4
100	75.0	100									4417.9

Table 2.5
Center holes dimensions GOST 14034-74

*Reference dimension

$\begin{gathered} D, \\ \mathrm{~mm} \end{gathered}$	$d, \mathrm{~mm}$	$\begin{gathered} d_{1}, \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} d_{2}, \\ \mathrm{~mm} \end{gathered}$	d_{3}, $H 14$, H14, mm	$\begin{aligned} & l, \text { not } \\ & \text { less } \\ & \text { than } \end{aligned}$	l_{1}		$\begin{gathered} l_{2}, \\ H 12, \end{gathered}$	l_{3}, not less than
						Nominal size, mm	Tolerance		
2.0	(0.5)	1.06	-	-	0.8	0.48	H11	-	-
2.5	(0.63)	1.32	-	-	0.9	0.60		-	-
3	(0.8)	1.70	2.50	-	1.1	0.78		1.02	-
4	1.0	2.12	3.15	-	1.3	0.97		1.27	-
5	(1.25)	2.65	4.0	-	1.6	1.21	H12	1.60	-
6	1.6	3.35	5.0	-	2.0	1.52		1.99	-
10	2.0	4.25	6.30	7.0	2.5	1.95		2.54	0.6
14	2.5	5.30	8.0	9.0	3.1	2.42		3.20	0.8
20	3.15	6.70	10.0	12.0	3.9	3.07		4.03	0.9
30	4	8.50	12.50	16.0	5.0	3.90		5.06	1.2
40	(5)	10.60	16.0	20.0	6.3	4.85		6.41	1.6
60	6.3	13.20	18.0	25.0	8.0	5.98		7.36	1.8
80	(8)	17.0	22.40	32.0	10.1	7.79		9.35	2.0
100	10	21.20	28.0	36.0	12.8	9.70		11.66	2.5
120	12	25.40	33.0	-	14.6	11.60		13.80	-
160	16	33.90	42.50	-	19.2	15.50		18.0	-
240	20	42.40	51.60	-	25.0	19.40		22.0	-
360	25	53.00	63.30	-	32.0	24.00		27.0	-

Note:

1. Dimensions given in brackets are not recommended for application.
2. D dimensions are recommended values.
3. The length of the taper l_{1} can be reduced to $0.5 l_{1}$ if justified.

Table 2.6
Geometrical parameters of cutting part of the round broach

Broaching conditions	Group of teeth sharpening	Teeth				
		roughing and intermediate		finishing and sizing		
		Form	$\gamma,{ }^{\circ}$	Form	$\gamma,{ }^{\circ}$	$\gamma_{1}{ }^{\circ}$
Steel of the I machinability group and materials of the X machinability group	I	A	20*	A	20*	
Steel of the I and II machinability groups	II		15*		18*	
Steel of the IV and V machinability groups	III		10		10	
Malleable cast iron of the VI and VII machinability groups	IV		10	B	10	0-5
Grey cast iron of the VI and VII machinability groups, bronze, brass of the VIII and IX machinability groups	V		10	C	10	-5-0
Teeth	rough interm	and diate				
Clearance angle $\alpha,{ }^{\circ}$	3					

* For broaches of 20 mm in diameter can have rake equal to $\gamma=10^{\circ}$.

Broaches	Type of production		Cutting speed ($\mathrm{m} / \mathrm{min}$) for the following materials							
			Steel					Cast-iron, bronze		Alu-mini- um
			Machinability group							
			I	II	III	IV	V	$\begin{gathered} \text { VI, } \\ \text { VIII, } \\ \text { IX } \end{gathered}$	VII	X
Round	Large production run, large-lot production, mediumscale production	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} 8 \\ 9 \\ 13 \\ 15 \end{gathered}$	$\begin{gathered} 8 \\ 9 \\ 12 \\ 13 \end{gathered}$	$\begin{gathered} 6 \\ 8 \\ 9 \\ 12 \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \\ & 8 \\ & - \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{gathered} 9 \\ 12 \\ 15 \\ 15 \end{gathered}$	$\begin{gathered} 6 \\ 6 \\ 9 \\ 13 \end{gathered}$	$\begin{gathered} 4 \\ 6 \\ 9 \\ 12 \end{gathered}$
	Small-scale production, single-part production	1-4	8					9	6	4

Note:

1. The table below contains the correction coefficients for the broaching speed with relation to cutting tool material:

Cutting tool material	P18	P12Ф5M	P6АМ5	P12Ф3	Р9К10	Р6M5К5	Р6Ф2К8M5	ХВГ
Coefficient	1.6		1.0		1.8		2.0	0.7

2. Cutting fluids are selected from Table 2.20.
3. In broaching of ductile steels, marked with an asterisk in Table 2.21, in case of flaws the cutting speed should be reduced by $20-30 \%$.
4. Cutting speeds for broaches of more than 100 mm in diameter can be reduced by 30%.
5. The recommended cutting speeds of Table 2.7 can be increased, provided that the machined surface finish requirements are met.
6. Select the rise per tooth a_{zc} for the roughing teeth depending on the average life of the roughing teeth. For doing this, firstly the average finishing teeth life is chosen from Tables 2.8-2.17 for the adopted cutting speed (Table 2.7), which is chosen with the finishing teeth RPT being maximum $a_{\mathrm{zf}}=0.02$ mm . Then the RPT for roughing teeth is selected, based on the fact that the roughing and finishing parts have equal tool life that is left to the bold polyline (Table 2.8-2.17).

The selected RPT of the finishing teeth for holes of the 1 and 2 surface finish groups being broached in metals of I, II, III, VI, VII, VIII, IX, X ma-
chinability groups are limited according to the recommendations of Table 2.18 , to eliminate damage of the machined surface.

In broaching of holes of the other surface finish and machinability groups the average broach life is calculated by the following equation (Table 2.19):

$$
T=T_{\mathrm{M}} K_{\mathrm{TB}} K_{\mathrm{TP}} K_{\mathrm{TW}} K_{\mathrm{TM}} K_{\mathrm{TD}} K_{\mathrm{TO}}(\mathrm{~m}),
$$

where T_{M} is the tool life (Tables $2.8-2.17$); K_{TB} is the coefficient depending on the surface finish group; K_{TP} is the coefficient depending on the cutting scheme; K_{TW} is the coefficient depending on the workpiece type; K_{TM} is the coefficient depending on the cutting part material; K_{TD} is the coefficient depending on the teeth honing; K_{TO} is the coefficient depending on the type of cutting fluid.
8. Then the gullet depth is calculated:

- for continuous chip

$$
h=1.1283 \sqrt{K l_{\mathrm{s}} a_{\mathrm{zc}}},
$$

- for discontinuous chip

$$
h=0.8917 \sqrt{K l_{\mathrm{s}} a_{\mathrm{zc}}},
$$

where K is the occupation factor ($K=2.0 \ldots 3.0$); l_{s} is the broaching length, $\mathrm{mm} ; a_{\mathrm{zc}}$ is the maximum permissible RPT of roughing teeth, mm.

