ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА. ПОЛНЫЙ ФАКТОРНЫЙ ЭКСПЕРИМЕНТ

Процесс определения явного вида уравнения регрессии получил название *регрессионного анализа*. Для различных математических планов эксперимента уравнение регрессии содержит различные составляющие:

а) для планов первого порядка уравнение регрессии включает линейные эффекты и парные взаимодействия:

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + b_{12} X_1 X_2 + \dots + b_{n-1,n} X_{n-1} X_n$$
 (1)

б) для планов второго порядка уравнение регрессии включает линейные эффекты, парные взаимодействия и квадратичные эффекты:

$$y=b_0+b_1X_1+\ldots+b_nX_n+b_{12}X_1X_2+\ldots+b_{n-1,n}X_{n-1}X_n+b_{11}X_1^2+\ldots b_{nn}X_n^2$$
, (2) где b_0 — свободный член уравнения регрессии; $b_n,b_{12}\ldots b_{n-1,n},b_{11}\ldots b_{nn}$ — коэффициенты регрессии; X_n — условное значение фактора x_n .

Предположим, что изучается влияние ряда факторов $z_i(i=1,...,k)$ на некоторую величину y. Для этого проводятся эксперименты по определенному плану, который позволяет реализовать все возможные комбинации факторов. Причем каждый фактор рассматривается лишь на двух фиксированных уровнях (верхнем и нижнем). Число всех экспериментов (опытов) в этом случае будет равно $n=2^k$, где k — количество изучаемых факторов. Постановка опытов по такому плану называется полным факторным экспериментом типа 2^k (ПФЭ 2^k). План проведения экспериментов записывается в виде матрицы планирования, в которой в определенном порядке перечисляются различные комбинации факторов на двух уровнях. Например, в табл. 1 приведена матрица планирования ПФЭ 2^3 для трех факторов: z_1, z_2, z_3 . Знак «+» говорит о том, что во время опыта значение фактора устанавливают на верхнем уровне, а знак «-» показывает, что значение фактора устанавливают на нижнем уровне.

Таблица 1 – Матрица планирования $\Pi \Phi \ni 2^3$

Значение фактора	z_1	Z_2	Z_3
1	+	+	+
2	-	+	+

Значение фактора	z_1	z_2	z_3
3	+	-	+
4	1	-	+
5	+	+	-
6	1	+	-
7	+	-	-
8	-	-	-

При проведении экспериментов получают значения исследуемой величины y для каждого опыта (или серии опытов). Затем переходят к построению математической модели. Под моделью понимается вид функции $y = f(z_1, z_2, ..., z_k)$, которая связывает изучаемый параметр со значениями факторов, лежащих в интервале между верхним и нижним уровнями. Эту функцию называют *уравнением регрессии*. По накопленному разными исследователями опыту работы с различными моделями можно считать, что самыми простыми моделями являются алгебраические полиномы. Для обработки результатов проведенных экспериментов и дальнейшего определения коэффициентов уравнения регрессии факторы приводят к одному масштабу. Это достигается путем кодирования переменных. Обозначим нижний уровень фактора z_i через z_i , а верхний уровень через z_i . Тогда новые кодированные переменные x_i будут определяться через z_i по формуле

$$X_i = \frac{z_i - z_i^0}{\varepsilon_i} \tag{3}$$

где z_i — натуральное значение i-го фактора; z_i^0 — натуральное значение i-го фактора на основном уровне; ε_i — интервал варьирования i-го фактора. При таком кодировании все новые переменные будут принимать значения от -1 до +1. Линейное уравнение регрессии относительно новых переменных имеет вид:

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k \tag{4}$$

Если требуется изучить влияние парных взаимодействий различных факторов на исследуемый параметр, то уравнение регрессии записывают в виде

(1). Прежде чем определять коэффициенты выбранной модели, матрицу планирования записывают относительно новых переменных. Далее матрицу дополняют (если это требует вид выбранного уравнения регрессии) столбцами знаков «+» и «-», соответствующих уровням, на которых будут находиться взаимодействия факторов. Знаки этих столбцов получают с помощью исходной матрицы планирования (табл. 2).

