
Вариант задания определяется порядковым номером студента в списке группы.

Варианты заданий делятся на 4 подгруппы по порядку согласно таблице 2, где первая цифра — номер графа из таблицы 1, вторая цифра — вид реализуемого автомата (1- Мили, 2- Мура), третья цифра — элементная база (1- Отриггер, 2-RS).

Таблица 1.

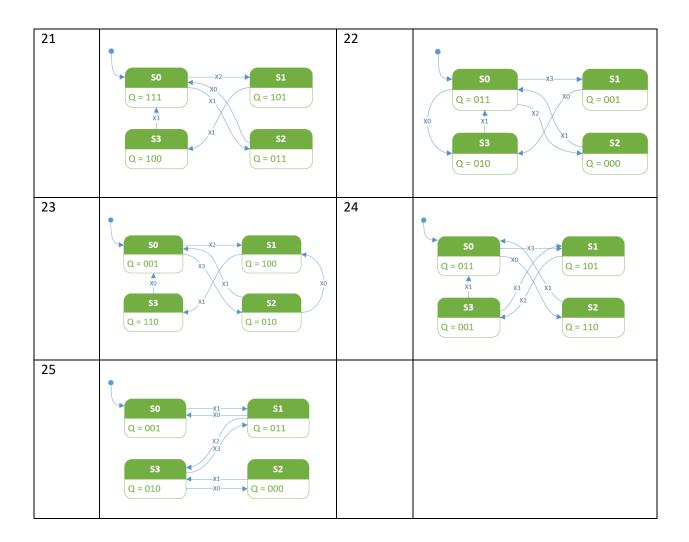


Таблица 2. Варианты заданий

Вариант	№ графа	вид	элементы
1.	1	1 Мили	1 D
2.	1	1 Мили	2 RS
3.	1	2 Mypa	1 D
4.	1	2 Mypa	2 RS
5.	2	1 Мили	1 D
6.	2	1 Мили	2 RS
7.	2	2 Mypa	1 D
8.	2	2 Mypa	2 RS
9.	3	1 Мили	1 D
10.	3	1 Мили	2 RS
11.	3	2 Mypa	1 D
12.	3	2 Mypa	2 RS
13.	4	1 Мили	1 D
14.	4	1 Мили	2 RS
15.	4	2 Mypa	1 D
16.	4	2 Mypa	2 RS
17.	5	1 Мили	1 D

18.	5	1 Мили	2 RS
19.	5	2 Mypa	1 D
20.	5	2 Mypa	2 RS
21.	6	1 Мили	1 D
22.	6	1 Мили	2 RS
23.	6	2 Mypa	1 D
24.	6	2 Mypa	2 RS
25.	7	1 Мили	1 D
26.	7	1 Мили	2 RS
27.	7	2 Mypa	1 D
28.	7	2 Mypa	2 RS
29.	8	1 Мили	1 D
30.	8	1 Мили	2 RS
31.	8	2 Mypa	1 D
32.	8	2 Mypa	2 RS

Задание - Синтез схемы автомата Мура

Выполнить синтез схемы последовательной логики – конечный автомат Мура.

Предварительно преобразовать граф конечного автомата Мура в граф автомата Мили. Представить таблицу переходов автомата Мура, выполнить оптимизацию логических выражений картой Карно (диаграммами Вейча). Автомат реализовать на основе D-триггеров или RS, согласно варианту. При построении схемы используйте абстрактные логические элементы без привязки к конкретной элементной базе.

Задание - Синтез схемы автомата Мили

Выполнить синтез схемы последовательной логики – конечный автомат Мили.

Предварительно преобразовать граф конечного автомата Мура в граф автомата Мили. Представить таблицу переходов автомата Мили, выполнить оптимизацию логических выражений картой Карно (диаграммами Вейча). Автомат реализовать на основе D-триггеров или RS, согласно варианту. При построении схемы используйте абстрактные логические элементы без привязки к конкретной элементной базе.

В работе необходимо привести исходный граф, граф Мили, таблицы переходов, карту Карно (диаграмму Вейча) с выделением множества, текстовым описанием процесса минимизации, и описанием других шагов, электрическую принципиальную схему.

Электрические принципиальные схемы должны быть реализованы в соответствии с ГОСТ 2.743-91.ЕСКД. При использовании шин использовать только углы 45 градусов.

Работа оформляется в любом текстовом редакторе и сдаётся в бумажном виде. Желательный шрифт текста Times New Roman, размер 14.

В случае отсутствия доступа к текстовому редактору, возможно оформление пояснительной записки «от руки».

Графический материал оформляется в любом доступном графическом редакторе. Соблюдение масштаба и норм и правил ЕСКД обязательно.

В случае отсутствия доступа к графическому редактору (машинной графике вообще), графическую часть проекта выполнить карандашом на чертеже формата АЗ (297х420 мм) с соблюдением масштаба и норм и правил ЕСКД.

Старший преподаватель ОАР ИШИТР

И.А. Тутов