Once the h value is calculated, a nearest greater h value and other gullet dimensions (b, R, r) are selected from Table 2.20.

If the broach core diameter, measured across the gullet bottom, is less than 40 mm , then, to ensure broach strength the gullet depth should be calculated as:

$$
h_{\mathrm{S}}=(0.2 \ldots 0.23) D_{0} \text {, }
$$

where D_{S} is the hole diameter for broaching, mm (if $D_{\mathrm{S}} \leq 20 \mathrm{~mm}$, the additional 0.2 factor should be used in the equation above).

If $h_{\mathrm{s}}=h_{\text {table }}$, then $a_{\mathrm{zo}}=a_{\mathrm{zc}}\left(a_{\mathrm{z} 0}\right.$ is the RPT for roughing teeth), if $h_{\mathrm{s}}<h_{\text {table }}$, then the RPT should be reduced:

- for continuous chip

$$
a_{z 0}=0.785 \frac{h_{\mathrm{sT}}^{2}}{K l_{\mathrm{s}}} ;
$$

- for discontinuous chip

$$
a_{z 0}=1.267 \frac{h_{\mathrm{sT}}^{2}}{K l_{\mathrm{s}}},
$$

where h_{sT} is the gullet depth from Table that is nearest smaller to h.
9. Further, the roughing teeth pitch t_{0} is selected (Table 2.20) depending on the gullet depth selected in Appendix 8. The smallest value is taken from a number of pitches provided. The pitch and form of the intermediate teeth are equal to those of the roughing teeth.

The number of simultaneously working teeth is calculated:

$$
z_{\mathrm{p}}=\frac{l_{\max }}{t_{0}}+1 \geq 2 \ldots 3
$$

If z_{p} is an odd number, the fractional part is omitted.
10. Then the maximum permissible pulling force $P_{\max }$ is calculated. This force is limited by:

- machine pulling capacity

$$
P_{\mathrm{M}}=(0.8 \ldots 0.9) Q,
$$

where Q is the nominal machine pulling capacity;

- strength of the broach weakest sections:
- strength of the pull end weakest section (refer to Eq. (2.1)),
- strength of the weakest section of the first tooth gullet of the cutting part:

$$
P_{\mathrm{OP}}=[\sigma] F_{\mathrm{OP}},
$$

where $[\sigma$] is the permissible tensile stress, MPa (for HSS broaches $[\sigma]=400$ MPa , for tool steels $[\sigma]=300 \mathrm{MPa}$); F_{OP} is the area of the weakest section, $F_{\mathrm{OP}}=0.785\left(D_{0}-2 h\right)^{2}$.

The smallest of these values is taken as the maximum permissible pulling force $P_{\text {max }}$.

Average broach life (HSS grades: P9, P18, P6AM5).
Steels of the I machinability group. Broaching with coolant supply

Table 2.9
Average broach life (HSS grades: P9, P18, P6AM5).
Steels of the II machinability group. Broaching with coolant supply

Table 2.10
Average broach life (HSS grades: P9, P18, P6AM5).
Steels of the III machinability group. Broaching with coolant supply

$\begin{aligned} & \text { す̈ } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{5}{5} \end{aligned}$	Roughing teeth life (meters) related to radial RPT of roughing teeth, a_{zc} (mm per tooth)										
$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		0.03	0.04	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
1.5	113	226	209	197	187	173	163	155	149	138	127	119
2	97	186	172	162	154	143	135	128	123	114	105	98
3	78	142	131	124	118	109	103	98	94	87	80	75
4	67	117	108	102	97	90	85	81	77	71	66	62
5	59	101	93	88	84	77	73	69	67	62	57	53
6	54	89	83	78	74	68	65	61	59	54	50	47
7	49	80	74	70	67	62	58	55	53	49	45	42
8	46	74	68	64	61	56	53	51	49	45	41	39
9	43	68	63	59	56	52	49	47	45	42	38	36
10	41	63	69	55	52	49	46	44	42	39	36	33
11	39	59	55	52	49	46	43	41	39	36	34	31
12	37	56	52	49	46	43	41	39	37	34	32	29

Table 2.11
Average broach life (HSS grades: P9, P18, P6AM5).
Steels of the IV machinability group. Broaching with coolant supply

Average broach life (HSS grades: P9, P18, P6AM5).
Steels of the V machinability group. Broaching with coolant supply

Table 2.13
Average broach life (HSS grades: P9, P18, P6AM5).
Cast-irons of the VI machinability group

Table 2.14
Average broach life (HSS grades: P9, P18, P6AM5).
Cast-irons of the VII machinability group

Table 2.15
Average broach life（HSS grades：P9，P18，P6AM5）．
Bronzes of the VIII machinability group．Broaching with coolant supply
\pm

ジ	$\stackrel{9}{4}$	Roughing teeth life（meters）related to radial RPT of roughing teeth，a_{zc}（ mm per tooth）														
$\begin{array}{\|c} \overline{\widetilde{0}} \\ \stackrel{\tilde{y}}{ } \end{array}$	気怱	0.03	0.04	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.25	0.30	0.35	0.40
2	510	1033	967	919	881	825	783	751	725	687	650	618	557	511	475	446
3	418	807	755	717	688	644	612	586	566	536	507	483	435	399	371	349
4	363	677	634	602	577	540	513	492	475	450	426	405	365	335	311	292
5	326	591	553	525	504	472	448	430	415	393	372	354	318	292	272	255
6	298	529	495	470	451	422	401	384	371	351	332	316	285	262	243	228
7	276	481	450	428	410	384	365	350	338	320	303	288	259	238	221	208
8	259	444	415	394	378	354	336	322	311	295	279	266	239	219	204	192
9	244	413	386	367	352	329	313	300	290	274	260	247	222	204	190	178
10	232	387	362	344	330	309	294	281	272	257	244	232	209	192	178	167
11	221	365	342	325	311	292	277	265	256	243	230	219	197	181	168	158
12	212	346	324	308	259	276	263	252	243	230	218	207	187	171	159	150
13	204	330	309	293	281	263	250	240	231	219	207	197	178	163	152	142
14	197	315	295	280	269	252	239	229	221	210	198	189	170	156	145	136
15	190	302	283	269	258	241	229	220	212	201	190	181	163	150	139	131

Table 2.16
Average broach life (HSS grades: P9, P18, P6AM5).
Bronzes of the IX machinability group. Broaching with coolant supply
Δ

