CHAPTER 1. LINEAR SYSTEMS

1.1. Linear systems description and analysis with the help of differential
equations

1.1.1. General notions on automatic control

Automatic control theory and automatic control system are parts of engineering
cybernetics.

Engineering cybernetics studies general principles of technological and
manufacturing processes dynamic system control.

Automatic regulation is defined as the process of keeping up the required value
of some physical variable in technical devices without human involvement with the
help of regulators.

Automatic control is changing process according to some law some physical
variable in technical devices without human.

Technological process of energy production, transmission and distribution is
referred as the ordered interaction of power engineering objects: turbo and
hydrogenerators, transmission lines, transformers and other machinery. Directional
influence on these objects is called control process. Cooperating electric power
objects which are exposed to intended influences are called control objects.

Control systems are based on feedback principle which is so that the state of

controlled object is  characterized by the same parameters x, x,, .., x

n

(Figure 1) which is compared with desired values and if current state of
parameters is different from the desired one then the system establishes

actuating signals x,, x -» X, ,» which return the state of system to the desired

25
one.

Feedback mechanisms can help today’s increasingly complex computer
systems adapt to changes in workloads or operating conditions. Control theory
offers a principled way for designing feedback loops to deal with unpredictable

changes, uncertainties, and disturbances in systems.



For power plants disturbances occur as unexpected change of fuel quantity,

station capacity give to electric system by other power plants and capacity assumed
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Figure 1

Because of the fact that object characteristics are given parameters than the
necessary requirements to control system should be provided by the corresponding

controller characteristics selection.

Contol by disturbance means that if there is a certain correlation between the
disturbance actions and regulated variable than the object can be influenced to

prevent the expected controlled variable deviation.

1.1.2 Differential equations. Linearization
At CS investigations two problems are solved

1. Analysis problem — CS structure and parameters are given, its properties
should be determined.

2. Design problem — CS should be constructed according to given properties.



ﬂt)l Both problems are not simple and they can be
o " solved with the help of mathematics. CS is
— —  divided into subsystems “bricks”. Each
component is described by non-linear equation,
differential in most cases.

Figure 2

Let’s analyze one of these blocks which is described by non-linear equation:

e oo o0 2

F(y, y,x x,x)=f, where X= Ex X = Fx - dynamics equation

y(t) —1input value, x(¢) — output value, f(¢)—disturbance.

Equation always has equilibrium state with coordinates :

X=X, V=Yoo [ = Jp» X=x=y=0.
— F(y,0,x,0,0) = f, — statics equation.

Investigation of this equation is not an easy task. So it is reduced — i.e. linearized to
neighbourhood of equilibrium point, decomposing in Taylor series.

F(¥,,0,x,,0, O)+(8Fj Ax+[a]T] A;c+(a{i] Ax+(a—Fj Ay + 81:“ A).;+...:f
ox Jy ox /oy ox /oy W )y oy ),

=x(t)—x,, Ay =y(t)—y,, Ax=1x,....
Ignoring the components of higher order of vanishing subtract from the obtained
equation statics equation and obtain:

(a—Fij [aFJ Ax+ { ]Ax (a—Fj av+| L Ay=f—f =af
ox J o0x /oy 6x 0 Y Jo oy ),

Divide linearized equation by invariable ((Z—F and obtain:
X Jo
g o), G
ox)o xt \ox )y oy 0¥ )y xt _ A
Ax A A A LAy =
@ @@ E
ox ), ox ), ox ), ox ), ox ),



T2Ax+ TAX+ Ax = k Ay + kA y+ kAf ek =—

o : d : : .
If derivation procedure is set down by p= P then the equation can be rewritten in

the form of:

(77 p% + Tp +1) Ax = (K, + k,p) Ay + ks Af

from which the required variable can be found

(k1 + kzp) k
= Ay + : A =W(p)Ay + W, (p)Af
(Lp +Tp+1) (TP +Tp+1) '
k +k k
Formulae W(p)= 2( ; 2p)  W(P)=77 3 are called transfer
(B2p* +Tp+1) (T7p* +Tp+1)

functions of deviation of defined variable and of disturbance

The last reduction is to divide all the components into basic variables

x=Ax/x", y=Ay/y", f=Af1 f°

(L7 p* +Tp+1)x=(k +kp)y+kf,

where £, :y—okl, k, :y—0k2, ky=—
x x



1.1.3 Control system component definition and mathematic description of

linear component properties

To analyze control system component properties their block diagram is used, in
which separate elements are depicted as blocks connected to each other according

to substitute elements connection.

Xin > 4)6"”’» Separate component is characterized by a
definite mathematical connection between input
Figure 3 (x, ) and output (x, ) variables (Figure 3).

System components obtain the property of action direction, i.e. ability to one way
signal passing from input to output.
Connection between output and input variables of linear component (or system) is

depicted by linear differential equation with constant coefficients.

a. .d_n.x_l’_a .ﬁ+ +a .d_2x+a .ﬁ.’.a X =
Car T art T " de T A (1)
dmy dm—ly d2y dy
=by-—=+b,- +..+b, ,- +b, ,-—+b, -
0 dtm 1 dtm—l m-2 dt2 m—1 dt m y

Linear differential equations have solution, which consist of two components
X=X,+X, (2)

First component (x,) 1s a complementary solution of homogeneous differential
equation, which is obtained from (1) by making its right part equal zero.

In general homogeneous differential equation has the following solution

x,=C-e"+C, e +..+C, e (3)
p1, P2, ..., Pnare characteristic equation roots which are given by
a,-p"+a,-p +..+a_,-p°+a,_ -p+a, =0. (4)
Coefficients Cy, C,, ..., C, are determined by initial conditions.

Forced component (x_) 1is a particular solution of inhomogeneous equation (1)
when the right part of equation is not zero.

If in steady state y is not a function of time then forced component can be
calculated by making all the derivatives equal zero, the following result is obtained



1.2 Systems description and analysis with the help of impulse response
functions

1.2.1 Block transfer function

The transfer function is based on application of operator method, namely the
Laplace transform. The formula of the Laplace transform for a function of time x(z)
is given by

0

X(p)=[e? - x(t)-dt = L[x()], x()=L"[X(p)]. (6)
0
where p is a complex variable, and L is Laplace operator

The transfer function is defined as the ratio of the Laplace transform of the

output x, (p) to the Laplace transform of the input x, (p)under the assumption
that all initial conditions are zero
X
W (p) =" D). ™)
XBx (p )

The transfer function can be obtained from differential equation if the Laplace
transform is applied to it

ay-p"-X(p)+a,-p" - X(p)+..+a,,-p-X(p)+a, - X(p)=

_ (8)
=by-p" - Y(p)+b - p" Y(p)+..+b,  p-Y(p)+b, Y(p).
From (8) it is easy to define that
m m—1
W(p):b0 p"+b-p" +..+b, -p+b, A(p) ©)

ao-p"+al-p”7l +..+a, ,-p+a, _B(p)'

It should be noted that denominator of transfer function coincides with the left part
of characteristic equation mentioned above.

Reverse to the Laplace transfer function is Green’s function (weight function —
impulse response function)

w(t)=L"[W(p)] — W(p)=L[w(®)]

1.2.2 Impulse response characteristic (impulse response function)
Let’s consider two important functions:

the Dirac delta function 6(x —x,)and 6(x — x,)- The Heaviside step function



The Dirac delta function property:

© at t=1i,

5<z—ro)={ [oa—-t)r@ai=f@,)

0 at t#t,

The Heaviside step function property:

0 at t<t,
1 at t>t,

0(t—t,)= { —>0'(t)=05(1t)

G5 T

T O(x—x,)dx =60(x—x,)

The Laplace transform of these functions

L[50]=1  L[0®)] :%

x= 10, Impulse response function 4(f) describes the

reaction of the output in response to input

]

change in the form of unit step function. This
Xepix (t) A . .

is system’s impulse (block reaction) to some
external change. The unit step function is the

y Heaviside function 8(¢)

Figure 4

Differential equation solution with unit step function &(¢) in the right part is
impulse response function /(¢):

dx(t)

+ x(¢) = 6(¢t) — equation solution is x(z) = A(t)

then by external change f(¢) we obtain:



ax(t) +x(t) = f(t) — equation solution is x(¢) = A(¢) £ (0) + j‘h'(f)f(t —7)dr

At zero initial conditions:
t
x(t) = j W(2)f(t-71)dr
0

Differential equation solution with impulse right part 6(¢) is Green’s function or
weight function:

dx(t) +x(t) = (t) — equation solution is x(t) = w(¢).

Impulse response function w(f) describes the reaction of the output in

response to input change in the form of delta function.

By arbitrary external change f(¢) we obtain:

dx(?)

+ x(t) = f(t) — equation solution is x(¢) = h(¢) f(0) + Iw(r) f(t—7)dr
0
At zero initial conditions:

x(t) = jw(r)f(t —-71)dr

1.2.3. Impulse response function (weight function-Green’s function)

Relation between transfer and impulse response functions can be seen using

the following correlations:
o)=0'(t) > w(t)=H()

0(t) = jé(t)dt S h(t) = jw(z)dr

Remember that the Laplace transform of integral and derivative has the form of:

LLf®)]=F(p) L{ | f(t)dt}%%p)a LI ®)] > pF(p)

Hence the impulse response function has the form of



H(p)= L[] W (p) = L[d’;(f)} H(p )—p wp) ()

Relation between dynamic characteristics can be seen in diagram shown in
Figure 5

d/dt

Figure 5

Example 1: Differential equation is given

Px dy dy(t) dx(0) _ dv(0)
5 4% 3o +229 0= w0y =0,
g T Eyor2= s M0)=x(0)=0— ===

=0.

Determine the transfer function of differential equation

1. Write the equation in operator form :

SP’X +4pX +3X =Y +2pY —(5p" +4p+3)X =(1+2p)Y

1+2
2. Calculate the transfer function: W (p) = (2 p)
(5 p +4p+ 3)
Example 2: Differential equation is given
d’x dx dx(0)
0, 1— 10—+100x = f (¢ 0)=0, =0.
17 7 (@), x(0)

Calculate the equation using MathCAD.



Determine the transfer function of differential equation

And w(f)-Green’s function (weight function)

Z(p) = O.I'p2 + 10p + 102

W(p): "EZZ—;

invlaplace,p _ .
- 2582¢7 7% Ginn(38.73 1)
float, 4

wl(t) = 5 .
0.Lp” + 10p + 10

—88.72983346207416885 |
p :=Z(p) solve,p — P
-11.27016653792583114 |p1|
w(t) float,4 — 1291.¢07 12D g~ 8873t

_d __ L o prt 1 po
7z(p) = de(p) w(t) : Z(pl) e + Z(po) e

t:=0,0.01..4-7
0.083T
0.0627T
wl(t)
0.042]
w(t)
0.021
; f f !
0 0.088 0.18 0.26 0.35
t
1 invlaplace, x ) _ )
hl(t) := float. 4 — .1000e-1- .1000e- }e( 0) t~cosh(38.73t) - .12916-}e( 50 t~sinh(38.73t)
oat,
(0 l-x2 + 10x+ 102)
Pl't 1 pot
4p) = Z(p) h(t) == +———¢
Py Z(p ) Py4P)

h(tl) float,2 — .10e-1— .11e-kel 114 500789t

t:=0,0.01..4-1

Determine /(?) impulse response function of differential equation

10



0.009 —
0.007 —
hi(t)
0.004
h(t) /
0.002
0 0.088 0.18 0.26 0.35

Check w() =h'(t)

0.08 /\

0.06
i AN
004 A

w(t) \

0 0.088 0.18 0.26 0.35

Calculate the transient process by external influence f(#)=20sin(l z)

®:=20 f(t) :=20sin(ot)

Fo(t) = f wli - D) 1(e) de

0
5 X
d d 2
0.1-S5x(t) + 105x(1) + 107x=f(t)  D(t,x) = 2 N:=10(
dt dt -l 10 . f9
0.0 170170 o1

0 . )
x := rkfixe 0 ,0,51,N,D| i:=0..N t:=x

TN Ve

Fo(t) 0.06
(Ln) 00 / \ ,/
X 0 0.11 0 }9\ 0.33 / 0.44

11




1.3 Spectral signal representation

Any time function can be depicted as sum of harmonic functions.

X(t)—?+2akcos ket)+ b, sin(kaot) ZA cos(kwt +¢,),

k=1 k=0

w=2r/T,T 1is function period. Expansion coefficients are determined by

formulae:

:—IX(Z) [szm)d b ——IX(I)S (szmjdt,

T/2 T/2

5 0 npua<0
=\a, +b}, § =arctg[—")i 7 npua>0
a
7w/2npua=0

If it is written using Eiler’s formula
e’ =cos(t)+ jsin(r), e =cos(t)— jsin(¢),

then expression for series is the following :

X(t)—?+2ak cos(kat)+b, sin(ket )= Z A, exp( jkot), 4 %(ak—jbk)

k=1 k=—N
Function expansion into a Fourier series with MathCAD help

Example 1: Expansion of a triangular pulse into a Fourier series

12



2. 1
T:=00: t:=0,00lT. 2T o=t fi=—
T T
) T
flt)y=|— if 0<t<—
T 2
1.2
t T
1-— |2 if =<t<T 1
T 2 08
0 otherwise f(t) 0.6
0.4
02
0
0 0017  0.033  0.05
t
1
—0.405
2 (1 0
M:=5 k:=0.M a =—- f(t)-cos|w-kt)dt a= A =ia
L] k TJ'O © ( ) —-0.045| kK
0
—0.016

Two forms of expansion

x 12
L(t) ::7+ Z (ak'cos(oyk't)) F1(t) =— + Z (|Ak
k=1

k=1

~sin(m~k~t + arg(Ak)))

Expansion check

i

k de
Loy g

1 90

F(6) N\ 0.405 90

S y 0 90

I o6 0045| [ 90

Fl(t) ) 0 290

/ 0.016 -90

0

Generator assembly which gives triangular alternating impulses in program

Electronics Workbench. The required impulse form we assembly as

13



superposition of sinusoidal sources with corresponding frequencies, amplitudes

and phase shifts.

