ПРОМЫСЛОВОЕ ОБОРУДОВАНИЕ ДЛЯ ОБУСТРОЙСТВА МЕСТОРОЖДЕНИЯ НЕФТИ И ГАЗА

Лекция №2

Доцент ОНД ИШПР Холодная Галина Евгеньевна

```
1. Строительство (бурение) скважин: эксплуатационных; нагнетательных; наблюдательных; резервных; разведочных.
```

- 2. Объекты, обеспечивающие добычу, сбор, подготовку, транспорт нефти и нефтяного газа:
- скважина (устье), выкидная линия, ЛЭП 0.4 кв, КТП, ГЗУ, нефтесбор, ДНС, КНС, БГ, водовод, нагнетательная скважина (комплекс нефтепромысла);
- ДНС, УПС, нефтепроводы, ТП (товарный парк), сепарационные установки, ЦПС, УКНП, УПН, межпромысловые нефтесборы, промысловые водоводы, разводящие водоводы, КНС, БКНС;
- объекты термических методов воздействия на пласт (УПГ, паропроводы, насосное хозяйство).

- 3. Объекты, обеспечивающие нормальную эксплуатацию первой группы:
- объекты энергохозяйства: П/ст 110/35 ЛЭП 10,6 кв, ЛЭП-110/35/10,6 кв;
- автомобильные дороги;
- сооружения по защите окружающей среды и промышленной безопасности на месторождениях.

- 4. Объекты производственного, вспомогательного и административно-бытового назначения:
- -базы структурных единиц, подразделений и строительных организаций, офисы и многое другое, включая базы промыслов, общепита, вахтовых поселков.
- 5. Объекты жилищно-социальной сферы: жилые дома, поселки, микрорайоны; поликлиники, больницы, амбулатории; школы и дошкольные учреждения; объекты коммунального хозяйства; объекты торговли; спортивные сооружения; объекты культуры; АБК, НГДУ, АО, офисы (с 2000 года передано Местным Органам власти).

Состав нефтегазопромысловых объектов при обустройстве нефтяных и газовых месторождений

Состав нефтегазопромысловых объектов при обустройстве нефтяных и газовых месторождений

Состав объектов нефтяных месторождений подразделяется на две следующие группы:

- 1. Нефтепромысловые объекты: скважины; кусты скважин; ГЗУ нефтесборные сети; ДНС технологические трубопроводы; УПС технологические трубопроводы; УПСВ технологические трубопроводы; КНС, БГ, нагнетательные скважины; УПГ.
- 2. Административно хозяйственные объекты и вспомогательные объекты в нефтедобыче.

Нефтегазопромысловое строительство является одним **из видов промышленного строительства**.

Проектирование, строительство объектов нефтегазовой отрасли имеет ряд специфических особенностей.

В первую очередь содержание проектов обустройства нефтяных, газовых и газоконденсатных месторождений зависит от размеров нефтяной или газовой залежи, от коллекторских свойств (пористости, проницаемости) залежи, качественных характеристик углеводородного продукта (вязкости, газового фактора, обводненности, наличие сероводорода, углекислоты, парафина).

И самое главное, от объема извлекаемых запасов нефти, газа и газового конденсата.

Прежде, чем приступить к разработке проекта обустройства нефтяного или газового месторождения, необходимо иметь проект разработки этих месторождений, утвержденные балансовые и извлекаемые запасы, оформленный горный отвод.

В зависимости от запасов углеводородного продукта выбираются варианты: строительство города для проживания будущего обслуживающего персонала, вахтовые поселки или привлечение местного населения.

Нередко нефтяные и газовые месторождения располагаются в **труднодоступных районах**.

Второй особенностью проектирования и строительства нефтяных и газовых объектов является их рассредоточенность.

Например, одно из крупных в мире нефтяных месторождений Гавар (Саудовская Аравия) имеет размеры в плане 225х25 км и высоту 370 м, а газовое месторождение Уренгой 120х30 км при высоте 200 м, Баклановское нефтяное месторождение в Пермском крае растянуто в длину на 43 километра.

Третьей особенностью при проектировании и строительстве объектов в нефтегазовой отрасли является сооружение магистральных нефтепроводов, газопроводов и продуктопроводов.

Данные трубопроводы прокладываются на протяжении нескольких тысяч километров, пересекают горные перевалы, моря, крупные реки.

При строительстве нефтегазопромысловых объектов должно быть учтено, что все объекты работают в условиях пожаро – и взрывоопасности.

К категории **особо опасных объектов** относятся насосные и компрессорные станции, особенно те, которые расположены внутри производственных зданий.

По трубопроводам перекачивается нефть и газ с давлением до 10 МПа.

Большинство перекачивающих агрегатов работают от высоковольтного электропривода. На центральном пункте сбора (ЦПС) смонтирован резервуарный парк с различным количеством резервуаров (от 5 до 20) емкостью 5 - 10 тыс. кубических метров каждый для подготовки и хранения нефти. Данный объект относится к особо опасным.

