ОБУСТРОЙСТВО НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

Лекция №2

Доцент ОНД ИШПР Холодная Галина Евгеньевна

Обустройство нефтяных и газовых месторождений: организация строительства объектов

Обустройство нефтяных и газовых месторождений

Этапы обустройства: подготовительный, строительный, заключительный

На **подготовительном** этапе создаются временные площадки для складов, очищается территория, проводится электроэнергия и завозятся основные строительные материалы, включая трубы и запорную арматуру.

На **строительном** этапе выкапываются траншеи, устанавливаются фундаменты и собираются трубопроводы и оборудование.

На заключительном этапе проводятся пуско-наладочные работы и ввод объектов в эксплуатацию.

ЭТАПЫ ПРОИЗВОДСТВА РАБОТ

- Территория застройки;
- Подготовка площадки (работы подготовительного периода);
- Возведение подземной части;
- Возведение надземной части;
- Возведение ограждающих конструкций;
- Монтаж инженерного оборудования;
- Внутренние отделочные работы;
- Монтаж технологического оборудования;
- Наружные отделочные работы;
- Благоустройство

Обустройство нефтяных и газовых месторождений

Строительные материалы и изделия, используемые в нефтегазопромысловом комплексе, должны обладать **долговечностью и высокой прочностью, быть устойчивыми** к воздействию атмосферных осадков и коррозии, а также быть пожаростойкими.

Основным строительным материалом в настоящее время является сталь, которая отличается высокой надежностью. Однако, как и все металлы, сталь подвержена коррозии.

Для защиты от коррозионного воздействия и решения других эксплуатационных проблем элементы установок дополнительно обрабатываются специальными материалами.

Объекты инфраструктуры и оборудование при обустройстве месторождения

Обустройство нефтяных и газовых месторождений

включает в себя строительство различных объектов для обеспечения добычи, подготовки, транспортировки и реализации нефти и газа:

- Скважины;
- Обустройство кустов нефтяных и газовых скважин;
- Групповые замерные установки;
- Дожимные насосные станции;
- Нефтепроводы и газопроводы;
- Установки для путевого подогрева нефти;
- Факельные системы с трубопроводами;
- Установки для ввода реагентов в трубопровод;
- Центральные пункты сбора и подготовки нефти, газа и воды;
- Объекты для поддержания пластового давления;
- Сооружения электроснабжения и связи;
- Дорожная доступность.

При обустройстве месторождения следует предусмотреть:

- Комплексную автоматизацию и телемеханизацию технологического процесса;
- Максимальное использование блочного и блочно-комплектного оборудования и установок основного технологического назначения, а также блок-боксов для объектов производственновспомогательного назначения;
- Коридорную объединенную прокладку промысловых коммуникаций (трубопроводов, ЛЭП, линий связи и телемеханики, автодорог и прочих) с единым конструктивным решением и кооперацией систем и объектов электрохимической защиты трубопроводов, а также электро- и водоснабжения

Строительно-монтажные работы по обустройству нефтяных и газовых месторождений — это работа в нескольких направлениях.

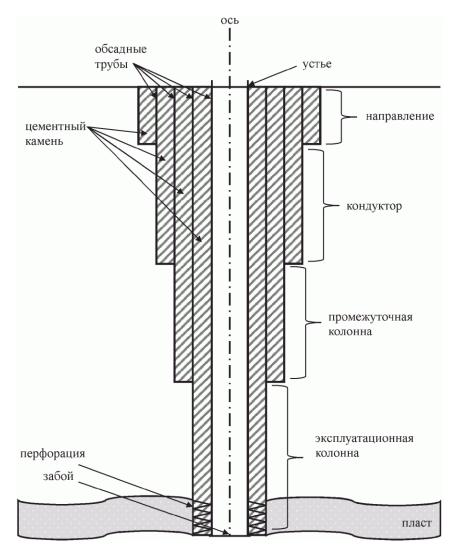
Сначала проводятся земляные работы, такие как разработка выемок, вертикальная планировка, уплотнение грунтов и создание грунтовых подушек.

Затем выполняется устройство бетонных и железобетонных конструкций, включая опалубочные и арматурные работы, а также монтаж монолитных бетонных и железобетонных конструкций. Территорию месторождения благоустраивают, обустраивая проезды, пешеходные дорожки и площадки.