ס్ర		Roughing teeth life (meters) related to radial RPT of roughing teeth, $a_{\text {zc }}$ (mm per tooth)														
	Finishi	0.03	0.04	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.25	0.30	0.35	0.40
2	261	497	465	442	424	397	377	361	349	332	314	299	269	247	230	216
3	214	288	363	345	331	310	294	282	273	259	245	233	210	193	179	168
4	186	326	305	290	278	260	247	236	229	217	206	196	176	162	150	141
5	167	284	266	253	242	227	217	207	200	190	180	171	154	141	131	123
6	152	254	238	226	217	203	193	185	179	170	161	153	138	126	118	110
7	141	232	217	206	197	185	176	168	162	155	146	139	125	115	107	100
8	132	213	200	190	182	170	162	155	150	142	135	128	115	106	99	93
9	125	199	186	177	169	158	151	144	139	133	125	119	108	99	92	86
10	118	186	174	166	159	149	141	135	131	124	118	112	101	93	86	81
11	113	176	164	156	150	140	133	128	123	117	111	106	95	87	81	76
12	108	167	156	148	142	133	126	121	117	111	105	100	90	83	77	72
13	104	159	149	141	135	127	120	115	111	106	100	95	86	79	73	69
14	100	152	142	135	129	121	115	110	106	101	96	91	82	75	70	66
15	97	145	136	129	124	116	110	106	102	97	92	87	79	72	67	63

Table 2.17
Average broach life (HSS grades: P9, P18, P6AM5).
Aluminium of the X machinability group. Broaching with coolant supply

		Roughing teeth life (m) for a given radial RPT of roughing teeth a_{zc}, mm per tooth										
		0.03	0.04	0.05	0.06	0.08	0.10	0.12	0.14	0.15	0.16	0.20
1	294	626	594	570	551	523	503	486	473	461	452	443
1.5	257	508	482	463	448	425	408	394	384	375	366	359
2	234	438	415	399	386	366	352	340	331	323	315	310
2.5	217	389	370	356	344	326	314	303	295	283	282	278
3	204	355	336	324	313	297	285	276	268	262	256	252
3.5	194	328	311	300	289	274	264	255	248	242	237	232
4	185	306	291	279	270	257	246	238	231	226	221	217
4.5	178	288	274	263	254	242	232	224	218	213	208	204
5	172	274	259	249	241	228	219	212	206	201	197	193
5.5	167	260	247	237	229	217	209	202	196	192	188	184
6	162	249	236	226	219	208	200	193	188	183	179	176
7	154	228	218	209	202	192	184	178	173	169	166	163
8	147	214	203	195	189	179	172	167	162	158	155	152
9	141	202	191	184	178	169	162	157	152	149	146	143
10	137	191	181	174	168	160	154	148	144	141	138	136

Table 2.18
Recommended radial RPT for roughing teeth a_{zc}, mm per tooth

Broaching speed $v, \mathrm{~m} / \mathrm{min}$	Machinability group													
	I		II		III		VI		VII, VIII		IX		X	
	Surface finish group													
	1	2	1	2	1	2	1	2	1	2	1	2	1	2
To 3	0.18	0.23	0.14	0.18	0.12	0.15	0.16	0.20	0.14	0.18	0.12	0.16	0.15	0.20
Over 3 to 6	0.14	0.19	0.12	0.15	0.10	0.12	0.13	0.17	0.11	0.15	0.10	0.13	0.12	0.17
Over 6 to 10	0.12	0.15	0.10	0.12	0.08	0.10	0.10	0.14	0.09	0.12	0.08	0.10	0.10	0.14
Over 10 to 15	0.10	0.12	0.08	0.10	0.06	0.08	0.08	0.12	0.07	0.10	0.06	0.08	0.08	0.12

Note:

1. The RPT for broaching of steels of the IV and V machinability groups are selected from Tables 2.11 and 2.12.
\pm
2. The RPT for the $3^{\text {rd }}$ and $4^{\text {th }}$ surface finish groups are selected from Tables 2.8-2.17.

Table 2.19
Broach life correction coefficients for different broaching conditions.
a) depending on the type and required surface finish of the broached surface

Regrinding	Surface being broached	$K_{\text {TB }}$ for the group of surface finish			
		1	2	3	4
On the rake surface	Cylindrical holes	0.7	1.0	1.5	2.0

Table 2.19 - continued
b) depending on the type of broaching

Type of broaching	Rotor-cut and trapezoid	Standard (with narrow notches)	Spline broach with staggered notches
K_{TP}	1.0	0.5	0.7

c) depending on the workpiece type and surface conditions of the starter hole

Workpiece
machined

Broach material	P12Ф5M	P6AM5, P12Ф3	Р9К10	P6M5К5, P6Ф2K8M5	ХВГ
$K_{\text {TM }}$	1.1	1.0	1.3	1.5	0.5

e) depending on the teeth honing

Teeth	Honed	Nonhoned
K_{TD}	1.0	0.75

Table 2.19 - continued
f) depending on the type of cutting fluid used

Workpiece material		$K_{\text {TO }}$ for cutting fluids							
		A	B	C	D	E	F	G	H
Steels	Structural carbon	1.0	1.3	0.8	0.8	0.8	1.0	-	1.0
	Structural alloyed	1.0	1.3	0.8	0.8	-	1.0	0.9	1.0
Cast-irons	Gray, malleable	-	-	-	-	-	1.0	0.9	1.0
	Antifriction	-	-	-	-	-	-	-	1.0
Bronzes, brasses		1.0	1.0	1.0	1.0	1.0	-	-	1.2
Aluminium alloys		1.0	1.0	1.0	1.0	1.0	-	-	-

Note:

1. For dry broaching of aluminium alloys the $K_{\mathrm{TO}}=0.8$.
2. Explanation of cutting fluids designation: A - 3-10\% emulsion of «Укринол-1»; В -5% emulsion of СДМУ-2; С - 5% emulsion of

Э-2 (ЭТ-2, ЭГТ); D - 10\% emulsion of Э-2; E - 5-7\% emulsion of T; F - ОСМ-3 oil; G - И-12А, ГИ-20A industrial oils; H - MP-3 cutting fluid.
3. Grey and malleable cast-irons, bronze, brass and aluminium alloys allow dry broaching.

Table 2.20
Teeth profiles according to Appendix 2 of GOST 20365-74
Profile with elongated gullet (E)

Dimensions, mm					$F_{\text {act }} \mathrm{mm}^{2}$	Profile number
t	h	r	b	R		
1	2	3	4	5	6	7
4.0	1.6	0.8	1.5	2.5	1.77	1
	1.8	0.9	1.2	2.8	2.54	2
4.5	1.6	0.8	2.0	2.5	1.77	1
	1.8	0.9	1.7	2.8	2.54	2
	2.0	1.0	1.5	3.0	3.14	3
5.0	1.6	0.8	2.2	2.5	1.77	1E
	1.8	0.9		2.8	2.54	2
	2.0	1.0	2.0	3.0	3.14	3
5.5	1.6	0.8	2.5	2.5	1.77	1E
	1.8	0.9	2.7	2.8	2.54	2
	2.0	1.0	2.5	3.0	3.14	3
6.0	1.8	0.9	2.7	2.8	2.54	2E
	2.0	1.0	3.0	3.0	3.14	3
	2.5	1.3	2.0	4.0	4.00	4
7.0	2.0	1.0	3.5	3.0	3.14	3E
	2.5	1.3	3.0	4.0	4.90	4
	3.0	1.5	2.3	5.0	7.10	5
8.0	2.5	1.3	4.0	4.0	4.9	4
	3.0	1.5	3.3	5.0	7.1	5
	3.6	1.8	2.5	5.5	9.6	6
9.0	2.5	1.3	4.0	4.0	4.9	4E
	3.0	1.5	4.3	5.0	7.1	5
	3.6	1.8	3.5	5.5	9.6	6
10	3.0	1.5	4.3	5.0	7.1	5E
	3.6	1.8	4.5	5.5	9.6	6
	4.0	2.0	3.5	6.0	12.6	7
11	3.6	1.8	4.5	5.5	9.6	6 E
	4.0	2.0		6.0	12.6	7
	4.5	2.3	4.0	7.0	15.9	8

