CHAPTER 2. NONLINEAR DYNAMIC SYSTEMS

2.1. Phase space and dynamic systems phase portraits

Figure 1 Stable system Unstable system

Any electromechanic system is a dynamic system. Elements forming the
system can be nonlinear, hence differential equations describing dynamic systems are
nonlinear.

To investigate nonlinear systems and make the understanding of complex
dynamic taking place in them phase space is used in which one can construct phase
portraits (see Figure 2). Each dynamic system has its phase portrait.

On phase portrait there are special points — equilibrium points, which help
foretell dynamic system behavior without solving differential equations. These
equilibrium points can be stable and unstable. If dynamic system is in the range of
stable equilibrium point, then small disturbances will not make the system unstable
(see Figure 1). If equilibrium point is not stable, then disturbances persist and make

the system “unstable” (see Figure 1).

117



equilibrium point of "saddle" type

P

N
7

Z
N\

equilibrium point of "centre" type

the line separating solutio

v

equilibrium points of "centre" and "sadd

separat

)

i

-

gl

=

«

w

"‘-q

——
P i Ny

Y

Al

)

i

Figure 2. Dynamic system phase portraits
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Let’s analyze phase space method relating to dynamic system of the second

order.

dx

== F(x,

Jr 1(x y) (1)
Yy

dr Y

where F,(x,y) and F,(x,y) are nonlinear functions of their own arguments.

To get phase trajectory time need to be eliminated. To do this divide the second

equation by the first one

dx  F(x,y)

At equilibrium points time derivative turns zero, then we obtain the expression

0/0 which has no defined value and is called an indeterminate form:

d_y:FZ('xay)Zg (3)
dx F(x,y) 0

The points at which there are uncertainties are called singular points. In singular
points on phase plane solutions can bifurcate. Let us describe equilibrium state points
search algorithm.

At equilibrium state the given variables x and y do not change, hence

derivatives equal zero:

{0=Fl(x,y) @

0=F(x,»)

By solving the given nonlinear equations system we find equilibrium state points

X,, v, - After determining equilibrium state point coordinates one need to determine

point type. To determine point type expand F(x,y) and F,(x,y) functions in
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equilibrium state points neighborhood x,, y,,and analyze the first three expansion

terms:
OF OF
F(x,5) = F(x0,50) + == (x =%, )+ = (y =y ) + -
ox oy 5)
OF. OF.
Fz(x,y) = Fz(xoayo) +8_x2(x - xo) +a_yz(y _yO) T
Put down coefficients at linear terms and obtain Jacobian matrix:
or, on,
15 0
AGigyy) =| oo | o e (6)
OF, OF | (a4 a,
ox Oy

Jacobian matrix elements ¢, are constant variables.

Next step is to determine point character .

To do this one should find eigenvalues of Jacobian matrix A by solving characteristic

equation.
[I-2A[=0. (7)

where I is identity matrix.

It is easy to determine eigenvalues by using MathCAD eigenvalues(A) function

application, several variants are acceptable.
1.  Both eigenvalues are real and positive:

A >0,4,>0

Then, equilibrium state point with coordinates x,, y, 1s

Phase curves around | called an unstable node
unstable node

120



Phase curves around

stable node

\ Y/

2

Phase curves around
saddle point

\
\

Phase curves around
unstable focus

Phase curves around
yCTOMUMUBOTO (POKyCa

2. Both eigenvalues are real and negative:

2,<0,2,<0

Then equilibrium state point with coordinates x,, y, is

called a stable node.

3. Both eigenvalues are real and have different
signs:

A4,<0,4,>0 wwm A,<0,4>0

Then equilibrium state point x,, y, is called a saddle or

a saddle node.

4. Eigenvalues are complex conjugated numbers

which have positive real parts:

A=p+ jo,dy =~ jo, f>0

Then equilibrium state point x,, y, is called an unstable
focus

5. Eigenvalues are complex conjugated numbers

which have negative real parts:

A=f+ jo, k= f~jo, f<0

Then equilibrium state point x,,y, is called a stable

focus

6. Eigenvalues are imaginary conjugated numbers:
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A =jo, A =—jo

l called a centre.