Кроме того, устанавливаются наружные инженерные сети и коммуникации, например, магистральные нефтепроводы

Специальные бетонные работы также играют важную роль, как и монтаж стальных конструкций, таких как резервуарные и технологические металлоконструкции

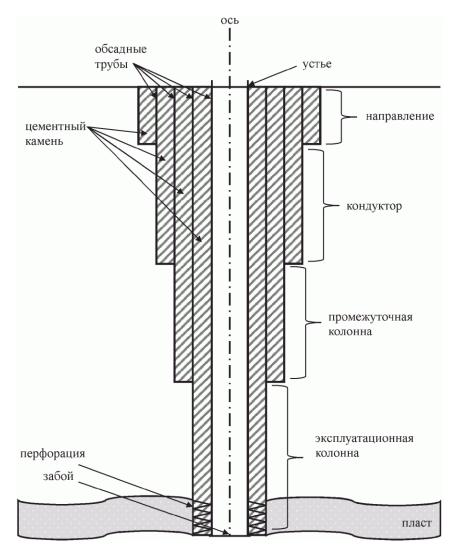
В рамках транспортного строительства возводятся специальные сооружения межотраслевого хозяйства, включая резервуары и газгольдеры.


Строятся пионерные сооружения, которые включают первый куст для получения попутного газа для электростанции, мини НПЗ для переработки нефти с пионерного куста на печное и дизельное топливо для собственных нужд, а также шламоперерабатывающую установку для получения сухой фракции для покрытия грунтовых дорог.

Также возводится комплекс мобильных зданий, таких как вагон-дома и блоки обогрева для вахтенного персонала. Под кусты скважин выделяются площадки, которые могут быть как естественными, так и искусственными, на которых располагаются устья скважин, технологическое оборудование, инженерные коммуникации и служебные помещения. В укрупненный куст могут входить несколько десятков наклонно-направленных скважин, с суммарным дебитом по нефти до 4000 баррелей в день и газовым фактором до 200 кубометров на баррель.

Технологические сооружения куста скважин обычно включают приустьевые площадки добывающих и нагнетательных скважин, замерные установки, блоки подачи реагентов-деэмульгаторов и ингибиторов, газораспределительные и водораспределительные блоки, блоки закачки воды в нагнетательные скважины, станции управления насосами ЭЦН и ШГН, фундаменты под станкикачалки, трансформаторные подстанции, площадки под ремонтный агрегат, емкости-сборники и технологические трубопроводы.

Вне зависимости от добываемого ресурса, *устье* представляет собой крайне важный функциональный элемент системы.



От него зависит производительность и эффективность добычи, а также удобство во время процесса бурения. **При обустройстве** нефтяных точек добычи особе внимание уделяется именно устью.

Устье эксплуатационной нефтяной скважины

- это комплекс труб, расположенных на самом верху скважины, и оборудование, которое регулирует показатели давления внутри шахты во время бурения

Немаловажно отметить, что все детали этого элемента проходят специализированную обработку для того, чтобы обеспечить максимально плотное прилегание даже во время интенсивного бурения

Такая плотная подгонка гарантирует образование крайне герметичных соединений, что в случае добычи нефтяных продуктов немаловажно: они значительно понижают или вовсе исключают образование протечек

Все элементы рассчитаны на различное давление и подбираются сходя из требований конкретной конструкции и условий эксплуатации

Функции устья:

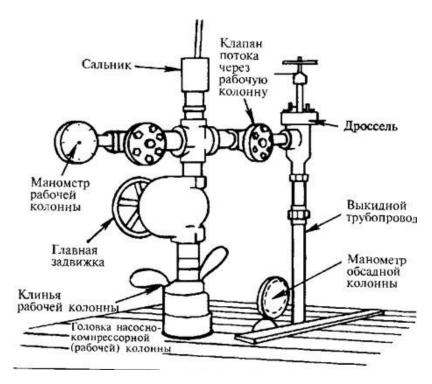
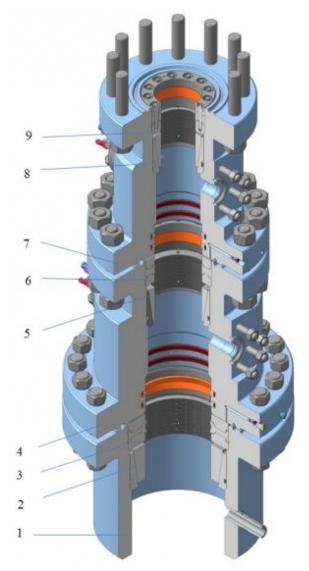