Table 2.20 - continued

1	2	3	4	5	6	7
12	4.0	2.0	5.5	6.0	12.6	7
	4.5	2.3	5.0	7.0	15.9	8
	5.0	2.5	4.0	8.0	19.6	9
13	4.0	2.0	5.5	6.0	12.6	7 E
	4.5	2.3	6.0	7.0	15.9	8
	5.0	2.5	5.0	8.0	19.9	9
14	4.5	2.3		7	15.9	8E
	5.0	2.5	6.0	8	19.6	9
	6.0	3.0	4.5	10	28.3	10
15	4.5	2.3	6.0	7	15.9	8E
	5.0	2.5	7.0	8	19.6	9
	6.0	3.0	5.5	10	28.3	10
16	5.0	2.5	7.0	8	19.6	9 E
	6.0	3.0	6.5	10	28.3	10
	7.0	3.5	5.0	11	38.5	11
17	5.0	2.5	7.0	8	19.6	9E
	6.0	3.0	7.5	10	28.3	10
	7.0	3.5	6.0	11	38.5	11
18	6.0	3.0	8.5	10	28.3	10
	7.0	3.5	7.0	11	38.5	11
	8.0	4.0	6.0	12	50.3	12
19	6.0	3.0	8.5	10	28.3	10E
	7.0	3.5	8.0	11	38.5	11
	8.0	4.0	7.0	12	50.3	12
20	7.0	3.5	9.0	11	38.5	11
	8.0	4.0	8.0	12	50.3	12
	9.0	4.5	6.0	14	63.3	13
21	7.0	3.5	9.0	11	38.5	11E
	8.0	4.0		12	50.3	12
	9.0	4.5	7.0	14	63.6	13
22	7	3.5		11	38.5	11E
	8	4.0	9.0	12	50.3	12E
	9	4.5	8.0	14	63.6	13
24	8	4.0	9.0	12	50.3	12E
	9	4.5	10.0	14	63.6	13
	10	5.0	8.5	16	78.5	14
25	8	4.0	10.0	12	50.3	12E
	9	4.5	9.5	14	63.6	13E
	10	5.0	9.5	16	78.5	14
26	8	4.0	10.5	12	50.3	12E
	9	4.5	10.0	14	63.6	13E
	10	5.0	10.5	16	78.5	14

Table 2.20 - continued

1	2	3	4	5	6	7
28	9	4.5	10.0	14	63.6	13 E
	10	5.0	10.5	16	78.5	14 E
	12	6.0	9.5	20	113.1	15
3	9	4.5		14	63.6	13 E
	10	5.0	12.0	16	78.5	14 E
	12	6.0	11.5	20	113.1	15
	9	4.5		14	63.6	13 E
	10	5.0	12.0	16	78.5	14 E
	12	6.0		20	113.1	15 E

Note:

1. Elongated profiles " E " are produced with the same cutter, but with additional travel.
2. Elongated profiles " E " can be produced with pitches different from those given in the table.
3. Pitches of finishing and sizing teeth $\left(t_{1}, t_{2}, t_{3}\right)$ are unequal and are established according to the drawing and Table 2.25.
11.Further, the number of teeth in a row is calculated (must be from 2 to 5)

$$
z_{C}=\frac{\pi D q_{\mathrm{o}} z_{\mathrm{P}} K_{\mathrm{Pm}} K_{\mathrm{Po}} K_{\mathrm{Pk}} K_{\mathrm{Pp}}}{P_{\max }}
$$

where D is the diameter of the broached hole; q_{o} is the specific pulling force, N / mm (Table 2.21); z_{p} is the number of simultaneously working teeth; K_{Pm}, $K_{\mathrm{Po}}, K_{\mathrm{Pk}}, K_{\mathrm{Pr}}-$ correction coefficients (Table 2.22); $P_{\max }$ is the maximum permissible pulling force.

If $z_{\mathrm{C}}<2$, then the calculations are made for $z_{\mathrm{C}}=2$. If $z_{\mathrm{C}}>2$ or is fractional, it is rounded to nearest larger number $-3,4$ or 5 .

If $z_{\mathrm{C}}>5$, then the specific pulling force is calculated for $z_{\mathrm{C}}=5$

$$
q_{\mathrm{o}}=\frac{z_{C} P_{\max }}{\pi D z_{\mathrm{P}} K_{\mathrm{Pm}} K_{\mathrm{Po}} K_{\mathrm{Pk}} K_{\mathrm{Pp}}} .
$$

Further, the new value of RPT is taken from Table 2.21 according to the q_{o} value that is the nearest smaller to the calculated value.

Table 2.21
Specific pulling force $q_{0}(N)$ per 1 mm of the cutting edge length in broaching of structural carbon steels and alloy steels in normalized, annealed and hot-rolled condition.

Cutting fluid: MP-3

RPT $a_{\text {z }} . \mathrm{mm}$	Rake angle γ. degrees				
	5	10	15	20	25
1	2	3	4	5	6
0.01	78	48	37	30	26
0.015	91	60	47	39	34
0.02	100	70	56	48	43
0.025	113	80	66	57	51
0.03	124	91	76	67	60
0.035	136	101	85	75	69
0.04	148	112	95	84	77
0.045	160	122	105	93	86
0.05	171	132	114	103	95
0.06	195	153	134	121	112
0.07	218	174	153	139	130
0.08	241	195	172	157	146
0.09	264	216	191	176	165
0.10	289	236	212	194	181
0.11	311	258	230	212	200
0.12	334	277	249	232	217
0.13	358	298	269	250	237
0.14	380	320	288	268	253
0.15	403	338	312	286	271
0.16	425	360	327	304	291
0.17	446	381	346	325	308
0.18	468	402	365	343	325
0.19	492	419	385	362	342
0.20	513	433	404	380	364
0.21	533	462	423	398	381
0.22	558	483	443	416	398
0.23	578	504	462	434	416
0.24	602	525	481	453	433
0.25	626	541	501	471	451
0.26	645	562	520	494	468
0.27	669	583	539	512	491
0.28	693	604	559	531	508
0.29	711	624	579	549	526
0.30	735	645	597	567	544
0.31	752	666	617	586	561
0.32	776	687	628	604	579

Table 2.21 - continued

1	2	3	4	5	6
0.33	800	708	655	623	596
0.34	823	722	675	641	614
0.35	840	743	694	659	631
0.36	863	763	713	678	649
0.37	887	784	733	696	667
0.38	910	805	752	714	684
0.39	933	825	771	733	702
0.40	957	846	791	751	719

12.Then, the pulling force is calculated as:

$$
P=\frac{\pi D q_{\mathrm{o}} z_{\mathrm{P}} K_{\mathrm{Pm}} K_{\mathrm{Po}} K_{\mathrm{Pk}} K_{\mathrm{Pp}}}{z_{C}}
$$

13.The diametric allowance for broaching is:

$$
A=D_{\max }-D_{0_{\min }}
$$

where $D_{\max }$ is the maximum limit of size of the broached hole, mm; $D_{0 \min }$ is the minimum limit of size of the starter hole for broaching, mm .