Таблица 2 – Матрица планирования для обработки результатов ПФЭ

Значение фактора	Φ	актој	ЭЫ	Взаимодействия		Результаты опытов			Среднее результатов	
	x_1	x_2	x_3	x_{12}	x_{13}	x_{23}	y_1	y_2	<i>y</i> ₃	Усреднее
1	+	+	+	+	+	+				
2	_	+	+	_	_	+				
3	+	_	+	_	+	_				
4	_	_	+	+	_	_				
5	+	+	_	+	_	_				
6	_	+	_	_	+	_				
7	+	_	_	_	_	+				
8	_	_	_	+	+	+				

Обычно проводят несколько серий опытов для каждого эксперимента. Это необходимо для проверки уравнения на адекватность.

Адекватность — это способность модели предсказывать результаты эксперимента в некоторой области с требуемой точностью. Результаты опытов в каждом j-м эксперименте ($j=1,\ldots,n$) записываются в правые столбцы матрицы планирования. В последнем столбце записываются средние выборочные значения полученных результатов для каждой серии опытов. Если каждый эксперимент повторяли m раз, то в матрице будет записано m столбцов y_1, y_2, \ldots, y_m .

Например, в табл. 2 видно, что каждый эксперимент повторялся три раза, т. е. m=3. Коэффициенты уравнения регрессии находятся с помощью метода наименьших квадратов. Так как матрица планирования ПФЭ 2^k должна удовлетворять определенным требованиям, то формулы, определяющие коэффициенты уравнения регрессии, достаточно просты:

$$b_0 = \frac{1}{N} \sum_{j=1}^{N} \overline{y}_j \tag{5}$$

$$b_i = \frac{1}{N} \sum_{j=1}^{N} x_{ij} \overline{y}_j \tag{6}$$

$$b_{im} = \frac{1}{N} \sum_{j=1}^{N} x_{ij} x_{jm} \overline{y}_{j}$$
 (7)

Некоторые из коэффициентов регрессии могут оказаться пренебрежимо малыми — незначимыми. Чтобы установить, значим коэффициент или нет, необходимо прежде всего вычислить оценку дисперсии, с которой он находится:

$$S_{\{y\}}^2 = \frac{1}{N} \sum_{j=1}^N S_j^2 \tag{8}$$

Для проверки воспроизводимости опытов находится отношение наибольшей из оценок дисперсий к сумме всех оценок дисперсий (расчетное значение критерия Кохрена):

$$G_{p} = \frac{\max S_{j}^{2}}{\sum_{j=1}^{N} S_{j}^{2}}$$
 (9)

Табулированные значения критерия Кохрена $G_{\rm T}$ приведены в приложении. Для нахождения $G_{\rm T}$ необходимо знать уровень значимости p, общее количество оценок дисперсий N и число степеней свободы f, связанных с каждой из них, причем f=k-1. При выполнении условия $G_p \leq G_{\rm T}$ опыты считаются воспроизводимыми, а оценки дисперсий — однородными. Если опыты невоспроизводимы, то можно попытаться достигнуть воспроизводимости выявлением и устранением источников нестабильности эксперимента, а также использованием более точных методов и средств измерений. Наконец, если никакими способами невозможно достигнуть воспроизводимости, то математические методы планирования к такому эксперименту применять нельзя.

Следует отметить, что с помощью ПФЭ все коэффициенты определяются с одинаковой погрешностью. Значимость каждого коэффициента уравнения

регрессии устанавливается с помощью критерия Стьюдента (прил. 5), вычисляя его расчетное значение:

$$t_p = \frac{|b|}{\sqrt{S_{\{y\}}^2}} \tag{10}$$

где b — коэффициент уравнения регрессии, для которого устанавливается значимость. Каждое рассчитанное значение t_p сравнивают с табличным значением критерия Стьюдента $t_{\rm T}$, которое выбирают для заданного уровня значимости p при числе степеней свободы f = N(k-1).

