Лекция 2. Проблемы экотоксикокинетики и токсикодинамики

Аннотация. Данная тема раскрывает основы экотоксикокинетики и токсикодинамики.

Ключевые слова. Липофильность, гидрофильность, токсикокинетика, персистентность, депонирование, биотрансформация, элиминация, биоаккумуляция, биоиндикаторы накопления.

Аутэкотоксические эффекты, аллобиоз, тдемэкотоксические эффекты. Резистентность, синэкотоксические эффекты, острая токсичность, хроническая токсичность, экотоксическая опасность, риск.

Методические рекомендации по изучению темы

- 1. Тема содержит лекционную часть, где даются общие представления по теме;
- 2. В качестве самостоятельной работы предлагается написать рефераты, раскрывающие основы экотоксикокинетики и выступить с устными докладами.

Рекомендуемые информационные ресурсы:

- 1. http://lib.rus.ec/b/153197
- 2. http://ekologiya.narod.ru/default.htm
- 3. http://toksikologiya-trav.ru/?p=119
- 4. http://www.medline.ru/public/monografy/toxicology/p8-ecotoxicology/p2.phtml
- 5. http://poison-russia.narod.ru/t.htm
- 6. http://abc.vvsu.ru/Books/ecolog_tocsicolog/default.asp
- 7. http://www.medline.ru/monograf/toxicology/p8-ecotoxicology/p1.shtml

Список сокращений

QSAR - quantitative structure-activity relationship

КССА – количественные соотношения «струкура-активность»

Конспект лекции

Общая схема реализации токсического действия. Для того чтобы вещество, попав в окружающую среду подействовало на организм оно должно

удовлетворять 2-м основным условиям: 1) Должно быть способно пройти через все физические, химические, биологические «ловушки» в окружающей среде и в организме. Все эти процессы протекают во времени, и их изучает экотоксикокинетика. Кинетика продвижения вещества к биофазе (место действия) зависит от: а) Дозы вещества, примененной извне. б) Способа (экспозиции) вещества. **B**) Абсорбции, введения распределения, трансформации и экскреции вещества. 2) Достигнув биофазы, вещества должно иметь способность к связыванию с биомишенями организма и к проявлению биоактивности. Эти процессы изучает токсикодинамика. Наиболее прогностическими параметрами биоактивности являются: 2) плодовитость, 3) видовое разнообразие. Химические свойства. Введение галогенов в молекулу почти всегда сопровождается ростом токсичности. Наличие в молекуле кратных связей С=С говорит об усилении ее реакционной способности, а потому и о повышении биоактивности и токсичности. Физико-химические свойства. Коэффициент прогностический распределения октанол/вода (logPow) -решающий фазы действия токсикокинетической вещества. Отражает параметр липидах. Растворимость растворимость вещества В воде ИЛИ гидрофильность (низкие и отрицательные значения logPow). Коэффициент распределения почва/вода. Грубо его можно оценить по растворимости Поскольку в адсорбции вещества воде. В основном участвует В составляющая почвы, целесообразно определять органическая адсорбции, отнесенный к органическому углероду. Летучесть. Коэфф. Генри H > 0,1 указывает на высокую летучесть вещества.

Математические прогнозы биоактивности веществ по их химическим и физико-химическим свойствам. Эти прогнозы осуществляются в рамках методологии КССА (QSAR - quantitative structure-activity relationship) – количественные соотношения «струкура-активность», которая позволяет определять некоторые биосвойства вещества: а) либо на основании легко измеряемых параметров (например, logPow), б) либо путем расчетов, исходя

из молекулярной структуры. Наиболее достоверно QSAR работает в отношении неорганических веществ. Прогноз токсичности возможен пока из них: 1) биодепрессанты, 2) только ДЛЯ немногих фенолы, нитрозамины, 4) нейроактивные вещества. Метод КССА не применим к пестицидам, т.к. многие из них: а) метаболизируются В организме образованием новых химических структур-метаболитов, б) рецепторы действия этих метаболитов не всегда известны. Т.о., экотоксический эффект невозможно описать базируясь только на данных о химическом строении повреждающий потенциал вещества. Его встречается мощными защитным свойствам биосистем: 1) с метаболическим реакциям, 2) с экскрецией, 3) с адаптацией и 4) с регенерацией.

Экотоксикокинетика изучает параметры поведения (судьбы) вещества в окружающей среде: 1) персистентность, 2) трансформация, 3) мобильность, 4) биоаккумуляция, 5) биомагнификация. Персистентность (химическая которой стойкость) отражает степень, вещество сохраняется cокружающей среде В своей первоначальной химической структуре. Вещества, стойкие к процессам разрушения, накапливаются в среде и превращаются экотоксиканты: 1) Неорганические В кадмий, 2) радионуклиды Органические суперэкотоксиканты: И др. полихлорированные дибензофураны диоксины, бифенилы, И полиароматические углеводороды. Количественно стойкость вещества в наземной среде определяется по времени деградации – т.е. времени, необходимого для 50% (DT50) или 90% (DT90) разложения примененной концентрации вещества. Деградацию пестицидов можно оценить: 1) по выделению (эмиссии) СО2, 2) по уменьшению потребления О2 (тест закрытых бутылок), 3) по уменьшению растворенного органического углерода. Проблема всех методов оценки стойкости веществ заключается в том, что они не выявляют различий между частичным и полным Трансформация. Различают разложением вещества. абиотическую

биологическую трансформацию (биотрансформация). Минерализация может протекать как абиотическим, так и биотическим путем.