Thus the allowance for roughing teeth is:

$$
A_{0}=A-\left(A_{\mathrm{I}}+A_{\mathrm{F}}\right),
$$

where A_{I} is the allowance for intermediate teeth, mm (Table 2.23); A_{F} is the allowance for finishing teeth, mm (Table 2.24).
14. The number of rows of roughing teeth is determined as:

$$
i_{0}=\frac{A_{0}}{2 a_{z_{0}}}
$$

If the i_{0} value is fractional, it is rounded to the nearest smaller integer. Then the remainder of the roughing allowance is calculated as:

$$
A_{\text {remainder }}=A_{0}-2 a_{z_{0}} i_{0} .
$$

Depending on the value of the roughing allowance remainder, it is:
a) added to the roughing allowance in the form of an additional row, if the $1 / 2 A_{\text {remainder }}$ is bigger than the RPT of the first row of intermediate part (Table 2.23);
b) added to the intermediate part, if the $1 / 2 A_{\text {remainder }}$ is bigger than the RPT of the first row of intermediate part, but not smaller than $0.02 \ldots 0.03$ mm;
c) added to the finishing part in the form of additional teeth, if the $1 / 2 A_{\text {remainder }}$ is smaller than $0.02 \ldots 0.03 \mathrm{~mm}$ (refer to Table 2.24).
15.The number of roughing teeth is determined by the equation:

$$
z_{0}=i_{0} z_{c_{0}},
$$

where i_{0} is the refined number of roughing rows, obtained after distributing the remaining allowance. Then the total number of the broach teeth is:

$$
\sum z=z_{0}+z_{\mathrm{I}}+z_{\mathrm{F}}+z_{\mathrm{S}} .
$$

16.The length of the broach cutting part is calculated as:

$$
L_{C}=l_{0}+l_{\mathrm{I}}+l_{\mathrm{F}}+l_{\mathrm{S}}=t_{0}\left(z_{0}+z_{\mathrm{I}}\right)+\sum t_{\mathrm{F}}+\sum t_{\mathrm{S}},
$$

Where $\Sigma t_{\mathrm{F}}, \Sigma t_{\mathrm{S}}$ are the sums of varied pitches of the finishing and sizing teeth respectively.

The pitches of the finishing and sizing teeth are variable and represent a set of three values. The smaller pitch t_{1} is selected from Table 2.25 depending on the roughing teeth pitch t_{0}. Values for the middle pitch t_{2} and greater pitch t_{3} are selected from the same table. The first pitch of the finishing part (between the first and the second teeth) has the greater value $-t_{3}$.

The profile of gullet is equal for all the three pitches. The profile is selected from Table 2.20 according to the smaller pitch t_{1} and average profile depth.

Further, a table with teeth diameters is composed.
17. Then the diameter of the sizing teeth D_{S} and diameter of the last finishing tooth are set equal to the maximum limit of size of the broached hole. Tolerances for the teeth manufacture are according to GOST 9126-76.

Table 2.22
Correction coefficients for specific pulling force related to the broaching conditions
a) depending on hardness and conditions of the workpiece material

Workpiece materials		Hardness, $H B$	Coefficient K_{PM}
Steels of the I-V machinability groups	hardened	$2855 . .336$	1.3
		$130 \ldots 321$	1.3
	$336 \ldots 375$	1.4	
Tool steels, alloyed steels and HSS	$204 \ldots 229$	1.0	
Grey, malleable and antifriction cast-irons of the VI and VII machinability groups	<229	1.4	
	≥ 229	0.5	
Bronzes and brasses VIII and IX machin- ability groups	≤ 110	0.7	
Aluminium alloys of the X machinability group	≤ 110	0.4	

b) depending on the type of cutting fluid

Workpiece materials	Cutting fluid	K_{Po}
Steel	B, K	0.8
	A, F, G, H	1.0
	C, D, E	1.1
Cast-iron	No cooling	1.0
	F, G, H	0.8

c) depending on the surface finish group

Surface finish group	1.2	3.0	4.0
K_{Pk}	1.0	1.1	1.2

d) depending on the type of chip breaking

Chip breaking method	K_{Pp}
Fillets or slots	1.0
Narrow notches	1.2
No chip breakers	1.3

Table 2.23
RPT in intermediate rows, diametric allowance for intermediate part and number of intermediate teeth

Radial RPT of roughing teeth $a_{\mathrm{z} 0}, \mathrm{~mm}$	Number of teeth in a row of the intermediate part	Radial RPT $a_{\mathrm{zI}}(\mathrm{mm})$ for a row of teeth in intermediate part				Diametric allowance $A_{\mathrm{I}}, \mathrm{mm}$	Number of intermediate teeth z_{1}
		first row	second row	third row	fourth row		
To 0.03	2-3	-	-	-	-	-	-
	4-5	-	-	-	-	-	-
0.04...0.06	2-3	0.02	-	-	-	0.04	2
	4-5	-	-	-	-	-	-
0.07...0.10	2-3	0.04	0.03	-	-	0.14	4
	4-5	0.02	-	-	-	0.04	2
0.11...0.15	2-3	0.05	0.03	-	-	0.16	4
	4-5	0.03	-	-	-	0.06	2
0.16...0.20	2-3	0.08	0.06	0.03	-	0.34	6
	4-5	0.05	0.03		-	0.16	4
0.21...0.25	2-3	0.11	0.09	0.06	0.03	0.58	8
	4-5	0.07	0.05	0.03	-	0.30	6
0.25...0.30	2-3	0.14	0.09	0.06	0.03	0.64	8
	4-5	0.09	0.06	0.03	-	0.36	6
0.30...0.40	2-3	0.17	0.12	0.06	0.03	0.76	8
	4-5	0.11	0.06	0.03	-	0.40	6

Table 2.24
RPT for finishing teeth, allowance, number of finishing and sizing teeth

Rise per row
(Row consists of two teeth equal in diameter)

Surface finish group	Number of rows (two teeth) for a given $a_{\mathrm{zF}}, \mathrm{mm}$			Total number of finishing teeth z_{F}	Diametric allowance $A_{\mathrm{F}}, \mathrm{mm}$	Number of sizing teeth z_{S}
	0.02	0.01	0.005			
1	2	2	2	12	0.14	7
2	1	2	2	10	0.10	6
3	1	2	-	6	0.08	5
4	1	1	-	4	0.06	4