Phase curves around the
centre

Then equilibrium state point with coordinates x,, y, 1s

Let’s analyze some examples of equilibrium state points determination and determine

their type using MathCAD.

Example 1. Dynamic system is given

d—x:x2+y2—l7

dt

d
—y=xy+14
dt

Find equilibrium points of dynamic system

Lty 17=

xy+4=0C
41
2.2 X -1 4
z=| X 1Y - 17 solve,( ) -
xy + 4 y 1 -4
4 -1

& yoms® yof1 0

« Expand nonlinear functions in the neighborhood of equilibrium state
points.

X+ 57 series,x= 4,y = 1,2 =5 (=17) — 8x+ 2y

az:(‘f —24j
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-8.449 } ) ; .
cigenvals (a) :( X J point with coordinates x=-4 u y=1 is a stable node
-3.55
xy series,x=-4,y=1,2 ->4-4y+x
2
la— 1] > 30+ 120+ 2
2 2 .
X +y series,x=-1,y=4,2 > (-17) —2-x+ 8y
-2 8
a =
4 -1
~7.179 . . . .
cigenvals (a) :( ) point with coordinates x= -1 u y= 4 is called a saddle node.
4.179
xy series ,x=—-1,y=4,2 > 4-y+ 4x
2
la— 21 - (=30) + 34 + A
2 2 .
X +y series,x=1,y=-4,2 > (-17) + 2.x— 8y
2 -8
a =
4 1

cenvals (@) 7.179
eigenvals(a) =
. 4.179

) point with coordinates x= 1 u y= -4is called a saddle
xy series,x= 1,y=—-4,2 > 4+y—4x
2
la— 21| - (=30) =31+ A
2 2
X +y series,x=4,y=-1,2 - (-17) + 8&x—-2-y

xy series,x=4,y=-1,2 >4+ 4y —x

57
a:=
-1 4
8.449 : . : .
cigenvals (a) = (3 551) point with coordinates x=4 u y= -1 is called an unstable

node .

la— 21 —>30-122+ 22
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Phase portrait of dynamic system

)i N
T
[

Ly
i

-
i/
- f/ )/

e

|

75 7N ".'j.?‘x.:l\‘*_l:l l 3 i
Tt

1
-
&

e

=]

r

[y

\//
R

Example 2. Dynamic system is given

ix—xz—yz—ﬁ
dt

iy:x2+y2—13
dt

Find equilibrium points of dynamic system

x2—y2—5=0
x2+y2—13:C
3 2
xz—y2—5 X -3 2
zZ:= solve , - 3
x2+y2—13 y B
-3 2

RO RS [1 0)
X0:=12 yo =z I:=
01

Expand nonlinear functions in the neighbourhood of equilibrium state points

x2 = y2 series ,x= 3,y =2,2 — (-5) + 6:x—4y

x2 + y2 series ,x= 3,y = 2,2 — (-13) + 6:x+ 4y
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6 —4 2
a::( ) la— a1 > 48— 100 + 2
6 4

> 47961) point with coordinates x=3 u y=2is called an unstable focus

eigenvals(a) =
g %) (5—4.796i

xz—y2 series ,x= -3,y =2,2 — (-5 - 6x—4y
2 2 .
X +y series,x=-3,y=2,2 — (-13) -6:x+ 4y

-6 —4 2
a=| o, la — 21| > (-48) + 20 + A

-8 . . . .
cigenvals (a) :( j point with coordinates x=-3 u y=2 is called a saddle.
6
2 2 .
X —y series,x=3,y=-2,2 — (-5) + 6:x+ 4y
2 2 .
X +y series,x=3,y=-2,2 > (-13) + 6x—4y

6 4 )
a:= la— 21 - (-48) — 21+ A
6 —4

86j point with coordinates x=3 u y=-2 is called a saddle.

eigenvals (a) :(

2 2 .

