федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»

методические указания по дисциплине «Методология моделирования систем»

ПРАКТИЧЕСКАЯ РАБОТА РЕШЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ Цель практической работы:

- уметь составлять математическую модель транспортной задачи;
- применять методы решения транспортных задач;
- решать транспортные задачи «Поиском решения» в Excel

Программное обеспечение: электронные таблицы Excel Предварительная подготовка:

В общем виде ее можно представить так: **требуется найти такой план** доставки грузов от поставщиков потребителям, чтобы стоимость перевозки (или суммарная дальность, или объем транспортной работы в тонно-километрах) была наименьшей. Следовательно, задача сводится к наиболее рациональному прикреплению производителей к потребителям продукции (и наоборот). В простейшем виде, когда распределяется один вид продукта и потребителям безразлично, от кого из поставщиков его получать, задача формулируется следующим образом: имеется ряд пунктов производства $A_1, A_2, ..., A_m$ с объемами производства в единицу времени (месяц, квартал) равными соответственно $a_1, a_2, ..., a_m$, и пункты потребления $B_1, B_2, ..., B_n$, потребляющие за тот же промежуток времени соответственно $a_1, a_2, ..., a_n$ продукции. В случае если решается закрытая (сбалансированная) задача, сумма объемов производства на всех m пунктах-поставщиках равна сумме объемов потребления на всех n пунктах-получателях:

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j.$$

Кроме того, известны затраты на перевозки продукции от каждого поставщика к каждому получателю — эти величины обозначаются c_{ij} . В качестве неизвестных величин выступают объемы продукта, перевозимого из каждого пункта производства в каждый пункт потребления, соответственно обозначаемые x_{ij} .

Тогда наиболее рациональным прикреплением поставщиков к потребителям будет такое, при котором суммарные затраты на транспортировку будут наименьшими:

min
$$F(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
.

При этом каждый потребитель получает нужное количество продукта: $\sum_{i=1}^m x_{ij} = b_j$, и каждый поставщик отгружает весь произведенный им продукт:

 $\sum_{j=1}^{n} x_{ij} = a_i$. Здесь также нужно оговорить неотрицательность переменных: поставка

может быть нулевой, но не может быть отрицательной.

Открытую (несбалансированную) транспортную задачу приводят к такому же виду, вводя в модель фиктивного поставщика или потребителя, которые сбалансируют спрос и потребление.

В настоящее время разработано множество различных алгоритмов решения транспортной задачи: метод северо-западного угла, распределительный метод,

метод потенциалов, венгерский метод и т.д. Все они относительно просты и по ним составлены десятки программ для вычисления на ПК. Кроме того, математическая модель транспортной задачи позволяет описывать множество ситуаций, далеких от проблемы перевозок, например, оптимальное размещение заказов на производство изделий с разной себестоимостью.

Рассмотрим решение транспортной задачи:

Залача

Минимизировать затраты на перевозку грузов с заводов-производителей (Белоруссия, Урал, Украина) на торговые склады (Казань, Воронеж, Курск, Москва). Учесть возможности поставок каждого из производителей при максимальном удовлетворении запросов потребителей. Затраты на перевозки от заводов-изготовителей к складам приведены в таблице. Там же приводятся поставки производителей и запросы потребителей:

	Склады:	Казань	Воронеж	Курск	Москва
Заводы:	поставки	500	1000	300	400
Белоруссия	700	4,5	2,0 (2)	3,5	6,0
Урал	600	3,0 (3)	4,0	7,0	1,5 (1)
Украина	900	5,0	5,5	4,5 (4)	2,5

Решение задачи

Методом **минимального** элемента вначале найдем *допустимый* (опорный) *план* перевозок: перевозки всё время ставятся на маршруты с минимальными тарифами, а если будут два маршрута с одинаковым тарифом, то предпочтение нужно отдать тому из них, для которого возможная перевозка больше.