Если выполняется условие $t_p \ge t_{\scriptscriptstyle T}$, то коэффициент считается значимым. В противном случае коэффициент регрессии незначим, и соответствующий член можно исключить из уравнения регрессии. Получив уравнение регрессии, следует проверить его адекватность с помощью критерия Фишера (прил. 1–3), который представляет собой отношение:

$$F_{p} = \frac{\max(S_{ao}^{2}; S_{y}^{2})}{\min(S_{ao}^{2}; S_{y}^{2})}$$
(11)

где — S^2 ад оценка дисперсии адекватности, которая вычисляется как

$$S_{ao}^{2} = \frac{1}{N - B} \sum_{j=1}^{N} (y_{j}^{9} - y_{j}^{p})^{2}$$
 (12)

где y^3 , y^p — экспериментальное и расчетное значения функции отклика, полученные в j-м опыте; B — количество коэффициентов в уравнении регрессии. При вычислении расчетного значения критерия Фишера по формуле (18) в числителе указывается большая, а в знаменателе — меньшая из оценок дисперсий. Уравнение регрессии адекватно описывает результаты эксперимента, если выполняется условие $F_p < F_{\tau}$, где F_{τ} — табличное значение критерия Фишера для принятого уровня значимости p и числа степеней свободы f_1 числителя и f_2 знаменателя. Если гипотеза об адекватности отвергается, необходимо перейти к более сложной форме или провести эксперимент с меньшим интервалом варьирования факторов.

Анализ результатов предполагает интерпретацию полученной модели. Интерпретацию модели можно производить только тогда, когда она записана в кодированных переменных. Только в этом случае на коэффициенты не влияет масштаб факторов, и мы можем по величине коэффициентов судить о степени влияния того или иного фактора. Чем больше абсолютная величина коэффициента, тем больше фактор влияет на отклик (изучаемый параметр). Следовательно, можно расположить факторы по величине их влияния. Знак «+» у коэффициента свидетельствует о том, что с увеличением значения фактора растет величина отклика, а при знаке «-» – убывает.

Для получения математической модели в натуральных переменных z_i в уравнение регрессии вместо x_i необходимо подставить их выражения. При переходе к натуральным переменным коэффициенты уравнения изменяются, и в этом случае пропадает возможность интерпретации влияния факторов по величинам и знакам коэффициентов. Однако если уравнение адекватно, то с его помощью можно определять значения исследуемой величины, не проводя эксперимента и придавая факторам значения, которые должны лежать между нижним и верхним уровнем.

Пример задания

Для исследования влияния некоторых технологических факторов на прочность приклеивания низа обуви полиуретановым клеем были поставлены эксперименты по плану ПФЭ 2^3 , причем каждый эксперимент повторялся по три раза (табл. 3). В качестве факторов, влияющих на прочность y (кг/см²), были выбраны следующие: z_1 – количество наносимого клея (г/см²); z_2 – время активации клеевой пленки (c); z_3 – давление прессования при склеивании (кгс/см²).

Требуется построить уравнение регрессии, учитывая все взаимодействия факторов, проверить полученную модель на адекватность и произвести ее интерпретацию.

Результаты Значение Факторы фактора z_1 z_2 Z_3 *y*₁ *y*₂ *y*₃ 7,4 8,4 6,4 +++1 2 7,8 +8,6 7,0 3 12,3 9,0 9.3 ++ 5,8 5,8 5,7 4 5 18,8 17.0 15,2 6 8,4 8,4 6 7 7.0 9.4 +11,8 8 10,5 7,8 8,1

Таблица 3 – Исходная матрица планирования ПФЭ 2³

Работу следует выполнять в следующем порядке:

- 1) кодируются переменные;
- 2) достраиваются матрицы планирования в кодированных переменных с учетом парных взаимодействий и дополняются столбцом средних значений отклика;
 - 3) вычисляются коэффициенты уравнения регрессии;
- 4) проверяются вычисленные коэффициенты на значимость, предварительно определяя дисперсию воспроизводимости, и получается уравнение регрессии в кодированных переменных;
 - 5) проверяется полученное уравнение на адекватность;
 - 6) проводится интерпретация полученной модели;

7) выписывается уравнение регрессии в натуральных переменных.

Решение

1. Для каждого фактора принимаем основной уровень, интервал варьирования и зависимость кодированной переменной x_i от натуральной z_i . Оформляем результаты в таблицу (табл. 4).