X —y series,x=-3,y=-2,2 — (-5 - 6:x+ 4y

2 2 .

X +y series,x=-3,y=-2,2 — (-13) -6x—4y
-6 —4

-6 4 2
a::( j la— 1] > 48+ 100 + A

=5+ 4.7961

cigenvals (a) :( . 796) point with coordinates x=3 u y=2 is called a stable focus.
- — 4. 1

Phase portrait of dynamic system.
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Example 3. Determine equilibrium state point type of a linearized dynamic

system.

Example 4. Determine equilibrium state point type of a linearized dynamic

system.

d _
—X=—X-Yy
dt

—y=x-3y

A= (_11 _;) Ac=ecigenvals(A) L= (_ij Point type x=0, y=0 is a stable node.
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2.1.1. Phase portraits construction with the help of surfaces.

Let’s analyze some more examples of surface construction which help
determine decomposition structure of phase plane into trajectories. First additional
calculations should be done. Put down Newton’s equation of motion with unit mass
on which force F'(x) influences:
d’x
—=F() (8)
dt

Taking into account that force equals potential function gradient with negative sign

the equation can be presented as:

dUx) _ d’x__dU()

F(x)=—
() dx ar dx

©)

This equation can be rearranged by multiplying each part by velocity v = dx / dt

—+U
2

dv dU dx 1dv> dU d(v:
V— = —_— = 0 —> = 0
dt dx dt 2.dt dt dt

From the obtained formula it follows that formula in brackets equals some constant £
2

"E +U(x)=E(x,v) tae U(x)= O F(x)dx (10)

0

Now let’s investigate the dynamic system having the form of:

dx

R,
a7
d—y:4x—4x3
dt
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Denote velocity in the first equation by2y, in the second equation denote the right

part by force influencing the particle with unit mass, then auxiliary potential function

U(x) has the following form :

U(x)= —ji(4x — 4x3)dx =-2x" +x*

0

In this case constant energy surface expression can be presented as:
U(x)+2y° =E —(-2x" +x" +2)")=E

Now we can plot the phase portrait of constant energy surface

To solve this equation we use MathCAD

ix: 2y

dt

d 3
—y = 4x - 4X
dt

3
Fi(xy) =2y Fy(xy) =4x-4x

Find equilibrium state points

X
solve , 0 0
Fi(x.y) [yj o
= -] 1. 0 X=Z y:=z
Fr(x,y) | |float,5 Lo
0 0
x=| 1 y=|0
-1 0
Find Jacobian
0 0
X y
AXy) = A(x,y) - 2
a a 4 — 12X 0
ox oy

Determine point type with coordinates 0, 0
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A= A(xo,yo) A= (: zj A= eigenvals(Al)

A= ( 2828 j Saddle point
828

Determine point type with coordinates 1, 0

0 2

% 0) A= eigenvals (Az)

Aqy = A(Xl’yl) Ay = (

A= ( 4 j Centre
—4i

Determine point type with coordinates -1, 0

0 2 ]
Ay:= A(Xz’yz) Ay = [—8 Oj A= elgenvals(A3)

—4i

A= ( 4 j Centre

Auxiliary potential functions U(X) is written as

X
U®® = —J 4-x — 4-X3 dx > (—2)-X2 + x4
0

x:=-1.5,-15+ 0.01.. 1.5
\ U' /
- -1 —0. 0 S 1 15
U(x) ﬁ /
/ \

(V)

X

Auxiliary energy function E(X,y) is written as

E(xy) =y>2 + U®

Plot phase portrait

AAAA

. . 3, 2
N:=251 1:=0.N j=1 x:=-15+—1 y.:=—1+—]
1 N J N
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Surface B E(xl,yj)
Surface limited by separatrix Ei, i= if(Ei j<OE j,0)
Surface behind separatrix E2 ;= if(Ei ;> O.E, j,0)

Separatrix ~ §:=10 '

Es. .:=if(E. .>0,8,0)
1,] 1,]

Direct differential equations solutions are given below.

