
 

 

 

 

Control Systems 

Yusup Isaev 



PREFACE 

Control system engineering is an exciting and challenging field and is a 

multidisciplinary subject. This book is designed and organized around the concepts 

of control system engineering as they have been developed in the frequency and 

time domain for an introductory undergraduate course in the control system for 

engineering student of all disciplines. 

The author has tried to set out the material in simple and readily available 

form. A scope of knowledge of higher mathematics necessary for understanding 

the content corresponds to the syllabus for earlier stages of tuition at higher 

technical education institutions. This book includes the coverage of classical 

methods of control systems engineering: Laplace transforms and transfer functions, 

block diagrams and spectral signal representation, root locus analysis and design, 

Routh-Hurwitz stability analysis, frequency response method of analysis including 

Bode, Nyquist, steady-state error analysis, second order systems, phase and gain 

margin and bandwidth, phase plane method and dynamic systems phase portraits, 

harmonic linearization method.         

Book content provides the foundations which help solve problems quickly 

and effectively find practice tasks. The author focused on engineer calculation 

methods using applied program tools as Mathcad, Electronics Workbench, 

MATLAB - Simulink. Most programs used in the book are designed by the author, 

though standard application programs as MATLAB  - Simulink are also used in 

some cases. 

The book contains plenty of explanatory examples. Tasks given in  appendix 

help fasten the understanding of the material. This book is addressed to the wide 

range of readers: students and specialists resuming studies in the field of control 

theory because of expanding range of problems concerned with automatic 

processes,  students and specialists who want to refresh their knowledge by 

studying a part of the book that has not been include into engineering specialities 

curriculum  

 



I would appreciate being informed of errors, or receiving comments about the 
book. Please send to the authors’ e-mail to Isaev_yusup@mail.ru     
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CHAPTER 1.  LINEAR SYSTEMS 

1.1. Linear systems description and analysis with the help of differential 

equations 

1.1.1. General notions on automatic control 

Automatic control theory and automatic control system are parts of engineering 

cybernetics. 

Engineering cybernetics studies general principles of technological and 

manufacturing processes dynamic system control.  

Automatic regulation is defined as the process of keeping up the required value 

of some physical variable in technical devices without human involvement with the 

help of regulators.  

Automatic control is changing process according to some law some physical 

variable in technical devices without human. 

Technological process of energy production, transmission and distribution is 

referred as the ordered interaction of power engineering objects: turbo and 

hydrogenerators, transmission lines, transformers and other machinery. Directional 

influence on these objects is called control process. Cooperating  electric power 

objects which are exposed to intended influences are called control objects.  

Control systems are based on feedback principle which is so that the state of 

controlled object is  characterized by the  same parameters 1 2,   ,  ...,   nх х х  

(Figure 1) which  is compared with desired values and if current state of 

parameters  is different  from the desired one  then the system establishes  

actuating signals 1 2  ,   ,  ...,   р р р mх х х , which return the state of system to the desired 

one.  

Feedback mechanisms can help today’s increasingly complex computer 

systems adapt to changes in workloads or operating conditions. Control theory 

offers a principled way for designing feedback loops to deal with unpredictable 

changes, uncertainties, and disturbances in systems. 
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For power plants disturbances occur as unexpected change of fuel quantity, 

station capacity give to electric system by other power plants and capacity assumed 

by consumers etc  

xdnxd1

x1

xn

Object

actuator

 

  

Figure 1 

Because of the fact that object characteristics are given parameters than the 

necessary requirements to control system should be provided by the corresponding 

controller characteristics selection. 

Contol by disturbance means that if there is a certain correlation between the 

disturbance actions and regulated variable than the object can be influenced to 

prevent the expected controlled variable deviation. 

 

1.1.2 Differential equations.  Linearization 

At CS investigations two problems are solved 

1. Analysis problem – CS structure and parameters are given, its properties 
should be determined. 
 

2. Design problem – CS should be constructed according to given properties. 
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Both problems are not simple and they can be 
solved with the help of mathematics. CS is 
divided into subsystems “bricks”. Each 
component is described by non-linear equation, 
differential in most cases. 

 Let’s analyze one of these blocks which is described by non-linear equation: 

2

2
( , , , , ) , where , .

d d
F y y x x x f x x x x

dt dt

    

   - dynamics equation 

( ) input valuey t  , ( ) output valuex t  , ( ) disturbancef t  .  

Equation always has equilibrium state with coordinates : 

0 0 0, , , 0x x y y f f x x y
  

      . 

 ( ,0, ,0,0) , statics equation.F y x f    

Investigation of this equation is not an easy task. So it is reduced – i.e. linearized to 
neighbourhood of equilibrium point, decomposing in Taylor series. 

0 0
0 00 0 0

0 0

( ,0, ,0,0) ...

( ) , ( ) , ,....

F F F F F
F y x x x x y y f

x yx x y

x x t x y y t y x x

  

  

 

                                              

       
Ignoring  the components of higher order of vanishing subtract from the obtained 
equation statics equation and obtain: 

0
0 00 0 0

F F F F F
x x x y y f f f

x yx x y

  

  

                                               
 

Divide linearized equation by invariable 
0

F

x

 
  

and obtain: 

0 0 0 0

0 0 0 0 0

FF F F
y y fx xx x x y y

F F F F F
x x x x x

 
  

                                       
             

                      

 

 Figure 2  

f(t)

y(t) x(t)
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2 0 0
2 1

0 0

2 0 0
2 1 1 2 3 1 2

0 0

3

0

,

где , ,

1

F F

x xT T
F F
x x

FF
y xT x T x x k y k y k f k k
F F
x x

k
F
x

 


  

     
                           
                                          

 

 
   


  

If derivation procedure is set down by  
d

p
dt

  then the equation can be rewritten in 

the form of: 

   2 2
2 1 1 2 31T p T p x k k p y k f         

from which the required variable can be found 

 
   

1 2 3
2 2 2 2

2 1 2 1

( ) ( )
1 1

f

k k p k
x y f W p y W p f

T p T p T p T p


        

   
 

Formulae 
 

   
1 2 3

2 2 2 2
2 1 2 1

( ) , ( )
1 1

f

k k p k
W p W p

T p T p T p T p


 

   
 are called transfer 

functions of deviation of defined variable and of disturbance 

 

 The last reduction is to divide all the components into basic variables  
0 0 0/ , / , /x x x y y y f f f        

   2 2
2 1 1 2 31T p T p x k k p y k f       , 

where  
0 0 0

1 1 2 2 3 30 0 0
, ,

y y f
k k k k k k

x x x
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1.1.3 Control system component definition and mathematic description of 

linear component properties 

To analyze control system component properties their block diagram is used, in 

which separate elements are depicted as blocks connected to each other according 

to substitute elements connection. 

Separate component is characterized by a 

definite mathematical connection between input 

( inx ) and output ( outx ) variables (Figure 3). 

System components obtain the property of action direction, i.e. ability to one way 

signal passing from input to output. 

Connection between output and input variables of linear component (or system) is 

depicted by linear differential equation with constant coefficients. 
1 2

0 1 2 11 2

1 2

0 1 2 11 2

...

...

n n

n n nn n

m m

m m mm m

d x d x d x dx
a a a a a x

dt dt dt dt

d y d y d y dy
b b b b b y

dt dt dt dt



 



 

          

          

  (1) 

Linear differential equations have solution, which consist of two components  

cx x x       (2) 

First component ( cx ) is a complementary solution of homogeneous differential 
equation, which is obtained from (1) by making its right part equal zero. 

In general homogeneous differential equation has the following solution 

 
1 2

 1 2 ... np tp t p t
c nx C e C e C e      

                           
(3) 

  
p1,  p2, …,  pn are  characteristic equation roots which are given by 

1 2
0 1 2 1... 0n n

n n na p a p a p a p a
           .   (4) 

Coefficients  C1, C2, …, Cn  are determined by initial conditions. 

Forced component (  x  )  is a particular solution of inhomogeneous equation (1) 
when the right part of equation is not zero. 

If in steady state y  is not a function of time then forced component can be 
calculated by making all the derivatives equal zero, the following result is obtained 

Figure 3 
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;

.

n m

m

n

a x b y

b
x y

a

 

 

  

 
                                        

1.2 Systems description and analysis with the help of impulse response 
functions 

1.2.1 Block transfer function 

The transfer function is based on application of operator method, namely the 
Laplace transform. The formula of the Laplace transform for a function of time x(t) 
is given by  

   1

0

( ) ( ) ( ) , ( ) ( )ptX p e x t dt L x t x t L X p


      .                    (6) 

where p is  a complex variable, and L is Laplace operator 

The transfer function is defined as the ratio of the Laplace transform of the 
output ( )выхх p  to the Laplace transform of the input ( )вхх p under the assumption 
that all initial conditions are zero 

( )
( )

( )
Вых

Вх

X p
W p

X p
 .                                               (7) 

The transfer function can be obtained from differential equation if the Laplace 
transform is applied to it 

            
1

0 1 1

1
0 1 1

( ) ( ) ... ( ) ( )

( ) ( ) ... ( ) ( ).

n n
n n

m m
m m

a p X p a p X p a p X p a X p

b p Y p b p Y p b p Y p b Y p







           

           
             (8) 

From (8) it is easy to define that  
1

0 1 1
1

0 1 1

... ( )
( )

... ( )

m m
m m

n n
n n

b p b p b p b A p
W p

a p a p a p a B p







      
 

      
.                      (9) 

It should be noted that denominator of transfer function coincides with the left part 
of characteristic equation mentioned above. 

 Reverse to the Laplace transfer function is Green’s function (weight function – 
impulse response function) 

   1( ) ( ) ( ) ( )w t L W p W p L w t   

1.2.2  Impulse response characteristic (impulse response function) 

Let’s consider two important functions:  

the Dirac delta function 0( )x x  and  0( )x x  - The Heaviside step function 
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The Dirac delta function property: 

0
0 0 0

0

( ) , ( ) ( ) ( )
0

at t t
t t t t f t dt f t

at t t
 





 
    

  

 

                                  The Heaviside step function property: 

0
0

0

0
( ) ( ) ( )

1

at t t
t t t t

at t t
  


    

 

0 0( ) ( )x x dx x x 




    

 

  The Laplace transform of these functions 

    1
( ) 1, ( )L t L t

p
    

 

 

Figure 4 

Impulse response function h(t)  describes the 

reaction of the output in response to input 

change in the form of unit step function. This 

is system’s impulse (block reaction) to some 

external change. The unit step function is the 

Heaviside function ( )t  

 

Differential equation solution with unit step function  ( )t   in the right part is 
impulse response function ( )h t : 

 

( )
( ) ( ) equation solution is ( ) ( )

dx t
x t t x t h t

dt
   

, 

then by external change  ( )f t  we obtain: 
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0

( )
( ) ( ) equation solution is ( ) ( ) (0) ( ) ( )

tdx t
x t f t x t h t f h f t d

dt
         

At zero initial conditions: 

0

( ) ( ) ( )
t

x t h f t d     

Differential equation solution with impulse right part ( )t  is Green’s function or 
weight function: 

( )
( ) ( ) equation solution is ( ) ( )

dx t
x t t x t w t

dt
    . 

Impulse response function w(t) describes the reaction of the output in 

response to input change in the form of delta function.  

By arbitrary external change ( )f t  we obtain: 

0

( )
( ) ( ) equation solution is ( ) ( ) (0) ( ) ( )

tdx t
x t f t x t h t f w f t d

dt
         

At zero initial conditions: 

0

( ) ( ) ( )
t

x t w f t d     

1.2.3. Impulse response function (weight function-Green’s function) 

Relation between transfer and impulse response functions can be seen using 

the following correlations: 

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
t t

t t w t h t

t t dt h t w t dt

 

 

   

   
 

Remember that the Laplace transform of integral and derivative has the form of: 

   
0

( )
( ) ( ) ( ) , ( ) ( )

t F p
L f t F p L f t dt L f t pF p

p

 
   

 
  

Hence the impulse response function has the form of 
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  ( ) 1
( ) ( ) , ( ) , ( ) ( )

dh t
H p L h t W p L H p W p

dt p
      

        (11) 

Relation between dynamic characteristics can be seen in diagram shown in 
Figure 5   

 

Figure 5 

Example 1: Differential equation is given 

 

 
2

2

( ) (0) (0)
5 4 3 ( ) 2 , (0) (0) 0, 0.

d x dx dy t dx dy
x y t x y

dt dt dt dt dt
         

Determine the transfer function of differential equation 

1. Write the equation in operator form : 

   2 25 4 3 2 5 4 3 1 2p X pX X Y pY p p X p Y          

2. Calculate the transfer function: 
 

 2

1 2
( )

5 4 3

p
W p

p p




 
 

Example  2: Differential equation is given 

 
2

2

(0)
0,1 10 100 ( ), (0) 0, 0.

d x dx dx
x f t x

dt dt dt
      

 Calculate the equation using MathCAD. 
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Determine the transfer function of differential equation 

And  w(t)-Green’s function (weight function) 

 

 

 

    
 

     
 

 

 

  

 

 

Determine h(t) impulse response function of differential equation

Z p( ) 0.1 p
2

 10 p 10
2



W p( )
1

Z p( )


w1 t( )
1

0.1 p
2

 10 p 10
2



invlaplace p

float 4
.2582 e

50.( ) t
sinh 38.73 t( )

p Z p( ) solve p
88.729833462074168852

11.270166537925831148








 
1

p
1



z p( )
p

Z p( )d

d
 w t( )

1

z p
1  e

p1 t


1

z p
0  e

p0 t
 w t( ) float 4 .1291 e

11.27( ) t
 .1291 e

88.73( ) t


t 0 0.01 4 

0 0.088 0.18 0.26 0.35

0.021

0.042

0.062

0.083

w1 t( )

w t( )

t

h1 t( )
1

0.1 x
2

 10 x 10
2

  x

invlaplace x

float 4
.1000e-1 .1000e-1e

50.( ) t
cosh 38.73t( ) .1291e-1e

50.( ) t
sinh 38.73t( )

z p( )
p

Z p( )d

d
 h t( )

1

Z 0( )

1

p
1

z p
1 

e
p1 t


1

p
0

z p
0 

e
p0 t



h t1( ) float 2 .10e-1 .11e-1e
11.( ) t1

 .15e-2e
89.( ) t1



t 0 0.01 4 
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Check  w(t) = h'(t)  

 

Calculate the transient process by external influence    f(t)=20sin(�t)  

    

     
 

    
   

 

  
    

 

0 0.088 0.18 0.26 0.35

0.0024

0.0049

0.0073

0.0098

h1 t( )

h t( )

t

0 0.088 0.18 0.26 0.35

0.021

0.042

0.062

0.083

t
h1 t( )

d

d

w t( )

t

 20 f t( ) 20 sin  t 

Fo t( )
0

t

w t   f  




d

0.1
2

t
x t( )d

d

2
 10

t
x t( )d

d
 10

2
x f t( ) D t x( )

x
1

10

0.1
x
1


10

2

0.1
x
0


f t( )

0.1














 N 100

x rkfixed
0

0









0 5  N D








 i 0 N t x 0 

0 0.11 0.22 0.33 0.44

0.1

0.045

0.01

0.065

0.12

Fo ti 

x
1  

i

ti
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1.3  Spectral signal representation 

Any time function can be depicted as sum of harmonic functions.  

     0

1 0

( ) cos sin cos
2

N N

k k k k
k k

a
X t a k t b k t A k t   

 

      ,  

2 / ,T T   is function period. Expansion coefficients are determined by 

formulae: 

/2 /2

/2 /2

2 2 2 2
( )cos , ( )sin ,

T T

k k

T T

k t k t
a X t dt b X t dt

T T T T

        
      

2 2

0 0

, 0

/ 2 0

k
k k k k

k

при a
b

A a b arctg при a
a

при a

 



       
   

 

If it is written using Eiler’s formula 

   cos sin( ), cos sin( )jt jte t j t e t j t    , 

then expression for series is the following : 

       0

1

1
( ) cos sin exp ,

2 2

N N

k k k k k k
k k N

a
X t a k t b k t A jk t A a jb  

 

        

Function expansion into a Fourier series with MathCAD help 

Example 1: Expansion of a triangular pulse into a Fourier series
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Generator assembly which gives triangular alternating impulses in program   

Electronics Workbench. The required impulse form we assembly as 

     
  

 

     

 

     
     

Two forms of expansion 

      

                                    Expansion check

 

         

 

T 0.05 t 0 0.01 T 2 T 
2 

T
 f

1

T


f t( )
t 2

T
0 t

T

2
if

1
t

T






2
T

2
t Tif

0 otherwise



0 0.017 0.033 0.05
0

0.2

0.4

0.6

0.8

1

1.2

f t( )

t

M 5
Часть рисунка с идентификатором отношения rId192 не найдена в файле.

k 0 M a
k

2

T
0

T

tf t( ) cos  k t 




d a

1

0.405

0

0.045

0

0.016



















 A
k

i a
k



F t( )
a
0

2
1

M

k

a
k

cos  k t  


 F1 t( )

A
0

2
1

M

k

A
k

sin  k t arg A
k























0 0.05 0.1

0.6

1.2

F t( )

f t( )

F1 t( )

t

A
k

1

0.405

0

0.045

0

0.016



arg A
k







deg
90

-90

-90

-90

-90

-90
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superposition of sinusoidal sources with corresponding frequencies, amplitudes 

and phase shifts.  