Первой заполняется ячейка Урал-Москва (см. красные цифры в таблице), т.к. стоимость перевозки минимальна:

	Остаток:	Казань	Воронеж	Курск	Москва
Белоруссия	700	0	0	0	0
Урал	200	0	0	0	400
Украина	900	0	0	0	0
	Остаток:	500	1000	300	0

Вторая заполняемая ячейка Белоруссия-Воронеж:

	Остаток:	Казань	Воронеж	Курск	Москва
Белоруссия	0	0	700	0	0
Урал	200	0	0	0	400
Украина	900	0	0	0	0
	Остаток:	500	300	300	0

Третья – Урал-Казань:

	Остаток:	Казань	Воронеж	Курск	Москва
Белоруссия	0	0	700	0	0
Урал	0	200	0	0	400
Украина	900	0	0	0	0
	Остаток:	300	300	300	0

Четвертая – Украина-Курск:

	Остаток:	Казань	Воронеж	Курск	Москва
Белоруссия	0	0	700	0	0
Урал	0	200	0	0	400
Украина	600	0	0	300	0
	0	200	200	^	^

Оставшийся ресурс (Украина-600) распределяем:

	Остаток:	Казань	Воронеж	Курск	Москва
Белоруссия	0	0	700	0	0
Урал	0	200	0	0	400
Украина	0	300	300	300	0
	Остаток:	0	0	0	0

Последняя таблица и является опорным планом.

Стоимость перевозок для нее равна

700*2,0+200*3,0+400*1,5+300*5,0+300*5,5+300*4,5=7100.

Далее будем улучшать опорный план **распределительным методом**. Сущность распределительного метода состоит в том, что для каждой свободной клетки находится цикл, в который входят, кроме неё, только заполненные клетки. С помощью этого цикла определяют, на сколько изменятся транспортные расходы, если ввести в свободную клетку единицу груза. Эта величина k_{ij} называется индексом свободной клетки (i,j). Если $k_{ij} < 0$, то в клетку вносится максимально возможная перевозка (она равна минимальной перевозке в «отрицательных» клетках цикла), а если $k_{ij} \ge 0$, то маршрут (i,j) использовать не стоит и проверяется следующая клетка. Процесс заканчивается, когда выясняется, что для всех свободных клеток $k_{ii} \ge 0$

0	700	0	0		
200	0	0	400		
300	300	300	0		
4.5-2.0+5.5-5.0=3>0					

0	700	0	0		
200	0	0	400		
300	300	300	0		
3,5-4,5+5,5-2,0=2,5>0					

0	700	0	0		
200	0	0	400		
300	300	300	0		
6,0-1,5+3,0-5,0+5,5-2,0=5>0					

0	700	0	0		
200	0	0	400		
300	300	300	0		
4,0-3,0+5,0-5,5=0,5>0					

0	700	0	0		
200	0	0	400		
300	300	300	0		
7,0-4,5+5-3,0=4,5>0					

0	700	0	0		
200	0	0	400		
300	300	300	0		
2,5-5,0+3,0-1,5=-1<0					

В последней табличке результат отрицательный, следовательно, в свободную клетку вносим максимально возможную перевозку, которая равна 300:

	Поставки:	Казань	Воронеж	Курск	Москва
Белоруссия	700	0	700	0	0
Урал	600	500	0	0	100
Украина	900	0	300	300	300
	П	F00	4000	200	400

Потребности: 500 1000 30

Стоимость перевозок для этой таблицы равна

700*2,0+500*3,0+100*1,5+300*5,5+300*4,5+300*2,5=6800.