All curves on phase plane are closed curves hence the solutions will be
periodic.

2-x
1 %0
D(t,x) = 3 M= 10 L= 10 x("0’3’0) = rkﬁxe{( ],O,T,N,D} ti= X(O,O)<O>
4, - 4~(x0) Yo

130



1.2
150 \/
x-13.0)2
;;(1.3,0)<2> m /‘\
x50 1 U ‘ U .
x(-1.15,0)2
X(— 1.41425.0)?
- 15.0 x 13.0 %130 x115.0Y x 1150\ x— 1.41425.0)7
2 2
1
x- 15,0 oF 4 xc15.0? o
Sk
_ | _ |
2 2
0 5 10 0 5 10
t t
Solution behind the separatrix
1.42 1

x(— 1.41425,0)

v

—1.42 ~1
0

Un 1 x- 1.41425,0)<2> o[~ m

5 10 0 5 10
t t

Solution on the separatrix
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x-13.002 of x-13.0 -1

Solution within the separatrix

0.5 -0.8
- 115,02 o - 115,00V 1 »
_ | _ |
0.5 12
0 5 10 0 5 10

Solution within the separatrix

The more is the field covered by phase curve the longer is oscillation period

Motion equation of generator rotor for small frequency change can be written as:

d*s
Tdtz =P -P. (11)

Rewrite the equation as the system of first order equations .Normalize the presented

equations by 7 and taking into account that P. = P, sin(J):

49 _ p _p sin(5)
ds

— =

dt

Find equilibrium state points of dynamic system and plot phase portrait using
MathCAD
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PT =07 P_:==1

d5=0 Fioy) =y Fa(xy) =07 - sin(x)
dt

%[w =Pr- Pm-sin(S)

Find equilibrium state points

X
= 77540 0 = = — - _
i Fy(x,y) float, 5 > ) Yo ZX IR, YTy X [

Find Jacobian

0 0

0x y 0 1
@&W) = ; ; A(X,y) — —cos(x) 0

- FZ(X’ Y) - F2(X, Y)

ox oy

Determine point type with coordinates 0.775, 0

A= A(xo,yo) A= (_0.0714 (l)j A= eigenvals(Al)

A= ( 08451) Centre
—0.8451

Determine point type with coordinates 2.366, 0

0 1
Ay = A(x1 ,yl) Ay = (0-714 O) &A:: eigenvals (Az)

A= ( 0845) Saddle point
—-0.845

Auxilary potential function U(x) is written as :

U®x = —J (0.7 - sin(x)) dx float,5 — (—.70000-x — 1.-cos(x) + 1.
0

x:=-0.1,-0.1+ 0.0l'w..®

0.775
2.366

)

0
0

)
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0.5

X

Energy auxiliary function E(x,y) is written as:

E(xy) =y + U

Plot phase portrait
: o 32 1.6
N:=251 i:=0.N j:=i x=-02+—11 y.:=-08+—:]
i N i N
Surface B E(xl,yj)
Surface within the separatrix k1, i= if(Ei §< 008 E, j,0.058)

Surface behind the separatrix E2 ;= it(Ei ;2 006.E, j,0.06)

The separatrix 510 ° Esijzzif(EijZ0.0S&S,O)

" 3 *0 (o
= N:=10 T:=3% R = rkfi ,0,T,N,D =x(0,0
e [w—sm(xo)] R e Mo I

Direct differential equations solutions are given below

Closed curves on phase plane are periodic solutions, open curves are unstable
solutions.
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x(32.-09)? g