 

Example 2: Trapezoidal impulse expansion in a Fourier series 

     
  

 

   

 

T 0.05 t 0 0.01 T 2 T 
2 

T
 f

1

T


f t( )
t 3

T
0 t

T

3
if

1
T

3
t

2

3
Tif

1
t

T






3
T

3
2 t Tif

0 otherwise



0 0.017 0.033 0.05
0

0.2

0.4

0.6

0.8

1

1.2

f t( )

t
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Two forms of expansion 

     

Expansion check

 

        

   

Generator assembly which gives trapezoidal alternating impulses in program   

Electronics Workbench. The required impulse form we assembly as 

superposition of sinusoidal sources with corresponding frequencies, amplitudes 

and phase shifts.  

 

M 5 k 0 M a
k

2

T
0

T

tf t( ) cos  k t 




d a

1.333

0.456

0.113

0

0.028

0.018



















 A
k

i a
k



F t( )
a

0

2
1

M

k

a
k

cos  k t  


 F1 t( )

A
0

2
1

M

k

A
k

sin  k t arg A
k























0 0.05 0.1

0.6

1.2

F t( )

f t( )

F1 t( )

t

A
k

1.333

0.456

0.113

-55.636·10

0.028

0.018



arg A
k







deg
90

-90

-90

-90

-90

-90
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1.3.1. Bode plot  

Bode plot is the ratio between complex representation of output variable and  

complex representation of input variable which is being changed according to 

potential law.  

( ) sinyy t A t  .                                         (16) 

By ( )y t change according to (16) at linear component output in steady state the 

output variable will change according to potential law with the same frequency, but 

different amplitude and phase. 

 ( ) sin( )xx t A t    .                                     (17) 

Complex representation (16) and (17) 

 ( );     j t j t
y хy A e x A e      .                       (18) 

Hence, ( )W j  which stands for Bode plot equals 
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 ( )
j t

yeA ex
W j

y



  
j t

хA e 
( )( )j je A e     .                   (19) 

In  (19)  А() and ()  functions are Bode magnitude plot and Bode phase plot. 

Bode plot (19) which is a complex variable has the algebraic form of   

 ( ) ( ) ( )W j U jV    .                                      (20) 

In (20) U() and V() are real and imaginary frequency characteristics.  

Bode plot is interconnected to the Transfer function.  

Mind that formula for derivative of n-order from от y  and  x  are equal 

 
( ) ( ) ;

( ) ( ) ,

k
k j t k

yk

k
k j t k

хk

d y
j A e j y

dt

d x
j A e j x

dt





 

 

    

    

                            ( 21) 

By substituting (18) in the differential equation (9) we obtain 

1
0 1 1

1
0 1 1

( ) ( ) ... ( ) ( )
( )

( ) ( ) ... ( ) ( )

m m
m m

n n
n n

b j b j b j b R j
W j

a j a j a j a Q j

   
   







      
 

      
               (22) 

Bode plot has its real and imaginary parts.  

 
 
 

( )

2 2

( ) ( ) ( ) ( )

( ) ( )cos( ( )), ( )sin( ( ))

0 0( )
( ) ( ) ( ) , ( )

( ) 0

jW j A e U jV

U A V A

приUV
A U V arctg

U приU

    
       

    
  

  

 

          

 

As shown in correlation (9) and (22) that formula 

for Bode plot is obtained from substituting in 

transfer function p j . 

 
Figure 6 



18 
 

To solve practical problems of  control systems properties Bode plot is plotted on 

complex planes U() and V() as locus  which is a geometric part of vector end 

W(j) at frequency change from 0 to  (Figure 3). 

1.3.2. Correlation between component input and output variables in steady 

state. 

Correlation in steady state can be obtained if we assume all the derivatives 

equal zero in transfer function 0p  .   

Hence 

  (0) m

n

b
x y W k

a     .                                       (23) 

Coefficient m

n

b
k

a
   is called component coefficient of amplification 

1.3.3. Steady and minimal phase components frequency characteristics 

peculiarities. 

The system is described by ( )( ) and jA e   or ( ) and ( )U V  variables. But 

for some types of components (steady component) there exists the correlation 

between the functions which formed these pairs and one of such functions can be 

used to describe the system. To determine the weight function for instance the 

following ratio should be used:  

       1 1
( ) cos or ( ) sinw t U t dt w t V t dt   

 

 

 

     

On integrating these formulae we obtain the formulae for transfer function: 

       1 1
( ) sin or ( ) cos

U V
h t t dt h t t dt

 
 

   

 

 

   . 

These correlations are for steady components in which denominator poles of 

transfer function have negative real parts. 
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 Мinimal phase component is a component which have poles and zeros with 

negative real parts. That means they have minimal phase shift at frequency     

compared to other components.  

Example: 

( )
1

k
W p

Tp



  

Calculate Bode plot 

( )
1

k
W j

jT






 

Calculate its real and imaginary parts 

 
  

     
 

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2
2 2

22 2

1
( ) ( ) ( )

1 1 1 1 1

( ) , ( ) ,
1 1

1

1

k jT k jkT k kT
W j U jV j

jT jT T T T

k kT
U V

T T

k k T T
A U V k

T

    
    

 
 

   


 
     

    

  
 

 
   

   22 21 T   

     

2 21

( )

( )

k

T

V
arctg arctg T arctg T

U



   





 
     

 

 

When   is changed,   is changing from 0 to
2


 . 

Let’s analyze the block with transfer function 

( )
1

k
W p

Tp



 

Do the same procedure 
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Calculate its real and imaginary parts: 

 
  

     
 

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2
2 2

22 2

1
( ) ( ) ( )

1 1 1 1 1

( ) , ( ) ,
1 1

1

1

k jT k jkT k kT
W j U jV j

jT jT T T T

k kT
U V

T T

k k T T
A U V k

T

    
    

 
 

   


 
       

    

   
 

 
   

   22 21 T   

     

2 21

( )
, (0, / 2)

( )

k

T

V
arctg arctg T arctg T

U



      





 
     

 

 

When   is changed,   is changing from до
2

  . Thus the second 

component makes greater delay.  

1.4. Some typical components of control systems 

1.4.1. Amplifying component 

Let’s compute transfer function of inertia-free component 

1 2 1 2
1 2 1 2

1 2 1 2

, ,
U U U U

I I I I
R R R R


       

2 2

1 1

U R

U R
    

Component transfer function: 

2 2

1 1

( )
( )

( )

U p R
W p k

U p R
     

 

1 1 2 1 1 2
1 2 1 2

1 2 1 2

, ,
U U U U U U

I I I I
R R R R

 
      

 

 



21 
 

2 1 1 2
1

2 2 1 2 2 1

1 1
,

U U U U
U

R R R R R R

 
    

 
 Component transfer function: 

2
1

2 2 1

1 1
,

U
U

R R R

 
  
 

 

2 2
2

1 2 1 1

( ) 1 1
( ) 1

( )

U p R
W p R k

U p R R R

   
        

   
,     

1.4.2.  Aperiodic inertial component of the first period  

Consider the example of aperiodic inertial component. Electrotechnical 

diagram shown below can be such components.  

      

Develop the formula for inertial component with capacity: 

,C C
C C C C

dU dU
i C U i R U U RC U

dt dt
       

Let’s represent for time invariable  T RC : 

 1

C
C

C C C

dU
U T U

dt

U TpU U Tp U U

 



    

 

In our case:  

  1
1

1

X
Tp X Y W

Y Tp
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We can obtain the same formula through diagram resistance having complex 

representation:  

1
( )Z R

j C



  , 

Find current ( ) / ( )I U Z  , voltage on the required element 
1

( )CU I
j C




 , 

then substitute all the values and obtain: 

 
1 1 1

( )
( ) 11C

U U U
U I

j C Z j C j C j CR
R

j C


    



   
 

 
 

, 

   
1 1

( ) ( )
1 1

CU
W j W p

U j CR pT



   

 
 

Thus transfer function of inertial component is: 

 
( )

1

k
W p

pT



  

And its weight function(Green’s function): /1
( ) t Tw t ke

T
  

To calculate its transfer function ( )h t its impulse response function ( )W p  with  

1/ pmultiplier can be used 

 
( ) 1 (0) ( )

11 (0) ( )
ptW p k A A p k

e k
p p pT B pB p

T

    
 T

 / /1t T t Te k e   

Check 

/( ) ( ) t Tk
w t h t e

T
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For the second example do the same calculations  taking into consideration time 

constant equals /T L R : 

   
1 1

( ) ( )
/ 1 1

RU
W j W p

U j L R pT



   

 
 

Plot graphic responses dependences: 

Bode plot is described by formulae which we have already analyzed: 

 
  

     
 

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2
2 2

22 2

1
( ) ( ) ( )

1 1 1 1 1

( ) , ( ) ,
1 1

1

1

k jT k jkT k kT
W j U jV j

jT jT T T T

k kT
U V

T T

k k T T
A U V k

T

    
    

 
 

   


 
     

    

  
 

 
   

   22 21 T   

     

2 21

( )

( )

k

T

V
arctg arctg T arctg T

U



   





 
     

 

 

When   is changed,   is changing from 0 до
2


 . 

Plot the locus for Bode plot   at   k=1  and   T=0.1c  using  MathCAD 

0 0.01 0.02 0.03 0.04 0.05 0.06

0.2

0.4

0.6

0.8

1

h t( )

t

0 0.01 0.02 0.03 0.04 0.05 0.06
0

20

40

60

80

100

w t( )

t

        
      

           

      
 

T 0.1 k 1 W p k( )
k

T p 1
 A  k  W j  k  U   Re A  k   V   Im A  k  

   arg A  k  
deg

  0 .1 10
3
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1.4.3.  Oscillatory, aperiodic and conservative components  

Parallel series RLC circuit can be the 

oscillatory component.  Let’s calculate the voltage 

of  capacitance  

 

2

2

, , ,C L
C L C L C C L

C C

dU di
i C U L i i U i R U U

dt dt

d U dU
L RC Uc U

dt dt

     

   
 

Let’s write down the formula for this equation 

 
2

2
2

1C Cd U dU
LC RC Uc U LCp RCp Uc U

dt dt
        

Calculate transfer function: 

          

 

 

0 0.25 0.5 0.75 1

0.5

0.25

0.25

0.5

V ( )

U ( )

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

A  k( )



0 10 20 30 40 50

90

60

30

 ( )



C x=UC

RL

y=U
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    2 12 2 2
2 1

( ) 1 1
( ) , ,

( ) 1 1
CU p

W p T LC T RC
U p LCp RCp T p T p

    
   

  

Or through resistance:  

 

 

2

2

( ) 1 / , ( ) ( ) / ( )

1 ( ) 1
( ) ( ) ( ) / 1

1

( ) ( ) / ( ) 1 / 1

C

C

Z p R pL Cp I p U p Z p

U p
U p I p U p Lp RCp

pC pCR pL
pC

W p U p U p LCp RCp

   

    
 

   

 

Calculate Green’s function – weight function:  

 2

22 2

1,2 2

2

1,22

( ) ( ) / ( ) 1 / 1 ,

4 1
( ) 0, ,

2 2 2

1
, ,

2 2

W p A p B p LCp RCp

RC R C LC R RC
B p p

LC L L L

R RC
p j

L L L
   

   

           
 

       
 

 

Then the weight function equals:  

 
11

1

( )
( ) 2Re p tA p

w t e
B p

 
   

 

Now transfer function can be calculated: 

 2

( ) 1
( ) / ( )

1

W p
A p pB p

p p LCp RCp
 

 
 

   
1

2 2
1

1

(0) ( )
( ) 2Re 1 sin

0
p t tA A p

h t e e t arctg
B B p

  
 

     
            

 

Take into consideration the second order component behaviour in MathCAD.  
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 In program determine the circuit impedance and transfer function after that. Both 

impulse response function and Green’s function are determined with the help of 

Laplace transform.   

       

   
 

   
 

      
  

 

 

 

Determine the same functions through theory analysis
 

   
 

   

In general oscillatory component equation has the form of: 

2

2 1 0 02

d x dx
a a a x b y

dt dt
   . 

L 0.1 C 100 10
6

 R 10

Z p( ) R p L
1

C p
 W p( )

1

Z p( ) C p


p Z p( )
solve p

float 4

50.( ) 312.2 i

50.( ) 312.2 i








 W s( ) simplify
100000.

100. s s
2

 100000


B s( ) 100. s s
2

 100000 A p( ) 100000 B' p( )
p

B p( )d

d


w t( ) W x( )
invlaplace x

float 4
320.3 e

50.( ) t
sin 312.2 t( )

h t( )
W x( )

x

invlaplace x

float 4
1. 1. e

50.( ) t
cos 312.2 t( ) .1601 e

50.( ) t
sin 312.2 t( )

w2 t( ) 2 Re
A p

2 
B' p

2  e
p2 t








 h2 t( ) 2 Re
A p

2 
B' p

2  p
2


e

p2 t









A 0( )

B 0( )


0 0.01 0.02 0.03 0.04 0.05 0.06

150

100

50

50

100

150

200

250

w t( )

t
h t( )

d

d

w2 t( )

t

0 0.01 0.02 0.03 0.04 0.05 0.06

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

h t( )

h2 t( )

t
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or 

2
2 1 0

2
0 0 0

2

2
2

a d x a dx b
x y

a dt a dt a

d x dx
x ky

dt dt
 

  

  

 

At static mode we have : 

0

0

(0)
b x

x y x ky W k
a y

       

Characteristic equation:  

   

2

2

2

2

2

( )
2 1 ( )

( )2 1

d x dx
x ky

dt dt
X k A p

p p X kY W p
Y B pp p

 

 
 

  

      
 

 

Denominator fraction ( )B p  has two roots which can be joined(united) complex, 

1,2p j    , or right half plane(RHP) or left half plane  1 2, 0p p  . If the 

characteristic equation which is a differential equation describing the second order 

component has left half plane roots then the component is called aperiodic 

component of the second power. 

Calculate  Bode plot of oscillatory component: 

 

 
   

 
   

2

2

2 22 2 2 2 2 2

22 2 2

2 2
2 22 2 2 2 2 2

( ) ( ) ( )
2 1

1 2
,

4 1 4 1

4 1
( ) ( ) ( )

4 1 4 1

k
W U jV

j

k k
j

k k
A U V
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Let’s consider the example of frequency characteristics of locus assembly with 

different values of damp coefficient   through transfer function with  MathCAD  

help. 