0.405 4/20 Hz/270 Deg 0045 B0 HZZ70 Deg 0,028 Y100 Hz270 Deg 0.707 Wi nsv

e 22—

,il_ 11} [ 5 |

Analysis Graphs
iSSR0 s @

Statistics [Analog] Transient |
b tayl.ewb

1 -

== S00m

WVoltage (V)

Z00m

Example 2: Trapezoidal impulse expansion in a Fourier series

Ti=00¢ 1=0,001T. 2T ©=—2% fmdt
T T
3 T
f(t) := ? if OStS;
1.2
T 2
| if —<t<=.T 1
;) 3

1-L)3 ifI~2StST f(;)gi / \
( T) 3 o4 // \\

0 otherwise 0.2

0
0 0.017 0.033 0.05

14



1.333

~0.456
M:i=5 k=0.M 2 Tf(t) ( kt)dt Bl N
= = a, = —- ‘COS|M®-K- a= =1a
k™ o -0 k k
-0.028
-0.018
Two forms of expansion
3 M |Ao| e
F(t) i=— + . k-t F1(t) i =— + A |-si ket + A
A0 = > (akcos((” )) 0= 2 (| k| Sm(m arg( k)))
k=1 k=1

Expansion check

1.2T

F) \ y 0.456 90
— / \ 0.113 90
T o6 \ / \ 5.636-10-5 90

F1(t) \\ / \ 0.028 -90

\ 0.018 -90

0 0.05
t

o JL/

Generator assembly which gives trapezoidal alternating impulses in program
Electronics Workbench. The required impulse form we assembly as
superposition of sinusoidal sources with corresponding frequencies, amplitudes

and phase shifts.

15



ASEVI20 HZ270 Deg 0113440 HZ270 Deg 0.028 W20 Hzf270 Deg 0.018 %100 Hzf270 Deg 0.707 Wi 0.BET
S e
o+ o+ [
N |

®

o
=

<] m

2]

) L

Statistics [Analog] Transient l

12l

1.0 -
s S00.0m —
=
L]
gﬂ 600 . 0m
5 °
= 400. 0m
Z200.0m
a 1
u} Z0m 40m 60m S0m 100m
Time ()
1.3.1. Bode plot

Bode plot is the ratio between complex representation of output variable and
complex representation of input variable which is being changed according to
potential law.

¥(t)=4, sinot. (16)

By y(t)change according to (16) at linear component output in steady state the

output variable will change according to potential law with the same frequency, but

different amplitude and phase.
x(t)= A, -sin(wt+ @). (17)

Complex representation (16) and (17)
y=A,-e" x=A4.-"". (18)

X

Hence, W (jw) which stands for Bode plot equals

16



4,7

- e = A(w) -, (19)

A

In (19) A(w) and ¢(w) functions are Bode magnitude plot and Bode phase plot.

W(jw)=

I'< ]I

Bode plot (19) which is a complex variable has the algebraic form of
W(jw)=U(w)+ jV(w). (20)

In (20) U(w) and V(w) are real and imaginary frequency characteristics.

Bode plot is interconnected to the Transfer function.

Mind that formula for derivative of n-order from or y and x are equal

k

=) 4, e =(jo) -y,
. (21)
d k

=(jo) -4, - =(jo) x,

By substituting (18) in the differential equation (9) we obtain

by (jo)" +b,- (@) +...+b, - (j©) +b, _R(jw)
ay-(jo) +a,-(jo) " +..+a,,-(jo)+a, 0(jo)

W(jw)= (22)

Bode plot has its real and imaginary parts.
W(jw)= A@)e™” =U(w)+ jV (o)
U(w) = A(w)cos(p(w)), V (w)= A(w)sin(¢(w))
(w)j {O npulU(®)=0

U(w) 7 npuU(w)<0

As shown in correlation (9) and (22) that formula

A(@) =JU(0) +V(0), p(w) = arctg(

)
» for Bode plot is obtained from substituting in
Ulw
transfer function p = jw.
Figure 6

17



To solve practical problems of control systems properties Bode plot is plotted on
complex planes U(w) and V(w) as locus which is a geometric part of vector end

W(jm) at frequency change from 0 to o (Figure 3).

1.3.2. Correlation between component input and output variables in steady

State.

Correlation in steady state can be obtained if we assume all the derivatives

equal zero in transfer function p =0.

Hence

0

X :ywoW(O)zzizk. (23)

n

b

Coefficient £ =— is called component coefficient of amplification
a

n

1.3.3. Steady and minimal phase components frequency characteristics

peculiarities.
The system is described by A(w)and e’”” or U(w) and V' (w) variables. But

for some types of components (steady component) there exists the correlation
between the functions which formed these pairs and one of such functions can be
used to describe the system. To determine the weight function for instance the

following ratio should be used:

w(t):%TU(a))cos(a)t)dt or w(t):—%]‘oV(a))sin(wt)dt

—0

On integrating these formulae we obtain the formulae for transfer function:

h(t) = % T Ui)a)) sin(at)dt or h(r) :% T @cos(a)t)dt :

—00 —00

These correlations are for steady components in which denominator poles of

transfer function have negative real parts.

18



Minimal phase component is a component which have poles and zeros with
negative real parts. That means they have minimal phase shift at frequency @

compared to other components.

Example:
Vip)= Tp+1
Calculate Bode plot
)= e+
Calculate its real and imaginary parts
V@) =Uiw)+ jVie)= (1+ f;;(ff))Tw) B I;;]z:)? B zlfza)z 3 f;f)af
Utw) # - 11‘%

2 .2
0)=\U(o) +V (o K +ETw
1+T2 2 1+T2 2 «/1+T2 2

(@) _
¢(a)) arctg[U(a))j—arctg Ta) = arctg(Ta))

When @ is changed, ¢ is changing from 0 to —%.

Let’s analyze the block with transfer function

k

W(p)= o1

Do the same procedure

19



Calculate its real and imaginary parts:

k(1+ jTo)  k+jkTo  k . kTw

W(jo)=U(o)+ jV(o)=-

k kT @
—27 (a))_ 1+T2 T 2 20

2.2
\/U 17 (0 K+kTo ETRE1 9 g
1+T2 2 1+T2 2 1+T2 2

$(w)= arctg(—j m=arctg(Tw)—r, arctg(Tw)e(0,7/2)
o

U(w)=-

When @ is changed, ¢ is changing from —7z no —%. Thus the second

component makes greater delay.

1.4. Some typical components of control systems
1.4.1. Amplifying component

Let’s compute transfer function of inertia-free component

LR =% =% o U Y
Rl RZ Rl RZ

U2 R2

_ 5> 2=_2

e U, R

Component transfer function:

W(p): Uz(p) __&

_ iy
U,(p) R,

U U -U U U
11:_;1912: : 2911:[2

1+ To)1-To) 1470  1+70 1470

20



= |NQ

[\

= ﬂ + ﬂ , & = —+ L U, Component transfer function:
R, R R, R, R

2 1

Uz :[L'i‘ 1 lea
2 R2 Rl

_Uz(p): L L _ R, _
W(p)—Ul(p) (RZJFRJRZ (HRJ k,

1
1.4.2. Aperiodic inertial component of the first period

Consider the example of aperiodic inertial component. Electrotechnical
diagram shown below can be such components.

o—1T ] o o—1 Y o
R L

y=U C x=Uc y= R x=Ug

O T @) O @)

Develop the formula for inertial component with capacity:

d
iC:C&, U.+i.R=U —>UC+RCdUC=U

dt dt

Let’s represent for time invariable 7 = RC':
UC+TdUC =U
dt
U

U.+TpU.=U - (1+Ip)U.=U
In our case:

(1+Tp)X =Y Sw=X_ 1

Y 1+Tp

21



We can obtain the same formula through diagram resistance having complex

representation:

Z(@)=R+——,
joC

Find current/(w)=U /Z(w), voltage on the required element U, =1 (w)%,
jo

then substitute all the values and obtain:

1 U 1 U 1 U
Ue=l(0)——= T T )
joC  Z(w) joC (R+ 1 )]a)C (joCR+1)
joC
v, 1
e W (jo)y=——— - W(p)=
v Y Gacrrry P T o

Thus transfer function of inertial component is:

k

W(p)= m

1,
And its weight function(Green’s function): w(t) = ?ke o

To calculate its transfer function/(?)its impulse response function W(p) with

1/ pmultiplier can be used

Wp) 1k A0V D) gy kg g

p  p(pT+1)  B(0) pB(p) Ly

Check

w(t)=h'(t) = ;é” !

22



For the second example do the same calculations taking into consideration time

constantequals 7=L/R:

U, _ 1
L =W(jo)= - W(p)=———
v "V Garrrery VP T e
Plot graphic responses dependences:
i 100
0.8T 80
0.6T 60
h(t) w(t)
— 04 40
0.2T; 20
0 0.=01 0.=02 0.=03 0.=04 O.IOS 0.=O6 00 0.01 0.02 0.03 0.04 0.05 0.06

t t

Bode plot is described by formulae which we have already analyzed:

k(1- jTw) k- jkTw k kT
W(io)=U(w)+ jV(w)= = - —J
ey =0(@)+ jr(@) (I1+ jTo)(1- jTew) 1+T7°0* 1470’ e
k kT @
U(o)=——a, V(o)=——,
(w) T () 1+ T’

R [FrRTe | ek
A(a))—\/U() V(@) (1+T2602)2 (1+T2602)Z \/m

¢(a)) = arctg[%} = arctg(—Ta)) = —arctg(Ta))

V4
When @ is changed, ¢ is changing from 0 10 5

Plot the locus for Bode plot at =1 and 7=0.1c using MathCAD

L=01 k=1 W(pKk):= k AIAAA((D,k) = W(j-m,k) U(o)) = Re(A(co,k)) A}vfgm) = Im(A(co,k))

_T~p+1

( ) _ arg(A(m,k))

oo m::O,.l..103
deg

23



0.
0.
0.2 \\
0.6 \
V(o) | A0, b g
_— 0 025 05 075 fi — 0. \\
—0.25 \ / 0
N e
-0.5 0 10 20 30 40 50

U(w) @

-3
w | )
~6 \\

-9

1.4.3. Oscillatory, aperiodic and conservative components

Parallel series RLC circuit can be the

L :R oscillatory component. Let’s calculate the voltage

=U x=U .
Y CT © | of capacitance
O

O

: dUu di, . . :
lcsz—tC, ULzLj,lczlL, U.+i.R+U, =U
2
519Yey peYe pe-u
dt dt

Let’s write down the formula for this equation

2
d [fc +R(J&+Uc=U—>(LCp2 +RCp+1)Uc=U
dt dt

LC

Calculate transfer function:
24



W(p)=UC(p)= 3 ! = ! ,T,=~LC,T,=RC
U(p) (LCp*+RCp+1) (Tp*+Tp+1)

Or through resistance:

Z(p)=R+pL+1/Cp,I(p)=U(p)/ Z(p)

1 U 1
Uep)= 10— =— L —U(p) /(1L + RCp+1)
P RiypL+—P
pC

W(p)=U.(p)/U(p)=1/(LCp’ + RCp+1)

Calculate Green’s function — weight function:

W(p)=A(p)/ B(p)=1/(LCp* + RCp+1),

~RC+RC’ —4LC —R+\/(ch2_ 1

B(p)=0.=pi.= 2LC o\

R 1 RC
ﬂZZaw: I (2Lj p,=—pPtjo

Then the weight function equals:

(P) p
w(t) = 2Re[B(p1) ]

Now transfer function can be calculated:

=4 pB(p)= p(Lcy’ +1ch+1)
h(t)_LO)+2Re{MeP"j_l+ “a) +’B s1n[a)t+arctg(a)n
B(O) B (pl) @ B

Take into consideration the second order component behaviour in MathCAD.
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In program determine the circuit impedance and transfer function after that. Both
impulse response function and Green’s function are determined with the help of

Laplace transform.

=01 C:=10010 ¢ R:=1c

ARA ARAS AAAS

1
Z(p) =R+ p~L+ C_p mp) —m

100000.
p :=Z(p)

solve,p |:(—50.) -312.2i

- W(s) simplify —
float, 4 (—50.)+312.2J (s) simplity

100.s + 32 + 100000

B(s) :=100:s + s2 + 100000  A(p) :=10000C B'(p) ::Z—B(p)
p

invlaplace , x (- 50.)-t

WD = W) — 3203

float, 4 -sin(312.2t)

W(x) invlaplace, x

(- 50.)-t (- 50.)t .
h(t) : l.-1. . 12.2t) —.1601 . 12.2t
h(t) " float, 4 - e cos(3 ) 601-¢ sin(3 )
Determine the same functions through theory analysis
Alp Alp
) .t 2 -t A0
w2(t) :=2-Re '( )_epz h2(t) :=2-Re '(—)-epz + AQ
B(p,) B(p,)p, B(0)
2501 7 L6T
oot [ L7
MO 1sop O s
d 10 T 08T
=h(t) /\ 2006t
e \ VS — 04T
0 102 O.MM 0/05 0.06 027 . . . . . .

w2(t) -5 0,
10
-15

In general oscillatory component equation has the form of:

d’x dx
a2ﬁ+a15+a0x=b0y.
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or

a,d’x a, dx b
2y

x=-"
a, dt’*  a, dt aoy
2
Zz +2§—+x ky

At static mode we have :

=b—y —>x=ky —)W(O)———
y

a,
Characteristic equation:

dZ
a T +285 x=
o 5 ky

2 _ —£: k :A(p)
(ap +2§p+1)X—kY — W(p)= v (ap2+2§p+1) B(p)

Denominator fraction B(p) has two roots which can be joined(united) complex,
P, =—f % jo, or right half plane(RHP) or left half plane p,, p, <0. If the

characteristic equation which is a differential equation describing the second order
component has left half plane roots then the component is called aperiodic
component of the second power.