1 Py T
N 77Ny
x(_1:1520)<2> - / () \ > / \/Z
:32’_ 07742 &x__ﬂ/// / /,_\\
-0 \E:";/é/ x

1.25

13.2.- 09 01,0 0250 x(1.15.0 " x32.- 0779 x3.2.— 0.7V

Unstable motion behind the separatrix
10T 16T

x3.2.—0.9)V x(3.2,- o.9)<2> T

0 5 10 15 -2 17.5 35

Motion on the separatrix

161 44T
x(3.2,- 0-774)<l> T x(3.2,- 0.774)<2> L8
;‘\ | | 6_ /I\ I
1o 17.5 35 079K NS 175 35
t t

Motion within the separatrix
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X0.1, 0)<l> i

Motion within the separatrix

1.15

115010 0.8

0.4 T

S AWAWANAN

x(0.1,0) 0 v \/'75

LANAN

x(1.15,0) v \/

2.2. Phase plane technique

2.2.1. Servomotor equation with ideal relay characteristic

Let us apply phase plane technique to detect important features of the process

taking place in nonlinear system of turbine rotation frequency regulation by constant

velocity servomotor described by equations [5]:

Servomotor

C

C-CKOPOCTb

F(o)! I

Ideal characteristic
servomotor

of

constant

velocity
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rotor

d¢
T,—=u;
Ca M
control element
O =—¢— U
constant velocity servomotor
d
H_F (o).

dt
Where F(0):
F(o)=cesign(o).

As phase plane coordinates(x, y ) choose

_a¢

X=¢, y= e

Dynamic system will be described by equations system

dx
@

= CeS] —Y — — —y — T
dy_F(o) rne F(o)=cesign(-x—-yT.), c=-x-yT.
dt T

X

Find equation of servomotor switching line (vertical segment on plot)
c=—x—-yT =0, y=—x/T,

Find phase portrait lines equation

In area o <0 (negative values F in plot)

(13)

(14)

(15)

(16)

(17)

(18)
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d
dt dy

%
dy ¢ dc T

dt T

In area o >0 (positive values F in plot)

dx

E_y

a’_y_c

%
_c dx Ty

dt T

X

2
— yzz%JrC2

X

(19)

(20)

Write the equation on vertical segment, equaling coefficients in equation of straight

line and in phase plane

Q_c X

dx Ty’ YT
Find differential equation on segment

dx _ __i_>dx
Jr Yoy T

X

Sliding process

Let’s analyze the solution with phase portrait plotting with use of MathCAD.

E:

x .
—— > x(t)=Ce "

X

1)

(22)

138



E(9 := sign(x):

I T1:=001 N:=

A

X

D(t,x) := F(_XO - Tl'xl)

1
¥(2) =z 2:=-005,-0.05+ 0.01.0.

T1

3

10

p :=-0.5,-0.5+ 0.001.. 0.2

1
T,=0.z X(Xo,xl) := rkfixe o ,0,T,N,D
X

t:=x0,0)\0

0.1
x(0.02,4)7 00 r\ x(0.02,4)
— U6 c— / \
x(-003,— 4 V x(-003,- 92 \/
X(— 0.0,—4)<l> 0.05 1/ 015 0'.2 X(— 0.0,—4)<2> 0 /\05 0 15 02
x(=002,4" Z 06 w 7 E).oz,@@ - \V/
0.1 -
t t
N 1.
o NN .
ﬁ034) /// N \ :
U.
coned® S/ AN\ o
X-0.0-42 { { { \ \ \ \ — 705 7035 . 025 05
o W{/} o 8 U
o \ \\ L / -
I.
_ \\\ N //
N W
)(0.034)<]>,)((—0.03—4)<1>,X(—0.Q—4)<1>,)(—0,014)<1>,Z
2.2.2. Servomotor equation with actual relay characteristic.
C-CKOPOCT Two vertical segments correspond
T ¢ servomotor switching.
b T c=—x—-yI =—b - x=-yT_+bD
F(o)| : : |
o L b oc=-x-yI.=b — x=-yT.-b
e |

to
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Plot its slopes on phase plane (see MathCAD document below)