Защитная - предотвращает обвал рыхлых почв Собирательная - является точкой выхода всех важных составляющих скважины Регулирующая - за счёт оборудования можно контролировать давление внутри системы

Схема устья скважины

Само устье нефтяной скважины являет собой комбинацию

нескольких функциональных узлов:

- головка обсадной колонны;
- головка насосно-компрессорной колонны;
- фонтанная арматура

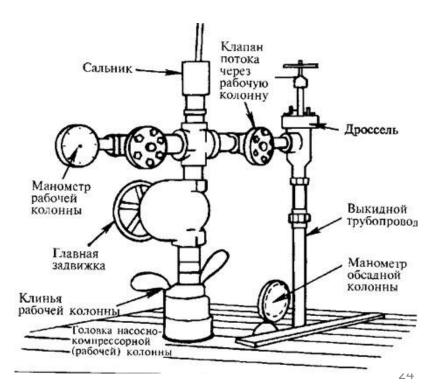

Головка обсадной колонны — это соединяющее звено между обсадными конструкциями и разнообразным нефтяным устьевым оборудованием

1 – однофланцевая колонная головка;

2, 5, 8 – клиновая подвеска;

3, 6, 9 – первичное уплотнение;

4, 7 – двухфланцевая колонная головка


Головка обсадной колонны:

- создает герметизацию пространства;
- держит массу технической колонны;
- удерживает эксплуатационную колонну

Головка насосно-компрессорной колонны

Обслуживание скважин обеспечивается целым комплексом структур, оборудования и элементов, к которым относится, и головка насосно-компрессорной — или рабочей — колонны.

Головка насосно-компрессорной колонны опирается на головку обсадной колонны и выполняет ряд следующих *функций*:

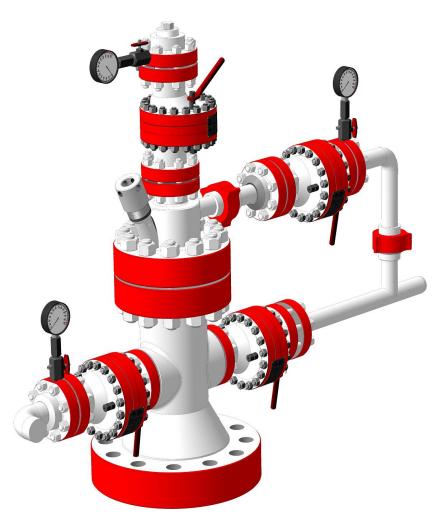
- Поддержка и фиксация. Головка удерживает насоснокомпрессорную колонну в устойчивом положении, а также несколько снижает нагрузку на неё
- Герметичное уплотнение. Разработка нефтяных скважин налагает определенные требования, среди которых отсутствие протечек или прорывов. Надежная герметизация позволяет снизить риски образования пробоев
- Вывод управляющего оборудования. Патрубки регулирования жидкостных или газовых потоков выходят на поверхность именно через неё

Головка насосно-компрессорной колонны

Сама головка насосно-компрессорных труб идентична обсадным конструкциям с двойным фланцем.

Для того, чтобы обеспечивать должную герметизацию, головка может иметь гнездо или специальную расточку для качественного уплотнения.

! Конструкция устья скважины должна позволять бесконфликтное размещение оборудования, поэтому продумывать его размещение следует заранее. Бурение также не должно влиять на функционирование аппаратуры, в противном случае возможно возникновения аварийных или, в случае добычи нефтяных залежей, небезопасных ситуаций.


Фонтанная арматура

Фонтанная арматура— это целая система механизмов и приспособлений, выполняющих ряд регулирующих и контролирующих функций. Почти каждая схема устья скважины, предназначенной для добычи нефти включает в себя фонтанную

арматуру.

Фонтанная арматура

представляет собой комплекс устройств, предназначенных для герметизации устья фонтанирующей скважины, подвески колонн лифтового назначения, а также для контроля и управления потоками

Фонтанная арматура

в состав фонтанной арматуры входят:

- колонная головка связана с обсадной колонной;
- трубная головка связана с лифтовыми колоннами;
- фонтанная ёлка распределение и регулировка продукции

Колонная головка

предназначена для обвязки устья скважины с целью герметизации межтрубных пространств, а также для подвески обсадных колонн и установки фонтанной арматуры.