Pitches of finishing and sizing teeth

$t_{0}, \mathrm{~mm}$	$t_{3}, \mathrm{~mm}$	$t_{2}, \mathrm{~mm}$	$t_{1}, \mathrm{~mm}$	$t_{0}, \mathrm{~mm}$	$t_{3}, \mathrm{~mm}$	$t_{2}, \mathrm{~mm}$	$t_{1}, \mathrm{~mm}$
4.0	$t_{1}+1 \mathrm{~mm}$	$t_{1}+0.5 \mathrm{~mm}$	4.0	15	$t_{1}+2 \mathrm{~mm}$	$t_{1}+1 \mathrm{~mm}$	11
4.5			4.0	16			11
5.0			4.0	17			12
5.5			4.0	18			13
6.0			4.5	19			14
6.5			5.0	20			14
7.0			5.5	21			15
8.0			6.0	22			16
9.0	$t_{1}+2 \mathrm{~mm}$	$t_{1}+1 \mathrm{~mm}$	6.0	24			17
10.0			7.0	25			18
11.0			7.0	26			19
12.0			8.0	28			20
13.0			9.0	30	$t_{1}+4 \mathrm{~mm}$	$t_{1}+2 \mathrm{~mm}$	20
14.0			10.0	32			22

Note: The dimensions h_{1}, b_{1}, R_{1} and r_{1} of the finishing and sizing teeth profile are the same for all three pitches and are set relatively to the pitch t_{1}.
18. Then number, width (Table 2.26) and radius R_{W} (Table 2.28) of the roughing teeth fillets are selected.
19.Number of fillets for intermediate and finishing teeth is calculated (rounding to the nearest integer) by the equation:

$$
N_{\mathrm{R}}=1.45 \sqrt{D}
$$

where D is the diameter of the broach, mm .
Width of the fillets for these teeth is selected from Table 2.27, and fillet radius is according to Table 2.28.
20. The diameter of the front pilot is set equal to the minimum limit of size of the starter hole for broaching, and the tolerance of the front pilot is $e 8$. Length of the front pilot is determined by the ratio of the
length of cut to the diameter of the broach: if $l / D>1.5$, then $l_{\mathrm{FP}}=0.75 l$; if $l / D<1.5$, then $l_{\mathrm{FP}}=l$.
21.Then the length of the transition cone is selected (Table 2.29).
22. The distance form the front end of the broach to the first tooth (Fig. 2.6) is calculated as:

$$
L_{1}=l_{1}+l_{2}+l_{3}+l+25 \mathrm{~mm}
$$

The length l_{1} is relative to the pull end diameter:

$D_{\mathrm{PE}}, \mathrm{mm}$	$12 \ldots 20$	$22 \ldots 28$	$32 \ldots 50$	$55 \ldots 70$
$l_{1}, \mathrm{~mm}$	115	150	160	205

Depending on the broaching machine $l_{2} \approx 25 \mathrm{~mm}$, and $l_{3} \approx 50 \mathrm{~mm}$.

Fig. 2.6 Schematic for calculation distance from the front end to the first tooth of the broach: 1 - pull end; 2 -pull head; 3 -faceplate; 4 -adaptor; 5 -workpiece
23. The diameter of the rear pilot D_{RP} is set equal to the minimum limit of size of the broached hole, and tolerance is $f 7$. Length of the rear pilot l_{RP} is selected from Table 2.30, and length and dimensions of the retriever are according to Table 2.6.

Table 2.26

Number and dimensions (mm) of fillets of the roughing teeth of round broaches

Two teeth row

Three teeth row

Four teeth row

$$
\lambda=360^{\circ} / N,
$$

where N is the number of fillets

Five teeth row

Teeth diameter, mm	$z_{\mathrm{C}}=2$		$z_{\mathrm{C}}=3$		Teeth diameter, mm	$z_{\mathrm{C}}=2$		$z_{\mathrm{C}}=3$	
	N	$a_{\text {K }}$	N	a_{K}		N	$a_{\text {K }}$	N	a_{K}
1	2	3	4	5	1	2	3	4	5
6... 7	4	2.5	-	-	40... 42	10	6.5	6	14.0
7... 8		3.0			42... 45		7.0		15.0
8... 9		3.5			45... 48		7.5		16.0
9... 10		4.0			48... 50		7.5		17.0
10...11		4.5			50... 52		8.0		18.0
11...12		5.0			52... 55		8.5		19.0
12... 13		5.5			55... 60	12	7.5	8	15.0
14... 15		6.0			60... 63		8.0		16.0
15...16	6	4.0	4	8.0	63... 65		8.5		17.0
16... 17		4.5		8.5	65... 70		9.0		18.0
17... 18		5.0		9.0	70... 75		9.5		19.0
18... 19		5.0		9.5	75... 80	14	9.0		20.0
19... 20		5.0		10.0	80... 85		9.5		21.0
20... 22		5.5		11.0	85... 90		10.0		22.0
22... 24		6.0		12.0	90... 95		10.5		24.0
24... 25		6.5		13.0	95... 100		11.0		25.0

Table 2.26 - continued

1	2	3	4	5	1	2	3	4	5
25... 26	8	5.0	6	9.0	100... 105	16	10.0	10	21.0
26... 28		5.5		9.5	105...110		11.0		22.0
28... 30		6.0		10.0	110... 120		11.5		24.0
30... 32		6.0		11.0	120... 125		12.0		26.0
32... 34		6.5		11.5	125... 130		12.0		26.0
34... 36		7.0		12.0	130...140		13.0		28.0
36... 38		7.5		13.0					
38... 40		7.5		13.0					

Table 2.27

Number and dimensions (mm) of the fillets of finishing and intermediate teeth of the round broaches

Teeth diameter, mm	$z_{C}=2$		Teeth diameter, mm	$z_{\mathrm{C}}=2$	
	N	a_{1}		N	a_{1}
6... 7	4	1.8	38... 40	10	5.5
7... 8		2.0	40... 42		4.5
8... 9		2.2	42... 45		5.0
9... 10		2.5	45... 48		5.5
10...11		3.0	48... 50		5.5
11...12		3.5	50... 52		6.0
12... 13		4.0	52... 55		6.5
13... 14		4.0	55... 60	12	5.5
14... 15	6	4.5	60... 63		6.0
15... 16		3.0	63... 65		6.5
16... 17		3.5	65... 70		7.0
17... 18		3.5	70... 75		7.5
18... 19		3.5	75... 80	14	7.0
19... 20		3.5	80... 85		7.5
20... 22		4.0	85... 90		8.0
22... 24		4.5	90... 95		8.5
24... 25		5.0	95... 100	16	9.0
25... 26	8	3.5	100... 105		7.0
26... 28		4.0	105... 110		8.0
28... 30		4.5	110...120		8.5
30... 32		4.5	120... 125		9.0
32... 34		5.0	125... 130		9.0
34... 36		5.0	130...140		10.0
36... 38		5.5			

Note:

1. The fillets are arranged in a staggered fashion on the adjacent teeth.
2. The fillet of the first intermediate tooth is positioned opposite to the cutting sector of the last roughing tooth.