Сделаем анализ данных последней таблицы (аналогично

вышеприведенному):

0	700	0	0		
500	0	0	100		
0	300	300	300		
4,5-2,0+5,5-2,5+1,5-3,0=4>0					

0	700	0	0		
500	0	0	100		
0	300	300	300		
3,5-4,5+5,5-2,0=2,5>0					

0	700	0	0		
500	0	0	100		
0	300	300	300		
6,0-2,5+5,5-2,0=7>0					

0	700	0	0		
500	0	0	100		
0	300	300	300		
4,0-1,5+2,5-5,5=-0,5<0					

0	700	0	0		
500	0	0	100		
0	300	300	300		
7,0-1,5+2,5-4,5=3,5>0					

0	700	0	0		
500	0	0	100		
0	300	300	300		
5,0-3,0+1,5-2,5=1>0					

В таблице с отрицательным результатом в свободную ячейку опять вносим максимально возможную перевозку, которая равна 100. Получаем таблицу:

	Поставки:	Казань	Воронеж	Курск	Москва
Белоруссия	700	0	700	0	0
Урал	600	500	100	0	0
Украина	900	0	200	300	400
	Потребности	500	1000	300	400

Стоимость перевозок равна

700*2,0+500*3,0+100*4,0+200*5,5+300*4,5+400*2,5=6750.

Самостоятельно докажите, что этот результат является оптимальным.

Решение транспортной задачи с помощью «Поиска решения» MS Excel Исходные данные

- Возможности поставок заводов (количество произведенной продукции)
- Потребности складов
- Стоимости перевозок с завода на склад *Результат:*

Количество перевозок с каждого завода на каждый склад при минимальных затратах

Математическая модель задачи

Обозначим через x_{ij} – количество перевозок с i завода j складу (например, x_{12} – количество перевозок из Белоруссии в Воронеж); a_i – количество продукции, которое может поставить складам завод i (700, 600 и 900 для данной задачи); b_j – количество продукции, необходимое складу j (соответственно, 500, 1000, 300, и 400).

Очевидно, что $a_i \le \Sigma x_{ij}$ для j = 1, ..., n; а $b_j \ge \Sigma x_{ij}$ для i = 1, ..., m.

Таким образом, потребность в продукции должна быть обеспечена.

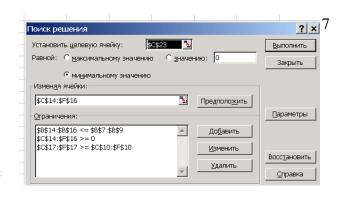
Если за c_{ij} обозначить стоимость одной перевозки с i завода j складу, то целевая функция (затраты на перевозки, равные сумме произведений количества перевозок с каждого завода на каждый склад) определяется равенством:

$$F(x)_{min} = \Sigma \Sigma c_{ij} * x_{ij},$$

- т.е. целевая функция должна быть минимальной при следующих ограничениях:
 - а) количество поставляемых грузов <= возможностей заводов;
 - б) количество поставляемых грузов >= потребностей складов;
 - в) число перевозок $\geq = 0$.

Решение задачи в Excel:

1. Заполнить и оформить две таблицы с исходными и искомыми данными. Первая таблица – содержит исходные данные. Вторая таблица - для поиска количества перевозок (ее рассчитает «Поиск решения» Excel).


	А	В	С	D	Е	F	G	Н	1	J
1	Минимизировать затраты на перевозку грузов с заводов-производителей (Белоруссия, Урал,							і, Украина)		
2	на торговые	склады (К	(азань, Вор	онеж, Курс	ск, Москва). Учесть	возможн	ости поста	вок	
3	каждого из пр	ооизводит	елей при г	максимальн	юм удовле	етворении	запросо	в потребит	елей.	
4										
5		Таблица	стоимост	пей перево	зок от зав	ода к скл	аду:			
6	- /	<i>Тоставки</i>	Казань	Воронеж	Курск	Москва				
7	Белоруссия	700	10	6	5	4				
8	Урал	600	6	4	3	6				
9	Украина	900	3	5	5	9				
10	Потребности сі	кладов:	500	1000	300	400				
11										
12		Таблица	для колич	ества пере	эвозок:					
13		Bceso:	Казань	Воронеж	Курск	Москва				
14	Белоруссия	0								
15	Урал	0								
16	Украина	0								
17		Итого:	0	0	0	0				