Calculate Bode plot of oscillatory component:

k

H@=U@ + V@ =

U U
k(l —~ aa)z) _; k2Ew
48w’ +(1—aa)2)2 48w’ +(1—0£a)2 )2’

k\/4§a)+1 aa))2
4§a)+(1 0550)2 \/4§a)+1aa))

A(@) =JU(0) +V(0) =
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Let’s consider the example of frequency characteristics of locus assembly with

different values of damp coefficient & through transfer function with MathCAD

help.
k=01 £:=001 =000 W(p.&)=—
oap +2&p+1
5 solve,p [ (-5) - 21.79i - _
artr2zp ot [ o[ I M) W0 o) =Rdalo.9)
Mo.8) =1mA0,) ok := M%: 0,0.01.. 10%0.¢
eg
g -03 - 7{@2 /cmiz 0.3
AN \
V(©,) \ s }
V(o,8&2) \ //
0.5
U(m,%),U(m,&),U(m,@Z)
0.45 _'(‘)‘Ts“':“::\\'—-:]: 30 4
0.36 '~
o) A GOR
T\ 22 ) 76 \
|A0.8)| Z”\\ $0,5)
- 0.1 Mo,
|A(0.£2)] _____,;Zm \\ Wo,&2)712 i\
— 0.0 e — ~
—
0 10 20 30 40 50 ~18

One more type of second order component is conservative (self-vibrating)

component:
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d’*x

a—+x=
dt? ky

(ap2 +1)

All mentioned above components are static components, because at

(ap*+1)X =kY - W(p)=§ k

substituting in transfer function W(p), p=0 we obtain a certain final number and

formula is the same for all the components:

1. Amplifying (noninertial, static) component: W(p)=k, W(0)=k

2. Aperiodic(Inertial)component: W (p) = %, W)=k
D+

k
ap’ +2Lp+1

3. Oscillatory component: W(p) = , W)=k

4. Aperiodic component of the second order:

k
ap’ +2Lp+1

W(p)= , W(0)=k

5. Conservative (self-vibrating) component: W(p) = 12c . W)=k
ap” +

1.4.4. Astatic integrated component

Let’s analyze the example of integrated

component:
C
. dU
7 . ll=U1/R,lC=—CTt2, I =i,
= dU 1
—-C—2=U,/R -U,t)=——|U,(t)dt
~2=U, (1) RC! 10,
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t
%:ky — pX=kY > W(p)zk/p—)x:kjydt
0

Green’s function (weight function):
W(p)=k/p, wt)=L"[W(p)]=k

Transfer function:

W(p)=k/p, h(t)=L" {m} =L {iz} =kt
P P

Check:
wt)=h'(t)=kt'=k
Determine frequency response and bode plot :

W(jw)=k/ jo, W(jo)=U(w)+ jV(w)=—jk/ov, U =0, V(w)=-k/w
A(w) = ‘W(ja))‘ =k/w, w)y=-7/2=90°

k .
k=1 W(p) =— h(t) =tk w(t) =k ,Q?(‘”) = arg(W(J-u)))
p
LT 0.0
I
MO og 0.04
Xy h(t
d t)oe (t)
dt 04 0.0
0.7
i i i I i i i i i .
0 0.012 0.024 0.036 0.048 0.06 0 0.012 0.024 0.036 0.048 0.06
t t
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0 200 400 600 800 1000

Ho)
deg
~90

~-126-

7. Real integrated component possess some inertia

k

(7}?'+'1)]9)Y—::Ak)/ —> lif(ly)::.zii;i;_Ijg;

The examined component is not simple because it has two blocks/components in

series - integrated and intertial(aperiodic).

k ko1
W(p)= (Tp+1)p —;(Tp ) W,.(p)W,(p)

1.4.5. Differential component.

Impulse response function of differential component has the form of:

x= kaX pY — W(p)=hp

Let’s find transfer function:

We)=L {W(p)} Pgﬂ k(1)

Now Green’s function can be obtained:

31



w(t) = h'(t) = kS'(¢)

At random external influence we obtain:

Bode plot:

x(0)= [ f(@OK @ -o)dr= k')

W(jw)= jko=U(w)+ jV(w), U@®)=0,V(w)=ko
Alw) =V (jo)|=ko, fw)=r/2

Let’s tabulate all transfer function and their properties in Table 1

Table 1
Componentf The impulse response Weight function Transfer function
type function
1. Inertia- h(1),
free
(amplifying W(p)=Fk W) =k 8(7)
component) - t
2. Ideal h(?)
differential W =To 5(i
component Wp)=T,-p (D) =T, () e
t
3.Real T -p h(?)
differential | W(p)=——"~ T i,
) 1) = 1 e
component 9 W(J){/sz eg /)Td d . t
4.Integral 1 h(?)
component Wo(p)=7— w(?) =1/T,
Tint 4
t
T, t
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5. Inertial
component
of the first
degree

W(p)=—"—
P

+1

w(t) =K/T, "™

K K(1-¢'my

6. Inertial
component
of the
second
power
(oscillatory)

Characteristic equation roots
p=a+t jo,p,=a— jo

hit) N /\
u..ﬂ"-"lh_

Wiy

-

W(p)=

L-p*+T,-p+l

!

o
L

7.Inertial
component
of the
second
degree
(aperiodic)

K

Characteristic equation roots
P="0; Py =0,

Wi f

W(p)=

L-p*+T,-p+l

Things to remember:

1. All the components can be divided into two groups which differ a lot from

each other.

e Static components are components which in steady state (at p=0) have a

certain connection between output and input variables. These components

have stable equilibrium. All components given in Table 1 are static

Xex j

t

biLx “

-

Figure 7

components but integral one.
e Astatic components have neutral equilibrium
Integral component 1s astatic in Table 1. At

p=0: W (0) > . This means that at x,_=1(¢)

x —oo.In

8blX

theoretically 1s input influence is

applied on limited time then output variable remains
constant, 1.e. equals the integral of input variable,

for this time (Figure 7).

2. There is an interconnection between the transfer function W(p) and impulse

response function A(¢) capable of transient process /(¢). When substituing
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p =0 in impulse response function W (0) — h(0) we obtain steady state in
time domain. When substituting p=o0 in impulse response function
W () — h(0)we obtain transient process beginning.

3. Frequency response locus always starts from real axis because real part of

frequency response U(w) is an even function , and imaginary part} (@) is an
odd function: W(jw)=U(w)+ jV(w)—>W(0)=U(0),V(0)=0.
4. Frequency characteristics are determined by the following factors:
e oscillation indicator M = 4__ (@) / A(0)— characterises system tendency

to oscillations :the higher it is the less qualitative is the system (1.1<M
<1.5)

e Resonance frequency is the frequency at which magnitude frequency
response is at its hight(at this frequency oscillations have maximum
amplification)

e System bandwidth — interval from @ =0 to ®, at which the following
condition 1is fulfilled 4(w, ) < 0,707 4(0)

e Frequency cutoff A(w,,) = A(0)indirectly characterizes the duration of
transient process, the following correlation is true 7, = (1+2)27 / @,

More

h(o) 1 Wiw=lca)

L5

0.5

— — : : i : : : . L
0 0.02 0.04 0.06 0.08 01 0 200 400 600 300 1107

The greater the peak of resonance frequency the more intensive are the oscillations
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1.5

o\ T= 2%7%\

2 ; 5 i, .
0 0.02 0.04 006 0.08 0.1 9 200 %-WLI' cp 500 %00 1107

i
)
=
L=] [ (=] [F¥] e

1.5. Block diagrams
1.5.1. Control system transfer function calculation by blocks transfer

functions

A control system consists of a number of components connected to perform
a desired function. Once a component (system or subsystem) is reduced to a
mathematical model, it can be represented as a block, with the component
operation described by the mathematical function. It is convenient and useful to
represent the elements of a control system by blocks. The properties of the block
are contained in the transfer function represented by the Laplace transform. Many
control systems involve several blocks representing the controller actions, the
plant, feedback elements, and other functions. A block diagram is a pictorial
representation of an entire control system in terms of all the elements and their

transfer functions.

When constructing structural diagrams of control systems the following symbols
illustrated in diagrams below are helpful as well
— Signal branching sign

X

X

— The summing point also known as a summing junction is the block used to

represent the addition/subtraction of signal as shown in Figure below
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X2

X1 + X4
or

X3

X4 = X1 +X2—X3.

1.5.2. Blocks in series

-xax(p) x@htx(p)

— ") Wap) —» ... —» Wip) —>

\

Figure 8

From transfer function definition it follows that

W (P) =W (D) - Wi(p)-...- W, (). 24)
1.5.3. Blocks in parallel
> Wi(p)
x&\' (p) xGbL\‘(p)
»+— Ws(p)
> Wu(p)
Figure 9

Parallel subsystems have a common input and output formed by the algebraic sum

of the outputs from all the subsystems.

Hence equivalent transfer function will be equal to

W,.(p)=W(p)+W(p)+..+ W, (p) (25)
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1.5.4. Feedback control system

xex(p) Xex1 (P)

x@btx(p)
-

Wi(p)

W,«p) |

Figure 10

Closed loop control systems are divided into two categories , based upon the nature
of the feedback signal: negative-feedback closed loop and positive-feedback
closed loop systems. The system consists of one block in the forward path and one
block in the feedback path. Hence we can write:

’xexl (p) = xgx (p) i xoc (p)’

(26)
where, x,.(p)=W,.(p)-x,.(P)-

In (26) sign "+" corresponds to positive feedback, and sign corresponds to

negative feedback.

The transfer function of reduced form of a closed loop control system can be

obtained from

%, (D) =Wi(P)-| X, (P) £ W,.(P)-x_(P)]. (27)

From (27) calculate the required transfer function

Wyt W) 28
s (D) x (p) 1FW(p)-W, (p) .

Notice that when obtaining the formula (28) sings corresponding to positive and

n_n

negative feedback are changed into the opposite ones. In (28)"-" sign corresponds

to positive feedback and "+" sign is negative.

1.5.5. Block diagram reduction
Block diagram reduction help reduce separate elements of block diagram to three

block types described above.

Block diagram reduction is quite simple and illustrated below.
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1.5.6. Summing point moving

Original diagram

x1(p)

W(p)

x3(p)

WaAp)

x2(p)

X, (p)=[x(p)-W(p)+x,(p)]-W,(p)

=x(p)- W (p)W,(p) +x, ()W, (p)

a

Moving a summing point to the output

x1(p)

— W)

Moving a summing point to the input

X

1/W\(p)

T x3(p)

> Wa(p)
Wa(p)
T x3(p)
b
- Wi(p) > Wi(p) —>

C

x2(p)
% +

x2(p)

It 1s clear that the relation betweenx,(p) and x,(p) in diagrams b and c¢ is the

same as in a diagram.
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1.5.7. Branching point moving

Equivalence at branching point moving is to keep the relation between input

value x,(p) and branching moving point value.

Original diagram

x1(p) x(p)
—> Wi(p) Wip) >
I x3(p)

x,(p)=W,(p) -x(p).

a
Moving a summing point to the output
xi(p) x2(p)
— Wi(p) ——> W) —1—»
1/W(p)
l x3(p)
b
Moving a summing point to the input
xi(p) x2(p)
41—> Wi(p) = Wi(p) ——>
Wi(p)
¢ x3(p)

It is clear that relation in b and ¢ diagrams is the same as in a diagram
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x(p)=W,(p) -x(p).

1.5.8. Examples of diagrams reduction rules

1. Blocks in series:

in out(p)
xﬂ’ Wi(p) Wi(p) Ws(p) oy

2. Blocks in parallel:

\

Wi(p)

xin(p)

\

Wi(p)

\

Wi(p)

3. Closed loop system reduction with negative feedback:

Ll 7} ] Yo )
—-—O—.— H ) —-

I— Widp)

4. Closed loop system reduction with unit negative feedback:

x:'n(p) ?_» Wp(p) s Wl(p) xoié(p) I

5. Application of block diagrams reduction rules:

xin(p) xour(p)
— Wi@)W.(p)Wi(p) —>
Xin ) Xout )
W ko ()
tid ) e K 1)
— il
1+ W (e
X W W xout
() (W ,(p) )
1+ W (p)W,(p)
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Xin(P)

W(p)W,(p)

1+ W (DWW, (P) + Wy (DI, (D) + W (DIW,, (DI, (DIW o (D) + W (DIW,, (D)W ()

6. Block reduction with takeoff point moving ahead of a block:

X,

in(p)
ot
Ws(p)

X in(p)

7. Block reduction with takeoff point moving:

P

x{)ul(p)

W\(p)W(p)

1+Wa(p)Wa(p)

W3(p)
Wa(p)

Wi(p)

xaul(p)

Wi(p)

W\(p)Wa(p)
LA
Wl<p>Wz<p>+Ws<p>#> "3(p) > = >

Wi(p) Wip) iO+
_I_

8. Application of superposition principle

Find the relation between input x, and output value x,

disturbance f and output value x_,:

xip)

xin(p) VK (P) W;(p) xomip)
: ?”HW,@%@) MR
Wy(p)
xaut(p)
>
/ g ——— \ xow(P)
o) H(i Walp) [
_____ - |
\ W4(p) ;
el T T ‘
Wa(p)
xin(p) VVl(p)VVZ(p) xau[(p)
1+ W, (p)W,(p)+ W (p)W,(p)
Wi(p) »| Wy(p)

A

W(p) i@» W(p) i(g

1,

W)+ PIFP) () H(p) |

ut ?

and relation between

41



Sl Wip) | Wp) j—»
Wu(p)

Wl(p) ﬁ’ = Wl(p) | ﬁ—’
Wop) l l Wyp)

Xin_ Wi()W(p) Xou ! W (p) Xou
1+ W\(p)WA(p) W, (p) 1+ Wi(p)W(p) W)
L (pW(p)x, + f)

o S W (W, ()

1.6. Control system generalized equivalent circuit

Applying block diagram reduction rules any block diagram can be reduced
to two blocks diagram (Figure 6). Consider one of the blocks to be equivalent

controlled object with transfer function (p) and the second block to be

equivalent controller with transfer function W, (p).

xq (p) _—

2 )

Figure 11

In shown in Figure 8:
x - controlled variable,

x,,s - reference input signal,
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x, - disturbance,
x, - control response

To figure out how the control signal influences control system behavior let us
represent controller block diagram as three blocks in parallel: inertialess, ideal

differentiated and integral(Figure 9).

K, [a—

T, |= +

/Ty p la—

Figure 12

Controller transfer function according to diagram in Figure 9

W.p)=K,+T,-p+

. (29)
Tint P

The obtained equivalent diagram shows the influence of object parameters and

controller on control system properties in steady state and transient processes.

System properties are determined by the dependence of control response on input —

reference or disturbance.

As all system blocks are taken to be linear, then to obtain the required dependences

we use superposition principle. Hence the following transfer functions appear.
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- x(p)
T Mes(p) Wis(p) >
%(p)
i(p) o) [
By reference input By disturbance input

Superposition principle

1. Transfer function by reference signal

x(p) .
xref(p) ,

VVref(p): at xref(p)zo'

2. Transfer function by disturbance action channel

W,(p)= x((p)); at x,(p)=0.