In difference from the above ideal example in this case one more area appears

Straight lines are parallel to axis x .Now equilibrium state is not one point but the

segment.

dx

E:
b _

dt

4 d
S99 — y = const
0 dx

y=0, —b<x<b

F(x) :=sign(x)-1 b :=0.0Z

%

D(t,X) := F(_XO _ Tl'xl)
T1

z:=-0.1,-0.1+ 0.01..0.1

0.13

;;(0.024)<1>

><(—0.03;—4)<‘>

004"

\{%

X=0024)" -0,04

~0.12

F(x) = sign(x)-if(-b <x<b,0,1) T1:=0.0]

T:=0.2:

AAAS

1 b
1(2) =—z— + —
yl(2) -

N=10°

X0
x(xo,xl)::rkﬁxe{( },O,T,N,D} £ =x0,0)\0
x|

y2(z) := —Z~i - L

p :=-0.05,-0.05+ 0.00025. 0.0¢
T1 T1 T1

)
n02y” |
X(—0.03,— 4)<2>

|.23 x(—0.0,—- 4)<2>

X=0.02 42 -

0.23

-4
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a7
x0.034° 0.8
x(—o.03—4)<2> 0.4
<2> ! ! ]
X08-9 . | -0.05 —0.0p5 [0 0.025 0.05
00142 -015 0.15 —0.4T
yl@) ~0.8T
yAz)
Ly v
50039 50034 x-00-9" 0014 2

2.3. Lyapunov straight method Ilpsimoii MeTox JIsimyHoBa

Method is based on scalar functions applications having special properties on
dynamic system solutions and being called Lyapunov functions. Lyapunov functions
help estimate system stability and quality and construct control algorithms providing
the required quality process properties.

For system described by the system of differential equations

% = £1(x,)
J (23)
d—f = £,(x,»)

where functions f, f, are arbitrary and possess any kind of nonlinear nature but
always satisfies the condition f,=f,=0,mpux, =x,=0, as in steady state all
variables deviations and their derivatives equal zero. A certain function of system all
phase coordinates (23) V(x,y) can be entered where x, y are variables deviations

from some steady values. The function can be presented in two-dimensional space.
Then in each point of phase space V' will possess the definite value and at the

beginning of coordinates will equal zero.

The function V is said to be definite sign function in some area if in any point inside

the area function V has definite sign and turns to zero at the beginning of coordinates.
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Let us analyze the example of definite sign positive function of the second order

system n =2
V(x,y)=x"+p (24)

itis clear that >0, u '=0, only at x =y =0.

Function V is called constant sign function, if it is of the same sign but it turns to
zero not only at the beginning of the coordinates but in other points of the given area.
Function V' is called variable sign function, if it in the given area around coordinates
beginning can have different signs.

Arbitrary function V' = V(x, y ) which turns to zero only at x =y =0, and where x, y
are deviations in which the equation of system motion is written is called Laypunov
function. Let’s determine time derivative of function V. Recollect what gradient

operator Vstands for:

V:iiJrji — VV(x,y)=gradV(x,y)
ox ~Ox

— direction of fast change of function. Now time

derivative of function f(x,y) can be written down,

considering x,y depend on ¢:

dv oV oVdx oVdy oY oV oV
_:_+__+__y:%+—fl(x,y)+—f2()@y)
d o oxd oyd ot Ox y

av
EZ(VV,V),VZ(]FI,]Z)

Laypunov theorem about nonlinear systems stability: if for equations of the
system (23) one can choose the stable Lyapunov function V(x, y), such that its time
derivative function dV' / dt was also definite sign function (or constant sign function),
but have the sign opposite to sign V, then the given system is stable.