Абиотическая трансформация идет в рамках процессов фотолиза, гидролиза и окисления. Биотрансформация протекает с участием бактерий и грибов. В основе биопревращений веществ лежат процессы окисления, гидролиза, дегалогенирования, расщепления циклических структур, деалкилирование и т.д. вплоть до минерализации. Продукты неполной биотрансформации могут быть более стойкими, чем исходные вещества. Биотрансформация металлов заключаются во включении металлов В органические производные - чаще всего это повышает их токсичность. Типичными механизмами биотрансформации веществ в организме животных считаются окисление, восстановление, гидролиз и конъюгация. В процессе окисления исходные вещества могут превращаться как в вещества с большей токсичностью («летальный синтез»), так и с меньшей токсичностью (детоксикация, нейтрализация). Связать канцерогенность со структурой вещества плохо удается из-за того, ЧТО большинство канцерогенов метаболизируются в организме. Мобильности водорастворимых веществ способствуют дожди и движение грунтовых вод. Известна обратная корреляция между жесткостью воды и токсичностью находящихся в ней К высвобождению металлов. металлов ИЗ донных осадков ведет деятельность микроорганизмов.

Биоаккумуляция - процесс, посредством которого организмы накапливают вещества вплоть до уровня, при котором начинают регистрироваться эффекты. Фактор биоаккумуляции токсические -ЭТО отношение концентрации вещества в организме к концентрации того же вещества в окружающей среде или пище. Водная среда обеспечивает наилучшие условия ДЛЯ биоаккумуляции веществ в организмах гидробионтов. Факторы, влияющие на биоаккумуляцию. Вещества с высокой летучестью, в целом, плохо накапливаются в организме. Металлы имеют тенденцию

накопляться в тех тканях, где ОНИ нормально содержатся как микроэлементы, в органах с интенсивным обменом веществ. Гидрофильные вещества в крови высших животных частично вступает в обратимую связь с альбуминами или с глобулинами. Комплекс «вещество-белок» служит Липофильные вещества динамичным резервом яда организме. максимально проявляют свою токсичность в клетках, богатых жирами. При стрессах, а также при высоких уровнях активности активируется липолиз, и из жировых депо начинает выходить в кровь депонированный в них токсикант. Биомагнификация - поступление веществ из пищи, в от биоконцентрирования. Пример: борьбы ДЛЯ вязовым заболонником деревья обрабатывали ДДТ. Часть пестицида попадала в поглощали и аккумулировали дождевые почву, где его (биоконцентрирование). У поедающих дождевых червей перелетных дроздов развивалось отравление пестицидом (биомагнификация). Особое значение имеет содержание в пищевых рационах животных мохообразных растений активных концентраторов радионуклидов И тяжелых металлов. экотоксикологии различают: 1) Индикаторы реакции - биоиндикаторы, которые отвечают на влияние веществ характерными функциональными изменениями: а) личинки мух, б) лишайники, гамазиды. 2) Индикаторы накопления -накапливают вещество: растения, мидии, дождевые черви и др. Их использование облегчает химический анализ и эффективность контроля бедственных ситуаций.

Поведение (судьба) веществ в почве. В отличие от водной среды и воздуха, однажды загрязненные наземные почвы и подводные почвы (седименты) никогда не смогут восстановиться полностью. Особенности почв: 1) Более сложны и гетерогенны, чем водная среда. 2) Малоподвижная среда, склонная накапливать вещества. 3) Острота химического стресса уменьшается в направлении сверху-вниз. 4) Определяющими для судьбы количество глинистых материалов, состав веществ являются виды И органического материала и др. Седименты выполняют роль резервуаров, где

отлагается большие количества веществ. Для седиментов характерны те же закономерности, что и для наземных почв. Вещества, находящихся в седиментах, возвращаются В воду за счет активности животных. Абиотические процессы (колебания рН) также могут быть спусковым крючком ремобилизации. Связанные остатки веществ. Вещества всех очень больших количествах химических классов В связываются почвенными частицами. При этом прочность связывания бывает высокой вещества не экстрагируются из осадков даже органическими растворителями. Токсические эффекты могут проявляться: 1) на уровне организма в виде эффектов аутэкотоксических (транзиторные токсические реакции, интоксикации т.д.); 2) на уровне популяции в виде демэкотоксических эффектов (снижение плодовитости и др.); 3) на уровне биогеоценоза в виде синэкотоксических эффектов (исчезновение отдельных видов и др.). Если оценивается экотоксичность одного вещества в отношении одного вида, то вполне достаточно использовать параметры, принятые токсикологии: 1) острая, подострая, хроническая токсичность; 2) дозы и концентрации, вызывающие мутагенное и иные виды эффектов. В более сложных биосистемах цифрами экотоксичность не измеряется И выражается через качественные понятия - «экологическая опасность» и «экологический риск». Основной закон экотоксикологии: «чувствительность разных видов животных к веществам всегда различна». Острое токсическое действие веществ на биоценоз - это, чаще всего, следствие аварий и катастроф. Хронической называют интоксикацию, развивающуюся результате продолжительного действия токсиканта (мутагенное и др. действие). По сути, хроническое воздействие экополлютантов - основная проблема экологии.