Колонная головка обеспечивает возможность контроля за давлениями во всех межтрубных пространствах скважины.

Фонтанная ёлка предназначена для направления и регулирования потока жидкости из фонтанных труб.

Трубная головка предназначена для подвески фонтанных труб (НКТ).

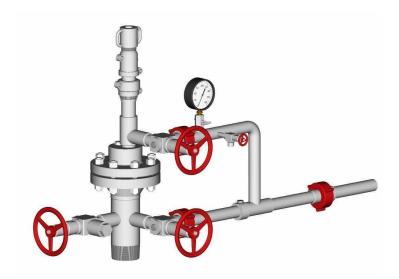
Фонтанная арматура состоит из двух элементов: **трубной** головки и фонтанной елки

Трубная головка устанавливается на колонную головку _{3:}

Фонтанная арматура

Из-за своей специфики, к этому оборудованию выдвигается ряд требований:

- способность выдерживать высокое давление;
- возможность проведения замеров давления;
- обеспечивать выпуск или закачку газа



Колонная головка, располагающаяся внизу арматуры фонтанного типа, необходима для осуществления подвешивания обсадных колонн, а также герметизации.

Фонтанная арматура

Арматура фонтанная является важным элементом в случае нефтяных разработок, потому имеет собственный ГОСТ. В нем перечислены все типы ключевых схем, среди которых:

- манометрическая;
- вентильная;
- тройниковая;
- дроссельная

При выборе типа необходимо ориентироваться на условия будущей эксплуатации

Обустройство кустов скважин

Обустройство кустов скважин

Обустройство куста скважин заключается в формировании специальной площадки с расположенными на ней устьями скважин, технологическим оборудованием, инженерными коммуникациями и служебными помещениями

Обустройство кустов скважин

В состав технологических сооружений куста скважин обычно входят:

- приустьевые площадки добывающих и нагнетательных скважин;
- замерные установки;
- блоки подачи реагентов-деэмульгаторов и ингибиторов;
- газораспределительные и водораспределительные блоки;
- блоки закачки воды в нагнетательные скважины;
- станции управления насосами ЭЦН и ШГН;
- фундаменты под станки-качалки;
- трансформаторные подстанции;
- площадки под ремонтный агрегат;
- ёмкость-сборник и технологические трубопроводы

- Приустьевые площадки добывающих и нагнетательных скважин

Для добывающих скважин вокруг площадок кустов предусмотрено замкнутое защитное обвалование высотой 1,0 м с шириной по верху обвалования 0,5 м. Для беспрепятственного доступа техники на территорию площадок кустов скважин предусмотрен переезд через обвалование

- Приустьевые площадки добывающих и нагнетательных скважин

Приустьевые площадки нагнетательных скважин представляют собой отсыпанные уплотнённым щебнем площадки высотой 0,15 м, размером 1,7 х 2,8 м и двухъярусную площадку обслуживания фонтанной арматуры 4,8 х 2 м.

- Приустьевые площадки добывающих и нагнетательных скважин

Также на площадке устьев скважин при необходимости могут располагаться узлы для запуска очистных устройств выкидных трубопроводов и устройства для закачки реагентов-деэмульгаторов, ингибиторов и другого оборудования

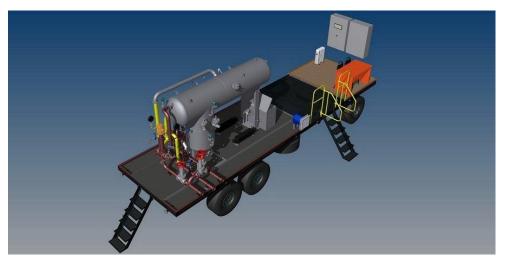
- **замерные установки** (ЗУ) это оборудование для контроля за разработкой месторождений

С помощью ЗУ на каждой скважине замеряется:

- дебит нефти, воды и газа,

- проводится оценка количества механических примесей в

продукции скважины


- замерные установки

Полученные данные позволяют:

- контролировать режим эксплуатации скважин и месторождения в целом;
- принимать нужные меры по ликвидации возможных отклонений

Так, при увеличении механических примесей в продукции скважины может возникнуть разрушение призабойной зоны.