Xa

For analysis use the transfer function for open loop system. To determine the

transfer function break the system at "a" point(Figure 8) let x,(p) =0. Then

x(p)

WPa3 (p)= X, (p) .

Based on block diagrams reduction we obtain

x(p)
i W (p)-W
a2 W, (P) = ;;p) ;;p) : (30)
%(p) T x(p) +W,(p)-W.(p)
Wr(p)
x(p)
VVuﬁ(p) > VVO
W,(p)= () 31)

1+ W,(p) W.(p)

Wo(p) [
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Y

Wos(p) ———»

) Wi (D) =W, (P)-W.(D). (32)

Wo(p)

According to superposition principle
x(p)=W,(p)-x,(p)+W.(p) x,(p). (33)

Analyze the influence of controller transfer function. Consider that transfer
function of the object 1is stable and 1is a static component, at

p=0 —> W (0)=K_, (in steady state).

1.6.1. Control system behavior in steady state

The relation between controlled variable and perturbation action in steady

state can be obtained (33) at p=0
x, =W,(0)-x,, +W,(0)-x,, (34)
Let us consider steady state at using controllers of different types

1.6.2. Proportional controller (P controller)

The transfer function of controller in this case is given by

W,(p)=K,. (35)
Hence (24)let T, =0; T, —> .
Consider that W (0)= K, then (33) obtainat p=0

K .-K
xw:#.xwiL.xm_ (36)
1+K,;-K, 1+K,;-K,

Double sign (36) is used because disturbance in some cases can increase or

decrease the controlled variable.
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As(36)shows, when P controller is used for the object described by static unit we

have a mistake in reproduction of reference input signal which equals

K, K
A, =(x-x,,)=| —2—2—-1|-x,, . (37)
1+K,, K,

Residual i1s the difference of the obtained value x from the desired value x,
(reference value).

Some influence on the controlled variable of disturbance remains which is equal to

AX, =i%-mcm. (38)
1+K,;-K,
From (37) and (38) it follows that, the bigger the gain factor is, the more precisely

is the reproduction of disturbance and the less is the influence of disturbance.

Control systems which possess the after-effect of disturbance are called static
systems. Dependence of controlled variable form disturbance action is shown in
Figure 10.

In some engineering fields the dependence x_(x,.) is called control characteristic,

and slope coefficient of this characteristic is called statism coefficient , which is

determined as follows(Figure 10)

K =—.
AX

8

By letting x and x, some basic values x, and x, statism coefficient can be

determined in relative units

K,=22. 2 (39)
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|
K(}6

A N — 1+K, K, 0!
1+Kp5- K, ~71 ¢ Kos
"N ax Tt Ky K, 0!

|
|
|
AX, :
|
[
l

X oo
Xe ool

Figure 13. Controller output characteristic and external characteristic

In power supplies there is an analog dependence —
static characteristics of turbine controller (controller

@ external characteristics). Such a characteristic help

control frequency change when load rise occurs.

P s = A_coi, for dependance w(P)
AP w,

A

It is more often used as 1/s for dependence P(w).

Example: The object with transfer function 1s givenlW (p)= % ,
6 Pt

[

T,=01K,=0,5 x,=1. Calculate transfer function for closed loop at P

controller presence.
W (P)Wos (P) X3 X
W(p)=T—" "2 We(p) [ Wos(p) ——>
1+ W,(p)Wy;(p) i

Let’s solve the example using MathCAD

0.5
p-T+1

I\IA/:: O'] M%p) =
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W(p)-k W invlaplace,p _ .
Wi(k,p) = — )k h(t) == P) 5 (=50000-¢"~ 19" 4+ 5000(
1+ W(p)k P float, 5
W1(k invlaplace ,p 10. 10. ~1). X)-
hi(t.k) = Y106P) > 50000k - o 1) (10450t
P float, 5 10.+ 5.k 10.+ 5.k
t:=0,.001.6T
127
h(t)
hi(t,10)0.8]
hi(t, 15
hi(t,65)
) 0.47
0.2
0 0.1 02 03 0.4 0.5 0.6
t
Proportional controller minimizes the static error and decreases transient process
time

1.6.3. Proportional derivative controller(PD controller)
Controller of this type has transfer function

W.(p)=K,+T, p. (40)
Asat p=0 — W, (0)=K,, then the qualities of system with PD controller in
steady state regime coincide with P controller system.
The component of transfer function which proportional to the derivative term
influences much the qualities of control system in transient process.
1.6.4. Integral controller ( I controller)

I controller transfer function
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Wp(p)=ﬁ. a1

u

Transfer functions on reference signal and disturbance in system with I controller

Wi (p)-W,(p) W.s(p)
W.(p)= : W.(p)=
A7) 1+W,,(p)-W,(p) (») 1+W,:(p)-W,(p)
W.(p)
w = 0 , 42
AP) I,-p+W,(p) 4
W (p)= Ws(p)-T,-p (43)

I,-p+W,(p)
At p=0 W, (0)=1;, W, (0)=0. Hence at given equivalent block diagram the

application of integral controller provides the precise reference signal reproducing .

It also eliminates the influence of perturbation action of controlled variable.
Automatic system control at which the regulated component does not depend on
perturbation action is called astatic.

1.6.5. Proportional integral controller (PI controller)

Contoller transfer function is given as

W”(p):K"JrTul- (44)
Transfer functions by reference and disturbance signals
W (p) = Wi (p)(K,-T,-p+1) (45)
T,-p+W,(p) (K, T,-p+1)
W (p)= Wy(p)- T, p (46)

T,-p+W,(p)-(K,-T,-p+1)
The same as in system with I controllerat p=0 W (0)=1, W,(0)=0.

Thus, adding to proportional part of integral reference also provides astatism of

control system.
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Example: The object with transfer function W _( p):# 1s given,

00

T.=0,1K,_,=1 x, =1. Find the transfer function for closed loop at presence

P (W,(p)=k,),1(W,(p)=k,/ p) and PI(W,(p)=k, +k,/ p) controllers.

Solution:
Wo(p)W,;(p) X3 X
W(p)=—o2=2 - We(p) — Wos(p) >
W, (pW,(p) L L
Pos W (p) = —eths b () - Kt
T,p+ (1 + Koﬁkn) T.p"+p+K_k,
K (kp+k
Pl — W (p) = —— oo (kP + ki)
]Lﬁp +p(1+an06)+K06ku
| YcTaBka N- per 1_(;6_ W- per

1 W+ - per

| z [\/ ‘Z YcTagka /
1(t,0,10) I —— hi(t,0,8) 1O j M+I‘I/ —per
1(t,20,0) . \ -

=

=

L(t, 15,20) N-per
W) o6t h(y) 9%,
1 1 \
- 0.4 bes T 0,9]r \ Be3
perynstopos perynatopos M-per
0.2 0.8
0 021 043 06 0%6 107 120 15 O T T 043 od ose 107 129 15
t

YBennyeHHblt pparmeHT Havano npouecca

1.6.6. Proportional integral derivative controller (PID contoller)

The transfer function is given as

(47)

1
W,,(p)=Kp+7}-p+7;_p-
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It is evident that in steady state regime (p=0) system with PID controller

possesses the same qualities as the system with PI controller.

Example: Let’s analyze voltage control circuit of synchronous generator.

Ur
@) Harpyska

Generator excitation current changes at rheostat resistance change. Rheostat

engine shift is performed by internal combustion engine. Engine is an integrated

component, because turn of its shaft angle o6 = ja)dt is proportional to rotation

speed integral @ .Rotation speed @ if proportional to voltage given to armature U,
.When mismatch betweenU, and U an amplifier input signal occurs, which is

transmitted to excitation winding through amplifier and integrated component.
Excitation winding amplifies or reduces magnetic field till the mismatch

disappears AU =U,-U

Block diagram

T,,T,;, Ty, Ty, areamplifier, engine, excitation loop or divisor time constants

0, k, 1s load coefficient.
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Ky
Us-U
+
U3 ky Uy‘ k,q UB‘ kB UF
N (Typ+1) P(Tap+1) T Tep+1) [ 3
U
Ko
(Tap+1)

1.7. Transient process calculation
1.7.1. Transient processes calculation in state-space

State space is one of the most effective methods of transient processes
calculation. The method essence is to transform n order differential equation into
the system of first order n differential equations written in Cauchy form. For

example for RLC series circuit equations in Cauchy form can be written as:

4, R, 1, -, e0.

——u
dt LY L ° L
duc_i

d C

If state vector is considered as x(¢)={i,(¢),u.(t)} and write out the

coefficients at unknown variables and given influences in matrix form then the

equations can be written as:

dx(t)
dt

=A-x()+B-V() wm D(x,/)=A-x+F(),

y(¢) = Cx(%) - coupling equation
where A is square state matrix of nxn dimension;

V(t) is vector m of given influences;

B is matrix of nxm dimension, elements of which are determined by circuit

parameters and its structure.
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For series RLC-circuit matrices are written down:

x(¢) = (;L 8} A=

The most complicated thing in state space method is A and B state matrices

1
L1 =Tl
0 0

formation. There exist several effective methods of state space equations
formation, but they all are based on Kirchhoff’s equation system with elimination
of variables which are not state space variables .MathCAD has functions which
help solve equations in symbolic form and this simplifies state space equations
and respective matrices formation. Below we analyze the transient process

calculation by using state space approach in MathCAD.

Example 44. Determine inductance current 7, (#) and voltage on circuit elements

(Figure 34) for the given circuit:
uCl (t)a ucz (t)a z/le (t)a uRl (t)a

uRz (t)z uL (t)

R, Lin(

e(t)=E=20V, J=14

En G== ko e ()
. $ , ¥ J(t
ic1(?) R ic2(f) ecti R, =20Q, R,=100Q,

1

Puc. 34 C, =100 uF, C,=50 ur,
L=0,1H.
Solution. To form state space equations let’s
write down circuit equations according to Kirchhoff’s laws, then use computing
unit Given Find. Let’s perform differential equation integration numerically, using

rkfixed function as shown in MathCAD file below.
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. Uca
lL: C2chz+ g +1J

1LR1 + L'i'L— UCI + UC2: 0

Circuit equation written according to Kirchhoff’s laws

E= (ip + C;:Ugy) R, + U

Given

A(Uc 1»Ucosip . E, J) = Find(U’C 1-Ucos i'L) -

Matrices formation

A :=augment(A(1,0,0,0,0),A(0,1,0,0,0),A(0,0,1,0,0))

E-R,ip - Ug
Ry G
{(—Rz)dL + Ugy + J-R2]
Gk,

—(iLR1 ~Ugy + UC2)
L

B:=A(0,0,0,E,J)
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-1
0o — E
R.-C C e
21 1 C
1
0 -1 1
A —> - B—> =J
R, G C
_R 2
i 1 1 0
L L L

_ _ _ -6 ~ _s010° 0 . .
R, =20 R, =10 G =10010° C,=5010 ° =01 E=20 Ji=1
100 0 -1x 10" 2000

A= B =| —20000

0 -200 2x 104

10 -10 =200 0

State space matrix eigenvalues determination which should equal roots of

characteristic equations

-132.84

A := eigenvals (A) L =| —183.58+ 545.458i
—183.58— 545.458i

(~183.58 — 545.46i
— | (~183.58 + 545.46i
~132.84

solve,p

float, 5

p :=Z(p)

Roots of characteristic equation and eigenvalues coincide, that means A
matrix is formed correctly. To check B matrix let’s determine forced

components of state variables which should satisfy the equality —A™" B.
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~34.54
-A B=| 45455 UCinp =~ + R, | +E
0.545 R2+R2+R1 R2+R2+R1

UCInp = ~34:543

B X, J-(R2+R1)
R2+R2+R1 R2+R2+R1

YUconp = Ry Ugppp= 45455

i : b + J'Rz i
Lip = i
P Ry+R,+R R +R, +R Lnp

= 0.545

To determine additional values form the connection matrix C:

Ur2=E-Ucj
Uri=Ryip
UL =Ucy = Ut —Ryip

-1 0 0
C- 0 0 R1

1 -1 —R1

Solve differential equation system by Rounge-Kutta method:

0

D(t,X) =AX+B Xy:=] 0| N:=40C T;=00: i:=0.N X::rkﬁxe((XO,O,T,N,D) t
0

i <1>>.'

c
~
>

E
+10
0

(o

=X
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To determine state space components derivatives the extended state space

matrix should be multiplied by diagonal matrix of capacitances and inductance

cy, C; 00 _ _(X<1>)i“

icy = 0 ¢ 0 |Dft, (x<2>>i

Up, 0 0L (X<3>>
1 i__

To animate the transient process it is enough to substitute the number of
iterations on time interval N for FRAME variable. The in diagram editing
window in mo3unuu Traces activate Hide arguments to hide arguments at
axis coordinates. If you wish you can end diagram by black point. Keep in mind

that by animating arguments margins at diagram axis should be fixed.
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Diagram fragment for the 70" frame at FRAME=70 and closed arguments.

k:=FRAME 1:=0..k

2.5T

-

0.5T

0.05

Below we give the example of transient process calculation in MathCAD,

Electronics Workbench 1 MATLAB for dynamic system described by equation:

X

fx+x=1, x(0)=0, x(0)=0

MathCAD

0
B:=
1

—X] = X
dtl 2

1 1 .
j —(A ~B) = (Oj A ;= eigenvals(A)

d
—Xy = =X —Xp+ 1
dt2 1~ 72

—0.5+ 0.8661 . 0
D(t,x) :=A-x+B N:=10( i:=0..N x:=rkfixe ,0,10,N,D
—0.5 - 0.8661 0

d2x.

MER!

Electronics Workbench

x/\
Q
S

S —
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1.2

0.7 /
0.5 \ ”'Z\
/Y N\
N
s 0 1\2 3 7
0.5

MATLAB

» Statistics [Analog] Transient ]

1.25
1.00
750, 00m
S00., 00m

250.00m

—250.00m

=500, 00m

P
Lo
\ L
A
]l L
. |

10

RN
Constant :_

]

- —
=

Integratar

* ¥
| |

= —
Ll

Integratord

Time offzet. O
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1.7.2.Convergence of matrix differential equation to scalar equations

It is evident that solution of first order differential equation with one variable
more simple than several variables equation system. Hence it is interesting to
calculate transient processes by substituting space state matrix by scalar equations.
To change matrix equation into scalar equations system keep in mind that state
matrix A has eigenvectorsA and eigennumbers A connected to each other by

AA = AA correlation.