            

   
      

             

  
 

 

 

 

 

 One more type of second order component is conservative (self-vibrating) 

component: 

k 0.1  0.01  0.002 W p   k

 p
2

 2  p 1


 p
2

 2  p 1
solve p

float 4

5.( ) 21.79 i

5.( ) 21.79 i








 A    W j    U    Re A    

V    Im A       k  arg A  k  
deg

  0 0.01 10
2

0.5

0.3 0.2 0.1 0 0.1 0.2 0.3

0.5

0.4

0.3

0.2

0.1
V 



2






V  ( )

V   2( )

U 


2






U  ( ) U   2( )

0 10 20 30 40 50

0.09

0.18

0.27

0.36

0.45

A 


2






A  ( )

A   2( )



0 10 20 30 40 50

180

120

60 


2






  ( )

   2( )
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2

2

2

2
1 ( )

1

d x
x ky

dt
X k

p X kY W p
Y p






 

    


 

All mentioned above components are static components, because at 

substituting in transfer function ( ), 0W p p    we obtain a certain  final number and 

formula is the same for all the components: 

1. Amplifying (noninertial, static) component: ( ) , (0)W p k W k   

2. Aperiodic(Inertial)component: ( ) , (0)
1

k
W p W k

Tp
 


 

3. Oscillatory component: 2
( ) , (0)

2 1

k
W p W k

p p 
 

 
 

4. Aperiodic  component of the second order:  

 

2
( ) , (0)

2 1

k
W p W k

p p 
 

 
 

5. Conservativе (self-vibrating)  component: 2
( ) , (0)

1

k
W p W k

p
 


 

1.4.4.  Astatic integrated component 

Let’s analyze the example of integrated 

component: 

 

2
1 1 1

2
1 2 1

0

/ , ,

1
/ ( ) ( )

C C

t

dU
i U R i C i i

dt

dU
C U R U t U t dt

dt RC

   

     
 

R
C

U1 U2
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0

( ) /
tdx

ky pX kY W p k p x k ydt
dt

         

Green’s function (weight function): 

 1( ) / , ( ) ( )W p k p w t L W p k    

Transfer function: 

1 1
2

( ) 1
( ) / , ( )

W p
W p k p h t L L kt

p p
    

      
   

 

Check: 

( ) ( )w t h t kt k     

Determine  frequency response and  bode plot : 

( ) / , ( ) ( ) ( ) / , ( ) 0, ( ) /

( ) ( ) / , ( ) / 2 90o

W j k j W j U jV jk U V k

A W j k

        

     

       

    
 

  
  

     

 

k 1 W p( )
k

p
 h t( ) t k w t( ) k    arg W j   

0 0.012 0.024 0.036 0.048 0.06

0.2

0.4

0.6

0.8

1

1.2

w t( )

t
h t( )

d

d

t

0 0.012 0.024 0.036 0.048 0.06

0.02

0.04

0.06

h t( )

t
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7. Real integrated component  possess some inertia 

   
1 ( )

1

k
Tp pX kY W p

Tp p
   


 

The examined component is not simple because it has two blocks/components in 

series  - integrated and intertial(aperiodic). 

    1 2

1
( ) ( ) ( )

1 1

k k
W p W p W p

Tp p p Tp
  

 
 

 

1.4.5.   Differential component. 

Impulse response function of differential component has the form of: 

, ( )
dy

x k X kpY W p kp
dt

     

Let’s find transfer function: 

 

1 1( )
( )

pW p
h t L L

p
  

  
 

k

p
( )k t

 
 

  
 

Now Green’s function can be obtained: 

0 200 400 600 800 1000

120

90

60

30

 ( )

deg
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( ) ( ) ( )w t h t k t    

At random external influence we obtain: 

( ) ( ) ( ) ( )x t f h t d kf t  




     

Bode plot: 

( ) ( ) ( ), ( ) 0, ( )

( ) ( ) , ( ) / 2

W j jk U jV U V k

A W j k

      
     

    

  
 

Let’s tabulate all  transfer function and their properties in Table 1  

Table  1 

Component 

type 

The impulse response 

function 

Weight function   Transfer function 

1. Inertia-
free 
(amplifying 
component) 

 

 

( )W p k  

 
 

2. Ideal 
differential 
component  

 

( ) дW p T p   

 

3.Real 
differential 
component 

( )
1

д

д

T p
W p

T p




 
 

 

4.Integral 
component int

int

1
( )W p

T p
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5. Inertial 
component 
of the first 
degree 

1

( )
1

K
W p

T p


 
 

 
 

6. Inertial 
component 
of the 
second 
power 
(oscillatory) 

 

 

2
1 2

( )
1

K
W p

T p T p


   

 Characteristic equation roots

1 2;  p j p j      

 

7.Inertial 
component 
of the 
second 
degree 
(aperiodic) 

 

 

2
1 2

( )
1

K
W p

T p T p


   

 Characteristic equation roots 

1 1 2 2;   p p      

 

Things to remember:  

1. All the components can be divided into two groups which differ a lot from 

each other. 

 Static components are components which in steady state (at p=0) have a 

certain connection between output and input variables. These components 

have stable equilibrium. All components given in Table 1 are static 

components but integral one. 

 Astatic components have neutral equilibrium 

Integral component is astatic in Table 1. At

0 :   (0)иp W  . This means that at 1( )вхx t  

theoretically is выхx  .In input influence is 

applied on limited time then output variable remains 

constant, i.e. equals the integral of input variable, 

for this time (Figure 7). 

2. There is an interconnection between the transfer function  ( )W p  and impulse 

response function ( )h t  capable of transient process ( )h t . When substituing 

 

 

 

 

 

 

Figure 7 
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0p   in impulse response function (0) ( )W h   we obtain steady state in 

time domain. When substituting p    in impulse response function 

 ( ) (0)W h  we obtain transient process beginning. 

3. Frequency response locus always starts from real axis because real part of 

frequency response ( )U   is an even function , and imaginary part ( )V   is an 

odd function: ( ) ( ) ( ) (0) (0) , (0) 0W j U jV W U V       . 

4. Frequency characteristics are determined by the following factors: 

 oscillation indicator max ( ) / (0)M A A – characterises system tendency 

to oscillations :the higher it is the less qualitative is the system (1.1< M

<1.5) 

 Resonance frequency  is the frequency at which magnitude frequency 

response is at its hight(at this frequency oscillations have maximum 

amplification)  

 System bandwidth – interval from  0   to 0  at which the following 

condition  is fulfilled 0( ) 0,707 (0)A A   

 Frequency cutoff ( ) (0)срA A  indirectly characterizes the duration of 

transient process, the following correlation is true (1 2)2 /y срT     

More

 

The greater the peak of resonance frequency the more intensive are the oscillations 



35 
 

 

1.5. Block diagrams 

1.5.1. Control system transfer function calculation by blocks transfer 

functions  

A control system consists of  a number of components connected to perform 

a desired function. Once a component (system or subsystem) is reduced to a 

mathematical model, it can be represented as a block, with the component 

operation described by the mathematical function. It is convenient and useful to 

represent the elements of a control system by blocks. The properties of the block 

are contained in the transfer function represented by the Laplace transform. Many 

control systems involve several blocks representing the controller actions, the 

plant, feedback elements, and other functions. A block diagram is a pictorial 

representation of an entire control system in terms of all the elements and their 

transfer functions.  

When constructing structural diagrams of control systems the following symbols 

illustrated in diagrams below are helpful as well 

 Signal branching sign 

 

 The summing point also known as a summing junction is the block used to 

represent the addition/subtraction of signal as shown in Figure below 

2 / pT  
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or 

 

х4 = х1 + х2  х3. 

 

1.5.2. Blocks in series 

 

Figure 8 

From transfer function definition it follows that 

 1 1( ) ( ) ( ) ... ( )экв nW p W p W p W p    .                         (24) 

1.5.3. Blocks in parallel 

 

Figure 9 

Parallel subsystems have a common input and output formed by the algebraic sum 

of the outputs from all the subsystems. 

Hence equivalent transfer function will be equal to 

 1 1( ) ( ) ( ) ... ( )экв nW p W p W p W p       (25) 

W1(p)
xвх(p)

W2(p) . . . Wn(p)
xвых(p)
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1.5.4. Feedback control system 

 

Figure 10 

Closed loop control systems are divided into two categories , based upon the nature 

of the  feedback signal: negative-feedback closed loop and  positive-feedback 

closed loop systems. The system consists of one block in the forward path and one 

block in the feedback path. Hence we can write: 

 1( ) ( ) ( ),

where,  ( ) ( ) ( ).
вх вх ос

ос ос вых

х p х p х p

х p W p х p

 

 
                            (26) 

In (26) sign "+" corresponds to positive feedback, and sign"" corresponds to 

negative feedback.  

The transfer function of reduced form of a closed loop control system can be 

obtained from  

 1( ) ( ) ( ) ( ) ( )
выхвых вх осх p W p х p W p х p      .                  (27) 

From (27) calculate the required transfer function 

 1

1

( ) ( )
( )

( ) 1 ( ) ( )
вых

экв
вх ос

х p W p
W p

х p W p W p
 


.                         (28) 

Notice that when obtaining the formula (28) sings corresponding to positive and 

negative feedback are changed into the opposite ones.  In (28)"" sign corresponds 

to positive feedback and "+" sign is negative. 

1.5.5. Block diagram reduction 

Block diagram reduction help reduce separate elements of block diagram to three 

block types described above.  

Block diagram reduction is  quite simple and illustrated below. 
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1.5.6. Summing point moving  

Original diagram 

 

 2 1 1 3 2

1 1 2 3 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

х p х p W p х p W p

х p W p W p х p W p

   

  
. 

а 

Moving a summing point to the output 

 

b 

Moving a summing point to the input  

 

c 

It is clear that the relation between 2 ( )х p  and 1( )х p  in diagrams b and  c is the 

same as in а diagram. 



39 
 

1.5.7. Branching point moving  

Equivalence at branching point moving is to keep the relation between input 

value 1( )х p  and branching moving point value. 

Original diagram 

 

3 1 1( ) ( ) ( )х p W p х p  . 

   a 

Moving a summing point to the output 

 

          b 

 

Moving a summing point to the input  

 

          c 

 

It is clear that relation in b and  c diagrams is the same as in а diagram 

W1(p)
х1(p)

W2(p)

х3(p)

х2(p)

W1(p)
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3 1 1( ) ( ) ( )х p W p х p  . 

1.5.8. Examples of diagrams reduction rules  

1. Blocks in series: 

 

 

 

2. Blocks in parallel: 

 

 
 

3. Closed loop system reduction with negative feedback: 

 

 
 

4. Closed loop system reduction with unit negative feedback: 

1

1

( ) ( )

1 ( ) ( )
p

p

W p W p

W p W p

 

5. Application of block diagrams reduction rules: 
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1

1 1

( )

1 ( ) ( )p

W p

W p W p
2

2 2

( )

1 ( ) ( )p

W p

W p W p

 

1 2

1 1 2 2 1 1 2 2 1 1

( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p

W p W p

W p W p W p W p W p W p W p W p W p W p W p   
 

 

6. Block reduction with takeoff point moving ahead of a block: 

 

1 2

4 2 1 2

( ) ( )

1 ( ) ( ) ( ) ( )

W p W p

W p W p W p W p 

7. Block reduction with takeoff point moving:  

 1 4 1 2 5 3( ) ( ) ( ) ( ) ( ) ( )W p W p W p W p W p W p 

 

8. Application of superposition principle 

Find the relation between input  inх  and output value outх , and relation between 
disturbance f  and output value outх : 
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 2 1

1 2

( ) ( )

1 ( ) ( ) ( )
in

out
p

W p W p х f
х

W p W p W p





 

1.6. Control system generalized equivalent circuit 

Applying block diagram reduction rules any block diagram can be reduced 

to two blocks diagram (Figure 6). Consider one of the blocks to be equivalent 

controlled object with transfer function ( )оW p  and the second block to be 

equivalent controller with transfer function ( )cW p . 

 

Figure 11 

 

In shown in Figure 8: 

x  - controlled variable, 

refx  - reference input signal, 
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dx  - disturbance, 

cx  - control response 

To figure out how the control signal influences  control system behavior  let us 

represent controller block diagram as three blocks in parallel: inertialess, ideal 

differentiated and integral(Figure 9). 

 

Figure 12 

Controller transfer function according to diagram in Figure 9 

 
int

1
( )c р dW p K T p

T p
   


.                                            (29) 

The obtained equivalent diagram shows the influence of object parameters and  

controller on  control system properties in steady state and transient processes. 

System properties are determined by the dependence of control response on input – 

reference or disturbance. 

As all system blocks are taken to be linear, then to obtain the required dependences 

we use superposition principle. Hence the following transfer functions appear.  
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By reference input         By disturbance input 

Superposition principle 

1. Transfer function by reference signal 

( )
( ) ;    at  ( ) 0

( )ref ref
ref

х p
W p х p

х p
  . 

2. Transfer function by disturbance action channel 

( )
( ) ;    at  ( ) 0

( )d d
d

х p
W p х p

х p
  . 

For analysis use the transfer function for open loop system. To determine the 

transfer function break the system at  "а" point(Figure 8) let ( ) 0dх p  . Then 

( )
( )

( )раз
ref

х p
W p

х p
 . 

Based on block diagrams reduction we obtain 

 

    

( ) ( )
( )

1 ( ) ( )
о c

ref
о c

W p W p
W p

W p W p




 
;                  (30) 

 

 

( )
( )

1 ( ) ( )
о

d
о c

W p
W p

W p W p


 
;              (31) 
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( ) ( ) ( )раз о cW p W p W p  .                (32) 

 

According to superposition principle  

 ( ) ( ) ( ) ( ) ( )з з в вх p W p х p W p х p    .                       (33) 

Analyze the influence of controller transfer function. Consider that transfer 

function of the object is stable and is a static component, at 

0    (0)об обp W K    ( in steady state). 

1.6.1. Control system behavior in steady state 

The relation between controlled variable and perturbation action in steady 

state can be obtained (33) at 0p   

(0) (0)з з в вх W х W х           (34) 

Let us consider steady state at using controllers of different types 

1.6.2. Proportional controller  (P controller) 

The transfer function of controller in this case is given by  

 ( )р рW p K .                                                       (35) 

Hence  (24) let 0;    д иT T  . 

Consider that  (0)об обW K  then  (33) obtain at 0p   

 
1 1

об р об
з в

об р об р

K K K
х x x

K K K K  


   

   
.                             (36) 

Double sign (36) is used because disturbance in some cases can increase or 

decrease the controlled variable. 
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As(36)shows, when P controller is used for the object  described by static  unit we 

have a mistake in reproduction of reference input signal which equals 

  1
1

об р
з з з

об р

K K
x х х х

K K 
 

        
.                            (37) 

Residual is the difference of the obtained value x from the desired value зх

(reference value). 

Some influence on the controlled variable of disturbance remains which is equal to  

 
1

об
в в

об р

K
x х

K K    
 

.                                             (38) 

From (37) and (38) it follows that, the bigger the gain factor is, the more precisely 

is the reproduction of disturbance and the less is the influence of disturbance. 

Control systems which  possess the after-effect of disturbance are called static 

systems. Dependence of controlled variable form disturbance action is shown in 

Figure 10. 

In some engineering fields the dependence ( )вх x   is called control characteristic, 

and slope coefficient  of this characteristic is called statism coefficient , which is 

determined as follows(Figure 10) 

с
в

х
K

х




 . 

By letting x and  xв some basic values x0 and  xв0 statism coefficient can be 

determined in  relative units 

 0
*

0

в
с

в

х x
K

x х




  .                                                 (39) 
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Figure 13. Controller output characteristic and external characteristic   

In power supplies there is an analog dependence – 

static characteristics of turbine controller (controller 

external characteristics). Such a characteristic help 

control frequency change when load rise occurs. 

0

0

, for dependance ( )
P

s P
P

 






 

It is more often used as   1 / s  for dependence ( )P  . 

Example: The object with transfer function is given ( )
1

об
об

об

K
W p

T p


 
 , 

0,1 0,5 1об об зT K x   . Calculate transfer function for closed loop at P 

controller presence. 

WОб(p)
x

+
WР(p)

xЗ

-

( ) ( )
( )

1 ( ) ( )
Р Об

Р Об

W p W p
W p

W p W p




 

Let’s solve the example using MathCAD 

    T 0.1 W p( )
0.5

p T 1
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Proportional controller minimizes the static error and decreases transient process 

time 

1.6.3. Proportional derivative controller(PD controller) 

Controller of this type has transfer function  

 ( )c р dW p K T p   .                                        (40) 

As at  0   (0)c рp W K   , then the qualities of system with PD controller  in 

steady state regime coincide with P controller system. 

The component of transfer function which proportional to the derivative term 

influences much the qualities of control system in transient process. 

1.6.4. Integral controller ( I controller) 

I controller transfer function  

W1 k p( )
W p( ) k

1 W p( ) k
 h t( )

W p( )

p

invlaplace p

float 5
.50000( ) e

10.( ) t
 .50000

h1 t k( )
W1 k p( )

p

invlaplace p

float 5
.50000k

10.

10. 5. k

10.

10. 5. k
e

1.( ) 10. 5. k( ) t








t 0 .001 6 T

0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1

1.2

h t( )

h1 t 10( )

h1 t 15( )

h1 t 65( )

1

t
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1

( )р
и

W p
T p




.                                                 (41) 

Transfer functions on reference signal and disturbance  in system with I controller 

 

( ) ( )
( )

1 ( ) ( )
об р

з
об р

W p W p
W p

W p W p




 
;           

( )
( )

1 ( ) ( )
об

в
об р

W p
W p

W p W p


 
 

 
 

( )
( )

( )
об

з
и об

W p
W p

T p W p


 
,                                               (42) 

 
( )

( )
( )

об и
в

и об

W p T p
W p

T p W p

 


 
.                                            (43) 

At  0   (0) 1;    (0) 0з вp W W   .  Hence at given equivalent block diagram the 

application of integral controller provides the precise reference signal reproducing . 