Следовательно, необходимо изменить режим работы или закрепить призабойную зону

- замерные установки

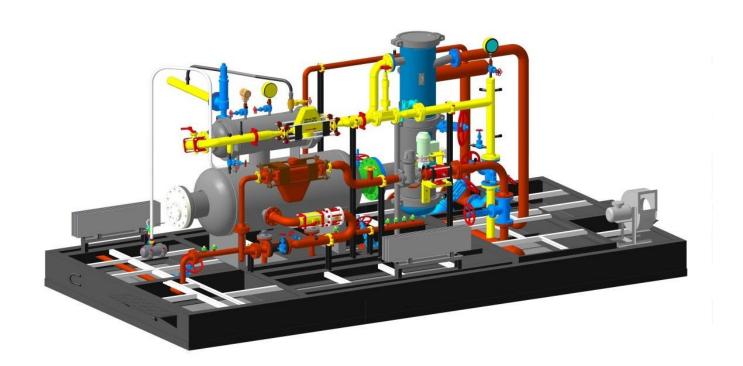
Для измерения дебита применяют *сепарационно-замерные установки*

Измерение количества каждого компонента продукции скважины требует их предварительного отделения (сепарации) друг от друга

Сепарационно-замерные установки

Состав установки:

- газосепаратор (трап),
- мерник,
- трубопроводная обвязка,
- газовая заслонка;
- датчики давления;
- массовый расходомер на жидкостной измерительной линии;
- массовый, вихревой или ультразвуковой расходомер на газовой измерительной линии;
- датчики давления на байпасных трубопроводах и на сепарационной емкости;
- датчики давления и температуры на жидкостных и газовых линиях после средств измерения расхода, показывающие средства измерения давления и температуры;
- ручной пробоотборник на жидкостной и газовой линиях, расположенные по потоку после средств измерения


- замерные установки

Оборудование при бессепарационном методе измерения:

- многофазный расходомер на газожидкостной линии;
- датчики давления и температуры на газожидкостной линии после средств измерения расхода;
- ручной пробоотборник на газожидкостной линии, расположенные по потоку после средств измерения расхода;
- блок местной автоматики

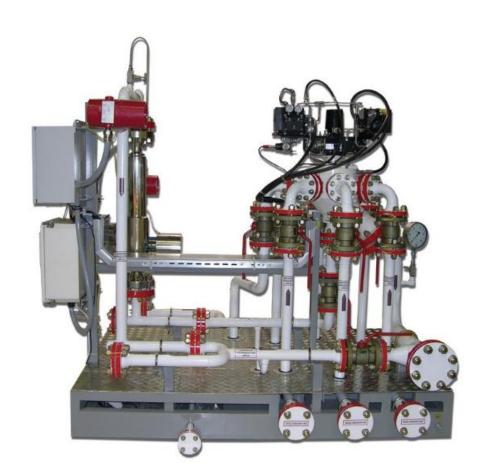
- замерные установки

Замерные установки бывают стационарные и передвижные (ПЗУ). ПЗУ позволяют проводить замеры в разных скважинах, удаленных на большое расстояние.

- замерные установки

На практике используют стационарные сепарационно-замерные установки 2х типов:

- индивидуальные,
- групповые


Индивидуальная сепарационно-замерная установка обслуживает только 1 скважину

Стационарные ЗУ чаще бывают групповыми - обслуживает несколько скважин

- замерные установки

состав СЗУ:

- устройство распределительное предназначено для поочередного подключения одной из нефтяных скважин к сепаратору,
- трубопроводы технологические,
- системы вентиляции, освещения и отопления,
- средства измерения и КИПиА,
- укрытие состоит из легкосбрасываемого металлического каркаса и панелей из стального профилированного листа с трудногорючим утеплителем

- *блоки подачи реагентов-деэмульгаторов и ингибиторов* предназначены для дозированного ввода жидких веществ в трубопровод промысловой системы транспорта и подготовки нефти. Это нужно для деэмульгации нефти, защиты трубопроводов и оборудования от коррозии, солей, карбонатных отложений и парафиноотложений

- *блоки подачи реагентов-деэмульгаторов и ингибиторов*Основные элементы, которые входят в состав блока подачи реагентов:

Насос-дозатор. Он осуществляет непрерывное объёмное дозирование жидких деэмульгаторов и ингибиторов коррозии.

Шестерённый насос. Он циклически перемешивает реагент и поддерживает его температуру в заданных пределах.

Расходная ёмкость. Она предназначена для дозированного ввода определённого объёма жидких деэмульгаторов и ингибиторов коррозии в трубопровод за регламентируемый промежуток времени.