In matrix state space =A-x(¢#)+F substitute the variables changing

dx(0)
dt

X =Ay. As a result we obtain:

ézA-x+F—> Aﬂ:A-A-y+F—>
dt dt
- %:A‘l-A-A-y+A‘IF.

For eigenvectors the equality is true.

That is why state space equation is written in the form of independent scalar first

: d _
order equation —> % =A-y+A'F.

As a result we obtain the system of independent differential equations

60



ﬂ:x-yH\*lF -
dt

.........................

At zero 1initial conditions these equations are solved as follows:

y, (1) = —ﬁ(l —e"), )= —2—2(1 —e™), ..., 3,(0) = —i—”(l —e™).

2 n

After scalar equations one can go on to the initial variables

X Wi

X
x=Ay —>| ' |=A &

xn y3

Example 47. Let’s analyze the diagram

Puc. 38 after switching with zero initial conditions

shown in Figure 38. Determine inductance currents and voltage on capacitance for

the following numerical data:

E=100V; C=40mcF; R =70 ;
R,=50Q; L,=0,2H; L,=0,1H; M =0,05H.

Solution.Write down equation system for instant current values and voltages

according to Kirchoff’s laws taking into account the mutual inductance:

d . d . . .
lelu(t) _MEZLz(t)+lL1(t)'R1 _le(t)'Rl = E;

L2%iL2(I) —M%iL1(f)+iLz(f)'R2 +uc(t) +(iL2(t)_iL1(t))'Rl =E;
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C%uc(t) =1, (?).

Using computing unit Given Find, find state space matrix A and independent

influence F.
0 0 1
C
Ao M R-L,-R-M -R-L,+R-M+R -M
~L-L,+M* —-L-L+M’ ~L L+ M’
L ~R-L+R-M R, -L+R-LI-Rl-M
~L-L,+M*> —L-L+M’ ~L L +M’

0
~E-L,

~L L, +M*
-E-M

~L L +M’

With the help of eigenvals(A) function calculate the A eigenvalues of A state

space matrix. Matrix A eigennumbers coincide with characteristic equation roots,
that is why to check the matrix one should make up the formula for input

equivalent circuit resistance (figure 39):

(L, —M)p(R +Mp)
(L-M)p+R +Mp

Z(p)= +

+(L2—M)p+R2+CLp:O

Puc. 39
are given in MathCAD.

Further procedures and numerical calculations

5

R; =70 Ry:=50 L;:=02 L,:=0.1 M:=0.05 C:=40-10

E =100

State space matrices and independent variables

0 0
-2.857 =200

10 0

A = 57.15 F=|5715

_1143 600 —1.171x 10° 285.7
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Matrix A eigenvalues

Matrix A eigenvectors

0.9988 0.9975 0.9032
S = eigenvecs(A) S =] -0.0386 -0.0563 0.0275
—-0.0317 —0.0424 —-0.4284

Find a new matrix of G => S™'F sources for y variable:

Solution for a new y variable

-G . (-G A1 (-G
yi (1) = TO(I —exot) yy(t) = 1(1—e ”) y3(t) = ——

0 A1 Ao

y1(t) float,4 — 43.44 — 43.44 .07 7929

YZ(t) float,4 — (-5.066) + 5-066-6(_ 106.4) -t

-79.29 —-.53e-15 .578e-15
Q=S 1-A-S float,4 — | .84e-17 -1064 —.96e-16
—.le-16 —.le-15  —1186.

~141.978 uc
1 4 d i
G:=S F G=|3.15x10 —y=Qy+G 1 | =Sy
dt
~3.172x 10% i)

—79.294
_1.186% 10°
Check A matrix
—1186.
solve,p
z(p) = +(Ly=M)p+ Ry + — float 4
(L1 =M)p+ Ry + Mp Cp ~79.29
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y3(t) float, 4 —> (~.5006e-1) + .5006e-1 ¢!~ 156"
y1 (9
- t) := S| Yo(V)
Get back to state space variables: x(0) 2
y3 (1)
x(1)o float 4 —> 100.0 — 397.4-¢~ 7729t 297.5.6(7 1064t _ g7 (- 1186
x(0)] float 4 — 1429 + 153767 7021 16.80.¢(7 1064t _ 358705 (7 1186
x() float 4 — 893¢-18 + 12.60-¢" 021 12.66.¢(7 106D 517961 o7 1186t
1
TETS
min |}|
100 3
2.4 t=0.013
80 X(ti)ll )
60
X(ti)o X(ti)21.2
;2 3 0.6 T:=51
0 %0 0013 0.025 0.038 005 0063 | 0063
0 0.013 0.025;).038 0.05 0.063 o
1 N := 100
1i=0.N t. = l.j
1 N

Example 48. Determine inductance current iz(¢) and voltage on capacity u(t)

when breaking the circuit at Figure 40 with given elements parameters : £=50 V;

R=10 Q; L=0,05 H; C=150 mcF.
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Solution. Write down the equations for

_/L'% diagram after commutation:
A L . .
()E C = u, =—2Ri, —u.; i.=Cdu./dt.
R R
_— It follows:
Figure 40. di, (t) —l(—2Ri u): du(t) —li .
d L S A ol
2R 1
L L 0
A= 1L Ll w= [0}'
— 0
C
Initial conditions: i, (0)= By =2,5A, u.(0)=Ri, (0)=25B.
Further calculations are performed in MathCAD.
Given data and initial conditions
. , -6 . E B
E=005  C:=150107°  Re=10 E:=50 ipgi=>— ucp=>
2R -1
L L —400 20 .
A= A= 3 - state space matrix
1 6.667x 10° 0

— 0
C

Determine eigenvalues and eigenvectors:

-200 + 305.505i]

A = eigenvals(A) A =
s (—200 —305.505i

—-0.03 + 0.0461 —0.03 — 0.046i)

A = eigenvecs(A)A =
s ( 0.999 0.999

Substitute the variables and obtain the scalar equation:
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dy (21 O fvi] (Y0 e iLo | (Y10 (12.519 —35.514i)
dt L0 % )lva) |20 uco ) 20 12.519 + 35.514i
T
T: =005 N:=100 1:=0..N tj:=—=
N
I :
Lot At Li 1 (tl)
y1(D = yjp-e ¥o(1) = ypq-e =A- .
uc, ¥ (t)
Write down the final calculation and plot diagrams
—200.00) -t —200.00) -t
(yl(t)} float, 5 2.5000-¢ ) -cos(305.51-t) 432732 L -sin(305.51-t)
A- -
I —~200.00)- —200.00).
Y2(t) complex OO-e( 200.00) -t (=200.00) -t

3T

L

2]
i ).

0\/{013 0.025
-+

0.038

0.05

-cos(305.51 -t) —70.920-¢

uc,

1

5
4
3
2
1

-sin(305.51 -t)

——— : :
—1010 0073 0025 0038 005

-t

4 t

1.7. 3. Transient processes calculation with Impulse response function help

Let state space equation of arbitrary circuit has the form of

dx(?)

=A-x(t)+B-e(t).

Laplace Transform will make its solution easier and let move up from differential

equations to algebraic. At zero initial conditions we have
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IpX(p)=A-X(p)+B-E(p) »>(Ip—-A)-X(p)=B-E(p)
X(p)=(Ip—A) B-E(p),

where 1 is a unit matrix.

If we take external action as Dirac delta function, than for multidimentional

transfer function we obtain:

W(p):%:(lp—A)_lB.

To obtain multidimentional impulse response function #,(¢), one should
perform reverse Laplace transform for transfer function W(p). If at circuit input
is emf source in the form of unit step(ckadok) (E (p)=1/ p), then after reverse

Laplace transform W(p)/ p we obtain impulse response function /(¢).

MathCAD help perform character direct and inverse Laplace transform.

Example 49. Determine voltage on capacitor and inductance current for

diagram on Figure 41 knowing that initial conditions are zero.. Initial conditions:

E=30V; R=20 Ohm; L=0,1 H; C=100 mcF.
R
CD L c = Solution.Write Kirchhoff equation and form
E
R state space matrix and vector of output influence
R
d d
R
dt dt
rRCdMe 1y —i R 1YL
dt dt
Given
(Cuc+ip)-R+uc+RCuc = E R-CUc + uc = i R+ L'
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1 3iR-uc-E

2 L
A(iL,uC,E) = Find(i'L,u'C) - iR+ ug—E
2 RC

The impulse response function W(p) in MathCAD can be easily obtained as

shown below when state matrix and vector of output influence are known.

6

Ei=10 [:=0.1 C = 100-10 R = 10
SR 1 RE
2 L 2L 2L 250
A= Fo= -1 eigenval{A) =
-1 -l 1 400
2.C 2RC 2 RC
W(p) = (identity(2)p - A)” ' F
500. 2500.0
5.0000— P* +—
P>+ 650.-p + .10000e6  p> + 650.00-p + .10000e6
Wip) float,5 — 25000 150
- . + .
. +500.— P
p> + 650.00-p + .10000¢6 p> + 650.-p + .10000e6

Now we can obtain analytical dependence for transient functions of

inductance current /,(¢#) and capacitor voltageh.(¢), using inverse Laplace

transform
W invlaplace p 3 . B ‘
hy (1) = (po foat 4 — 5000e-1 ¢~ 49001 10006729ty 5000e-1
oa
W invlaplace p 3 . 3 .
he (1) = (P o S (=2.500)-¢' 7400t 5 (Z20)t 5000
p oat,

To obtain analytical dependence of inductance currenti, (¢) and voltage on

capacitoru . (¢) transient functions should be multiplied by emf E.
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ip() =hp(t)E uc(t):=hc()-E T:=01 N:=100 i:=0.N ¢t:=

0.4

03
iti)o.z uclt) 6

0.1

[l [l [l ]
0 0.025 0.05 0.075 0.1
4

1 1 ]
0 0.025 0.05 0.075 0.1
t

If input influence is time function e(¢), then to determine inductance current

and voltage on capacitor one can apply Duhamel’s integral:

(0=, (0O + [0

0

de(r)

h (r—0)dr;  u () =h().e(0) + j he(z - t)dr.

If, for instance, external influence in e(¢)=10co0s(200¢)example,than in

MathCAD the following should be written:

t
e(t) = 10-cos(200-t) (1) = J hy (t- )9 e(z) de + hy (9)-¢(0)
dt
0

t
ug() = J' he(t- r)-j—e(r) dt + he (1€ (0)
T
0

W AAuﬁAAﬂ
= T \075 \5/ oov. = ] \j 0\7 0

-0.3- -10—

o
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The example below shows differential equation system solution of DC
motor with independent excitation in MathCAD with state space method

application in Electronics Workbench with structural simulation application.

DC motor with independent excitation

? N

7y _ ‘D
- O_fYW\_ MD(Q U * <> U E_@CUCMC
U Mc l
+O
O
; Pazpermm d U k
U=ik+1,% R F=0,Cw P Lot 1 A,
dt ypaBHenmss  otHocuremsuo | df L, T, L,
d.
M, =M. +J 7? M,=0,C TpOM3BOIHBIX M 3alMIIeM le_ct" =}[k,‘}}, ~-M]

k=®C .k =b C ¥X B HOpMaIbHOU (popme:

a e’

Given
Ua = ia'Ra + La«i'a + ‘”‘ke
ipky = M, +Jo

{(—Ua) +iy Ry + m-keJ

La

oMot =rfiye) o) T

J
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A =augment(A(1,0,0,0),A(0.1,0,0) A —| 7 | B:=A(0,0,M.0)+ A(0,0,0,U,)
ky
— 0
J
Ya
L
B—> a
_MC
J
Given parameters
- -3 — < — —
P =017 U =11 Ry =58 L,=12810 ~ m:=47.f n:=75( J:=0.00:
P10’ .
I = Ryon =440 Ry=Ry + R R, =1024 [ =3254 o :=— o, =7854
n-Uy 30
10°-P U, - 1R, L iz
k= k= ———— k, =0.665 k,=0976 T,=— T,=0013 T, :=
1 ® R, k, -k
Oyl H M e
T,, = 0.063
TM . ]
T =5045 Ti= 1 U=200 M= Lk if 0 ¢<T-04 M (1) ==Lk,
a
Loko2 if T04<t<08T
Ik 0.5 otherwise
_Ra ke E
L, L, Ly Inp -1
A = B(t) = =—-A -B(T) D(t,x):=A-x+ B(t) N:=20(
kM _Mc(t) O)Hp
— 0
J J

Inp 4775 1562.5 0 o .
= B(0) = x := rkfixe ,0,T,N,D| t:=x 1:=0..N
® 154.762 ~794.16965 0

71




16 160F— —=

0 0.2 0.4 0.6 0.8 1 0 02 04 06 08 1

— 1 e

| 15.625|"-.-" UL i
|
I R S e =
k12
+—{ o e
—
Fadqz

Il —

D||&( SR % %o 9w Slw @ /
Statistics [Analog] Tra IEHtIErrur Lug]
200 ~ -r20.0
160 - - 1a6.0
o120 Flz.0 ..
< &
p = 50 - L 5.0
40 4.0
o T T T T u]
m] g 1a 24 32 40

Substituition method of matrix equations into scalar equations

) -0.33 0.13 ) —-58.203
A :=eigenvecs (A) A= A := eigenvals (A) A=
0.944 -0.992 -21.797
1 7.059% 10° b ( Aot ) b, ( hpt )
b:=A -B(0) b= yi(t) =—-e =1 yy(t) =—"\e -1
~5.919x 10 ko M
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(- 21.80)-t1 (- 5820)t1

y1(tl) float,4 — 162.0¢ 416."

L)

~162.L  yy(tl) float,4 — 416.7¢

2 2007
1 | 1607
. O
2 —_ 1207
1 o
(x<l>)i (X )i sor
— - 40._
. | | | : | | | | :
0 0.1 0.2 0.3 0.4 0 008 016 024 032 04

5 5]

1.7.4. Analytical method of transient processes calculation

Let differential equations system for state space vectorx ={x,,x,,x;...x, } has

the form of §=Ax+B.
dt
The following formula will be the solution of this system:

x(t) = x(0)e™ + jeA(’_”B(f)dr

where x(0) = {x1 (0), x,(0), x,(0)... x, (O)} is initial conditions vector; e“is matrix

exponent.