The maximum permissible radius $R_{\mathrm{f}}(\mathrm{mm})$ of the fillet and radius of the grinding wheel R_{w} (mm) depending on the broach diameter and fillet width

Fillet width $a_{\mathrm{w}}, \mathrm{mm}$	Broach diameter, mm													
	To 10		10... 18		18... 30		30.. 50		50... 80		80... 120		120... 180	
	$R_{\text {w }}$	$R_{\text {f }}$												
To 3	22.5	27	22.5	27	-	-	-	-	-	-	-	-	-	-
Over 3... 4	22.5	27	22.5	27	25	30	-	-	-	-	-	-	-	-
Over 4...6	22.5	27	22.5	27	25	30	25	30	-	-	-	-	-	-
Over 6...8	-	-	22.5	27	25	30	25	30	25	30	-	-	-	-
Over 8...10	-	-	-	-	25	30	25	30	25	30	30	36	-	-
Over 10... 12	-	-	-	-	-	-	30	36	30	36	30	36	-	-
Over 12... 15	-	-	-	-	-	-	30	36	35	42	35	42	40	48
Over 15... 20	-	-	-	-	-	-	30	36	35	42	40	48	45	54

Note: 1. In some cases it is allowed to increase the radius, provided that the fillet depth C is not less than $3 a_{z}$ of the corresponding tooth.
2. Fillets with width larger than 20 mm are cut by a wheel of $50 \ldots 150 \mathrm{~mm}$ in diameter.
3. The grinding wheel radius R_{w} should be denoted on the broach drawing.
4. The fillet radius (mm) is calculated by the equation: $R_{\mathrm{f}}=R_{\mathrm{w}} / \cos \beta$.

Table 2.29
Transition cone length

Broach diameter, mm	To 30	Over 30 to 70	Over 70
Transition cone length, mm	15	20	$25 \ldots 30$

Table 2.30
Rear pilot dimensions

Diameter $D, \mathrm{~mm}$	To 13	Over 13 to 23	Ov. 23 to 30	Ov.30 to 35	Ov.35 to 45	Ov.45 to 55	Ov.55 to 60	Ov.60 to 70	Ov.70 to 90	Ov.90 to 100	Over 100
Длина l_{RP}, мм	20	20	25	30	35	40	45	50	60	70	80
Chamfer c, mm	0.5	1.0	1.6	1.6	1.6	2	2	2	2.5	2.5	3

24.The total length of the broach is calculated by the following equation:

$$
L=L_{1}+L_{\mathrm{C}}+l_{\mathrm{RP}} .
$$

The total length of a round broach of $10 \ldots 130 \mathrm{~mm}$ in diameter shouldn’t be larger $1750 \mathrm{~mm}(L \leq 40 D)$, according to «Moskovskiy instrumentalniy zavod» LLC, since it cannot exceed broaching machine stroke, maximum distance between centers of the grinding and sharpening machines, as well as the depth of the salt-bath that is used for broach hardening. Otherwise, a set of two or three broaches is used.
25.Finally, the working drawing of the broach (refer to App. 5) is made on scale $1: 1$ or $2: 1$ on sheets of A2 or A3 size, and the calculations report is written. The broach drawing should include a broach view and cross-sections along the broach axis for different teeth rows with specified dimensional tolerances and surface finish requirements. It is desirable to draw the cross sections scaled-up compared to the broach front view. It is required to designate the welding seam position, center holes dimensions, hardness and other requirements. The drawing should include table with teeth dimensions and tolerances as well as clearance angles for roughing, intermediate, finishing and sizing teeth. The report paper should be supplemented with a list of references.
The drawings of the form cutter and the broach should be stitched together with the report paper.

References

1) Справочник конструктора-инструментальщика / Под общ. ред. В.А. Гречишникова и С.В. Кирсанова. - М.: Машиностроение, 2006. - 542 с.
2) Протяжки для обработки отверстий / Д.К. Маргулис, М.М. Тверской, В.Н. Ашихмин и др. -М.: Машиностроение, 1986. - 232 с.
3) Кожевников Д.В., Гречишников В.А., Кирсанов С.В., Кокарев В.И., Схиртладзе А.Г. Режущий инструмент: Учебник для вузов / Под ред. С.В. Кирсанова. - М.: Машиностроение, 2007. 528 c.

APPENDIXES

Appendix 1 Initial data for the form cutter designing

№	Part drawing	Cutter type	Workpiece material	№	Part drawing	Cutter type	Workpiece material
1	a	circular	Aluminum	26	b	prismatic	Bronze
2	b	prismatic	Copper M1	27	c	circular	Steel 18XГ
3	c	circular	Bronze	28	d	prismatic	Cast-iron AЧC-1
4	d	prismatic	Steel 45	29	e	circular	HSS P9
5	e	circular	Cast-iron C415	30	f	prismatic	Cast-iron CY-40
6	f	prismatic	Steel St. 3	31	a	circular	Steel 9XC
7	a	circular	Steel 20	32	b	prismatic	Aluminum AL-3
8	b	prismatic	Steel 40	33	c	circular	Steel St. 3
9	c	circular	Steel 38XA	34	d	prismatic	Steel 20X
10	d	prismatic	Steel 65	35	e	circular	Aluminum
11	e	circular	Steel 20XH	36	f	prismatic	Bronze
12	f	prismatic	Cast-iron C415	37	a	circular	Steel Y7A
13	a	circular	Bronze	38	b	prismatic	Steel 38XГН
14	b	prismatic	Brass	39	c	circular	Cast-iron CY24
15	c	circular	Aluminum	40	d	prismatic	Bronze
16	d	prismatic	Copper M3	41	e	circular	Brass
17	e	circular	Steel ШХ15	42	f	prismatic	Steel 15XФ
18	f	prismatic	Steel 15XФ	43	a	circular	Steel 45
19	a	circular	Steel 80	44	b	prismatic	Steel 45Г2
20	b	prismatic	Cast-iron КЧ40-3	45	c	circular	Cast-iron КЧ35-1O
21	c	circular	Steel 30	46	d	prismatic	Steel 38XГН
22	d	prismatic	Cast-iron CY21	47	e	circular	Steel Y12A
23	e	circular	Bronze	48	f	prismatic	Cast-iron AЧC-1
24	f	prismatic	Copper M3	49	a	circular	Brass
25	a	circular	Cast-iron C420	50	b	prismatic	Steel 50