Example: Let nonlinear system be described by equations
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dx 3

—=—x-—X
dt

dJ’_ 3
a7

Let us choose Lyapunov definite sign function of type:

Vix,y)=x>+y°

Find time derivative of Laypunov function

dv oVdx oVdy oV oV
BT )+ £ y)

dt oxdt ovdt ox oy

dVv

—=2x(—x—x")+2p(—’ ) ==2(x¥* +x* +)*

=2 (=220 =2 e )

Function dV /dt is definite sign function but it is

opposite to function sign V' (x,y), hence the system is
Laypunov definite sign function

o , stable.
V(X, y) =x + y

2.4. Harmonic linearization method

One of the main methods of higher order nonlinear systems at present time is
approximative method of harmonic linearization. Let’s analyze the example when the
object with linear transfer function is controlled by the block with nonlinear

characteristic

y=F(x). (25)
Suppose harmonic signal enters nonlinear component input

x = Asin(ax) (26)

Output signal will be periodic hence it can be decomposed into

y = F(Asin(at)) = g(A)sin(y) + q'(A) cos(w) + high harmonics

Fourier series
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y = F(Asin(ot)) = i j F(Asin(y))dy

+ L fF (Asin(y)) sin(t//)dt//}sin((//) + {l f F(Asin(y))cos(w)dy |cos(y) +
T T

+ high harmonics

There will be no constant component for odd symmetry of nonlinear characteristic

that is why we have
1 2z
— [ F(4sin(y)dy =0 (27)
2 s

Then output signal can be written down

y=q(A)x+ q’(A)1 + high harmonics (28)
)

Linear part of closed CS BcreacTBue MHEPUUOHHOCTH SIBIAECTCS (DUIBTPOM HUBKHUX
9acTOT, T.C. BBICOKHE TapMOHHUKH TIPOXOIAT €€ CO 3HAYUTEIHHO OONBIINM

ocJIa0JIeHUEM, YEM IepBas:

v=q(A)a+q'(A) =+ high harmomics
(0]

(29)
. [q(A) N q'(A)ﬂ %, p »%

Such a representation is called harmonic linearization of non-linearity and variables

are determined by formulae
1 2z 1 2z
g(4)=— [ F(4sin(y))sin(y)dy, q'(4)=— [ F(4sin(y))cos(y)dy , (30)
A A Y

are called harmonic linearization coefficients.

Transfer function of linear component has the form of
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y= [g(A) + q'(A)ﬁ}c, > W(4,p)=q(A)+ q’(A)ﬁ, p=jo

W (4, jo) =q(A>+q'(A)j§=q<A>+q'(A)j

€2))

Transfer function does not depend on frequency. It increases the magnitude of input

signal and is called complex amplifying coefficient.

Thus nonlinear element can be substituted by linear element.lts frequency

response depend on amplitude of input signal.

Example. Find amplification complex coefficient of given nonlinear component. We

use MathCAD

Flo) =iflc <0,-1,1)  b:=0.s
F (o) :=if(-b <o <b,0,F(s)) nonlinear component characteristic

Gi=—1,-1+10 *.1

1.5T 1 ‘
T —
0.5T 0. ‘I
F (o) I y } | F (sin(t))
— —1 —0.5 0 0.5 1 — 236 [4.7] 7.07 942
—0.5T —0.5
- ~IT -1
1.5 -1.5
c t

Nonlinear element characteristic and output signal

Find amplification coefficient a for different magnitudes, b=0 as function is
even

2w
a(A) = LJ F(A-sin(t))-sin(t) dt
TA Jg
Find amplification coefficients and equivalent sinewaves at different magnitudes.

a(1) =0.764  fI(t) :=a(1)-sin(t)

a(1.5) =0.718  fI5(t) := a(1.5)-1.5sin(t)
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a(3) = 0.409

1.57

7Y 7Y
F_(sin(t)) F_(1.5-sin(t))

f3(t) := a(3)-3-sin(t)

1.5T7

o

S

| : | T
f1(t) 0 \g/ 9.42  fI5(t) 4171 9.42

-1.5-

1.5T

-1.5-

F_(3-sin(t)) / \ / \

——

3(t) 0

-1.5-

\4.'71/ 942
N

A =15 f(=xA -B xi=-15-15+00L.15 fx) =if(x>0,{x),-(—x)

£(%) = if(-bb < x< bb,0,f(x)

15T
ui 05k 7\ 7\

0.5T ' /
— — f(sin(t))
s A5 Joo 075 s —_— 0 236 ¥ 7/ 707 9.42

' —0.5 7

il

15 -1
X t

Nonlinear element characteristic and output signal

Find amplification coefficient a for different magnitudes, b=0 as function

cven.