Matrix exponent e, argument of which is square matrix A¢ of # order, can be

presented in the form of final row of n»  components

M =a,(Ol+a,(HA +a, (A’ +...+a, (A",

where o are row coefficients - time domain.
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Coefficients of {,,a,,a,...c,_,} row can be found by solving , n system of
algebraic equations written as state matrix own numbers A:

2 n-1 At
a,+Aa, +Aa, +..+ a,  =e"

2 n—1 Mt
a, + Lo+ Ao, +.+ A a,  =e

>

2 n-1 At
a,tAa + Ao+ + A a,  =e

Mt

1A A2 A

) 1A A2 2
or matrix form: 2 2 2 —

K
o

ot

K
o

2 -1 4
1A, A2 A \as) e

Equation system solution according the given decomposition coefficients has

the following form:

a, 1A, A7 A7) (et
Q |/ S K I

&, 1A A2 A7) e
After substituting the obtained coefficients into matrix exponent

decomposition we obtain the required solution.

Example 50. Determine capacitance current and voltage on capacitance in

circuit at Figure 42, if elements parameters are given:
E=20V; R=10Q; C=50mcF;L=0,15H.

Solution. Write equation system according to

l_/ Kirchhoff law and form state space matrix and
—H .

z vector of output influence:

R
E —g
L
R
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di
Liﬂ'LRzuc;

LﬁﬂLRJ{iL +CduC]R:E;

dt dt
EANE
A= ;F =
o TE
C RC L

All the following procedures are given in MathCAD.

Given
Lip +igR=vue  Lip+ipR+ (ip+ Cuc)R=E
(k)
Ali E Find( i .
Ir ,u~,E) := Find[i} ,u'~) >
(Luc ) d<L C) _(iL'R+uC_E)
R-C
A = augment(A(1,0,0),A(0,1,0))B := A(0,0,E)
-R 1
— - 0
L L -6
A— | | B—>| E R:=10 E:==20 C:=50-10 L:=0.15
- R.C
C RC
R 1 0
L L -66.667  6.667 0
A= . . A = 4 3 F=| E F = 4
- - -2x10" -2x10 R-C 4x 10
C RC




L . Lo 3R iLo 0.667
Initial conditions = -
uco E uco ) \6:667
3
matrix A eigenvalues
—138.285
A = eigenvals(A) A = 3
-1.928 x 10
Matrix exponent decomposition coefficients
1 %o -1 e?x.()-t
a(t) := .
1 A At
€
o (t) float, s — 1.0773-et~ 38291 7725061 (7 192841

a(t)] float5 — 55863e-3-el " 132N 550630.3.6(71928:4) 1

Matrix exponent

10
I := identity(2) I = (0 lj Exp(t) := a(t)o: I+ a(t)1-A
1047 138 400617 1B 370607138 39905 (7 193¢
Exp(t) float,3 —
(1127 P8 121N go0e-1) .ol 138 g gl N

Analytical solution

‘ L0 !
ip () := | Exp(t)- + J (Exp(t — r) -F)O drt
Uco 0 0

1.0 !
uc(t) == | Exp(t)- + J (Exp(t— ’C) -F)1 drt
Uco 1 0
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i (1) float,4 — (-.3588)-e'" 1354 25751 (71928001 1 900

138.3) -t (- 1928.) t

uc (1) float, 4 — 3.855 ¢\ ~7.191 ¢ +10.00

TIT:=003 t:=0,001T.T

I 15T
0.6T

. : 9]
i (V) uc(t)
—— 04T 67
0.27 3T
i i i i i i i i i i
0 0.006 0.012 0.018 0.024 0.03 0 0.006 0.012 0.018 0.024 0.03

t t
1.8. Automatic control linear system stability

When electric power system runs small disturbances always occur. These
perturbations can occur because of power change, load change, short circuit or
breaking of circuit. They make electrical or mechanical system unstable, it means
that steady state mode breaks. In this case automatic system controls switch on,
they perform according to the situation to balance the system. Such disturbances
should not break down system stable performance. Never let disturbances increase.
The system should be stable at small perturbations, i.e. it should keep static

stability.

Static stability is system ability to regain the initial mode after small

disturbances or the mode close to initial mode (if disturbance remains).

To state the system stability it is no need to calculate the roots of characteristic
equation because indirect indicators which show roots real parts planes from which

we state the system stability. These indirect indicators are called stability criteria.
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2
z(p) =p + a;p + a,

a, = 697525 ay = 3031.76 a=1936
j 10 / /
| N ~

r b 2

l J "\ Jf Ih

| | b

| | AN

-1 | -0 -5 o | s 0 \\ 0;{5 !: N b r.z
. \ N
T \Y

: &) W V)
- A -

¢ ————— _ \/

Formula for characteristic second order polynomial is the same for all three
transient processes. But coefficients in polynomial are different and of different
planes. In the first case the coefficients are right half plane and the transient
process slows down — the process is stable. In the second case the coefficients are
of different planes and the magnitude grows much, in the third case one of
oscillations grows unrestrictedly - the process is unstable, in the third case one
of the coefficients, and the coefficient in the first power equals zero, hence
oscillations magnitude remains stable — the process is in the margin of oscillatory

stability.

1.8.1.The Routh-Hurwitz stability criterion(algebraic stability criterion)

All the coefficients of the characteristic equation of stable system must have

the same sign (the necessary condition of the Routh-Hurwitz stability criterion). If
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one of the coefficients turns zero then the system is unstable. If all the coefficients
are right half plane(RHP) then all the roots(if there are roots on the left half
plane)will be left- half-plane(LHP). Complex roots can be right-half-plane.

If the free component coefficient a, =0 turns zero it means there is a zero root , i.e.

the system is in the range of dead-beat stability. If some intermediate coefficient
turns zero it means some imaginary roots appear, i.e. the system is in the range of

pendulum stability.

The necessary condition of stability criterion is the Routh —Hurwitz matrix which

is formed as follows:
For characteristic polynomial

D(p)=a,p" +a,p"" +a,p" ... +a,
Form the matrix using the following pattern.

e Write diagonally all the coefficients starting from q, to a, .

e Complete the matrix from the bottom to the top in order of index increase

e In places where indices are outside the boundaries put zeros.

D(p):cz()p4+511p3+azpz+c13p+a4 —> A=

If all the diagonal minors of matrix are right half plane then the system is stable —

this condition is enough for system stability.

a=(123 4 5!

= -4+ -3+ -2+ p +
z(p).—aop a;p a,p ayp+a,
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The necessary stability criterion is met(All the coefficients are right half plane)

Computing the coefficients

.
(~1.289 — .8579i il ®
solve,p | (~1.288 + .8579i °
shows % :=zp) -
float, 4 2878 - 1.416i [ | : |
, 2 -l 0 1 2
2878+ 1.416i
[ ]
—
L
that the system is unstable
a, a, 0 0
|A| =-60

a0 a2 a 4 0
Form the Routh-Hurwitz matrix &;: N .
3 a, a

a1:2 AZ::al'az—aO'a3 A2=2 A3::a3~A2—a-

A3=-12 AM:=A3a, AM=-60 The last minor is left half plane(LHP) so the system is

unstable.

Example 1. MathCAD

Example 2.

= T = . 3 .2 .
a:=(1 23 4) /\;&p)._aop +ta;p +a,pta,

The necessary criterion is met.

|A|=8 a1=2 /VAW;V\:zal~a —a.a

5 0% NA&\: a3-A2 A3=8

The necessary Routh-Hurwitz criterion is met thus the system is stable.
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Computing the roots proves the system to be stable.
~1.651
solve,p _
MEAD) |, [ (174D - 1547
(—1747) + 1.5474
.
o
o—f : |
2 -l o1 2
i
[
L
Example 3.

a:=(114 4)T Ap) = aO'p3 + al-p2 +ayp+ag
The necessary criterion is met (all the coefficients are right half plane)

The first diagonal minor is right half plane, the last but one equals zero

Thus polynomial is in the range of pendulum stability

a; a, 0 1
0 solve,p
—|a. a = 2.1
A=|13) 2, |[A] =0 z(p) float. 4 i
(=2)-i
0 a; a,

alzl %::al-az—adaS A2=0 NAQ‘A::%AZ A3=0

Example 4.

Pyu— T h— . 3 . 2 .
a:=(1140) ,%&P)~—30P ta;p +aypta,
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The necessary criterion is met (all the coefficients are right half plane)

The first diagonal minor 1s right half plane, the last minor equals zero. Thus the

roots of polynomial is on aperiodic stability boundary.

1% 0
0 solve,p
-—| a, a = = - A
A=|13) 3, |A| A :=2z(p) foat, 4~ (-.5000) + 1.937i
0 a a (-.5000 — 1.937i

a, =1 A2:=a-a,—a.ca, A2=4 A3:=a, A2 A3=0
1 MW T3

o 2T
+
: : * : |
2 -l 0 1 2
-+
L
Example 5.

a:=(41 4 1)T Z(p) = ao-p3 + al-p2 +ayp+a,
The necessary criterion is met (all the coefficients are right half plane)

The first diagonal minor is right half plane. Thus the roots of polynomial is on the

oscillatory stability boundary

13 110 —.25000
solve ,p
Ag=identity(3) A:={3, 3 0| A=]440 L =Z(p) foat.5s 1.
011 (-1)
0 a; a,
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Re(1)

1.8.2. The Routh-Hurwitz algebraic criterion application example

We are given a characteristic polynomial for back pressure system control of

turbine with two amplifying components [5]:

r7,p’ +(r1 +7, +5prlrz)p2 +|:(T1 +rz)5p +1}p+5p +1=0

3 2
a,p”+a,p +a,p+a,=0

Here 7,=17/T,, 7,=T,/T,- relative time constants J,- inequity degree of

backpressure regulation

Using the Routh-Hurwitz criterion we obtain:
2
A, =0, > 5p2rlf2(rl +12)+(2'l +2'2) §p +(rl +7, —2'12'2) =0

Let’s plot/construct stability borders for turbine backpressure system with

MathCAD help.

f(’tl,‘tz,S) = 62-‘[71-‘[72-(’51 + 1'2) + 6-(11 + r2)2 1+ T —T7
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1
1

f(‘cl,‘tz,S) solve,d6 —

2
2(‘51

"52 + ‘Cl“Cz )

2 4 2 2 4 3 2 2 3 2
5 '_ -1 —2'T2'T1—T2 + g —2'T2 1 +‘C2 +4"E1 T +4“E1 i)

1
1

1

2 2
_2' ’L'l "52"1‘ TI'TZ

2 2 4 2 2 4 3 2 2 3 2
-1 —2'T2'T1—T2 -7 —2'T2 1 +‘E2 +4"C1 i) +4"C1 i)

6(11’12) = 2_( 2

Tl 'T2 + Tl'Tz

N:=5C i:=0..N

AAAA"

2 4 2 2 4 3 2 2 3
2) (—Tl )—2'12'11 —T2 + (‘Cl —2“52 "Cl + T2 + 4‘Cl '12 + 4‘51 “52 )

L 30 .
Jj=1 Ti:=§‘l+2 di’j:=8(ri,‘tj)

2
(1

TS

0.103

0.093

0.103

.09z

0.094
0029

_om oy

Self regulation influences stability much. As o, grows, stability area decreases and

collapses at o0,=0,125. Tlpu o,>0,125 the system is stable at any time

invariables of servomotor.
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1.8.3. Mikhailov stability criterion
Let’s analyze the characteristic polynomial of npower:
D(A) =a A" +a A" +a,A" +..a, A+a,.
The polynomial can be depicted as :
D(A)=ay (A=) (A=) A=2,).
Where amplitude of complex function has the form of

| D) H ag(A=4)(A=4)-(A=2,)],
arg(D(A))=arg(A -4 )+arg(A -4, )+arg(A— A4 ) +...arg(A—4,)

n- number of roots,
m-polynomial right half plane roots

Let’sput p=jo inpolynomial

arg( D(j)) =arg( jo—A ) +arg( jo-24 ) +..ag( jo—4,)
arg( D(j)) =(n—m)—mmr=(n—2m)zw —co<@<oo

AJ
If all the roots are left half plane m=0:
;l'j /li
| | arg(D(jw))=7n —0<®<®
| |
| | - At frequency change from zero to infinity obtain:
N/
| TJC{)' arg(D(ja)))=% O<w<owo

Thus Mikhailov criterion for stable system describes a curve (the Mikhailov
hodograph) of characteristic polynomial which starts on the positive part of real

semi-axis, generates an anti-clockwise motion throughTakum n quadrants.
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Alternative definition of Mikhailov criterion For stable system it is required the
zeros of real and imaginary parts of characteristic polynomial shift, and their

gross number equals n .

IIpumep. System impulse response function has the form of

_ prHp+2 p+l1

Fig.

Determine at which K values the system is stable, unstable or is in stability limit.

1 1
W(p)=———, W,(p)=——, W,(p)=K
(p) p2+p+2 ,(p) D+l 5(p)

K
W(p)=——53
p +2p +3p+K+2

Solution is given in MathCAD

W1(p)-Wo(p)-Ws(p)
1+ W(p)-Wy(p)-W3(p)

1 1
W) =——— Wy(p) i Wi(p) =K W(p) =
p +p+2 P+

3 2
MP,K) = K D(K,p) =p +2p +3p+2+K
p +2~p2+3~p+2+K

UK, 0) :=Re(D(K,iw)) WK, o0):=ImD(K,io))

U(K,o)) complex — (—2)-0)2 +2+K V(K,(o) complex — (—(o3) + 3o

®:=0,0.01..3
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System is unstable

System is in stability

V(6,0) yaye'aV i
—_— « mit
V(4,0)
Em) 1 % 4 /2 /o /2 4 6 8
- y Vs
Yavyav System is stable
U(6,0),U(4,0),U(2,»)
Mikhailov stability criterion
V(6.0) |0 05 1 15\K 25 Vi4,0) [0 05 1 15 \K 25 3
_ \ i} N\

U2, o)

System is unstable

V(2,0)

System is stable

System is in stability limit

1.8.4. Nyquist stability criterion

Y
ey
D

\ 4

W(p)

\

Nyquist criterion help determine closed loop

system stability by open loop system stability
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Wolp) _ M(p)/D(p) _  M(p)

) = () 1M () 1 D(p) D)+ M (p)

Characteristic polynomial of closed loop system has the form of

D(p)+M(p)= D(p)(l n ]‘g((ﬁ))} = D(p)(1+W(p))

Let’s use Mikhailov’s criterion

Aarg[ D(jw)+ M (jw)]|=Aarg D(jw)+ Aarg[1+ W, (jw)] (*)

0<w<oo 0<w<oo 0<w<oo
: Vid
If closed loop system is stable then the result should equal 7 5
According to Mikhailov criterion characteristic polynomial argument equals

Aarg D(jw) = —(A IT) (system may be unstable too) — (**)

0<w<o

Taking into consideration (*) u (**) we obtain the formula for variable argument

1+ W (jw) formula:

Aarg[1+W,(jw)|= En AargD(]a))——n—E(A IT)

0<w<oo 0<w<oo
As A=n—-11-H then we finally obtain :

T T T T
0A<2£§[1+W(]a))]——n—E(A—H):E/{—E(/{—H—H—H):E(ZH—H)

For stable system it is enough that frequency response locus of open loop system

W,(jo) atfrequency change  from 0 up to © covers the point (-1, j) for angle

%(ZH—H)
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Aarg[1+WP(ja))]:§(2R—N) if the sum of number of right-2R and

0<w<o
neutral-N roots is equal zero then the angular is equal 0, i.e. the loop should not

cover the point (-1, j).