- 2. Подсчитаем количество перевозок по каждому складу и каждому заводу (для ввода ограничений в «Поиске решения»). Для этого в ячейки В14:В16 введем формулы для суммирования перевозок по заводам. Например, для Белоруссии формула будет такой: =СУММ(С14:F14). Для суммирования по столбцам, т.е. для каждого склада, поместим в ячейки С17:F17 соответствующие формулы. Например, для Казани в С17 формула: =СУММ(С14:С16).
- 3. Для вычисления целевой функции сначала подсчитаем суммарные расходы на перевозки по каждому складу. Например, для Казани формула будет такой: =C14*C7+C15*C8+C16*C9. Для вычисления целевой функции найдем сумму всех расходов по всем складам. Ячейку для целевой функции выберите сами.
- 4. Запустите Сервис Поиск решения
- 5. В диалоговом окне Поиска решения выбрать: *Целевая функция* минимальное значение например, ячейка С23; *изменяемые ячейки* С14:F16; ввести *ограничения*:

 $B14:B16 \leq B7:B9$;

 $C17:F17 \ge C10:F10;$ $C14:F16 \ge 0$

- 6. Произвести вычисления. Полученный результат сверьте с приведенным на рисунке:
- 7. Сделайте вывод по решению задачи: «Получили ... количество перевозок с заводов на склады. При таком

распределении перевозок затраты в количестве ... являются минимальными.»

	Α	В	С	D	Е	F	G
1	Минимизировать затраты на перевозку грузов с заводов-производителей						
2	на торговые	склады (К	(азань, Вор	оонеж, Курс	ск, Москва)	. Учесть і	возможно
3	каждого из пр	ооизводит	елей при г	максимальн	юм удовле	творении	запросов
4							
5		Таблица	стоимост	пей перево:	зок от зав	ода к скл	аду:
6	ſ	Тоставки	Казань	Воронеж	Курск	Москва	
7	Белоруссия	700	4,5	2,0	3,5	6,0	
8	Урал	600	3,0	4,0	7,0	1,5	
9	Украина	900	5,0	5,5	4,5	2,5	
10	Потребности сі	кладов:	500	1000	300	400	
11							
12		Таблица	для колич	ества пере	эвозок:		
13		Всего:	Казань	Воронеж	Курск	Москва	
14	Белоруссия	700	0	700	0	0	
15	Урал	600	500	100	0	0	
16	Украина	900	0	200	300	400	
17		Итого:	500	1000	300	400	
18							
19	Расходы						
20	на перевозк	u:	1500	2900	1350	1000	
21							
22							
23	Целевая фу	нкция:	6750				
- A							

Выполнение работы:

- 1. Составить математическую модель транспортной задачи (ваш вариант по указанию преподавателя).
- 2. Найти решение задачи, используя метод минимального элемента и распределительный метод.
- 3. Проверить результат, решив задачу Поиском решения в Excel.
- 4. Сделать выводы по работе.

Контрольные вопросы:

- 1. Что такое транспортная задача?
- 2. Что представляет собой математическая модель транспортной задачи?
- 3. В чем состоит метод минимального элемента решения транспортной задачи?
- 4. Как используется распределительный метод?
- 5. Как решить транспортную задачу Поиском решения в Excel?

Учебно-методическое и информационное обеспечение:

- **1.** Красс Максим Семенович. Математические методы и модели для магистрантов экономики : учебное пособие / М. С. Красс, Б. П. Чупрынов. 2-е изд., доп. СПб.: Питер, 2010. 496 с.
- **2.** Моделирование экономических процессов : учебник для вузов / под ред. М. В. Грачевой, Ю. Н. Черемных, Е. А. Тумановой. 2-е изд., перераб. и доп. Москва: ЮНИТИ, 2013. 543 с.

Содержание отчета:

- 1. Сделайте постановку транспортной задачи.
- 2. Приведите математическую модель.
- 3. Приведите опорный план перевозок.
- 4. Распределительным методом улучшите опорный план.
- 5. Приведите результаты решения задачи в Excel.
- 6. Сделайте выводы по работе.