Технологическая ёмкость. Она предназначена для хранения и подогрева реагента, оснащена электрическим обогревателем, визуальным указателем уровня с мерной линейкой, датчиками предельных уровней, заправочной горловиной с фильтром и дыхательным отверстием.

Контрольно-измерительные приборы (расходомер, датчик уровня в ёмкости, манометр и другие).

Внутренняя трубопроводная обвязка.

Запорная арматура (краны, вентили, заглушки).

- блоки подачи реагентов-деэмульгаторов и ингибиторов

Из-за высокой степени агрессивности химических реагентов всё оборудование изготавливается в коррозионностойком исполнении. Электрооборудование выполняется во взрывозащищённом исполнении.

- газораспределительные и водораспределительные блоки обеспечивают подготовку, редуцирование и поддержание давления газа (природного, попутного нефтяного, искусственного) на выходе ГРС на заданном уровне, а также для измерения расхода газа и одоризации его перед подачей потребителю при газоснабжении потребителей (населенных пунктов, производственных объектов и других сооружений, использующих газ) в районах с умеренным и

холодным климатом

- блоки закачки воды в нагнетательные скважины (БКНС) служат для закачки воды в нагнетательные скважины для поддержания пластового давления на нефтегазовых месторождениях

- блоки закачки воды в нагнетательные скважины (БКНС)

Конструкция БКНС представляет собой один или несколько блок-модулей, в которых уже установлен весь комплект необходимого оборудования в заводских условиях. На место эксплуатации станции поставляются готовыми к подключению линии транспорта воды в скважину, что сокращает сроки введения в эксплуатацию

- блоки закачки воды в нагнетательные скважины (БКНС)

Основу БКНС составляют плунёрные или центробежные насосные агрегаты различной производительности с электродвигателем. Задача насосов — повышение давления технологической воды до уровня, необходимого для нагнетания

в пласт.

- блоки закачки воды в нагнетательные скважины (БКНС)

В состав БКНС входят:

- насосные блоки;
- блок дренажных (вспомогательных) насосов;
- блок управления;
- блок низковольтной электроаппаратуры;
- блок распределительного устройства;
- блок напорной гребенки (коллекторов);
- блок операторный;
- блок маслохозяйства;
- ёмкость аварийного слива масла с трансформаторов;
- ёмкости дренажные подземные;
- шламовый амбар (в случае использования сепарации)

- станции управления насосами ЭЦН и ШГН

Станции управления насосами ЭЦН обеспечивают питание, управление работой погружной установки и защиту её от аномальных режимов работы

Они позволяют изменять параметры добычи и производительность установки соответственно изменениям скважинных условий. Благодаря увеличению и уменьшению количества оборотов двигателя можно оптимизировать производительность насоса, ускорить или при необходимости замедлить процесс добычи и предотвратить формирование газовых пробок

- станции управления насосами ЭЦН и ШГН

Станции управления ШГН предназначены для управления и контроля работы электродвигателя штанговых глубинных насосов (ШГН) или как их ещё называют станков—качалок.

Они применяются на станках-качалках для «реанимации» так называемых «засоренных» и «зависающих» скважин путём плавного и постепенного увеличения или уменьшения числа качаний без замены рабочего шкива.

- фундаменты под станки-качалки

Фундаменты под станки-качалки могут быть монолитными железобетонными, сборными железобетонными и металлическими. При этом важно обеспечить безосадочное основание для сохранения горизонтального положения фундамента и станка-качалки в процессе эксплуатации.

- фундаменты под станки-качалки

В общем случае фундамент обустраивают на монолитных плитах. Так как опорная плита должна нести существенную нагрузку (от 2,5 до 30 т), то фундамент усиливают несущими

сваями

- трансформаторные подстанции

- трансформаторные подстанции

Трансформаторные подстанции на месторождениях могут быть разных видов: Передвижные комплектные трансформаторные подстанции (КТПП). Их устанавливают не на стационарный фундамент, а на салазки или шасси. Такое исполнение позволяет оперативно транспортировать электрооборудование из одной точки в другую и в кратчайшие сроки организовать электроснабжение объекта. КТПП используют для питания экскаваторной и другой техники при разработке месторождений (угольные разрезы, шахты, рудники), а также для электроснабжения очистных и подготовительных участков на месторождениях.

Комплектные трансформаторные подстанции (КТП) для нефтедобычи. Их устанавливают вблизи промысловых скважин, где ведётся добыча нефти. В зависимости от разновидности, такие подстанции могут выполнять различные функции: от питания электрооборудования, которое качает нефть из скважин, до подпитки погружных насосов.