It also eliminates the influence of perturbation action of controlled variable. 

Automatic system control at which the regulated component does not depend on 

perturbation action is called astatic. 

1.6.5. Proportional integral controller (PI controller) 

Contoller transfer function is given as 

 
1

( )р р
и

W p K
T p

 


                                                     (44) 

Transfer functions by  reference and disturbance signals 

 
( ) ( 1)

( )
( ) ( 1)

об р и
з

и об р и

W p K T p
W p

T p W p K T p

   


     
.                                (45) 

 
( )

( )
( ) ( 1)
об и

в
и об р и

W p T p
W p

T p W p K T p

 


     
.                             (46) 

The same as in system with I controller at 0   (0) 1;    (0) 0з вp W W   . 

Thus, adding to proportional part of integral reference also provides astatism of 

control system. 
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Example: The object with transfer function ( )
1

об
об

об

K
W p

T p


 
 is given, 

0,1 1, 1об об зT K x   . Find the transfer function for closed loop at presence 

P  ( )p пW p k , I  ( ) /р иW p k p  and PI ( ) /р п иW p k k p   controllers. 

Solution: 

( ) ( )
( )

1 ( ) ( )
Р Об

Р Об

W p W p
W p

W p W p




 

  2
P ( ) , P ( )

1
об п об и

об об п об об и

K k K k
W p W p

T p K k T p p K k
   

   
  

 
 2

PI ( )
1

об п и

об п об об и

K k p k
W p

T p p k K K k


 

  
 

 

0 0.21 0.43 0.64 0.86 1.07 1.29 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

h1 t 0 10 
h1 t 20 0 
h1 t 15 20 

h t 
1

t

0 0.21 0.43 0.64 0.86 1.07 1.29 1.5
0.85

0.88

0.92

0.95

0.99

1.03

1.06

1.1

h1 t 0 8 
h1 t 20 0 
h1 t 15 20 

h t 
1

t

 

Увеличенный фрагмент  начало процесса   

1.6.6. Proportional integral  derivative controller (PID contoller) 

The transfer function is given as 

 
1

( )р р д
и

W p K T p
T p

   


.                                      (47) 
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It is evident that in steady state regime ( 0p  ) system with PID controller 

possesses the same qualities as the system with PI controller. 

Example: Let’s analyze voltage control circuit of synchronous generator. 

 

 

Generator excitation current changes at rheostat resistance change. Rheostat 

engine shift is performed by internal combustion engine. Engine is an integrated 

component, because turn of its shaft angle  dt    is proportional to rotation 

speed integral  .Rotation speed   if proportional to voltage given to armature УU

.When mismatch  between зU  and U  an amplifier input signal occurs, which is 

transmitted to excitation winding through amplifier and integrated component. 

Excitation winding amplifies or reduces magnetic field till the mismatch 

disappears  зU U U    

Block diagram 

, , ,У Д В ДНT T T T    are amplifier, engine, excitation loop or divisor time constants  

о, Нk is  load coefficient. 
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1.7.   Transient process calculation 

1.7.1. Transient processes calculation in state-space  

State space is one of the most effective methods of transient processes 

calculation. The method essence is to transform n order differential equation into 

the system of first order n differential equations written in Cauchy form. For 

example for RLC series circuit equations in Cauchy form can be written as: 

    

1 ( )
;L

L C

C L

di R e t
i u

dt L L L
du i

dt C

   


 

If state vector is considered as  ( ) ( ), ( )L Ct i t u tx  and write out the 

coefficients at unknown variables and given influences in matrix form then the 

equations can be written as:  

( )
( ) ( ) или ( , ) ( )

d t
t t t t

dt
      

x
A x B V D x A x F , 

( ) ( )t ty Cx - coupling equation 

where   А  is square state  matrix of n n  dimension; 

       V(t) is  vector m of given influences;  

        В is  matrix of n m  dimension, elements of which are determined by circuit 

parameters and its structure.  
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 For series   RLC-circuit matrices are written down: 

1
1

( )
( ) , ,

1( )
00

L

C

R
i t L Lt L

u t

C

                     

x A B . 

The most complicated thing in state space method is A and B state matrices  

formation. There exist several effective methods of state space equations 

formation, but they all are based on Kirchhoff’s equation system with elimination  

of variables which are not state space variables .MathCAD has functions which 

help solve equations in symbolic  form and this simplifies state space equations 

and respective matrices formation. Below we analyze the transient process 

calculation by using state space approach in MathCAD. 

Example 44.  Determine inductance current ( )Li t  and voltage on circuit elements 

(Figure 34) for the given circuit:  

Solution. To form state space equations let’s 

write down circuit equations according to Kirchhoff’s laws, then use computing 

unit Given Find. Let’s perform differential equation integration numerically, using  

rkfixed function as shown in MathCAD  file  below.  

1 2 2 1

2

( ), ( ), ( ), ( ),

( ), ( )
C C R R

R L

u t u t u t u t

u t u t
 

( ) 20e t Е V  , 1J A  

если 1 20R   , 2 100R   , 

1 100C F ,  2 50C F , 

0,1L H . 

R1

R2

iC 1 (t)

R2

C1 C2

iC 2 (t)

L

Рис. 34

i L (t)

J(t)
E1(t)
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Matrices formation 

      

A UC1 UC2 iL E J  Find U'C1 U'C2 i'L 

E R
2

iL UC1

R
2

C
1



R
2

  iL UC2 J R
2

 

C
2

R
2



iL R
1

 UC1 UC2 

L























J

A augment A 1 0 0 0 0( ) A 0 1 0 0 0( ) A 0 0 1 0 0( )( ) A B A 0 0 0 E J( ) A

 

 

   
Circuit equation written according to Kirchhoff’s laws

 

   
            

 

 

 

iL C
2

U'C2
UC2

R
2

 J

iL R
1

 L i'L UC1 UC2 0 Given

E iL C
1

U'C1  R
2

 UC1
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State space matrix eigenvalues determination which should equal roots of 

characteristic equations 

                                     

 

 

Roots of  characteristic equation and eigenvalues coincide, that means  А 

matrix is formed correctly. To check В matrix let’s determine forced 

components of state variables which should satisfy the equality –А-1 В.       

A

1

R
2

C
1



0

1

L

0

1

C
2

R
2



1

L

1

C
1

1

C
2

R
1



L





















 B

E

R
2

C
1



J

C
2

0

















R
1

20 R
2

100 C
1

100 10
6

 C
2

50 10
6

 L 0.1 E 20 J 1

A
100

0

10

0

200

10

1 10
4

2 10
4

200













 B
2000

20000

0













 eigenvals A  

132.84

183.58 545.458i

183.58 545.458i













Z p( )
1

1

R
2

C
1

p







R
1

 L p
1

1

R
2

C
2

p









p Z p( )
solve p

float 5

183.58( ) 545.46i

183.58( ) 545.46i

132.84
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To determine  additional values  form the connection matrix С: 

 

 

     

    

 

Solve differential equation system by Rounge-Kutta method:  

   
  

        
 

 

      

A
1

 B
34.545

45.455

0.545











 UC1пр

E R
2



R
2

R
2

 R
1



J R
2



R
2

R
2

 R
1


R

2








 E

UC1пр 34.545

UC2пр
E

R
2

R
2

 R
1


R

2


J R
2

R
1

 

R
2

R
2

 R
1


R

2
 UC2пр 45.455

iLпр
E

R
2

R
2

 R
1



J R
2



R
2

R
2

 R
1


 iLпр 0.545

UR2 E UC1

UR1 R
1

iL

UL UC2 UC1 R
1

iL

C

1

0

1

0

0

1

0

R
1

R
1

















D t x  A x B xo

0

0

0











 N 400 T 0.05 i 0 N x rkfixed xo 0 T N D



 t x

0 


UR1i

UR2i

ULi















C

x
1 



 i

x
2 



 i

x
3 



 i

















E

0

0













t x 0  i 0 N



57 
 

 

         To determine state space components derivatives the extended state space 

matrix should be multiplied by  diagonal matrix of capacitances and inductance  

 

           To animate the transient process it is enough to substitute the number of 

iterations on time interval N for FRAME variable. The in diagram editing 

window in   позиции Traces activate  Hide arguments to hide  arguments at 

axis coordinates. If you wish you can end diagram by black point. Keep in mind 

that  by animating  arguments margins at diagram axis should be fixed. 

0 0.01 0.02 0.03 0.04 0.05

50

40

30

20

10

10

20

30

40

50

60

x
1   i

x
2   i

UR1
i

UR2
i

UL
i

ti

0 0.01 0.02 0.03 0.04 0.05

0.5

1

1.5

2

2.5

3

x
3   i

UR1
i

R1

UR2
i

R2

ti

iC1i

iC2i

ULi















C1

0

0

0

C2

0

0

0

L













D t
i

x 1  
i

x 2  
i

x 3  
i
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Diagram fragment for the 70th  frame at FRAME=70 and closed arguments.  

   

  

     Below we give the example of transient process calculation  in MathCAD, 

Electronics Workbench  и MATLAB    for dynamic  system described by equation: 

1, (0) 0, (0) 0x x x x x
  

      

MathCAD

 

    

       
  

  
        

    
 

 

Electronics Workbench 

k FRAME i 0 k

0 0.01 0.02 0.03 0.04 0.05

50

40

30

20

10

10

20

30

40

50

60

0 0.01 0.02 0.03 0.04 0.05

0.5

1

1.5

2

2.5

3

t
x1

d

d
x2

t
x2

d

d
x1 x2 1

A
0

1

1

1








 B
0

1









 A
1

B 
1

0









  eigenvals A( )


0.5 0.866i

0.5 0.866i








 D t x( ) A x B N 100 i 0 N x rkfixed
0

0









0 10 N D










d2x
i

d3x
i









D x 0  
i

x 1  
i

x 2  
i
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MATLAB 

 

 

0 1 2 3 4 5 6 7 8 9 10

0.5

0.25

0.25

0.5

0.75

1

1.25
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1.7.2.Convergence of matrix differential equation to scalar equations  

It is evident that solution of first order differential equation with one variable 

more simple than several variables equation system. Hence it is interesting to 

calculate transient processes by substituting space state matrix by scalar equations. 

To change matrix equation into scalar equations system keep in mind that state 

matrix A has eigenvectors  and eigennumbers  connected to each other by  

AΛ Λ   correlation. 

In matrix state space 
( )

( )
d t

t
dt

  
x

A x F  substitute the variables changing  

x Λy . As a result we obtain: 

1 1 .

d d

dt dt
d

dt
 

        

     

x y
A x F Λ A Λ y F

y
Λ A Λ y Λ F

 

For eigenvectors the equality is true. 

1

21

0

.

0 n

Q








 
 
    
 
 
 

Λ A Λ , 

That is why state space equation is written in the form of independent scalar first 

order equation 1d

dt
   

y
λ y Λ F . 

 As a result we obtain the system of independent differential equations 
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1
1 1 1

2
1 2 2 2

.........................

n
n n n

dy
y b

dt
dy

y bd
dt

dt

dy
y b

dt









  

      


  

y
λ y Λ F . 

At zero initial conditions these equations are solved as follows: 

        1 21 2
1 2

1 2

( ) 1 , ( ) 1 , ..., ( ) 1 .ntt t n
n

n

b b b
y t e y t e y t e 

  
          

After scalar equations one can go on to the initial variables 

1 1

2 2

3

... ...

n

x y

x y

x y

   
   
     
   
   
   

x Λy Λ . 

Example 47. Let’s analyze the diagram 

after switching with zero initial conditions 

shown in Figure 38. Determine inductance currents and voltage on capacitance for 

the following numerical data: 

                                1100 ; 40 ; 70 ;Е V С mcF R      

                            2 1 250 ; 0,2 ; 0,1 ; 0,05 .R L H L H M H      

 Solution.Write  down equation system for instant current values and voltages 

according to Kirchoff’s laws taking into account the  mutual inductance:  

 

1 1 2 1 1 2 1

2 2 1 2 2 2 1 1

( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ( ) ( ) ;

L L L L

L L L C L L

d d
L i t M i t i t R i t R E

dt dt
d d

L i t M i t i t R u t i t i t R E
dt dt

     

       
 

L1 L2
R2

M

E R1

Ci L1 i L2

Рис. 38
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2( ) ( ).C L

d
C u t i t

dt
  

Using computing unit Given Find, find state space matrix А and independent 

influence F. 

1 2 1 1 2 2 1 2
2 2 2 2

1 2 1 2 1 2 1 2

1 1 1 1 2 1 1
2 2 2 2

1 2 1 2 1 2 1 2

1
0 0

0

,

1 1

C
M R L R M R L R M R M E L

L L M L L M L L M L L M

L R L R M R L R L R M E M

L L M L L M L L M L L M

   
   
   
             

                  
             
                 

A F

 

With the help of ( )eigenvals A  function calculate the  eigenvalues of А state 

space matrix. Matrix A eigennumbers coincide with characteristic equation roots, 

that is why to check the matrix one should  make up the formula for input 

equivalent circuit resistance (figure 39): 

 

   
 

 

1 1

1 1

2 2

( )

1
0

L M p R Mp
Z p

L M p R Mp

L M p R
Cp

 
 

  

    
.     

Further procedures and numerical calculations 

are given in  MathCAD.   

 
                        

 

                         State space matrices and independent variables 

           

 

R1 70 R2 50 L1 0.2 L2 0.1 M 0.05 C 40 10
5

E 100

A

0

2.857

11.43

0

200

600

10

57.15

1.171 10
3













 F

0

571.5

285.7











L1-M L2-M

RE

R1
C

iL1 iL2

M

Рис. 39
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                     Matrix A eigenvalues 

      

    

        

 

Check А matrix 

z p( )
L1 M  p R1 M p 

L1 M  p R1 M p
L2 M  p R2

1

C p


 

z p( )
solve p

float 4

1186.

106.4

79.29











 

Matrix А eigenvectors 

                        
     

Q S
1

A S float 4

79.29

.84e-17

.1e-16

.53e-15

106.4

.1e-15

.578e-15

.96e-16

1186.











 
Find a new matrix of  G  =>  S-1F sources for  у variable: 

             
                   

 

          Solution for a new  у variable 

         
 

 

 eigenvals A( ) 

79.294

106.354

1.186 10
3















S eigenvecs A( ) S

0.9988

0.0386

0.0317

0.9975

0.0563

0.0424

0.9032

0.0275

0.4284













G S
1

F G

141.978

3.155 10
4

3.172 10
4














t
y

d

d
Q y G

uC

iL1

iL2













S y

y1 t( )
G0

0
1 e

0 t
  y2 t( )

G( )1

1
1 e

1 t
  y3 t( )

G( )2

2
1 e

2 t
 

y1 t( ) float 4 43.44 43.44 e
79.29( ) t

y2 t( ) float 4 5.066( ) 5.066 e
106.4( ) t
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 Get back to state space variables:

                

   

 

 

 

    

     

    

       

 

        
 

Example 48. Determine inductance current iL(t) and voltage on capacity uC(t)  

when breaking the circuit at Figure 40 with given elements parameters : Е=50 V;  

R=10 Ω;  L=0,05 H;  С=150 mcF. 

y3 t( ) float 4 .5006e-1( ) .5006e-1 e
1186.( ) t

x t( ) S

y1 t( )

y2 t( )

y3 t( )















x t( )0 float 4 100.0 397.4 e
79.29( ) t 297.5 e

106.4( ) t .1081 e
1186.( ) t

x t( )1 float 4 1.429 15.37 e
79.29( ) t 16.80 e

106.4( ) t .3287e-2 e
1186.( ) t

x t( )2 float 4 .893e-18 12.60 e
79.29( ) t 12.66 e

106.4( ) t .5129e-1 e
1186.( ) t


1

min 


 0.013

T 5 

T 0.063

N 100

i 0 N t
i

T

N
i

0 0.013 0.025 0.038 0.05 0.063
0

20

40

60

80

100

x ti 0

ti

x

x

0 0.013 0.025 0.038 0.05 0.063
0

0.6

1.2

1.8

2.4

3

x ti 1
x ti 2

ti
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Solution. Write down the equations for 

diagram after commutation: 

2 ; / .L L C C Cu Ri u i Cdu dt     

It follows:   

   
( ) 1 ( ) 1

( 2 ); ;L C
L C L

di t du t
Ri u i

dt L dt C
        

2 1
0

; .
1 0

0

R

L L

C

     
    

   
 

A F  

Initial conditions:  (0) 2,5 A, (0) (0) 25 B.
2L C L

E
i u Ri

R
     

Further calculations are performed in MathCAD. 