Таблица 4 – Кодирование факторов

Факторы	Нижний	Верхний	Основной	Интервал	
	уровень	уровень	уровень	варьирования	
z_1	0,06	0,02	0,04	0,02	
z_2	300	60	180	120	
<i>Z</i> ₃	8	2	5	3	

Зависимость кодированной величины от натуральной

$$x_1 = \frac{z_1 - 0,04}{0,02} = 50z_1 - 2$$

$$x_2 = \frac{z_2 - 180}{120}$$

$$x_3 = \frac{z_3 - 5}{3}$$

2. Считаем средние выборочные результатов для каждого эксперимента:

$$\overline{y}_1 = \frac{1}{3}(7,4+8,4+6,4) = 7,4$$

$$\overline{y}_2 = \frac{1}{3}(8,6+7,0+7,8) = 7,8$$

$$\overline{y}_3 = \frac{1}{3}(12,3+9,0+9,3) = 10,2$$

$$\overline{y}_4 = \frac{1}{3}(5,8+5,8+5,7) = 5,77$$

$$\overline{y}_5 = \frac{1}{3}(18,8+17,0+15,2) = 17$$

$$\overline{y}_6 = \frac{1}{3}(8,4+8,4+6,0) = 7,6$$

$$\overline{y}_7 = \frac{1}{3}(11,8+7,0+6,0) = 9,4$$

$$\overline{y}_7 = \frac{1}{3}(10,5+7,8+8,1) = 8,8$$

Строим матрицу планирования с учетом всех взаимодействий и средних значений отклика (табл. 5).

Таблица 5 – Матрица планирования для обработки результатов ПФЭ

No	Факторы			Вза	Взаимодействия			Результаты			Среднее
Π/Π								опытов			результатов
	x_1	x_2	x_3	x_{12}	x_{13}	x_{23}	x_{123}	<i>y</i> 1	y_2	<i>y</i> ₃	${\mathcal Y}$ среднее
1	+	+	+	+	+	+	+	7,4	8,4	6,4	7,4
2	_	+	+	_	_	+	_	8,6	7,0	7,8	7,8
3	+	_	+	_	+	_		12,3	9,0	9,3	10,2
4	_	_	+	+	_	_	+	5,8	5,8	5,7	5,77
5	+	+	_	+	_	_	_	18,8	17,0	15,2	17,0
6	_	+	_	_	+	_	+	8,4	8,4	6,0	7,6
7	+	_	_	_	_	+	+	11,8	7,0	9,4	9,4
8	_	_	-	+	+	+	_	10,5	7,8	8,1	8,8

3. Вычисляем коэффициенты уравнения регрессии:

$$b_0 = \frac{1}{8} \sum_{j=1}^{8} \overline{y}_j = \frac{1}{8} (7, 4+7, 8+10, 2+5, 77+17+7, 6+9, 4+8, 8) = 9, 25$$

$$b_1 = \frac{1}{8} \sum_{j=1}^{8} x_{i1} \overline{y}_j = \frac{1}{8} (7, 4-7, 8+10, 2-5, 77+17-7, 6+9, 4-8, 8) = 1, 75$$

$$b_2 = \frac{1}{8} \sum_{j=1}^{8} x_{i2} \overline{y}_j = \frac{1}{8} (7, 4+7, 8-10, 2-5, 77+17+7, 6-9, 4-8, 8) = 0, 7$$

$$b_3 = \frac{1}{8} \sum_{j=1}^{8} x_{i3} \overline{y}_j = \frac{1}{8} (7, 4+7, 8+10, 2+5, 77-17-7, 6-9, 4-8, 8) = -1, 45$$

$$b_{12} = \frac{1}{8} \sum_{j=1}^{8} x_{i1} x_{j2} \overline{y}_j = \frac{1}{8} (7, 4-7, 8-10, 2+5, 77+17-7, 6-9, 4+8, 8) = 0, 5$$

$$b_{13} = \frac{1}{8} \sum_{j=1}^{8} x_{i1} x_{j3} \overline{y}_j = \frac{1}{8} (7, 4-7, 8+10, 2-5, 77-17+7, 6-9, 4+8, 8) = -0, 75$$

$$b_{23} = \frac{1}{8} \sum_{j=1}^{8} x_{i2} x_{j3} \overline{y}_j = \frac{1}{8} (7, 4+7, 8-10, 2-5, 77-17-7, 6+9, 4+8, 8) = -0, 9$$

$$b_{123} = \frac{1}{8} \sum_{j=1}^{8} x_{i1} x_{j2} x_{j3} \overline{y}_j = \frac{1}{8} (7, 4-7, 8-10, 2+5, 77-17+7, 6+9, 4-8, 8) = -1, 7$$