Критерии оценки (Максимальный балл – 5)

- 5 работа полностью соответствует теме задания (имеются иллюстрации, описание, примеры использования на практике, ссылки на видео и др. материалы), оформление работы красочное, выбран соответствующий масштаб, обозначения.
- **4** работа полностью соответствует теме задания (имеются некоторые иллюстрации), оформление работы среднее, масштаб изображений и текстового документа выбран неудачно.
- **3** работа выполнено хаотично, в графическом материале допущены неточности (нет обозначений осей, надписи нечеткие), оформление работы среднее, шрифт по тексту документа различный.
- 2 работа не соответствует теме задания, оформление работы черно-белое, все графические материалы сканированы.
- 1 работа не соответствует теме задания, все графические материалы сканированы.

Задания:

Вариант 1. Минимизировать затраты на перевозку грузов с заводовпроизводителей (Белоруссия, Урал, Украина) на торговые склады (Казань, Рига, Воронеж, Курск, Москва). Учесть возможности поставок каждого из производителей при максимальном удовлетворении запросов потребителей. Затраты на перевозки от заводов-изготовителей к складам приведены в таблице:

1		Затраты на одну перевозку				
	Склады:	Казань	Рига	Воронеж	Курск	Москва
Заводы:	потребности поставки	180	80	200	160	220
Белоруссия	310	10	8	6	5	4
Урал	260	6	5	4	3	6
Украина	280	3	4	5	5	9

Вариант 2. Бетон, производимый на заводах A и B, нужно развозить по трем стройплощадкам N_1 , N_2 и N_3 . Известны потребности стройплощадок в бетоне, запасы бетона на каждом заводе и затраты на перевозку 1 тонны бетона от каждого завода до каждой стройплощадки. Требуется составить такой план перевозок, который обеспечивал бы наименьшие затраты.

2ород (20110011)	Затраты на перевозку по стройплощадкам				
Завод (запасы)	N_{I}	N_2	N_3		
A (320)	2	4	6		
B (380)	5	5	3		
	Потребности стройплощадок				
	200	220			

Вариант 3. Составьте оптимальный план проведения экскурсионных поездок в следующей ситуации. Возможно профинансировать поездки из пяти районов области (1,2,3,4,5) в три города (X, Y, Z). Количество участников экскурсий таково:

	(, , ,		J	J <u>1</u>	
Номер района	1	2	3	4	5
Количество экскурсантов	300	250	400	350	200

Экскурсионное бюро может обеспечить поездку следующего числа участников:

Город	X	Y	Z
Количество	400	500	600
экскурсантов			

Стоимость одной поездки:

Города	Стоимость поездок из районов							
	1	2	3	4	5			
X	500	700	750	1000	1100			
Y	700	600	400	500	800			
Z	1200	1000	800	600	500			

Составить такой план экскурсий, который:

- позволяет каждому из числа намеченных для участия в экскурсии побывать на ней;
- ❖ удовлетворяет условию, определяющему общее число экскурсантов, едущих в каждый из городов
- обеспечивает максимально низкие суммарные расходы финансирующей стороны.

Вариант 4. Для строительства дорог необходим гравий в количестве 130, 220, 60 и 70 единиц, который может быть поставлен из карьеров. Запасы гравия в этих карьерах составляют 120, 280 и 160 единиц соответственно, а тарифы перевозок представлены матрицей

$$C = \begin{vmatrix} 1 & 7 & 9 & 5 \\ 4 & 2 & 6 & 8 \\ 3 & 7 & 1 & 2 \end{vmatrix}$$

Составьте такой план перевозок гравия, при котором потребности в нем каждой из строящихся дорог были полностью удовлетворены при минимально возможной общей стоимости перевозок.

Вариант 5. Найдите такой план перевозок продукции с четырех складов пяти

Издержки доставки – массив Р							
Потребители ј Склады і	1	2	3	4	5		
1	3,2	2,7	2,9	2,5	2,8		
2	2,9	2,9	3,1	2,7	2,9		
3	2,7	2,6	2,8	2,4	2,7		
4	3,1	2,8	3,2	2,8	2,9		

потребителям, который требовал бы минимальных затрат.