                                  Given data and initial conditions 

                       
     

 

     

- state space matrix 

                     Determine eigenvalues and eigenvectors: 

         

 

                     Substitute the variables and obtain the scalar equation: 

L 0.05 C 150 10
6 R 10 E 50 iL0

E

2 R
 uC0

E

2


A

2 R
L



1

C

1
L

0











 A
400

6.667 10
3

20

0











 eigenvals A( ) 
200 305.505i

200 305.505i











 eigenvecs A( ) 
0.03 0.046i

0.999

0.03 0.046i

0.999











Figure 40. 

 L
CE

R

RR
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Write down the final calculation and plot diagrams 

 

 

 

 
1.7. 3.  Transient processes calculation with Impulse response function help 
 

Let state space equation of arbitrary circuit has the form of 

( )
( ) ( )

d t
t t

dt
   

x
A x B e .  

Laplace Transform will make its solution easier and let move up from differential 

equations to algebraic. At zero initial conditions we have  

1    x Λ y y Λ y

dy

dt

1

0

0

2









y1

y2







y10

y20








1

iL0

uC0








y10

y20







12.519 35.514i

12.519 35.514i











T 0.05 N 100 i 0 N ti
T

N
i

y1 t( ) y10 e
0 t

 y2 t( ) y20 e
1 t



iLi

uCi












y1 ti 
y2 ti 









y1 t 
y2 t 







float 5

complex

2.5000 e
200.00( ) t

cos 305.51 t  3.2732 e
200.00( ) t

sin 305.51 t 

25.000 e
200.00( ) t

cos 305.51 t  70.920 e
200.00( ) t

sin 305.51 t 















0 0.013 0.025 0.038 0.05

2

1

1

2

3

iL
i

ti

0 0.013 0.025 0.038 0.05
10

10

20

30

40

50

uC
i

ti
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  1

( ) ( ) ( ) ( ) ( )

( ) ( ),

p p p p p p p

p p p


        

  

I X A X B E I A X B E

X I A B E
 

where I  is a unit matrix. 

If we take external action as Dirac delta function, than for multidimentional 

transfer function we obtain:  

  1( )
( )

( )

p
p p

p
  

X
W I A B

E
. 

To obtain multidimentional impulse response function ( )h t , one should 

perform reverse  Laplace transform for transfer function ( ).pW  If at circuit input 

is emf source in the form of unit step(скачок)  ( ) 1 /E p p , then after reverse 

Laplace transform  ( ) /p pW  we obtain impulse response function ( )h t .   

MathCAD  help perform character direct and inverse Laplace transform. 

 Example 49. Determine voltage on capacitor and inductance current for 

diagram on Figure 41 knowing that initial conditions are zero.. Initial conditions: 

Е=30 V; R=20 Ohm; L=0,1 H;  C=100 mcF.  

Solution.Write Kirchhoff equation and form 

state space matrix and vector of output influence 

C C
L C

C L
C L

du du
C i R u RC E

dt dt

du di
RC u i R L

dt dt

       
   

 

 

                 
 

Given

C u'C iL  R uC R C u'C E R C u'C uC iL R L i'L

L
CE

R

R
R
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The impulse response function ( )pW  in MathCAD can be easily obtained as 

shown below when state matrix and vector of output influence are known. 

                                        

          

 

          

 

Now we can obtain analytical dependence for transient functions of 

inductance current ( )Lh t  and capacitor voltage ( )Ch t , using inverse Laplace 

transform 

 

 

To obtain analytical dependence of inductance current ( )Li t  and voltage on 

capacitor ( )Cu t  transient functions should be multiplied by emf Е.  

A iL uC E  Find i'L u'C 
1

2

3 iL R uC E

L


1
2

iL R uC E

R C
















E

E 10 L 0.1 C 100 10
6 R 10

A

3
2

R

L


1
2 C

1

2 L

1
2 R C











 F

1

2 L

1

2

1

R C












1 eigenvals A( )
250

400











W p( ) identity 2( ) p A( )
1

F

W p( ) float 5

5.0000
p 500.

p
2

650. p .10000e6


2500.0

p
2

650.00 p .10000e6


25000.

p
2

650.00 p .10000e6
500.

p 150.

p
2

650. p .10000e6


















hL t( )
W p( )0

p

invlaplace p

float 4
.5000e-1 e

400.( ) t .1000 e
250.( ) t .5000e-1

hC t( )
W p( )1

p

invlaplace p

float 4
2.500( ) e

400.( ) t 2. e
250.( ) t .5000
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 If input influence is time function ( )e t , then to determine inductance current 

and voltage on capacitor one can apply Duhamel’s integral: 

0 0

( ) ( )
( ) ( ) (0) ( ) ; ( ) ( ) (0) ( ) .

t t

L L L C C C

de de
i t h t E h t d u t h t e h t d

d d

    
 

      
 

If, for instance, external influence in ( ) 10cos(200 )e t t example,than in 

MathCAD  the following should be written: 

    
 

 

 

 

iL t( ) hL t( ) E uC t( ) hC t( ) E T 0.1 N 100 i 0 N ti
T

N
i

0 0.025 0.05 0.075 0.1

0.12

0.24

0.36

0.48

0.6

iL ti 

ti
0 0.025 0.05 0.075 0.1

2

4

6

8

10

uC ti 

ti

e t( ) 10 cos 200 t( ) iL t( )

0

t

hL t  


e  d

d







d hL t( ) e 0( )

uC t( )

0

t

hC t  


e  d

d







d hC t( ) e 0( )

0 0.025 0.05 0.075 0.1

0.3

0.15

0.15

0.3

iL ti 

ti

0 0.025 0.05 0.075 0.1

10

5

5

10

uC ti 

ti
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The example below shows differential equation system solution of DC 

motor with independent excitation in MathCAD  with state space method 

application in Electronics Workbench with structural simulation application. 

DC motor with independent  excitation 

 

 

 

 

 

  

 

 

,

,

,

а
а а а а у

d с d у

e e м м

di
U i R L F F С

dt
d

M M J M С
dt

k С k С





 






    

   

 

 

Разрешим 

уравнения относительно 

производных и запишем 

их в нормальной форме: 

1

1
[ ]

а а e
а

а а а

м а с

di U k
i

dt L T L

d
k i M

dt J





   

  

 

Given

Ua ia Ra La i'a  ke

ia kм Mc J '

A ia  Mc Ua  Find i'a ' 

Ua  ia Ra  ke 

La

ia kм Mc

J















Ua
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Given parameters 

                 

  
           

 

    
    

  
  

  
 

 
        

     

 
    

  
    

      
   

A augment A 1 0 0 0( ) A 0 1 0 0( )( ) A A

Ra

La

kм

J

ke

La

0















 B A 0 0 Mc 0  A 0 0 0 Ua  A

B

Ua

La

Mc

J

















Pн 0.17 Uн 110 Rоя 5.84 La 128 10
3

  47.5 n 750 J 0.004

Iн

Pн 10
5



 Uн
 Rдоп 4.40 Ra Rоя Rдоп Ra 10.24 Iн 3.254 н

 n

30
 н 78.54

kм

10
3

Pн

н Iн
 ke

Uн Iн Ra

н
 kм 0.665 ke 0.976 Ta

La

Ra
 Ta 0.013 Tм

J Ra

kм ke


Tм 0.063

Tм

Ta
5.045 T 1. U 200 Mc t( ) Iн ke 0 t T 0.4if

Iн ke 2 T 0.4 t 0.8 Tif

Iн ke 0.5 otherwise

 Mc t( ) Iн ke

A

Ra

La

kм

J

ke

La


0















 B t( )

U

La

Mc t( )

J
















Iпр

пр







A
1 B T( ) D t x( ) A x B t( ) N 200

Iпр

пр







4.775

154.762









 B 0( )
1562.5

794.16965








 x rkfixed
0

0









0 T N D








 t x 0  i 0 N
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Substituition method of matrix equations into scalar equations 

       

  
    

 

0 0.2 0.4 0.6 0.8 1

4

8

12

16

20

0 0.2 0.4 0.6 0.8 1

40

80

120

160

200

 eigenvecs A  
0.33

0.944

0.13

0.992








  eigenvals A  
58.203

21.797










b 
1

B 0( ) b
7.059 10

3


5.919 10
3













 y1 t( )
b

0

0
e
0 t

1  y2 t( )
b

1

1
e
1 t

1 
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1.7.4. Analytical method of transient processes calculation 

Let differential equations system for state space vector  1 2 3, , ... nx x x xx has 

the form of    
d

dt
 

x
Ax B . 

The following formula will be the solution of this system: 

( )

0

( ) (0) ( )
t

t tt e e d    A Ax x B  

where  1 2 3(0) (0), (0), (0)... (0)nx x x xx  is initial conditions vector;  teA is  matrix 

exponent. 

Matrix exponent teA , argument of which is square matrix At of  n order, can be 

presented in the form of final row of n components             

2 -1
0 1 2 -1( ) ( ) ( ) ... ( )t n

ne t t t t       A I Α A A , 

where k are  row coefficients  - time domain. 

y1 t1( ) float 4 162.0 e
21.80( ) t1

 162.0 y2 t1( ) float 4 416.7 e
58.20( ) t1

 416.7

i
i

i










y1 t

i 
y2 t

i 










0 0.1 0.2 0.3 0.4

5

10

15

20

i
i

x
1  

i

ti

0 0.08 0.16 0.24 0.32 0.4

40

80

120

160

200

i

x
2  

i

ti
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Coefficients of   0 1 2 1, , ... n     row can be found by solving , n  system of 

algebraic equations written as state matrix own numbers  А: 

1

2

2 1
0 1 1 1 2 1 1

2 1
0 2 1 2 2 2 1

2 1
0 1 2 1

..

..
,

. . . . . . . . . . . .

.. n

tn
n

tn
n

tn
n n n n

e

e

e







     

      

      










     


    


     

 

or matrix form:  

1

2

2 1
1 1 1 0

2 1
12 2 2

2 1
1

1 ...

1 ...

.. ... . . . . .

1 ... n

n t

n t

tn
nn n n

e

e

e







   
  

  








    
    
         
           

. 

Equation system solution according the given decomposition coefficients has 

the following form:  

1

2

12 1
1 1 10

2 1
1 2 2 2

2 1
1

1 ...

1 ...

.. ... . . . . .

1 ... n

n t

n t

tn
n n n n

e

e

e







  
   

   








    
    
          
           

. 

After substituting the obtained coefficients into matrix exponent  

decomposition we obtain the required solution.  

Example 50. Determine capacitance current and voltage on capacitance in 

circuit at Figure 42, if elements parameters are given: 

20 ; 10 ; E V R    50 ;C mcF 0,15 . L H  

Solution. Write equation system according to 

Kirchhoff law and form state space matrix and 

vector of output influence: 

Рис. 42

R

E C

L

 
 

R

R
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 L
L C

di
L i R u

dt
  ; 

;L C
L L

di du
L i R i C R E

dt dt
     
 

 

1

1 1

R

L L

C RC

  
  
   
 

A ;
0

E

L

 
 
 
 

F . 

 All the following procedures are given in MathCAD. 

 

 

                            

 

                         

    
     

              

     
        

Given

L i'L iL R uC L i'L iL R iL C u'C  R E

A iL uC E  Find i'L u'C 

iL R uC 

L

iL R uC E 

R C















E

A augment A 1 0 0( ) A 0 1 0( )( ) A B A 0 0 E( ) A

A

R
L

1
C

1

L

1
R C











 B

0

E

R C











 R 10 E 20 C 50 10
6 L 0.15

A

R
L

1
C

1

L

1
R C











 A
66.667

2 10
4

6.667

2 10
3









 F

0

E

R C











 F
0

4 10
4
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Initial conditions       

         

 

matrix А  eigenvalues 

    
 

Matrix exponent decomposition coefficients 

 t( )
1

1

0

1









1
e
0 t

e
1 t













  

      t( )0 float 5 1.0773 e
138.29( ) t .77250e-1 e

1928.4( ) t
 

      t( )1 float 5 .55863e-3 e
138.29( ) t .55863e-3 e

1928.4( ) t
 

                                              Matrix exponent 

       
        

 

Exp t( ) float 3
1.04 e

138.( ) t .400e-1 e
.193e4( ) t

11.2( ) e
138.( ) t 11.2 e

.193e4( ) t

.372e-2 e
138.( ) t .372e-2 e

.193e4( ) t

.400e-1( ) e
138.( ) t 1.04 e

.193e4( ) t











Analytical solution 

 

 

iL0

uC0







E

3 R

E

3












iL0

uC0







0.667

6.667











 eigenvals A( ) 
138.285

1.928 10
3











I identity 2( ) I
1

0

0

1









 Exp t( )  t( )0 I  t( )1 A

iL t( ) Exp t( )
iL0

uC0












0 0

t

Exp t   F 
0





d

uC t( ) Exp t( )
iL0

uC0












1 0

t

Exp t   F 
1





d
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iL t( ) float 4 .3588( ) e
138.3( ) t .2575e-1 e

1928.( ) t 1.000
 

      
uC t( ) float 4 3.855 e

138.3( ) t 7.191 e
1928.( ) t 10.00

 

           

 

1.8. Automatic control linear system stability 

When electric power system runs small disturbances always occur. These 

perturbations can occur because of power change, load change, short circuit or 

breaking of circuit. They make electrical or mechanical system unstable, it means 

that steady state mode breaks. In this case automatic system controls switch on, 

they perform according to the situation to balance the system. Such disturbances 

should not break down system stable performance. Never let disturbances increase. 

The system should be stable at small perturbations, i.e. it should keep static 

stability. 

 

Static stability is system ability to regain the initial mode after small 

disturbances or the mode close to initial mode (if disturbance remains). 

To state the system stability it is no need to calculate the roots of characteristic 

equation because indirect indicators which show roots real parts planes from which 

we state the system stability. These indirect indicators are called   stability criteria. 

 

T 0.03 t 0 0.01 T T

0 0.006 0.012 0.018 0.024 0.03

0.2

0.4

0.6

0.8

1

iL t( )

t

0 0.006 0.012 0.018 0.024 0.03

3

6

9

12

15

uC t( )

t
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 Formula for characteristic second order polynomial is the same for all three 

transient processes. But coefficients in polynomial are different and of different 

planes.  In the first case the coefficients are right half plane and the transient 

process slows down – the process is stable. In the second case the coefficients are 

of different planes and the magnitude grows much, in the third case one of 

oscillations grows unrestrictedly -  the process is unstable, in the third case one 

of the coefficients, and the coefficient in the first power equals zero, hence  

oscillations magnitude remains stable – the process is in the margin of oscillatory 

stability. 

 

 

1.8.1.The Routh-Hurwitz stability criterion(algebraic stability criterion)  

All the coefficients of the characteristic equation of stable system must have 

the same sign (the necessary condition of the Routh-Hurwitz stability criterion). If 

z p( ) p
2

a
1

p a
2



a
1

26 a1 5.2 a.1 0

a
2

6975.25 a2 3031.76 a.2 1936

15 10 5 0 5

100

50

50

100

0 0.05 0.1 0.15 0.2

3

2

1

1

2

3
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one of the coefficients turns zero then the system is unstable. If all the coefficients 

are right half plane(RHP) then all the roots(if there are roots on the left half 

plane)will  be left- half-plane(LHP). Complex roots can be right-half-plane.  

If the free component coefficient 0na   turns zero it means there is a zero root , i.e. 

the system is in the range of dead-beat stability.  If some intermediate coefficient 

turns zero it means some imaginary roots appear, i.e. the system is in the range of 

pendulum stability. 

The necessary condition of stability criterion is the Routh –Hurwitz matrix which 

is formed as follows:  

For characteristic polynomial 

1 2
0 2 3( ) ......n n n

nD p a p a p a p a      

Form the matrix using the following pattern.   

 Write diagonally all the coefficients starting from   1a  to na .  

 Complete the matrix  from the bottom to the top in order of index increase 

 In places where indices are outside the boundaries put zeros. 

1 3

0 2 44 3 2
0 1 2 3 4

1 3

0 2 4

0 0

0
( )

0 0

0

a a

a a a
D p a p a p a p a p a A

a a

a a a

 
 
       
 
 
 

 

If all the diagonal minors of matrix are right half plane then the system is stable – 

this condition is enough for system stability.  

 

    

a 1 2 3 4 5( )T

z p( ) a
0

p
4

 a
1

p
3

 a
2

p
2

 a
3

p a
4
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Example 1. MathCAD 

 

Example 2. 