Magnitude and phase criterion: System will be stable if locus of open loop system

W.(jo) does not cover the points

o
JV(o) th (-1, J
with (~1, jO) coordinates’

< N h - minimum section of real axis,

\ . U(w),  which characterizes the distance
11\7 / \ I between a critical point and
\(\/ ,,// nearest point of root locus c
crossing with real axis , is called
modulus stability margins.

Minimal angle y formed by

the radius passing through the
point of locus intersection with
unit radius circle (with the center at the beginning of coordinates) and negative
part of real axis is called phase stability margin.

Nyquist — Mikhailov stability criteria let state control system stability with
feedback by bode plot locus of closed loop. Criteria can be used in these cases when
system differential equation (or separate components) is unknown but designer
has the corresponding research characterictics.

Let’s analyze some examples with the help of MathCAD

1. Example of stable open loop and stable closed loop systems

\j

0 Wip) — W2Ap)

10 1
Wi(p) =—— W2(p) :=————  Wy(p) := Wi(p)-W2(p)
p+2 2
p +2p+4
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-2.
lve, .
denom(Wp(p) RN (-1)+ 1.7321i|  Open loop system is stable

float, 5
(-1) - 1.732%i

U((o) = Re(Wp(i~m)) Xg(”) = Im(Wp(i-u)))

10
W(p) = ©:=0,01.10  :=0,00.27

p o+ 4~p2+ &p+ 18

With Trace function help(right click in plot field)determine phase and magnitude

stability margins.

0 e . T+ arg(zl)
z :=( j Phase stability margin ¢:= ———
-0.5 —j'0.86 deg

b =59.826

x = -04: Magnitude stability margin 1+ x,=0.57

V(o)

in(t
S P sw /o 05§ 15
Im(z) \ % y

U(w),cos(t),Re(z),x
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Determine analytically cutoff frequency — frequency at which locus crosses the
unit circle

complex o -8
0-m-

-1
simpli 2 4 2
plify (4+ ® )(m -40 + 16)

M) =Wl

complex ® -2
ﬁINJ\(m) = Re(Wp(_] )) simplify o (4 + 0)2)-(0)4 4o + 16)
m2 -8

U(u)) > (~40)-

(4 + 032)-(0)4 — 4-0)2 + 16)

o =>0

N :_{v(m)% o) 1}

1.817
solve ,®
- [(—.9085) + 1.574i] (OCO =1.817

float, 4 .
(—.9085 — 1.574i
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2. Example of stable closed loop system and unstable open loop system

D Wl(p) - W2Ap) ——

10 5
Wi(p) = —— W2(p) = —— Wp(p) = Wi(p)-W2(p)
p+2
p +2p+4
2.
solve,p .
denom(Wp(p)) float, 4 — | (-1) + 1.732i N\jgco) = Im(WpG.oo)) U(co) = Re(Wp(j.oo))
(-1) - 1.7321
o:=0,.01. 102

® Locus covers the point
! f > T ‘ T E P bR (-1, jO), hence closed
loop system is unstable

° =

B
e e

N

\

{
\ /
T
N P
0
U(w),-1
Wi(p) W2(p) 50

simplify —

/vw& =
1+ W1(p)-W2(p) s apl s 8p+ 58

Roots check proves the obtained result
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—4.831
solve ,p

denom(W(p)) float 4—> 417-3.4411
’ 417+ 3.4411

3. Example when open loop system is unstable, closed loop system is stable:

D »  Wo(p) >
b !

L= Wolp) = T11)5— . Open loop system is unstable

complex 1,500 complex
. —1. . (O]
o) = Re(Wp(i-0)) |simplity> —— Mo) =W (j-0)) |simplify > (-1.500-
float, 4 L.+ float, 4 L+
©:=0,.01.. 10"
l 0.25
2 -ls ;1 05 0
V() \\ 0.2 Locus starts from U(0) = -1,5 and
0 0.5
o0 \d B / ) moves to zero, hence closed loop
U.73
system is stable.

U(w),-1

4. Example, when open loop system has astaticism of the first order closed loop

system is stable:

1 5
WI(P) = 5 NP =7 WP =WiE)W2p)  Wp(p) - ( ; )
p +2p+4 p\p +2p+4
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0 Open loop system is in aperiodic stability

solve,p
denom(W (p)) —| (-1 + 1.732i ,
P [ float, 4 margin
(-1) — 1.732i
complex

) -10.
ngg(n) = Re(Wp(J'(D)) simplify — #
float, 4 o —4.0 +16.

complex 2 A
Xg@) = I“{Wp(j'@)) simplify —> 5 ; ® 2
float, 4 03'(0) -4.0 + 16.)
©:=0,.01..10°
- ~
/ N
72 715 705 |0 0.5 1
(o
™ o . . . . .
V(o) \ T Locus starts with negative imaginary axis
sin(t) and moves to zero around the point (-1, j0)

below, hence closed loop system is stable.

U(w),cos(t)

5. Example when open loop system has astaticism of the first order a closed loop

system is unstable:

4 5
AP == WaP) = Wp(p) = Wl(p) W2(p)
P p +2p+4
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0
| (-1) + 17321
(-1) - 17321

solve,p

denom(Wp(p)> float, 5

Wi(p)-W2(p) 20

AP =T W1(p)-W2(p)

convert , parfrac,p —
p3 + 2.p2 +4p+20

—2.9463

47313-2.562H | Ulo) = Re(wp(m)) Vo) = Im(Wp(i-oo))

47313+ 2.56211

solve,p

denom(W(p)) float. 5 -

©:=0,001.10°
-
D= S
-4 7 -2 -1 0
A
V(o) -t
0 -31
000
;i
i
oL
Ulw).— 1

Example. When open loop system has astaticism of the first order closed loop

system is at stability margin.

w2(p) g

W1(p)

1
Wip) = o Wolp) = W (p) =W (p) Wo(p)

p +p+1
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-1 1 l-o®
U(m) = 5 /Xgo)) =— 5
(-] T
l-0o) +o -0/ +o
-1.
5 solve ,p
:=0.1,0.1+ 0.01..10 1+ W 1.1
o) ,0.1 + + p(p) float, 5 — 1
(-1)-1
T
V(o)
0 _ I I - —8
P 1.33 : 1.000] -10

-+

U(w),-1

System is at stability margin

Example.

—— P Wl(p) % WAp) ——

2 1
WafP) == WP = Wp(p) = Wi(0) W1(p)
p+ p +p+1

2 3
complex (2)o +1+i0 —-2iw

2.
simplify_) 2 4 2
l+o [{o —o +1

Wp(io)

96




2
220 —1 o -2

S e i Sl v e

2
o :=® -2solve,® —

_22

®o = (_11'4:@ Ul(wo1) =-0.667 Vl(woj)=0 h:=1+Ul(woy) h=0333

arg(Wp(col-i)) +m
ol=12 ¢:= p ¢ =19.669
eg

»:=0.1,0.1+ 0.01.. 102

—-1.8106
solve,pl
—9474¢-1) — 1.283%i
float, 5 — | (—.9474e-) 8371

(—.9474e-1) + 1.2837i

1+ W,(pD)

/- I \

VRN
. \

0
?,_1(.0)01) -15 1 -0.5 0 05 | 15
oo

sin(t) 05

Vi(ol) \ /

[ & ]

\_/

/

1.5

Ul(0),- 1,U1(00;),cos(t), Ul(ol)

Determine modulus and phase stability margins(on diagram)
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1
1. \
s ( Y Irace ‘]
Tl{w) :
— : xvaue | -0.65789
0 , py
-0 7o . (RS SR S
1oy 10 A b Y-value o Copy Y
i i
ainl t) s b Y2-walue Copy 2
Vi(ol) /
g [ Track data paints
H 1
-15 i
' 15 /!
15 Ul{e),— 1,0 o) cos(t), Ulimly 15

' 1
1. H / \
Vie) / i K-Y jrace 1
0 X-Walle -0.94211 Copy X
b -5 05 0 os 15
V1o TR N _____ / ________ ’ Y-alue | o0,33333 Copy '
. ; o
sin(t) : 05 Y2-value Copy 2
Vi{el) |
" i
: 1 [ Track data points
~15 : /|

1
1.

-15 Tfa),— 1,01 wog ), cos(t), T1{al) 15

arg(—0.94211-10.3333) + =«
deg

=19.483

1.8.5. Logarithmic stability criterion

For the system which is stable being open-loop to be stable when being
closed-loop it is enough at frequency w, for which L(w) >0, difference between

the number of positive and negative phase response crossing @(w) through the

straight line ¢(w)=—x equal zero

Example 1.Investigate closed loop system stability using logarithmic magnitude

phase frequency response if transfer function of open-loop system has the form of:
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960

W(p) =

p> +26.p> + 208:p + 480.

-10.

simplify 5 ) solve,p
denom(W(p)) float. 3 —>p +26.p +208:p + 480 denom(W(p)) float. 5 - | —4.
’ ’ —12.

Solution. Open-loop system is stable , all the poles are left half plane

960 simplify 5 2
Mp) = denom(W(p)) —p” +26.p° + 208:p + 480
3 2 float, 3
p~ +26.p" + 208:p + 480.
-10.
solve,p
d W
enom(W(p)) float,5
-12.

Determine the real and imaginary parts of magnitude frequency response

, complex 1307 — 240,
U(w) = Re(W(i-0)) simptity > 1920 ®

260.-&)4 + 18304.-0)2 + 230400.+ u)6

complex 5 208

. ® —208.
/xg(”) = Im(W(i-0)) simplify — 960: ®- ; 5 p
float, 5 260:0 + 18304:0 + .23040e6+ ®

Determine the frequency at which the locus crosses the unit circle — crossover

frequency
|W(i-(o>| =1 solve ,®
0= — 5.161¢
>0 float, 5

Determine the frequency at which locus crosses the real axis

=(as)

solve , ®l

float, 5

W(og)

W(ol-j)

— 14.42: zZ :=[ } t:=0,.01..2:m

Plot locus
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. - ™ ~
/ \
/ v \
Im(W(i-0))
sin(t) 1 0. 0 05 Jl 15 }2
Im(Z) \\ 0.5 /‘J
- /
\____—/

1.5

Re(W(i-®)),cos(t),Re(Z)

Plot logarithmic magnitude frequency response and logarithmic phase frequency

response in one figure.

o) =20log(|W(iw)|]) ©:=01,0.1+005.10° y:=-360,-360 + 1..0

1

¢(03) = if(arg(W(im)) < 0,arg(W(i~m)),—n~2 + arg(W(im)))'deg_

L(w)

L(ol)

Phase stability
margin

~60°
Modulus
stability
margin

(o,(ol,(o,(o,(oo

The graph shows that magnitude frequency response crosses L(w)=0 earlier

than phase frequency response crosses the axis ¢=-180° thus the system is
stable.
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¢(wg) + 180=77.196 -phase stability margin

L(wl)

1-10 *® =0.805 - modulus stability margin

Compare to magnitude phase frequency response locus(see the graph above)

Example 2. Investigate the closed loop system stability according to logarithmic
magnitude phase frequency response if the transfer function of open loop system

has the form of:

(=.50000 — .866031
solve,p (—.50000 + .86603i
%
float, 5 -1.

-10.

11-15p

denom(W(p))

(p) = (

p + 12.~p3 + 22.-p2 +21l.p + 10.)

Solution . The open—loop system is stable, all the poles are left half plane.

Determine the real and imaginary parts of magnitude phase frequency response.

2 4
compleX_) (-557)-0 + 110.+ 191.®
simplif 2 6 8

P 02 4 100:0° + 100+ o

Ulw) =Re(W(i-o))

complex (154) 2 7 s 4
: -154)-0 + 127.+ 5.0
/Xgm) = I"‘(W(l'm)) simplify = (-3.)- @ p :
float, 5 o + 100.0 + 100.+ ®
w ~11) + 15.
w(p) = W) simplify — (=1.)- (-11) p

I+ Wip) pt 4 12:p° + 22:p° + 6.p + 21

Determine the frequency at which the locus crosses the unit circle —crossover

frequency

o

Determine the frequency at which the locus crosses the real axis

solve , ®
— 1.237(

float, 5
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solve , ol W(o)o _])
ol= ol> — .9208¢ Z:= t:=0,.01..2-7
float, 5 W(co1~'
U(o1) <0 )
- ~—J
/‘\ ™~
yd o N
/ )\
Im(W(i-w)) [
sin(t) - "\1 —0.5 0 0.5 ’#1 1.5
R X
Im(Z) 5 0.5
oo \ 4
\\ . -
1 /
‘__/

1.5

Re(W(i-®)), cos(t),Re(Z)

Plot magnitude phase frequency response and phase frequency response in one

figure
o) =20log(|W(iw)|]) ©:=0.1,01+005.1C y:=-360,-360+1..0
(I)(m) = if(arg(W(im)) < O,arg(W(im)),—nQ + arg(W(im)))'deg_ !

Ho) =if(g(o) > -180 A 5 < o,do) - 360,¢0))

-60
0120 o(w)
o) ~1go — 180
L(ol) e
Py (o)
240...
=300
=360

o),o)l,(o,u),u)o

The figure shows that magnitude phase frequency response crosses L(w)=0

later, than phase frequency response crosses the axis ¢ =—180° thus the system

1s unstable.