Part drawings for Table of Appendix 1

Appendix 2 Example of a drawing for a prismatic form cutter

Appendix 3 Example of a drawing for a circular form cutter

Appendix 4 Initial data for the rotor-cut round broach designing

№			After broaching			Workpiece material		Broaching machine parameters		
			$\begin{gathered} D, \\ \mathrm{~mm} \end{gathered}$		$R a$, $\mu \mathrm{m}$			$\begin{aligned} & \frac{\mathrm{D}}{0} \\ & \frac{0}{0} \end{aligned}$		$\begin{aligned} & \text { o } \\ & \frac{0}{b} \\ & b \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11
1.	45	90	46	H7	2.5	Steel 40X	240	7A523	100	1250
2.	21	30	22	H8	1.25	$\begin{aligned} & \text { Cast-iron } \\ & \mathrm{CY} 12 \end{aligned}$	175	7A523	100	1250
3.	24.2	60	25	H9	2.5	Steel 45	210	7B56	196	1600
4.	48	80	50	H8	1.25	Steel 30	179	7B55	98	1250
5.	27	62	28.2	H7	2.5	Steel 15XФ	230	7B57	32	2000
6.	28	62	30	H8	1.25	Steel 40XC	220	7B54	49	1000
7.	29	64	31.5	H9	Rz 20	Steel 50	240	7B58	74	2000
8.	30	66	31.8	H8	2.5	$\begin{gathered} \text { Cast-iron } \\ \text { СЧ18 } \end{gathered}$	180	7A520	195	1600
9.	31	70	32.5	H9	Rz 20	$\begin{aligned} & \text { Cast-iron } \\ & \text { КЧ35-10 } \end{aligned}$	163	7Б75	98	1250
10.	33	72	34.6	H9	2.5	$\begin{aligned} & \text { Bronze } \\ & \text { Бр.A7 } \\ & \hline \end{aligned}$	90	7566	196	1250
11.	37	75	38.8	H10	Rz 40	Steel ШХ15	220	7567	392	1600
12.	39	78	41	H9	1.25	Steel 55	269	7564	49	1000
13.	42	80	44	H7	2.5	Steel 30X	187	7568	784	1600
14.	43	90	45	H9	Rz20	Steel 45X	217	7555y	98	1250
15.	44	92	45.6	H8	2.5	Steel 40ХГТ	241	7566	196	1600
16.	46	95	47.8	H9	1.25	$\begin{aligned} & \text { Cast-iron } \\ & \mathrm{C} 415 \\ & \hline \end{aligned}$	197	7Б55	98	1250
17.	48	98	49.6	H7	1.25	Steel 20X	179	7Б57	32	2000
18.	51	100	52.3	H8	2.5	Steel 40X	207	7554	49	1000
19.	54	110	56	H7	1.25	Steel 45XH	241	7Б58	74	2000
20.	56	112	58	H9	Rz 20	Steel 40	217	7A520	196	1600
21.	34	50	35.5	H8	2.5	Steel 40XГT	241	7575	98	1250
22.	36	80	37.4	H8	2.5	Steel 50	220	7566	196	1250
23.	38	70	39.2	H9	2.5	$\begin{aligned} & \text { Cast-iron } \\ & \text { Сप15 } \end{aligned}$	179	7567	392	1600
24.	40	55	41.3	H8	2.5	Steel 45	196	7564	49	1000
25.	45	90	46.2	H7	1.25	Bronze Бр.A7	100	7568	784	1600
26.	50	110	51.3	H9	Rz20	Cast-iron C418	160	7Б55У	98	1250

End of the Table of Appendix 4

1	2	3	4	5	6	7	8	9	10	11
27.	52.8	105	54	H7	1.25	Steel 40X	220	7 F 56	196	1600
28.	55	100	56.2	H9	Rz 20	$\begin{gathered} \hline \text { Cast-iron } \\ \text { КЧ30-6 } \end{gathered}$	160	7555	98	1250
29.	50	110	51.3	H8	2.5	Steel 40XC	230	7 5 57	32	2000
30.	60	100	61.5	H7	1.25	Steel 60Г	250	7 5 4	49	1000
31.	61	110	63	H8	2.5	Steel 35	220	7658	74	2000
32.	62	120	63.6	H8	2.5	Steel 40	235	7A520	196	1600
33.	63	108	64.4	H7	1.25	Steel 45Г2	270	7575	98	1250
34.	64	130	66	H9	2.5	$\begin{aligned} & \text { Aluminum } \end{aligned}$	170	7 5 6	196	1250
35.	65	125	66.2	H8	2.5	$\begin{aligned} & \text { Brass } \\ & \text { ЛК80-3 } \end{aligned}$	147	7B67	392	1600
36.	66	132	67.6	H9	Rz20	$\begin{aligned} & \text { Cast-iron } \\ & \text { СЧ12 } \\ & \hline \end{aligned}$	185	7564	49	1000
37.	67	140	69	H8	2.5	Steel 45	198	7568	784	1600
38.	68	142	69.8	H9	1.25	Steel 50	210	7555y	98	1250
39.	69	140	71	H8	2.5	Steel 20X	214	7 5 6	196	1600
40.	70	138	71.8	H8	2.5	Steel 35Г2	230	7 5 55	98	1250
41.	71	140	72.6	H7	1.25	Steel 60Г	241	7B57	32	2000
42.	72	142	73.9	H9	2.5	Steel 20	195	7B54	49	1000
43.	73	146	74.7	H9	Rz20	$\begin{gathered} \text { Cast-iron } \\ \text { СЧ40 } \\ \hline \end{gathered}$	214	7B58	74	2000
44.	74	140	75.8	H8	2.5	Steel 50	228	7A520	196	1600
45.	75	148	77	H8	1.25	$\begin{gathered} \text { Brass } \\ \text { ЛК80-3 } \\ \hline \end{gathered}$	131	7Б75	98	1250
46.	76	150	78.2	H7	1.25	Steel 45	220	7566	196	1250
47.	77	152	78.4	H8	2.5	Steel A30	186	7567	392	1600
48.	78	158	79.6	H9	2.5	Steel 20X	218	7564	49	1000
49.	79	156	80.8	H9	2.5	Steel 45	200	7568	784	1600
50.	80	160	82.2	H10	Rz20	$\begin{aligned} & \text { Cast-iron } \\ & \text { Cप15 } \end{aligned}$	182	7Б56	195	1600

РЕЗАНИЕ МАТЕРИАЛОВ И РЕЖУЩИЙ ИНСТРУМЕНТ

Методические указания

к выполнению курсовой работы по дисциплине «Резание материалов и режущий инструмент»

На английском языке

Published in author's version

Translator A.B. Kim

Printed in the TPU Publishing House in full accordance

 with the quality of the given make up pageSigned for the press $00.00 \cdot 2009$. Format $60 \times 84 / 16$. Paper "Snegurochka".
Print XEROX. Arbitrary printer's sheet 000 . Publisher's signature 000. Order XXX. Size of print run XXX.

Tomsk Polytechnic University
Quality management system
of Tomsk Polytechnic University was certified by NATIONAL QUALITY ASSURANCE on BS EN ISO 9001:2008

TPU
PubuIshing house. 30, Lenina Ave, Tomsk, 634050, Russia Telfax: +7 (3822) 56-35-35, www.tpu.ru