     

  The necessary criterion is met. 

      

              

The necessary Routh-Hurwitz criterion is met thus  the system is stable. 

a 1 2 3 4( )T z p( ) a
0

p
3

 a
1

p
2

 a
2

p a
3



A

a
1

a
0

0

a
3

a
2

a
1

0

0

a
3











 A 8 a
1

2 2 a
1

a
2

 a
0

a
3

 3 a
3
2 3 8

The necessary stability criterion is met(All the coefficients are right half plane) 

Computing the coefficients 

shows  

    

  

 

that the system is unstable 

Form the Routh-Hurwitz matrix  

   

 

     
   

  
  

  The last minor is left half plane(LHP) so the system is  

unstable. 

 z p( )
solve p

float 4

1.288( ) .8579 i

1.288( ) .8579 i

.2878 1.416 i

.2878 1.416 i













A

a
1

a
0

0

0

a
3

a
2

a
1

a
0

0

a
4

a
3

a
2

0

0

0

a
4

















 A 60

a
1

2 2 a
1

a
2

 a
0

a
3

 2 2 3 a
3
2 a

1

a
1

a
0

0

a
4











3 12 4 3 a
4

 4 60

2 1 0 1 2

2

1

1

2
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Computing the roots proves the system to be stable. 

  

 

 

Example 3. 

    

The necessary criterion is met (all the coefficients are right half plane) 

The first diagonal minor is right half plane, the last but one equals zero 

Thus polynomial is in the range of pendulum stability 

   

 

 

 

       
 

 

Example 4. 

    

 z p( )
solve p

float 4

1.651

.1747( ) 1.547 i

.1747( ) 1.547 i













2 1 0 1 2

2

1

1

2

a 1 1 4 4( )T z p( ) a
0

p
3

 a
1

p
2

 a
2

p a
3



A

a
1

a
0

0

a
3

a
2

a
1

0

0

a
3











 A 0 z p( )
solve p

float 4

1.

2. i

2.( ) i













a
1

1 2 a
1

a
2

 a
0

a
3

 2 0 3 a
3
2 3 0

a 1 1 4 0( )T z p( ) a
0

p
3

 a
1

p
2

 a
2

p a
3
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The necessary criterion is met (all the coefficients are right half plane) 

The first diagonal minor is right half plane, the last minor equals zero. Thus the 

roots of polynomial is on aperiodic stability  boundary. 

  

   

         

 

 

Example 5. 

      

The necessary criterion is met (all the coefficients are right half plane) 

The first diagonal minor is right half plane. Thus the roots of polynomial is on the 

oscillatory stability boundary 

 

 

   

  
  

 

A

a
1

a
0

0

a
3

a
2

a
1

0

0

a
3











 A 0  z p( )
solve p

float 4

0

.5000( ) 1.937 i

.5000( ) 1.937 i













a
1

1 2 a
1

a
2

 a
0

a
3

 2 4 3 a
3
2 3 0

2 1 0 1 2

2

1

1

2

a 4 1 4 1( )T Z p( ) a
0

p
3

 a
1

p
2

 a
2

p a
3



A identity 3( ) A

a
1

a
0

0

a
3

a
2

a
1

0

0

a
3











 A

1

4

0

1

4

1

0

0

1











  Z p( )
solve p

float 5

.25000

1. i

1.( ) i
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1.8.2.  The Routh-Hurwitz algebraic criterion application example 

We are given a characteristic polynomial for back pressure system control of 

turbine with two amplifying components [5]:   

   3 2
1 2 1 2 1 2 1 2

3 2
0 1 2 3

1 1 0

0

p p pp p p

a p a p a p a

                    
   

 

Here   1 1 2 2/ , /T T T T    - relative time constants p - inequity degree of 

backpressure regulation 

Using the Routh-Hurwitz criterion we obtain: 

     22
2 1 2 1 2 1 2 1 2 1 20, 0p p                      

Let’s plot/construct stability borders for turbine backpressure system with 

MathCAD help. 

 

1 0.5 0 0.5

3

2

1

1

2

3

Im ( )

Re ( )

f 1 2   
2
1 2 1 2   1 2 2 1 2 2 1
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Self regulation influences stability much. As  p grows, stability area decreases and 

collapses at 0,125p  . При 0,125p   the system is stable at any time 

invariables of servomotor. 
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1.8.3.  Mikhailov stability criterion 

Let’s analyze the characteristic polynomial of npower: 

1 2
0 1 2 1( ) ...n n n

n nD a a a a a     
     . 

The polynomial can be depicted as : 

    0 1 2( ) ... nD a          . 

Where  amplitude of complex function has the form of  

    
         

0 1 2

1 2 3

| ( ) | | ... |,

arg ( ) arg arg arg ...arg

n

n

D a

D

      

        

   

       
 

 

0

1 3

j

2

1j 

2j 

3j 

4
4j 

 

j

j i

j

 

 

n- number of roots,  

m-polynomial  right half plane roots 

Let’s put   p j   in polynomial 

       
 

1 2arg ( )) arg arg ...arg

arg ( ) ( ) ( 2 )

nD j j j j

D j n m m n m

      

    

     

      

 

If all the roots are left half plane 0m  : 

 arg ( )D j n        

At frequency change from zero to infinity obtain: 

 arg ( ) 0
2

n
D j

      

Thus Mikhailov criterion for stable system describes a curve (the Mikhailov 

hodograph) of characteristic polynomial which starts on the positive part of real 

semi-axis, generates an anti-clockwise motion throughТаким n quadrants. 
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Alternative definition of Mikhailov criterion For stable system it is required the 

zeros  of real and imaginary parts of characteristic polynomial shift, and their 

gross number equals n . 

Пример. System impulse response function has the form of   

2

1

2p p 
1

1p  K

 

Fig.  

Determine at which К values the system is stable, unstable or is in stability limit.  

1 2 32

3 2

1 1
( ) , ( ) , ( )

2 1

( )
2 3 2

W p W p W p K
p p p

K
W p

p p p K

  
  


   

   

Solution is given in  MathCAD 

        

      

D K p( ) p
3

2 p
2

 3 p 2 K  

   
 

    

   

     

 

W1 p( )
1

p
2

p 2
 W2 p( )

1

p 1
 W3 p( ) K W p( )

W1 p( ) W2 p( ) W3 p( )

1 W1 p( ) W2 p( ) W3 p( )


W1 p( ) W2 p( ) W3 p( )

W p K( )
K

p
3

2 p
2

 3 p 2 K


U K   Re D K i    V K   Im D K i   

U K   complex 2( ) 
2

 2 K V K   complex 
3

  3 

 0 0.01 3
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System is unstable 

System is in  stability 
limit 

 

System is stable  

Mikhailov stability criterion 

      

 

             System is unstable               System is in stability limit 

 

System is stable 

1.8.4.  Nyquist stability criterion 

Nyquist criterion help determine closed loop 

system stability by open loop system stability  

8 6 4 2 0 2 4 6 8

4

3

2

1

1
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4

V 6 ( )

V 4 ( )

V 2 ( )

U 6 ( ) U 4 ( ) U 2 ( )
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8
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4

8

U 6 ( )

V 6 ( )
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U 4 ( )

V 4 ( )
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4
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Р ( )W p
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Р
З

Р

( ) ( ) / ( ) ( )
( )

1 ( ) 1 ( ) / ( ) ( ) ( )

W p M p D p M p
W p

W p M p D p D p M p
  

  
 

Characteristic polynomial of closed loop system has the form of  

  ( )
( ) ( ) ( ) 1 ( ) 1

( )

M p
D p M p D p D p W p

D p

 
     

 
 

Let’s use Mikhailov’s criterion 

   Р
0 0 0

arg ( ) ( ) arg ( ) arg 1 ( )D j M j D j W j
  

   
     
         (*) 

If closed loop system is stable then the result should equal  
2

n


. 

According to Mikhailov criterion characteristic polynomial argument equals 

 
0

arg ( )
2

D j



 
     (system may be unstable too) (**) 

Taking into consideration  (*) и (**) we obtain the formula for variable argument 

1 ( )W j formula: 

   Р
0 0

arg 1 ( ) arg ( )
2 2 2

W j n D j n
 

   
   
          

As Нn     then we finally obtain : 

   Р
0

arg 1 ( )
2 2 2

W j n n


  
 
      

2
n


    Н 2П Н

2


    

 

For stable system it is enough  that frequency response locus of open loop system  

Р ( )W j  at frequency change    from 0 up to    covers the point (-1, j)  for angle 

 2П Н
2
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   Р
0

arg 1 ( ) 2R
2

W j N



 
     if the sum of  number of right-2R and 

neutral-N roots is equal zero then the angular is equal 0, i.e. the loop should not 

cover the point (-1, j).  

Magnitude and phase criterion: System will be stable if locus of open loop system 

( )РW j  does not cover the points 

with  1, 0j  coordinates. 

h - minimum section of real axis, 

which characterizes the distance 

between a critical point and  

nearest point of root locus с 

crossing with real axis , is called 

modulus stability margins. 

Minimal angle   formed by 

the radius passing through the 

point of locus intersection with 

unit radius circle (with the center at the beginning of coordinates) and negative 

part of real axis is called  phase stability margin. 

         Nyquist – Mikhailov stability criteria  let state control system stability with 

feedback by bode plot locus of closed loop. Criteria can be used in these cases when 

system differential equation (or  separate  components)  is unknown but designer 

has the corresponding  research  characterictics. 

Let’s analyze some examples with the help of MathCAD 

1. Example of stable open loop and stable closed loop systems 

2( )W p1( )W p

 

      
 W1 p( )

10

p 2
 W2 p( )

1

p
2

2 p 4
 Wp p( ) W1 p( ) W2 p( )

2 1 0 1 2 3

3

2

1

1

2

h



( )jV 

( )U 
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     Open loop system is stable 

 

      
  

 

      
       

 

With  Trace function help(right click in plot field)determine phase and magnitude 
stability margins. 

 

  
Phase stability margin   

   
    

 

    Magnitude stability margin    

 

denom Wp p( ) 
solve p

float 5

2.

1.( ) 1.7321i

1.( ) 1.7321i













U   Re Wp i    V   Im Wp i   

W p( )
10

p
3

4 p
2

 8 p 18
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2
 t 0 .01 2 

z
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 arg z
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deg
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Determine analytically cutoff frequency – frequency at which locus crosses the 
unit circle  

 

 

 

 

 

 

     

 

V   Im Wp j   
complex

simplify
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2





 

4
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2
 16







U   Re Wp j   
complex

simplify
40( )
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2





 

4
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V   10 


2
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4 
2





 

4
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2
 16







U   40( )


2
2

4 
2





 

4
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2
 16







C
V  2 U  2 1

 0











solve 

float 4

1.817

.9085( ) 1.574 i

.9085( ) 1.574 i











 C0
1.817
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2. Example  of stable closed loop system and unstable open loop system  

2( )W p1( )W p

 

                        
        

                

       
      

 

      

 

 

 

Locus  covers the point 
(-1, j0), hence closed 
loop system is unstable 

 

 

 

Roots check proves the obtained result  

 

W1 p( )
10

p 2
 W2 p( )

5

p
2

2 p 4
 Wp p( ) W1 p( ) W2 p( )

denom Wp p( ) 
solve p

float 4

2.

1.( ) 1.732 i

1.( ) 1.732i
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3. Example  when open loop system is unstable, closed loop system is stable: 

Р ( )W p

 

                      
    

Open loop system is unstable 

 

   

 

 

 

 

 

 

Locus  starts from U(0) = -1,5 and 

moves to zero, hence closed loop 

system is stable. 

 

4. Example, when open loop system has astaticism of the first order  closed loop 

system is stable: 

2( )W p1( )W p

 

       
      

      
 

denom W p( )( )
solve p

float 4

4.831
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complex

simplify

float 4
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complex

simplify

float 4
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Open loop system is in aperiodic stability 

margin 

 

 

    

 

 

  

 

 

 

 

Locus starts with negative imaginary axis 

and moves to zero around the point (-1, j0) 

below, hence closed loop system is stable.  

 

5. Example when open loop system has  astaticism  of the first order   а closed loop 

system is unstable:
 

     
 

 

denom Wp p( ) 
solve p

float 4

0

1.( ) 1.732 i

1.( ) 1.732i













U   Re Wp j   
complex

simplify

float 4
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 16.
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complex

simplify

float 4
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Example. When open loop system has astaticism of the first order closed loop 

system is at stability margin.  

2( )W p1( )W p

 

     
 

denom Wp p( ) 
solve p

float 5

0

1.( ) 1.7321i

1.( ) 1.7321i
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1 W1 p( ) W2 p( )
convert parfrac p
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2 p
2

 4 p 20
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solve p

float 5
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System is at stability margin 

 

Example. 

2( )W p1( )W p

 

        
 

 

Wp j  complex
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float 5
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Determine modulus and phase stability margins(on diagram) 
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arg Wp 1 i   

deg
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solve p1

float 5
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1.8.5.   Logarithmic stability criterion 

For the system which is stable being open-loop to be stable when being 

closed-loop it is enough at frequency  , for which  ( ) 0L   , difference between 

the number of positive and negative phase response crossing ( )   through the 

straight line ( )     equal zero 

Example 1.Investigate closed loop system stability using logarithmic magnitude 

phase frequency response if transfer function of open-loop system has the form of: 

arg 0.94211 i 0.3333( ) 

deg
19.483
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Solution. Open-loop system is stable , all the poles are left half plane 

   

 

 

Determine the real and imaginary parts of magnitude frequency response 

 

 

Determine the frequency at which the locus crosses the unit circle – crossover 

frequency  

 

Determine the frequency  at which locus crosses  the real axis  

          

 

 

Plot  locus
 

W p( )
960

p
3

26. p
2

 208. p 480.


denom W p( )( )
simplify

float 3
p

3
26. p

2
 208. p 480 denom W p( )( )

solve p

float 5
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 denom W p( )( )

simplify

float 3
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solve p

float 5
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complex

simplify
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V   Im W i   
complex

simplify

float 5
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260.
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solve 

float 5
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solve 1

float 5
14.422 Z

W 0 j 
W 1 j 









 t 0 .01 2 
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Plot logarithmic magnitude frequency response and logarithmic phase frequency 

response in one figure.  

       

 

 

 

 

 The graph shows that magnitude frequency response crosses  ( ) 0L    earlier 

than phase frequency response crosses the axis O180     thus the system is 

stable. 
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-phase stability margin 

 

 - modulus stability margin 

 

Compare to magnitude phase frequency response  locus(see the  graph above) 

 

Example 2. Investigate the closed loop system stability according to logarithmic 

magnitude phase frequency response if the transfer function of open loop system 

has the form of: 

       

 

Solution . The open–loop system is stable, all the poles are left half plane. 
 

Determine the real and imaginary parts of magnitude phase frequency response. 

 

 

 

Determine the frequency at which the locus crosses the unit circle –crossover 

frequency 

 

Determine the frequency at which the locus crosses the real axis 

 0  180 77.196
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solve p

float 5
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float 5
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solve 

float 5
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Plot  magnitude phase frequency response and phase frequency response in one 

figure 

       

 

          

The figure shows that magnitude phase frequency response crosses   

later, than phase frequency response crosses the axis O180     thus the system 

is unstable. 

 

Compare  magnitude phase frequency response to locus (see figure above) 
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1.8.6. Application of Niquist criterion and transient processes quality criteria  

To evaluate the quality of the transient process the following quantity 

characteristics are used(Fig 14) 

1. Maximum overshoot  

* *
2 1

100%Пm
Пm Пm

x
x x

x x


 

 


. 

2. Setting time. 

The time during which the output variable differs from the steady value more than 

on five per cent.  

 

Fig  14. 

3. Oscillations 

Full-wave oscillations number of output value change form regulation time. 

р

р

t
M

T
 . 

Automatic control system which is in stability limit has bad transient process 

quality parameters. In this case the transient process represents undamped 

oscillations and that is why 

* 1;    ;    Пm рх t M   . 
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.It is evident the closer the system to stability margin the worse is transient process 

quality. Because of this fact we have indirect parameters of transient process 

quality using stability criteria.  

Let us analyze such criteria based on Nyquist criterion. Figure 15 shows magnitude 

and phase characteristic of open loop system which is stable being closed. 

Figure 15 

As it is shown that the system can be in stability 

margin because of magnitude change or 

magnitude and phase characteristic vectors 

rotation to the point with coordinates  1;  0j .  