Compare magnitude phase frequency response to locus (see figure above)
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1.8.6. Application of Niquist criterion and transient processes quality criteria
To evaluate the quality of the transient process the following quantity
characteristics are used(Fig 14)

1. Maximum overshoot

=T s=x.100%.

2. Setting time.

The time during which the output variable differs from the steady value more than

on five per cent.

X 02 ——F— 0.05- (xo2 — X 02)
/ 7,
Yol

X302

X301

Fig 14.

3. Oscillations

Full-wave oscillations number of output value change form regulation time.

M =L

T, p
Automatic control system which is in stability limit has bad transient process
quality parameters. In this case the transient process represents undamped

oscillations and that is why

Xpe =1 1, > 05 M — 0,
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It is evident the closer the system to stability margin the worse is transient process
quality. Because of this fact we have indirect parameters of transient process

quality using stability criteria.

Let us analyze such criteria based on Nyquist criterion. Figure 15 shows magnitude
and phase characteristic of open loop system which is stable being closed.

As it is shown that the system can be in stability

" margin because of magnitude change or
AL magnitude and phase characteristic vectors
rotation to the point with coordinates —1; ;0.
] B ) As indirect parameters of transient process
«\ quality we have the variables shown at Figure
15:
"¢" —modulus stability margin
Figure 15 "v" — phase stability margin

1.8.7. Analysis of controller type and parameters on stability in frequency

domain.

Plotting open loop system magnitude and phase response on complex plane
allows us examine the influence of controller type and parameters on stability

margins.

By analyzing remember that object transfer function is known as well as its

magnitude and phase characteristic.

Cotroller type and its parameters influence can be detected when taking the usual

the magnitude and phase locus vector being open at some @, frequency in the

following form
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Wpas'(jwk) = VI/(JG(ja)k).Wp(ja)k) =

. , K
:VVoﬁ(Ja)k)'|:Kp+K().]a)k+ — }: (5D
J Oy

—j90°

. . 190° , K.
=W,,(jo,)-K,+W,(jo,)-K, -, e’ +W,(Jaw,)-

2

Formula (50) provides the rule of open loop system magnitude and phase

characteristic visualizing.
Let us analyze special cases

1 P controller(proportional controller) (K, >0; K,=0; K, =0).

v
-1 / 0 U
A\K o, ngg(ja)k):VVw(ja)k)'Wp(ja)k):
\ =W, (jo) K,
Woilj@)
N—

W pas(j @)

I/Voﬁ(ja)k):()_14k; Wpa3(ja)k):O_Bk:O_I4‘k.Kp

Figure 16

As shown above in system with P controller K, gain causes static accuracy
increasing.At the same time as Figure 16 shows that K, gain can cause stability

margins decrease, at some big K, value can break stability.

2.PD controller (K, >0; K,>0; K, =0).
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yi4

1 / 0 U

A\Fay,

c, Wpas(ja)k):VVoﬁ(ja)k)'Wp(ja)k):
By %(/w) :VI/O6(ja)k).|:Kp +Ka'jwk}:

Woulj) = VVoﬁ(ja)k) ’Kp + VVoﬁ(ja)k) 'Ko " Wy _ej9o°
VVoﬁ(ja)k):O_Ak;
Wpag(ja)k) =04, -Kp +C,B,;

C.B =04, T -w e
Figure 17

Derivative component does not influence system properties in steady state

operating conditions, but Figure 17 shows that at it increases stability margins..

3. I controller (K, =0; K,=0; K, >0).

v

By

Ak (23

Wpas(j )

w,(jw,) :O_Ak;

Wpas(ja)k) = OBk = OAk ’

T o,

u

1 -j90°
.e J

Wpa3(ja)k) =W,;(jay,)- Wp(ja)k) =

: K, )
= Woé(]a)k)'j_:Woé(]a)k)'

2

-j90°
K.

2

Figure 18
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In steady state operating conditions in system with I controller static errors don’t
occur . But integral controller makes stability margin decrease as all the vectors

W,..(jo) rotate 90° to point side —1; ;0.

4. PI Controller(proportional integral controller) (K, >0; K,=0; K, >0).

v

Wpaa(ja)k) = Vl/oﬁ(ja)k) ) Wp(]a)k) =

By

A o,
k 'k . Ku
= VVoﬁ(]a)k)'|:Kp +— :|:
G o,
%(Jw) Py e_jgoo
i o) K, + W) Ko
3

VV;6(ja)k) :@’ Wpas(ja)k) :@4_ AkBk;

-j90°

AB =04 -~

T -,

u

Figure 19

Integral component of regulation law turns to complete static errors elimination

but on equal terms decreases stability reserves (by using components B, C, ////)

Correlation of controller type and its parameters influence both system property in
steady state operating conditions and on stability margins makes it easy to
determine that improving accuracy of the system and increasing stability margin

are controversial

To solve this contradiction is to change structure of the system adding same

subsidiary connections.

PID controller can be used to illustrate this example. Steady-state operating
conditions of such a system are described above and it is seen that static errors
occur in it. Figure 20 illustrates how three components influence magnitude and

phase frequency response position in closed loop state.
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v
| 0 U
Dy ANFK Ok Wpag(ja)k):VVoﬁ(ja)k)'Wp(ja)k):
¢ = ' K +K, -j Lo
o %UW) =W,;(jo,)- » T a']a)k"'ja)k =
i) =W,(jo,)- Kp
W,s(jo) = 04,; +Wi(jo) K, o™
W,.(w)=0C +CD, +DB; : Ke /™
! _ +W,,(jo,) ———
0C, =04, -K; Wy
i
C.D =0 ;
Kk k T -
DB, =04, T, @, -
Figure 20

From Figure 20 it’s evident that stability reserves by integral component(vector

C,D,) can be eliminated by simultaneous use of differential component(vector

DkBk)

To remember.

1. At amplification coefficient increase in proportional controller transient
process time increase static error decreases, but overregulation increases.
Uncontrolled coefficient’s increase makes the system unstable.

2. Integral controller decreases the static error, but worsens system dynamic
characteristics, i.e. increases transient process time increase, increases
overregulation and regulation time.

3. Differential controller increases system stability, decreases overregulation
and regulation time, i.e. improves system dynamic characteristics, doesn’t

influence the system in steady-state.
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1.9. Stability areas determination
1.9.1. D-decomposition method

The D-decomposition method is used to investigate the influence of one or two
parameters which are coefficients of system characteristic equation on CS stability.
Let’s analyze D —decomposition method by one parameter.

Write down the characteristic polynomial and change v varying coefficient

A(jo) = P(jo) +vO(jo) > v=-2YD) _t(w) 4 7 (w)
O(jw)

Let’s plot the locus with axis U(w), jV (®). The locus divides the complex plane

into subareas with the certain range of varying parameter change. Selecting in
subarea the arbitrary value of the investigated parameter v substitute its value into
the characteristic polynomial and find polynomial roots. If n-left roots of n order
characteristic polynomial are in area then this area is called D(n)- area. If n-m of
left roots but m of right roots m then the area is called D(n-m) area.

Analyze the example using MathCAD

D-decomposition method
DK =p +piap+k  Ko)i=—o + (0 o)
Uo)=0" Y(o)=o -o
D(i-®,k) complex —> (—wz) +k+ i-[(—w3) + m]

T
k:=(0.5 i-0.5+ 025 1.25)

—.64780 (~.76209 — .53915i

solve ,p
— | (~.17610) — .86072i D(p,k1> — | (=33671) + 1.0658i
(—.17610) + 860721 98763e-1— 52661

solve ,p
float, 5

D(p-k,)
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Dp-ky)

solve,p
float, 5

%

o:=-1.5,-1.5+ 0.001.. 1.2

-1.1118

.55901e-1- 1.05891
.55901e-1+ 1.05891

N

0.
wer I D3]

— ® PS
mk o 025 05 075 /N 125 15
YY) \

=0. \ /’ \<|-‘| J

—0.

0.6

U(o), Re(k)

ORIGIN:=1  T.=(0.04 0.08 025)" Tpi=02 Tyi=04
Tgp 0 0 0 -1
I Tp+l 0 0 0
0 0 -1 Typ 0
0 0 0 -1 Typ+l
collect, T
|A(p.Ty)| 0, (1606-3p° + 8800-1p> + 49p% 4 p + 68002p )T, + 1
o float, 3 o
Mp) = =
P ( 5 3 2 4)
.160e-3p~ + .880e-1p~ + .49p~ + p + .680e-2p
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o =-20,-20+ 0.01..2C

Ty:=(0.05 025 i0.08+ 0.025)"

i1
¢ Df4] /
005 /}'\”_—_'"""'-H
I A(i.0)) \ \ [5]
mfTy)  -oos (o EI.E) 0.1 nw/d. i 03
L L 1] ‘]
OOST e __:>< \
-t \
Re( Al }},RB{T¢}
5.614
220 — 7.4396i
solve,p
T, =0.05 Alp. T, \| = ~10.22) + 7.4396i
o | (p, ¢1)| ﬂoat,S_> ( '
178394 5.2278i
| 11.78394 5.2278i | |
—25.134
-8.5027) — 4.9867i
solve ,p ( L !
T, =02 Alp, Ty Y| =0 -8.5027) + 4.9867i
d’z 0.25 | (p ¢2)| float, 5 ( )+ !
(—.18014 — 3.1945i
\—.180149 +3.1945i |
[(=25.146 + 372051 |
(-11.589 — 4.6065i
solve,p
T, =0.025+ 0.08i Alp, Ty \| = -7.41 48571
o5 0.025 + 0.08i | (p, ¢3)| 0 float,5 (=7.4132) + 7.4857i
(—.77487 — 6.0487i
[ 24230+ 2797

1.9.2. Root locus analysis




Root locus is defined as characteristic polynomial roots trajectories at one

parameter change of automatic system control from 0 to oo

Let characteristic polynomial has the form of:
A(p)=P(p)+A0(p) =0

Where P(p), O(p) are polynomials of nand m power, A is the investigated

parameter.

Let polynomial A(p) has the form of:

m

A(p)zlj[(p—z[)+/ll_[(p_q[):0

i=l1

At A =0 polynomial A(p)has n roots z,, but at A =oohas only m roots g¢,.
Root locus will have n branches which start from » roots z, and end in m ¢,

roots . The rest n-m end in eternity. Asymptotes for branches ending in eternity
come from one point — asymptotes point. Let’s write down the formula of

asymptote center determination.

n m
D+
— i=1 i=1

Xy =
n—m

Angles between beams of the obtained star are determined by formula:
¢p=2r/ (n — m)
The nearest angle to real axis equals ¢/ 2.

Root locus branches separation points from real axis are function extremum

points.

PO _ =i
0(p) f(p)
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Critical value of the required parameter at which the system is at the stability
margin is determined at branches points of root locus crossing with imaginary axis.

Critical value can be obtained by solving the equation:

A(jo)=P(jo)+ A0(jo) = X(a,4) + jY(0,4) =0
Solving system of equations

X(0,4)=0
Y(w,A)=0"

we obtain @, 4,,.
Example: Transfer function of open loop system is given as
k
p(p+1)(p+3)(p+4)

will be stable.
Use MathCAD to solve the problem

W(p,k)= , determine at which & values closed loop system

Root locus construction

k W(p,k)

W(p.k) := W.(p.k) =
M e e a T T T Wk

k

W.(p,k) simplify —
k+ p4 + 8~p3 + 19'p2 + 12-p
Characteristic polynomial of a closed loop system

C(p.k) =k + p4 + 8~p3 + 19-p2 + 12p P(p) = p4 + 8~p3 + 19~p2 + 12p Q(p,k) =k

Root calculation at fixed value of system k -parameter

L(k) ::polyroots((k 12 19 8 I)T)

The beginning points of root locus branches p :=pp) solve,p —

Roots trajectories calculation in locus N=500 i=0.N x:= 1905 0 Le, = L(xl)
N

113



k=0

Asymptotes center point calculation ;=

Locus branching points from real axis

solve ,p

.
| —4188
float,5 {35810

d—C(p ,k)

dp

Auxiliary vector of plotting

(_gj lo.ei-(%j i‘&'3j+,(0 lo.eiG.sj % J

Z::LO X0+ 10-e +X) X 10-e

Approximate critical value of the required parameter k=x;

1= ~3.99141+ 1.21066i
3.99141- 1210661 |
L(x.) = =127
i | —0.00859— 1.21066i
~0.00859+ 1.21066i

or

Sl
Re[(Lci)O:I : ReI:(Lci) J : Re[(Lci)z:I : ReI:(Lci) 3] .Re(L(x;)). Re(2)

Find critical parameters

C(j~0),k) complex — k + 004 - 19~0)2 + i-|:(—8)-o)3 + 12-03]

X. =255
J
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®
k+co4—19~032 SOIVG’(kJ 0 0
— | 1.2248 26.250

(=8) -0 + 120 | | 1085 ~1.2248 26.250

1.9.3. Poles placement method

One of the simplest methods of controller synthesis is poles placement of
closed loop system transfer function which determine its dynamics namely
operation speed and damping of oscillation (see chapter 6.8). The main idea that
you should place these poles at given points of complex plane with the help of
specially chosen controller. This problem can be solved with the help of linear
equations system.

Let transfer function be polynomials relation

W (p):N(p): n1p+n0
" D(p) pP+dp+d,

Let’s choose controller type

):NR(p) _ap+a

R(p
D, (p) blp + bo

where a,, a,, b,, b, are unknown coefficients to be determined

Characteristic polynomial of closed loop system is equal to

A(p)=N(p)N,(p)+D(p)D,(p) = (nlp + no)(alp + a0)+(p2 +d,p +d0)(b1p +b0)
=bp’ +(ma, +db +b,)p* +(nya, + ma, +db, +dyb) p+nya, +dyb,

Suppose we want to choose the transfer function of controller to place polynomial

roots A(p) at given points to keep the identity:

A(p)=p* +6,p° +6,p' +6,

where o,,0,,0, are given numbers. Making the coefficient with the same power

of p in the last two equations we obtain:
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. b =1
> ma, +db +b, =6,

nya, +na, +db, +d,b =9,

TS TS BN

. nya, +dyb, =0,

or matrix form as follows :

0 0 1 0})fq, 1
n 0 d 1]aq 0,
ny, n d, d, | b B 0,
0 n, 0 d,)\b, 0,

a, 0 0 1 0 1
a, n 0 d 1 0,
b, ) ny n d, d )
b, 0 n, 0 d, 0,

Square matrix in this formula (it is called Sylvester matrix) needs to be reversible.
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