4. Находим дисперсию воспроизводимости. Столбец 6 вычисляем по формуле:

$$S_j^2 = \frac{1}{n-1} \sum_{i=1}^n \left[\left(y_{j1} - \overline{y_j} \right)^2 \right]$$

Данные заносим в таблицу 6.

Таблица 6 – Расчет дисперсий

j		1		2	3	4	5	6
	y_I	<i>y</i> ₂	<i>y</i> ₃	$\overline{\mathcal{Y}}_{j}$	$\left(y_{j1}-\bar{y}_{j}\right)^{2}$	$\left(y_{j2}-\bar{y}_j\right)^2$	$\left(y_{j3}-\bar{y}_j\right)^2$	$S^2_{\ j}$
1	7,4	8,4	6,4	7,4	0	1	1	1
2	8,6	7,0	7,8	7,8	0,64	0,64	0	0,64
3	12,3	9,0	9,3	10,2	4,41	1,44	0,81	3,33
4	5,8	5,8	5,7	5,77	0,0009	0,0009	0,0049	0,0034
5	18,8	17,0	15,2	17,0	3,24	0	3,24	3,24
6	8,4	8,4	6,0	7,6	0,64	0,64	2,56	1,92
7	11,8	7,0	9,4	9,4	5,76	5,76	0	5,76
8	10,5	7,8	8,1	8,8	2,89	1	0,49	2,19

Суммируя элементы столбца 6 таблицы 6, получаем:

$$\sum_{j=1}^{8} S_j^2 = 18,0834$$

Отсюда получаем дисперсию воспроизводимости:

$$S_{\{y\}}^2 = \frac{1}{8} \sum_{j=1}^{8} S_j^2 = \frac{18,0834}{8} = 2,26$$

5. Определяем среднее квадратическое отклонение коэффициентов:

$$S_{\{y\}} = \sqrt{\frac{S_{\{y\}}^2}{n \cdot m}} = \sqrt{\frac{2,26}{8 \cdot 3}} = 0,293$$

Из таблиц распределения Стьюдента (прил. 5) по числу степеней свободы $n(m-1)=8\cdot 2=16$ при уровне значимости $\alpha=0,05$ находим $t_{\kappa p}=2,12$. Следовательно, $t_{\kappa p}\cdot S_{\{y\}}=2,12\cdot 0,293=0,52$. Сравнивая полученное значение с коэффициентами уравнения регрессии, видим, что все коэффициенты кроме $b_{1,2}$ больше по абсолютной величине 0,52. Следовательно, все коэффициенты кроме

 $b_{1,2}$ значимы. Полагая $b_{1,2} = 0$, получаем уравнение регрессии в кодированных переменных:

$$y = 9,25 + 1,75x_1 + 0,7x_2 - 1,45x_3 - 0,75x_1x_3 - 0,9x_2x_3 - 1,7x_1x_2x_3$$

6. Проверим полученное уравнение на адекватность по критерию Фишера. Так как дисперсия воспроизводимости найдена в предыдущем пункте, то для определения расчетного значения критерия $F_{\text{расч}}$ необходимо вычислить остаточную дисперсию $S^2_{\text{ост}}$. Для этого найдем значения изучаемого параметра по полученному уравнению регрессии \tilde{y}_j (j=1,...,8), подставляя +1 или -1 вместо x_i в соответствии с номером j эксперимента из табл. 5:

$$\begin{split} \tilde{y}_1 &= 9,25+1,75+0,7-1,45-0,75-0,9-1,7=6,9 \\ \tilde{y}_2 &= 9,25+1,75(-1)+0,7-1,45-0,75(-1)-0,9-1,7(-1)=8,3 \\ \tilde{y}_3 &= 9,25+1,75+0,7(-1)-1,45-0,75-0,9(-1)-1,7(-1)=10,7 \\ \tilde{y}_4 &= 9,25+1,75(-1)+0,7(-1)-1,45-0,75(-1)-0,9(-1)-1,7=5,3 \\ \tilde{y}_5 &= 9,25+1,75+0,7-1,45(-1)-0,75(-1)-0,9(-1)-1,7(-1)=16,5 \\ \tilde{y}_6 &= 9,25+1,75(-1)+0,7-1,45(-1)-0,75-0,9(-1)-1,7=8,1 \\ \tilde{y}_7 &= 9,25+1,75+0,7(-1)-1,45(-1)-0,75(-1)-0,9-1,7=9,85 \\ \tilde{y}_8 &= 9,25+1,75(-1)+0,7(-1)-1,45(-1)-0,75-0,9-1,7(-1)=8,3 \end{split}$$

Находим остаточную дисперсию:

$$S_{ocm}^{2} = \frac{3}{8-7} \sum_{j=1}^{8} (\tilde{y}_{j} - \overline{y}_{j})^{2} = 3[(6,9-7,4)^{2} + (8,3-7,8)^{2} + (10,7-10,2)^{2} + (5,3-5,77)^{2} + (16,5-17)^{2} + (8,1-7,6)^{2} + (9,85-9,4)^{2} + (8,3-8,8)^{2}] = 3 \cdot 1,9234 = 5,77$$

Расчетное значение критерия Фишера F_{pacy} :

$$F_{pac4} = \frac{S_{ocm}^2}{S_{\{y\}}^2} = \frac{5,77}{2,26} = 2,55$$

Табличное значение критерия $F_{\text{табл}}$ находим из таблицы критических точек распределения Фишера (прил. 1) при уровне значимости $\alpha=0.05$ по соответствующим степеням свободы $k_1=n-r=8-7=1$ и

 $k_2 = n(m-1) = 8 \cdot 2 = 16$. $F_{ma\delta n} = 4,49$. Так как $F_{pacq} = 2,8 < F_{ma\delta n} = 4,49$, то уравнение регрессии адекватно.

7. Проведем интерпретацию полученной модели:

$$y = 9.25 + 1.75x_1 + 0.7x_2 - 1.45x_3 - 0.75x_1x_3 - 0.9x_2x_3 - 1.7x_1x_2x_3$$

По уравнению видно, что наиболее сильное влияние оказывает фактор x_1 – количество наносимого клея, так как он имеет наибольший по абсолютной величине коэффициент. После него по силе влияния на отклик (прочность приклеивания низа обуви) идут: тройное взаимодействие всех факторов $x_1x_2x_3$; фактор x_3 – давление пресса при склеивании; парное взаимодействие x_2x_3 – сочетание времени активации клеевой пленки и уровня давления при склеивании; парное взаимодействие x_1x_3 – сочетание количества наносимого клея и уровня давления при склеивании; фактор x_2 – время активации клеевой пленки. Так как коэффициенты при x_1 и x_2 положительные, то с увеличением этих факторов увеличивается отклик, т.е. увеличивается прочность. Коэффициенты при x_3 , x_1x_3 , x_2x_3 , $x_1x_2x_3$ отрицательные, это означает, что с уменьшением фактора x_3 и перечисленных взаимодействий значение отклика будет возрастать, а с увеличением – убывать.

8. Выписываем уравнение регрессии в натуральных переменных, подставляя вместо x_i их выражения через z_i , которые берем из табл. 4:

$$y = 9,25 + 17,5(50z_1 - 2) + 0,7\frac{z_2 - 180}{120} - 1,45\frac{z_3 - 5}{3} - 0,75(50z_1 - 2)\frac{z_3 - 5}{3} - 0,9\frac{z_2 - 180}{120} \cdot \frac{z_3 - 5}{3} - 1,75(50z_1 - 2)\frac{z_2 - 180}{120} \cdot \frac{z_3 - 5}{3}$$

Преобразовав это уравнение, окончательно получаем его вид в натуральных переменных:

$$y = 10,87 - 62,5z_1 - 0,029z_2 - 1,23z_3 + 1,18z_1z_2 + 30z_1z_3 + 0,007z_2z_3 - 0,236z_1z_2z_3$$