Наличие на складе продукции (начиная с 1 склада по четвертый) - 250, 220, 280, 250. Потребителям необходимо доставить товаров на сумму (с 1 потребителя до 5) - 190, 210, 220, 230 и 150.

Вариант 6. Найдите оптимальный план загрузки вагонов контейнерами трех типов: длиной 3, 5 и 7 м при длине вагона — 14 м. Рассмотрите 6 возможных вариантов загрузки — ячейки C7:E12.

Для контроля суммарной длины контейнеров в вагоне созданы колонки «Проверка на max» и «Проверка на min». (Введите в ячейку G7 формулу = ECЛИ(G\$5>=F7; «погрузка»; «нет»), в ячейку H7 – формулу = ECЛИ(G\$5>=F7+C\$5; «свободно»; «погрузка»), которые скопируйте в диапазон G8:H12. Таким образом, суммарная длина контейнеров, загружаемых в вагон, не

	A	В	С	D	Е	F	G	Н	
1	Погрузка контейнеров								
2	Количество контейнеров длины 3, 5, 7 для всех вариантов погрузки: массивы к_3, к_5, к_7								
3	Количество вагонов в каждом варианте погрузки: массив X_4								
4									
5		Длина контейнеров (D)	3	5	7	Длина вагона	14		
						Суммарная	_		
						длина	Проверка	1 ' ' ' 1	
6	x_4	Тип контейнера Вариант погрузки	к_3	к_5	к_7	контейнеров	на тах	на min	
7		в1	0	0	2	14	погрузка	погрузка	
8		в2	0	1	1	12	погрузка	погрузка	
9		в3	2	0	1	13	погрузка	погрузка	
10		в4	1	2	0	13	погрузка	погрузка	
11		в5	3	1	0		погрузка	погрузка	
12		в6	4	0	0	<u> </u>	погрузка	погрузка	
		Перевозимое				[
		количество							
13		контейнеров	0	0	0				
		Требуемое количество							
14		контейнеров	35	25	15				
		Минимум целевой							
15		функции	0						
16	I	I							

должна превышать его длины, а также позволять загружать вагон еще хотя бы одним контейнером.)

Вариант 7. Организуйте оптимальный план перевозок пассажиров самолетами трех типов по четырем направлениям. Себестоимость перевозок и все остальные необходимые для решения задачи данные приводятся в таблице.

Себестоимость перевозок							
	1	2	3	4	грузоподъемн	Наличие самолетов	
Направление ј					ость		
Самолет і							
Тип 1	33	31	32	31	35	17	
Тип 2	30	29	29	28	48	13	
Тип 3	32	33	31	29	66	8	
Минимальная	350	450	430	420			
потребность							
Максимальная	390	490	480	480			
потребность							

Вариант 8. Найдите оптимальный план загрузки контейнера товарами четырех видов, учитывая прибыль от реализации каждого вида товара, его вес и занимаемый в контейнере объем.

~ Transfer					
вид товара характеристики	1	2	3	4	Предельные значения
Прибыль	33	38	43	28	
Объем ед. товара О	15	24	33	8	10000
Вес ед. товара В	4	8	7	5	3000
Наименьшее количество	120	70	50	100	
xmin					
Наибольшее количество	210	170	180	230	
xmax					

Вариант 9. С трех складов требуется развезти закупленные в них грузы в объемах 30, 40 и 50 тонн потребителям в два пункта доставки в объеме 40 и 80 тонн соответственно. Цена перевозки единицы груза с каждого склада в каждый пункт доставки известна и приведена в таблице:

Полиния	E01/00 110	Цена перевозки					
Наличие груза на складах		ПУНКТ	ПУНКТ				
		ДОСТАВКИ 1	ДОСТАВКИ 2				
СКЛАД 1 30		100	50				
СКЛАД 2 40		200	250				
СКЛАД 3 50		150	100				

Определить объемы перевозок со складов в пункты доставки так, чтобы стоимость транспортировки была минимальной.