Рудничные комплектные трансформаторные подстанции (КТП-РН). Их применяют для электроснабжения трёхфазным током электроприёмников, которые устанавливают в подземных выработках шахт, рудников и других предприятий, не опасных по взрыву газа и пыли.

- площадки под ремонтный агрегат

это одно из технологических сооружений, которое предусматривается при обустройстве кустов скважин на месторождении

- площадки под ремонтный агрегат

Размещение площадки под ремонтный агрегат на кусте скважин решается проектом в каждом конкретном случае

Согласно ВНТП 3-85, наружные площадки для установки технологического оборудования при условии постоянного обслуживания его следует проектировать с бетонным покрытием. Такие площадки должны быть на 15 см выше планировочной отметки земли, а их уклоны для обеспечения отвода дождевых вод - не менее 0,003. При возможном разливе горючих жидкостей площадки следует ограждать бетонным бортом высотой не менее 15 см.

- ёмкость-сборник и технологические трубопроводы входят в состав сооружений при обустройстве нефтегазовых объектов

Ёмкость-сборник может использоваться, например, для сбора дождевых стоков с поверхности технологической бетонной площадки. Например, в проекте МФНС-5021 в её состав входит ёмкость-сборник с гидрозатвором объёмом 5 м³

- ёмкость-сборник и технологические трубопроводы

Технологические трубопроводы предназначены для транспортирования в пределах промышленного предприятия или группы предприятий сырья, полуфабрикатов, готового продукта, вспомогательных материалов, обеспечивающих ведение технологического процесса и эксплуатацию оборудования (пар, вода, воздух, газы, хладагенты, мазут, смазки, эмульсии и т. д.), отходов производства при агрессивных стоках, а также трубопроводы

оборотного водоснабжения

Особенности обустройства нефтяных и газовых скважин

Особенности обустройства нефтяных и газовых скважин

- Грифонообразование;
- Нефтяные и газовые фонтаны;

• Грифонообразование (грифон)

• Грифонообразование (грифон) - неожиданный прорыв эмульсии (часто газ) на поверхность земли под высоким давлением. Он движется по кольцевому пространству пробуренной скважины. Грифон может возникнуть в том случае, когда нарушается природное гидродинамическое равновесие.

Грифон наносит серьезный вред окружающей среде, а также жизни и здоровью людей.

Причины возникновения грифонообразование:

- Осуществление некачественного перекрытия высоконапорных пластов при использовании тампонажного раствора;
- Нарушение, образовавшееся в обсадных колоннах;
- Флюид может осуществлять свое движение через негерметичные соединения.
- Наличие тектонических трещин также способно стать причиной образования грифонов. Для профилактики их возникновения необходимо четко следовать установленным правилам создания скважины.

Особенности грифонов:

Во время возникновения грифона дополнительно происходит образование кратеров. Их размер может достигать нескольких десятков метров и даже больше.

Аварийная скважина в некоторых случаях бывает окружена несколькими грифонами. При их образовании часто могут происходить пожары.

Для устранения проблемы применяется герметизация путей, по которым движется флюид.

Профилактика образования грифонов:

- Создавать скважину только при наличии необходимого профессионального оборудования;
- Использовать только проверенные методы и технологии создания скважины;
- Минимальное значение скорости продавки цементного раствора, движущегося по кольцевому пространству 1,5 м/с;
- Максимальное значение скорости проработки скважины перед спуском обсадной колонны 45 м/ч;
- Установка центрирующих фонарей в зоне подъема цементного раствора;
- Спуск эксплуатационной колонны должен осуществляться с применением спайдеров.

Если грифон уже образовался, крайней мерой будет полная ликвидация аварийной скважины.

• Нефтяные и газовые фонтаны

Нефтяные фонтаны — это фонтанирование скважины с большим дебитом нефти (1500 — 2000 т/сут и более) и на много меньшим количеством газа (750 тыс.м³/сут). Принято считать, что 1,0 т нефти эквивалентна 1000 м³.

Газонефтяные фонтаны — это фонтанирование скважины с дебитом, где содержание газа более 50 % объёмных, а нефти менее 50 % объёмных.

Газовые фонтаны — это фонтанирование скважины с дебитом, с содержанием газа 95 — 100 % объёмных.