As indirect parameters of transient process 

quality  we have the variables shown at Figure 

15: 

"с" –modulus stability margin 

"" – phase stability margin 

1.8.7. Analysis of controller type and parameters on stability in frequency 

domain.  

Plotting open loop system magnitude and phase response on complex plane 

allows us examine the influence of controller type and parameters on stability 

margins. 

By analyzing remember that object transfer function is known as well as its 

magnitude and phase characteristic. 

Cotroller type and its parameters influence can be detected when taking the usual 

the magnitude and phase locus vector being open at some k  frequency in the 

following form 
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90
90

( ) ( ) ( )

( )

( ) ( ) ( ) .

раз k об k р k

и
об k р д k

k

j
j и

об k р об k д k об k
k

W j W j W j

K
W j K K j

j

K e
W j K W j K e W j

  

 


   




  

 
      

 

       




            (51) 

Formula (50) provides the rule of open loop system magnitude and phase 

characteristic visualizing.  

Let us analyze special cases 

1 P controller(proportional controller) ( 0;    0;   0р д иK K K   ). 

 

( ) 0 ;    ( ) 0 0об k k раз k k k рW j A W j B A K    

 

 

( ) ( ) ( )

( )

раз k об k р k

об k р

W j W j W j

W j K

  



  

 

Figure 16 

As shown above in system with P controller Kр gain сauses static accuracy 

increasing.At the same time as Figure 16 shows that Kр gain can cause stability 

margins decrease, at some big Kр value can break stability. 

2.PD controller ( 0;    0;   0р д иK K K   ). 
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Figure 17 

Derivative component does not influence system properties in steady state 

operating conditions, but Figure 17 shows that at it increases stability margins.. 

3. I controller ( 0;    0;   0р д иK K K   ). 

90
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1
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j
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Figure 18 
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In steady state operating conditions in system with I controller static errors don’t 

occur . But integral controller makes stability margin decrease as all the vectors 

( )разW j  rotate 90º to point side  1;  0j . 

4. PI Controller(proportional integral controller) ( 0;    0;   0р д иK K K   ). 

90

( ) 0 ; ( ) 0 ;

0

об k k раз k k k k

j

k k k
и k
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j

K e
W j K W j

  




 




  

 
    

 

   


 

Figure 19 

Integral component of regulation law turns to complete static errors elimination 

but on equal terms decreases stability reserves (by using components k kB C ////) 

Correlation of controller type and its parameters influence both system property in 

steady state operating conditions and on stability margins makes it easy to 

determine that improving accuracy of the system and increasing stability margin 

are controversial 

To solve this contradiction is to change structure of the system adding same 

subsidiary connections. 

PID controller can be used to illustrate this example. Steady-state operating 

conditions of such a system are described above and it is seen that static errors 

occur in it. Figure 20 illustrates how three components influence magnitude and 

phase frequency response position in closed loop state.  
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Figure 20 

From Figure 20 it’s evident that stability reserves by integral component(vector 

k kC D ) can be eliminated by simultaneous use of differential component(vector 

k kD B )  

To remember.  

1. At amplification coefficient increase in proportional controller transient 

process time increase static error decreases, but overregulation increases.  

Uncontrolled coefficient’s increase makes the system unstable. 

2. Integral controller decreases the static error, but worsens system dynamic 

characteristics, i.e. increases transient process time increase, increases 

overregulation and regulation time. 

3. Differential controller increases system stability, decreases overregulation 

and regulation time, i.e. improves system dynamic characteristics, doesn’t 

influence the system in steady-state. 
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1.9. Stability areas determination 

1.9.1. D-decomposition method 

The D-decomposition method is used to investigate the influence of one or two 

parameters which are coefficients of system characteristic equation on CS stability. 

Let’s analyze D –decomposition method by one parameter.  

Write down the characteristic polynomial and change  v  varying coefficient   

( )
( ) ( ) ( ) ( ) ( )

( )

P j
A j P j vQ j v U jV

Q j

    


        

Let’s plot the locus with axis ( ), ( )U jV  . The locus divides the complex plane 

into subareas with the certain range of varying parameter change. Selecting in 

subarea the arbitrary value of the investigated parameter v  substitute its value into 

the characteristic polynomial and find polynomial roots. If n-left roots of n order 

characteristic polynomial are in area then this area is called D(n)- area. If n-m of 

left roots but m of right roots m then the area is called D(n-m) area. 

Analyze the example using MathCAD 

D-decomposition method 

     

     

            

 

      

 

D p k( ) p
3

p
2

 p k k   
2

 i 
3

  

U   
2

 V   
3



D i  k  complex 
2

  k i 
3

   

k 0.5 i 0.5 0.25 1.25( )
T



D p k
0

 
solve p

float 5

.64780

.17610( ) .86072 i

.17610( ) .86072 i











 D p k
1

 
solve p

float 5

.76205( ) .53915 i

.33671( ) 1.0658 i

.98763e-1 .52661 i
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0 0.25 0.5 0.75 1 1.25 1.5

0.6

0.4

0.2

0.2

0.4

0.6

V ( )

Im k( )

U ( ) Re k( )

 

 

           

 

 

 

 

 

 

D p k
2

 
solve p

float 5

1.1118

.55901e-1 1.0589i

.55901e-1 1.0589i













 1.5 1.5 0.001 1.5

ORIGIN 1 T 0.04 0.08 0.25( )T T 0.2 T 0.4

A p T 

T p

1

0

0

0

0

T
1

p 1

1

0

0

0

0

T
2

p 1

1

0

0

0

1

T
3

p

1

1

0

0

0

T p 1























A p T 
collect T

float 3
.160e-3 p

5 .880e-1p
3 .49 p

2 p .680e-2 p
4  T 1.

 p( )
1

.160e-3 p
5

 .880e-1 p
3

 .49 p
2

 p .680e-2 p
4
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1.9.2. Root locus analysis 

 20 20 0.01 20 T 0.05 0.25 i 0.08 0.025( )T

T1
0.05 A p T1







0
solve p

float 5

25.614

10.227( ) 7.4396i

10.227( ) 7.4396i

1.7839 5.2278i

1.7839 5.2278i



















T2
0.25 A p T2







0
solve p

float 5

25.134

8.5027( ) 4.9867i

8.5027( ) 4.9867i

.18014( ) 3.1945i

.18014( ) 3.1945i



















T3
0.025 0.08i A p T3







0
solve p

float 5

25.146( ) .37205i

11.589( ) 4.6065i

7.4132( ) 7.4857i

.77487( ) 6.0487i

2.4230 2.7975i
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Root locus is defined as characteristic polynomial roots trajectories at one 

parameter change of automatic system control from 0 to  

Let characteristic polynomial has the form of: 

( ) ( ) ( ) 0A p P p Q p    

Where  ( ), ( )P p Q p  are polynomials of   andn m  power,    is the investigated 

parameter. 

Let polynomial   ( )A p  has the form of: 

   
1 1

( ) 0
n m

i i
i i

A p p z p q
 

       

At 0   polynomial ( )A p has   n roots  iz , but at    has only  m  roots iq . 

Root locus will have n branches which start from n roots  iz  and end in m  iq  

roots . The rest n-m end in eternity. Asymptotes for branches ending in eternity 

come from one point – asymptotes point. Let’s write down the formula of 

asymptote center determination.  

1 1
0

n m

i i
i i

z q
x

n m
 






 
 

Angles between beams of the obtained star are determined by formula:  

 2 / n m    

The nearest angle to real axis equals / 2 .  

Root locus branches separation  points from real axis are function extremum 

points.  

( )
( )

( )

P p
f p

Q p
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Critical value of the required parameter at which the system is at the stability 

margin is determined at branches points of root locus crossing with imaginary axis. 

Critical value can be obtained by solving the equation: 

( ) ( ) ( ) ( , ) ( , ) 0A j P j Q j X jY             

Solving system of equations 

( , ) 0

( , ) 0

X

Y

 
 


 

, 

we obtain ,кр кр  . 

Example: Transfer function of open loop system is given as

   
( , )

1 3 4

k
W p k

p p p p


  
, determine at which k values closed loop system 

will be stable.  

Use MathCAD to solve the problem 

Root locus construction 

   
 

   
 

 

 Characteristic polynomial of a closed loop  system 

        

Root calculation at fixed value of system k -parameter  

 

The beginning points of root locus branches   

Roots  trajectories calculation in locus        
 

      
  

 

W p k( )
k

p p 1( ) p 3( ) p 4( )
 Wс p k( )

W p k( )

1 W p k( )


Wс p k( ) simplify
k

k p
4

 8 p
3

 19 p
2

 12 p


C p k( ) k p
4

 8 p
3

 19 p
2

 12 p P p( ) p
4

8 p
3

 19 p
2

 12 p Q p k( ) k

L k( ) polyroots k 12 19 8 1( )T 

p P p( ) solve p

0

4

3

1













N 500 i 0 N x
i

100

N
i 0.1 Lc

i
L x

i 
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Asymptotes center point calculation  
       

Locus branching points from real axis 

                

Auxiliary vector of plotting 

 

 

Approximate critical value of  the required parameter k=xj     

   

   

   

 

 

Find critical parameters 

 

x0
0

3

k

p
k



4
 x0 2

p
C p k d

d

solve p

float 5

2.

.4188

3.5812













Z x0 x0 10 e

i


4








 10 e

i


4









 x0 x0 10 e

i


4
3







 x0 10 e

i


4
5







 x0 x0







T



L x
j 

3.99141 1.21066i

3.99141 1.21066i

0.00859 1.21066i

0.00859 1.21066i











 j 127 x
j

25.5

5 4 3 2 1 0 1

2

1

1

2

Im Lci 
0

 
Im Lci 

1
 

Im Lci 
2

 
Im Lci 

3
 

Im L xj  
Im Z( )

Re Lci 
0

  Re Lci 
1

  Re Lci 
2

  Re Lci 
3

  Re L xj   Re Z( )

C j  k  complex k 
4

19 
2

 i 8( ) 
3

 12  
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1.9.3. Poles placement method  

One of the simplest methods of controller synthesis is poles placement of 

closed loop system transfer function which determine its dynamics namely 

operation speed and damping of oscillation (see chapter 6.8). The main idea that 

you should place these poles at given points of complex plane with the help of 

specially chosen controller. This problem can be solved with the help of linear 

equations system. 

Let transfer function be polynomials relation 

1 0
2

1 0

( )
( )

( )об

N p n p n
W p

D p p d p d


 

 
 

Let’s choose controller type 

1 0

1 0

( )
( )

( )
R

R

N p a p a
R p

D p b p b


 


 

where  0 1 0 1, , ,a a b b  are unknown coefficients to be determined 

Characteristic polynomial of closed loop system  is equal to 

     
   

2
1 0 1 0 1 0 1 0

3
1 1 1 0

2
1 1 0 1 1 0 0 01 0 0 1 0 0

( ) ( ) ( ) ( ) ( )R Rp N p N p D p D p n p n a p a p d p d b p b

p n d p n n d d p n db a b b a a b b a b

         

         
 

Suppose we want to choose the transfer function of controller to place polynomial 

roots ( )p  at given points to keep the identity:  

3 2 1
2 1 0( )p p p p        

where  0 1 2, ,     are  given numbers. Making the coefficient with the same power 

of p in the last two equations we obtain: 

k 
4

19 
2



8( ) 
3

 12 











solve


k











float 5

0

1.2248

1.2248

0

26.250

26.250
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3

2
1 1 2

0 1 1 0 1

0
0

1

1 1 0

1 0 0 1

0 00 0

: 1

:

:

:

p

p n d

p n n

b

a b b

d d

p n a

a a b b

d b








  
   

 

 

or matrix form as follows : 

1 1 2

0 1 0 1 1

0 0

0

1

1

0 0

0 0 1 0 1

0 1

0 0

a

an d

n n d d

n d

b

b





    
    
    
    
    
    

 

Equation solution can be written as: 

1

1 1 2

0 1 0 1 1

0 0 0

0

1

1

0

0 0 1 0 1

0 1

0 0

n d

n n d d

n

a

b d

a

b






     
     
     
     
     
     

 

Square matrix in this formula (it is called Sylvester matrix) needs to be reversible. 
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CHAPTER 2.  NONLINEAR DYNAMIC SYSTEMS 

2.1. Phase space and dynamic systems phase portraits 

 

 

Figure 1              Stable system                                              Unstable system         

 Any electromechanic system is a dynamic system. Elements forming the 

system can be nonlinear, hence differential equations describing dynamic systems are 

nonlinear. 

To investigate nonlinear systems and make the understanding of complex 

dynamic taking place in them phase space is used in which one can construct phase 

portraits (see Figure 2). Each dynamic system has its phase portrait. 

On phase portrait there are special points – equilibrium points, which help 

foretell dynamic system behavior without solving differential equations. These 

equilibrium points can be stable and unstable. If dynamic system is in the range of 

stable equilibrium point, then small disturbances will not make the system unstable 

(see Figure 1).  If equilibrium point is not stable, then disturbances persist and make 

the system ”unstable” (see Figure 1). 
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equilibrium point of  "saddle" type

 

 

 

equilibrium point of  "centre"  type 
 

 

equilibrium points of   "centre" and "saddle" type,  

the line separating solutions –"separatrix"

 
 

Figure 2. Dynamic system phase portraits 
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Let’s analyze phase space method relating to dynamic system of the second 

order. 

1

2

( , )

( , )

dx
F x y

dt
dy

F x y
dt

 

 


 ,     (1) 

where 1( , )F x y  and 2( , )F x y  are nonlinear functions of their own arguments. 

To get phase trajectory time need to be eliminated. To do this divide the second 

equation by the first one 

2

1

( , )

( , )

dy F x y

dx F x y
      (2) 

At equilibrium points time derivative turns zero, then we obtain the expression 

0/0 which has no defined value and is called an indeterminate form: 

   2

1

( , ) 0

( , ) 0

dy F x y

dx F x y
      (3) 

The points at which there are uncertainties are called singular points. In singular 

points on phase plane solutions can bifurcate. Let us describe equilibrium state points 

search algorithm.  

At equilibrium state the given variables  x  and y  do not change, hence 

derivatives equal zero: 

   1

2

0 ( , )

0 ( , )

F x y

F x y


 

     (4) 

By solving the given nonlinear equations system we find equilibrium state points 

0 0,x y . After determining equilibrium state point coordinates one need to determine 

point type. To determine point type expand 1( , )F x y  and 2( , )F x y  functions in  
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equilibrium state points neighborhood 0 0,x y ,and analyze the first three expansion 

terms: 

   

   

1 1
1 1 0 0 0 0

2 2
2 2 0 0 0 0

( , ) ( , ) ...

( , ) ( , ) ...

F F
F x y F x y x x y y

x y

F F
F x y F x y x x y y

x y

         
        
  

  (5) 

Put down coefficients at linear terms and obtain Jacobian matrix:  

1 1

11 12
0 0

2 2 21 22

( , )

F F
a ax y

x y
F F a a

x y

  
            
   

A    (6) 

Jacobian matrix elements   ,i ja    are constant variables. 

Next step is to determine point character . 

To do this one should find eigenvalues of Jacobian matrix   by solving characteristic 

equation. 

0 I A .      (7) 

 where  I  is  identity  matrix.  

It is easy to determine eigenvalues by using MathCAD  eigenvalues(A) function 

application, several variants are acceptable. 

1. Both eigenvalues  are   real and   positive: 

1 20, 0    

Then, equilibrium state point with coordinates 0 0,x y   is 

called an unstable node 

 

 

 
Phase curves around 
unstable node  
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2.  Both eigenvalues  are real and negative: 

1 20, 0    

Then equilibrium state point with coordinates 0 0,x y  is 

called a stable node. 

 
3.  Both eigenvalues  are real and have  different 

signs: 

1 2 2 10, 0 0, 0или        

Then equilibrium state point  0 0,x y  is called a saddle or   

a saddle node. 

4.  Eigenvalues are complex conjugated  numbers 

which have positive real parts: 

1 2, , 0j j            

Then equilibrium state point  0 0,x y  is called an unstable 

focus 

 

5.  Eigenvalues are complex conjugated  numbers 

which have negative  real parts: 

 1 2, , 0j j            

Then equilibrium state point  0 0,x y  is called a stable 

focus 

6. Eigenvalues  are imaginary  conjugated numbers: 

 

Phase curves around 
stable node  

 

Phase curves around 
saddle point 

 
Phase curves around 

unstable focus  

 
Phase curves around  
устойчивого фокуса 
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 1 2,j j       

Then equilibrium state point with coordinates 0 0,x y  is 

called a centre. 

 

Let’s analyze some examples of equilibrium state points determination and determine 

their type using MathCAD. 