1S
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2-m
a(A) = LJ F(A-sin(t))-sin(t) dt
TA Jg

Find amplification coefficients and equivalent sinewaves at different magnitudes

a(l) =0.427  fI(t) := 0.427sin(t) a(2) =0.936 () := 0.9362-sin(t) a(3) = 1.121  £3(t) := 1.121:3-sin(t)

2.

0.5 £\ 125
f(sin(t)) f(2-sin(t)) ]
f1(t) 0 157 3.1\ 47108 120 0 235\471[707 942

T 0.5 v 7125 \/

—2.5

1

f(3-sin(t)) l \

3(t) 0 236% 471 7.07 9142

t

2.5. Self-exciting oscillations analysis algorithm.

With the help of nonlinear element harmonic linearization the closed loop

system(Fig.a) equates to the system with linear equivalent element(Fig

b).Investigation of system with nonlinear elem

4,(%, F(6) 4 W(p) > results in linear system investigation.
Find characteristic equation
a
W(pW ,(A)=~1, W(p)=~1/W,(A),

4,% Wa(p) W) > W(jo)=U(w)+ jV(w), W,(A)=q(A)+ jq(4)

b From the last equation it follows that:

U(w)g(4) - q'(AV (0) =1
U(w)q'(4) +q(A)U(0) =0

ent
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(32)

Where q(A4), ¢'(A)are harmonic linearization coefficients. Equation solution

provides us equilibrium state points @,;, 4,, .

At solving the problem Goldfarb diagram is easy to use,its algorithm is given below.

Goldfarb diagram
1. Plot the locus W (jw)

A Vo) 2. Plot the locus —1/W,,(A)
3. Find w,,, 4,, solving the
>
U(o) U(w)q(A) = q'(AV (@) =1

U(@)q'(4) + (DU (0) =0

(point 2)

equation :

4. If at motion along locus —1/W,(A4)B

cTopoHy yBenuuenus A the point is

covered by locus W(jw), then magnitude

A will correspond unstable self-excited
oscillations(point 1).If the point is not

covered by locus W(jw),the at magnitude

A stable self-excited oscillations occur

Analyze the example with MathCAD use.

Investigate the system on self-exciting oscillations presence

W) =———— Ulo) =Re(W(i0)) Mo) = 1(W(i-0))

p3 + 3-p2 +p
complex complex 2
Ulo) =Ulo) simplify — S ) = V(o) simplify —> ool
2 4 ® 2 4
float, 5 7.0 + o + 1. float, 5 7.0 +o0 + 1.
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F(o)

\

q(a) = —

m-a

Harmonic linearization coefficient
of nonlinear component

Find crossover point, frequency and magnitude

Wy(a) =q(a)
U(w)-q(a) =-1 solve ,(wj
wi=| V(0)qa)=0 5 (1. 12732)
float, 5
>0
(coo W::w wg=1 ap=1273
o:=0,.01..1C M(a):= — Ul)=-1 a:=0,0.1..2.2
Wg(a)
The  obtained  values  of
0. parameters o,=1 and a,=1273
o correspond to stable self-excited
V(o) - oscillations because by point
;(M @ 7 s ® mp o moving across the locps n j[he
—_— direction of increasing
oo /‘ magnitude — a, locus does not
/ 0. cover the point

U(m),Re(M(a)),Re(M(ao))

0.
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