Нефтяные и газовые фонтаны

Фонтаны из нефтяных и газовых скважин являются крупнейшими авариями, и их часто относят к стихийному бедствию, парализующему нормальную работу предприятия, а чаще компании и даже отрасли.

Нередко открытое фонтанирование (ОФ) скважин приводит к гибели людей, уничтожению самих скважин, бурового оборудования и бурильного инструмента, пропадает огромное количество продукции, выбрасываемой фонтанирующей струей.

Открытые фонтаны представляют большую угрозу не только нефтепромысловым сооружениям, но и населенным пунктам и промышленным комплексам, расположенным в районе аварийного объекта.

Причины возникновения нефтяных и газовых фонтанов:

- Несоответствие конструкции скважины фактическим горно геологическим условиям;
- Несоответствие прочностных характеристик установленного противовыбросового оборудования фактическим давлениям, возникающим в процессе ликвидации газонефтеводопроявлений;
- Низкое качество монтажа противовыбросового оборудования, несоблюдение установленных условий его эксплуатации;
- Отступления от проектной конструкции скважины, нарушение технических условий свинчивания обсадных труб (недопуск колонн до проектных отметок, негерметичность резьбовых соединений и т.п.);

Несоответствие размера плашек превентора диаметру спускаемых (поднимаемых) труб. Срыв плашек превентора при расхаживании колонны труб;

Причины возникновения нефтяных и газовых фонтанов:

- Недостаточная дегазация раствора при возникновении газонефтеводопроявлений;
- Несвоевременность обнаружения возникновения газонефтеводопроявлений;
- Снижение прочности обсадной колонны в результате ее износа при спуско подъемных операциях;
- Недостаточная обученность производственного персонала, несоответствие его квалификации характеру проводимых работ и принимаемых решений;
- Низкая трудовая и производственная дисциплина;
- Некачественное цементирование обсадных колонн;
- Отсутствие в компоновке бурильной колонны шарового крана или обратного клапана. ₇₆

Профилактика образования нефтяных и газовых фонтанов:

- Не вскрывать пласты, которые могут вызвать проявления, без предварительного спуска колонны обсадных труб, предусмотренных ГТН.
- Долив скважины при подъеме бурильной колонны должен носить не периодический, а непрерывный характер, для чего на нагнетательной линии следует иметь отвод для присоединения гибкого шланга или специальную емкость для произвольного стока бурового раствора или использовать дозаторы.
- Цемент за кондуктором поднимать до устья скважины, чтобы обеспечить надежную герметизацию устья при борьбе с газо-, нефте- и водопроявлениями.

Профилактика образования нефтяных и газовых фонтанов:

- При снижении плотности глинистого раствора более чем на 20 кг/м³ (0,02 г/см³) необходимо принимать немедленные меры по его восстановлению.
- Так как колебания давления при спуско-подъемных операциях зависят от зазора между бурильной колонной и стенками скважины, следует избегать применения компоновок нижней части бурильной колонны с малыми зазорами.
- Колонну бурильных труб необходимо поднимать только после тщательной промывки скважины при параметрах глинистого раствора, соответствующих установленным ГТН. Промывать скважину следует при условии создания максимально возможной подачи насосов и при вращении бурильной колонны.

- Профилактика образования нефтяных и газовых фонтанов:
- Если при подъеме бурильных труб уровень глинистого раствора в затрубном пространстве не снижается, то это указывает на возникновение эффекта поршневания. В подобном случае бурильную колонну необходимо спустить ниже интервала проявления, промыть скважину и только после этого приступить к подъему инструмента.
- Перед вскрытием объектов с высоким пластовым давлением, где возможно проявление, под ведущей бурильной трубой устанавливают обратный клапан.

Промысловое оборудование для обустройства месторождения нефти и газа

Промысловое оборудование для обустройства месторождения нефти и газа

- Специальные агрегаты;
- Стационарные и передвижные грузоподъёмные сооружения;
- Талевая система и инструмент для спускоподъёмных операций;
- Ловильный инструмент

Контроль знаний

Самостоятельно изучить вопросы «Глушение газовых скважин», «Перфорация в газовой среде». Подготовить краткое описание по каждой теме по плану:

- 1) общие сведения и особенности «Глушение газовых скважин», «Перфорация в газовой среде»;
- 2) причины возникновения «Глушение газовых скважин», «Перфорация в газовой среде»;
- 3) профилактика образования «Глушение газовых скважин», «Перфорация в газовой среде»