 

Example 1.  Dynamic system is given 

 

 

Find equilibrium points of dynamic  system 

 

 

 

xoz1
 
     

xoz1
 
  Expand nonlinear functions in the neighborhood of equilibrium state 

points.  
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z x
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 17

x y 4









solve
x

y
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centre 
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point with coordinates x=-4 и y=1 is a stable node   

 

 

 

 

 point with coordinates  x= -1 и y= 4 is called a saddle node.  

 

 

 

 

 point with coordinates x= 1 и y= -4is called a saddle  

 

 

 

 

 

 point with coordinates  x= 4 и y= -1 is called an unstable 

node . 

 

eigenvals a( )
8.449

3.551










x y series x 4 y 1 2 4 4 y x

a  I 30 12  
2



x
2

y
2

 series x 1 y 4 2 17( ) 2 x 8 y
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4

8

1










eigenvals a( )
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4.179










x y series x 1 y 4 2 4 y 4 x

a  I 30( ) 3  
2



x
2

y
2

 series x 4 y 1 2 17( ) 8 x 2 y
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eigenvals a( )
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a  I 30 12  
2
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Phase portrait of dynamic system 

 

Example  2. Dynamic system is given 

 

 

Find equilibrium points of dynamic  system 

 

 

 

      

Expand nonlinear functions in the neighbourhood of equilibrium state points 
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 point with coordinates  x=3 и y=2is called an unstable focus 

 

 

     
    

 point with coordinates  x=-3 и y=2 is called a saddle. 

 

 

  
 

 
point with coordinates  x=3 и y=-2 is called a saddle. 

 

 

   
 

 point with coordinates  x=3 и y=2 is called a stable focus. 

 

Phase portrait of dynamic system. 

a
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6
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 a  I 48 10  
2



eigenvals a( )
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Example 3. Determine equilibrium state point type of a linearized dynamic 

system.  

 

 

   
   

   
Point type  x=0, y=0  unstable node 

 

Example 4. Determine equilibrium state point type of a linearized dynamic 

system.  

 

 

   
     Point type  x=0, y=0  is a stable node. 
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2.1.1. Phase portraits construction with the help of surfaces. 

Let’s analyze some more examples of surface construction which help 

determine decomposition structure of phase plane into trajectories. First additional 

calculations should be done. Put down Newton’s equation of motion with unit mass 

on which force ( )F x   influences: 

2

2
( )

d x
F x

dt
       (8) 

Taking into account that force equals potential function gradient with negative sign 

the equation can be presented as: 

2

2

( ) ( )
( )

dU x d x dU x
F x

dx dt dx
        (9) 

 This equation can be rearranged by multiplying each part by velocity /v dx dt  

  
2 21

0 0
2 2

dv dU dx dv dU d v
v U

dt dx dt dt dt dt

 
        

 
 

From the obtained formula it follows that formula in brackets equals some constant E  

2

( ) ( , )
2

v
U x E x v    где   

0

( ) ( )
x

U x F x dx    (10) 

Now let’s investigate the dynamic system having the form of: 

 
3

2

4 4

dx
y

dt
dy

x x
dt
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Denote velocity in the first equation by 2y , in the second equation denote the right 

part by force influencing the particle with unit mass, then auxiliary potential function 

 ( )U x  has the following form :  

 3 2 4

0

( ) 4 4 2
x

U x x x dx x x       

In this case constant energy surface expression can be presented as:  

 2 2 4 2( ) 2 2 2U x y E x x y E        

Now we can plot the phase portrait of constant energy surface  

To solve this equation we use MathCAD 

 

    

Find equilibrium state points 

   
    

   

 

Find Jacobian 

   

 

Determine point type with coordinates  0, 0   

t
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d
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yd

d
4x 4x

3


F1 x y( ) 2 y F2 x y( ) 4 x 4 x
3
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float 5
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Saddle point 

Determine point type with coordinates  1, 0   

      
 

   
Centre 

 

Determine point type with coordinates  -1, 0   

   
 

  
Centre 

Auxiliary  potential functions U(x) is written as 

 

 
 

Auxiliary energy function  E(x,y) is written as 

 

Plot  phase portrait 

         
   

 

A1 A x
0

y
0

  A1
0

4

2

0









  eigenvals A1 


2.828

2.828










A2 A x
1

y
1

  A2
0

8

2

0









  eigenvals A2 


4i

4i










A3 A x
2

y
2

  A3
0

8

2

0









  eigenvals A3 


4i

4i










U x( )
0

x

x4 x 4 x
3






d 2( ) x
2

 x
4



x 1.5 1.5 0.01 1.5

1.5 1 0.5 0 0.5 1 1.5

1

0.5

0.5

U x( )

x

E x y( ) y
2

2 U x( )

N 251 i 0 N j i x
i

1.5
3

N
i y

j
1

2

N
j



130 
 

Surface     

Surface limited by separatrix
 

 

Surface  behind separatrix     

Separatrix          

 

         
 

Direct differential equations solutions are given below. 

All curves on phase plane are closed curves hence the solutions will be 
periodic.  

 

   
      

   
 

 

E
i j E x

i
y

j
 

E1
i j if E

i j 0 E
i j 0 
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i j if E
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2 x
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4 x
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 4 x
0 3
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0 T N D






 t x 0 0( ) 0 
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Solution behind the separatrix 

 

Solution on  the separatrix 
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Solution  within the separatrix 

 

 

Solution  within the separatrix 

The more is the field covered by phase curve the longer is oscillation  period  

Motion equation of generator rotor for small frequency change can be written as:  

 

2

2 T Г

d
P P

dt

        (11) 

Rewrite the equation as the system of first order equations .Normalize the presented 

equations by   and taking into account that sin( )Г mP P  : 

sin( )T m

d
P P

dt
d

dt

 

 

 


    (12) 

Find equilibrium state points of dynamic system and plot phase portrait using   

MathCAD 
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Find equilibrium state points 

       
       

 

 Find Jacobian 

   

 

Determine point type with coordinates  0.775 , 0   

     
 

  
Centre 

Determine point type with coordinates  2.366, 0   

      
 

 
Saddle point 

Auxilary potential function U(x) is written as : 

 

 

PT 0.7 Pm 1

t
d

d


t
d

d
PT Pm sin  

F1 x y( ) y F2 x y( ) 0.7 sin x( )

z
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solve
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float 5
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  eigenvals A2 
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U x( )
0

x

x0.7 sin x( )( )




d float 5 .70000( ) x 1. cos x( ) 1.

x 0.1 0.1 0.01  
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Energy auxiliary function   E(x,y) is written as: 

 

Plot  phase portrait 

        
   

 

Surface   

Surface within the separatrix    

Surface behind the separatrix  

The separatrix       

        

 

    
        

    
 

Direct differential equations solutions are given below  

Closed curves on phase plane are periodic solutions, open curves are unstable 
solutions.   
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Unstable motion behind the separatrix  
 

Motion on the separatrix 
 

Motion within the  separatrix 
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Motion within the  separatrix 

 

2.2. Phase plane technique   

2.2.1. Servomotor equation with ideal relay characteristic 

Let us apply phase plane technique to detect important features of the process 

taking place in nonlinear system of turbine rotation frequency regulation by constant 

velocity servomotor described by equations [5]: 
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- c
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rotor 

d
T

dt
  ;      (13) 

control element 

;           (14) 

constant velocity servomotor 

( )
d

F
dt

  .      (15) 

Where  ( )F  : 

( ) ( )F с sign   .     (16) 

As phase plane coordinates( x , y ) choose 

, .
d

x y
dt

   

Dynamic system will be described by equations system 

где ( ) ( ),
( ) x x

x

dx
y

dt
F с sign x yT x yT

dy F

dt T

 

       
 


  (17) 

Find equation of servomotor switching line (vertical segment on plot)  

0, /x xx yT y x T           (18) 

Find phase portrait lines equation 

In area 0   (negative values  F in plot) 



138 
 

2
1

2

x x

x

dx
y

dt dy c cx
y C

dy c dx T y T
dt T

        
  


  (19) 

In area 0   (positive values F in plot) 

2
2

2

x x

x

dx
y

dt dy c cx
y C

dy c dx T y T
dt T

      
 


  (20) 

Write the equation on vertical segment, equaling coefficients in equation of straight 

line and in phase plane 

1
,

x x x x

dy c x c
y y c

dx T y T T y T
            (21) 

Find differential equation on segment 

/
3, ( ) xt T

x x

dx x dx x
y y x t C e

dt T dt T
           (22) 

Sliding process 

Let’s analyze the solution with phase portrait plotting with use of MathCAD. 
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2.2.2. Servomotor equation with actual relay characteristic.  

Two vertical segments correspond to 

servomotor switching. 

x x

x x

x yT b x yT b

x yT b x yT b
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Plot its slopes on phase plane (see MathCAD document below) 

In difference from the above ideal example in this case one more area appears  

0

0

dx
y

dydt y const
dy dx

dt

     
 


  

Straight  lines are parallel to axis x .Now equilibrium state is not one point but  the 

segment. 

0,y b x b     
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2.3. Lyapunov straight method Прямой метод Ляпунова 

Method is based on scalar functions applications having special properties on 

dynamic system solutions and being called Lyapunov functions. Lyapunov functions 

help estimate system stability and quality and construct control algorithms providing 

the required quality process properties. 

For system described by the system of differential equations  

1

2

( , )

( , )

dx
f x y

dt
dy

f x y
dt

 

 


      (23) 

where  functions  1 2,f f  are arbitrary and possess any kind of nonlinear nature  but 

always satisfies the condition 1 2 1 20, при 0f f x x    ,  as  in steady state  all 

variables deviations and their derivatives equal zero. A certain function of system all 

phase coordinates (23) ( , )V x y  can be entered where x, y are variables deviations 

from some steady values. The function can be presented in two-dimensional space.  

Then in each point of phase space V  will possess the definite value and at the 

beginning of coordinates will equal zero. 

The function V is said to be definite sign function in some area if in any point inside 

the area function V has definite sign and turns to zero at the beginning of coordinates. 
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Let us analyze the example of definite sign positive function of the second order 

system n = 2 

2 2( , )V x y x y       (24) 

it is clear that V >0, и V = 0, only at  х = y = 0. 

Function  V is called constant sign function, if it is of the same sign but it turns to 

zero not only at the beginning of the coordinates but in other points of the given area.  

Function V is called variable sign function, if it in the given area around coordinates 

beginning can have different signs. 

Arbitrary function V = V(x, y ) which turns to zero only at х = y  = 0, and where  х, y 

are deviations in which the equation of system motion is written is called Laypunov 

function. Let’s determine time derivative of function V. Recollect what gradient 

operator stands for: 

( , ) ( , )V x y V x y
x x

 
     

 
i j grad   

– direction of fast change of  function. Now time 

derivative of function ( , )f x y  can be written down, 

considering ,x y  depend on   t : 

dV V V dx V dy V

dt t x dt y dt t

   
   
   

   

1 2

1 2

( , ) ( , )

, , ,

V V
f x y f x y

x y

dV
V f f

dt

 
 
 

  v v

 

Laypunov theorem about nonlinear systems stability: if for equations of the 

system (23) one can choose the stable Lyapunov function V(x, y), such that its time 

derivative function /dV dt  was also definite sign function (or constant sign function), 

but have the sign opposite to sign V, then the given system is stable. 

Example: Let nonlinear system be described by equations 

 

( , )V x y

( , )V x y
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3

3

dx
x x

dt
dy

y
dt

   

  


 

Let us choose Lyapunov definite sign function of type: 
2 2( , )V x y x y   

Find time derivative of Laypunov function 

     

1 2

3 3 2 4 4

( , ) ( , )

2 2 2

dV V dx V dy V V
f x y f x y

dt x dt y dt x y

dV
x x x y y x x y

dt

   
   
   

        
 

Function /dV dt  is definite sign function but it is 

opposite to function sign ( , )V x y , hence the system is 

stable. 

2.4. Harmonic linearization method 

One of the main methods of higher order nonlinear systems at present time is 

approximative method of harmonic linearization. Let’s analyze the example when the 

object with linear transfer function is controlled by the block with nonlinear 

characteristic  

( )y F x .      (25) 

Suppose harmonic signal enters nonlinear component input  

sin( )x A t      (26) 

Output signal will be periodic hence it can be decomposed into 

( sin( )) ( )sin( ) ( )cos( )y F A t q A q A high harmonics       

Fourier series 

 

Laypunov definite sign function 
2 2( , )V x y x y   



144 
 

2

0

2 2

0 0

1
( sin( )) ( sin( ))

2

1 1
( sin( ))sin( ) sin( ) ( sin( ))cos( ) cos( )

y F A t F A d

F A d F A d

high harmonics



 

  


       
 

 

   
     
   





   

There will be no constant component for odd symmetry of nonlinear characteristic 

that is why we have 

2

0

1
( sin( )) 0

2
F A d



 


     (27) 

Then output signal can be written down 

( ) ( )
x

y q A x q A high harmonics




      (28) 

Linear part of closed CS вследствие инерционности является фильтром низких 

частот, т.е. высокие гармоники проходят ее со значительно большим 

ослаблением, чем первая: 

( ) ( )
x

y q A a q A high harmonics




  

( ) ( ) ,
p d

q A q A x p
dt

     

  (29) 

Such a representation is called harmonic linearization of non-linearity and variables 

are determined by formulae  

2 2

0 0

1 1
( ) ( sin( ))sin( ) , ( ) ( sin( ))cos( )q A F A d q A F A d

A A

 

     
 

   , (30) 

are called harmonic linearization coefficients. 

Transfer function of linear component has the form of   
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( ) ( ) , ( , ) ( ) ( ) ,

( , ) ( ) ( ) ( ) ( )

p p
y q A q A x W A p q A q A p j

j
W A j q A q A q A q A j


 




         

    
 (31) 

Transfer function does not depend on frequency. It increases the magnitude of input 

signal and is called complex amplifying coefficient. 

 Thus nonlinear element can be substituted by linear element.Its frequency 

response depend on amplitude of input signal. 

Example. Find amplification complex coefficient of given nonlinear component. We 

use  MathCAD 

     

    nonlinear component characteristic  

 

   

 

Nonlinear element characteristic and output signal 

Find amplification coefficient а for different magnitudes,   b=0 as function is 
even  

        

Find amplification coefficients and equivalent sinewaves at different magnitudes. 
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Nonlinear element characteristic and  output signal 

Find amplification coefficient а for different magnitudes,   b=0 as function  is 
even.  
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Find amplification coefficients and equivalent sinewaves at different magnitudes 

         
 

 

2.5. Self-exciting oscillations analysis algorithm.  

With the help of nonlinear element harmonic linearization the closed loop 

system(Fig.a) equates to the system with linear equivalent element(Fig 

b).Investigation of  system with nonlinear element  

results in linear system investigation. 

Find characteristic equation 

( ) ( ) 1, ( ) 1 / ( ),H HW p W A W p W A   
( ) ( ) ( ), ( ) ( ) ( )HW j U jV W A q A jq A        

From the last equation it follows that: 

( ) ( ) ( ) ( ) 1

( ) ( ) ( ) ( ) 0

U q A q A V

U q A q A U
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 (32) 

Where ( )q A , ( )q A are harmonic linearization coefficients. Equation solution 

provides us equilibrium state points ,П ПA . 

At solving the problem Goldfarb diagram is easy to use,its algorithm is given below. 

Analyze the example with  MathCAD use. 

Investigate the system on  self-exciting oscillations  presence 
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float 5
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float 5

3.




2

1.

7. 
2

 
4

 1.



 

W(j)

V()

U()2

1
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A=∞ 
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Goldfarb diagram 

1. Plot the locus ( )W j  

2. Plot the locus 1 / ( )HW A  

3. Find ,П ПA  solving the equation : 

( ) ( ) ( ) ( ) 1

( ) ( ) ( ) ( ) 0

U q A q A V

U q A q A U

 
 

 
  

 

4. If at motion along locus 1 / ( )HW A в 

сторону увеличения A the point is 

covered by locus ( )W j , then magnitude 

A will correspond  unstable self-excited 

oscillations(point 1).If the point is not 

covered by locus ( )W j ,the at magnitude 

A stable self-excited oscillations occur  

(point 2) 
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Harmonic linearization  coefficient 
of nonlinear component 

 

 

Find crossover point, frequency and magnitude 

 

 

      

   
   

   

The obtained values of 
parameters and   

correspond to  stable self-excited 
oscillations because by point 
moving across the locus  in the 
direction of increasing  
magnitude – a,  locus does not 
cover the point  
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float 5
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