Все объекты, обеспечивающие пожаробезопасность на нефтяных и газовых месторождениях при проектировании и строительстве, должны соответствовать утвержденным нормативам

В нефтегазопромысловом строительстве механизация трудоемких строительных работ происходит по следующим направлениям:

1. Механизация сварочно-монтажных работ на трассах

(внедрение автоматической сварки, изоляции, подъемной и землеройной техники с заменой ковшовых экскаваторов на траншеекопатели, специальных устройств по переходу естественных преград, водоемов, автодорог и железных дорог);

- 2. Возведение и монтаж быстрособираемых конструкций, ангаров и блочно-комплектных устройств с доведением их в заводских условиях до узловой сборки на месте возведение зданий и сооружений;
- **3. Строительство зданий из сборного и монолитного железобетона** с применением современных специализированных агрегатов по привозке больше габаритных изделий и панелей (сборка их на строительной площадке сантехкабины, стеновые панели и т.д.);

- 4. **Отделочные работы внутри и снаружи зданий** (мозаично-шлифовальные машины, цемент-пушки, бетономешалки, затирочные машины и т.д.);
- 5. **Механизация погрузочно-разгрузочных работ** автопогрузчики, электрокары, многоковшовые погрузчики, пневматические разгрузчики цемента и т.д.;

6. Механизация подготовительных и землеройных работ с использованием корчевателей, кусторезов, рыхлителей, бульдозеров, экскаваторов, траншеекопателей; механизмов для рытья котлованов и уплотнения грунта: самоходных катков, трамбовок электрических.

Внедрение механизации в строительстве при обустройстве месторождений позволило в целом по объектам нефтяной отрасли повысить производственность труда в строительстве на 30-40 %, за последние 10 лет качество работ увеличилось в 2-3 раза.

Важнейшим фактором трудоемкости снижения дальнейшая является строительства механизация бурения строительных процессов на основе современных использования комплекса машин И механизмов.

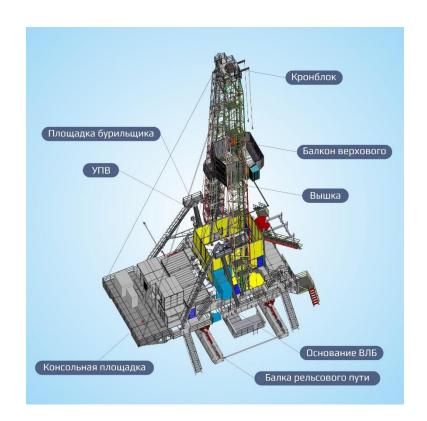
Учитывая огромные объемы выполнения **бурения и строительно-монтажных работ**, каждая доля процента повышения уровня механизации обеспечивает значительные сокращения затрат труда.

Система новых машин, поступающих на стройки в последнее время, наиболее полно соответствует технологическим требованиям и условиям производства работ.

Увеличение мощности и рабочих скоростей строительных машин сопровождается значительным улучшением их экономических показателей; они оснащаются средствами для программного и дистанционного управления.

Обустройство нефтяных и газовых месторождений **начинается с бурения новых нефтегазовых скважин**.

Строительство скважины


Весь цикл работ, связанный с изготовлением скважины называется *строительством скважины* и подразделяется на следующие этапы:

- 1) подготовительные работы;
- 2) монтаж вышки и оборудования;
- 3) подготовка к бурению;
- 4) процесс бурения;
- 5) вскрытие пласта и испытание на приток нефти и газа;
- 6) демонтаж бурового и силового оборудования, вышки и привышечных сооружений;
- 7) рекультивация земли.

Монтаж бурового оборудования

- Подготовительные работы. Отсыпка. Строительство площадки.
- Укладка фундамента
- Монтаж основания блоков (ВЛБ, насосный блок, силовой блок, блок приёмных мерников, ОЦС)
- Монтаж бурового оборудования
- Монтаж буровой вышки
- Обвязка
- Пуско-наладочные работы

Демонтаж бурового оборудования

Демонтаж буровой установки или снятие вышечно-лебедочного и других блоков с последней пробуренной на кусте скважины, их транспортировка с кустовой площадки должны производиться после остановки работы всех эксплуатационных скважин, находящихся в опасной зоне.

Демонтаж бурового оборудования

Демонтаж буровой установки производится в порядке обратном ее монтажу. После демонтажа буровой установки территория должна быть выровнена и рекультивирована, земля должна быть возвращена прежним землепользователям.

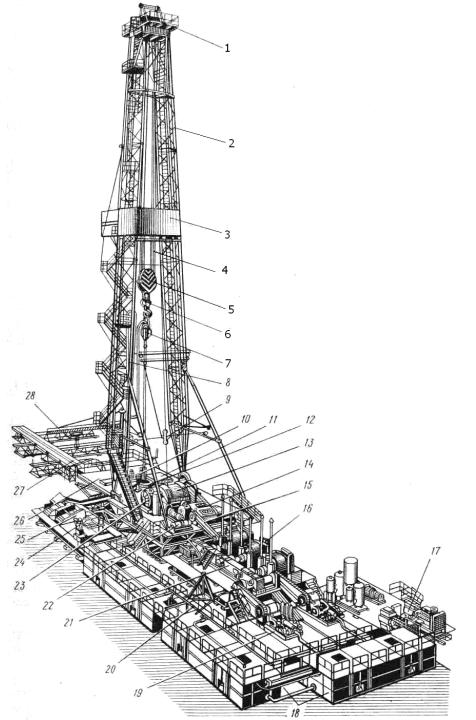
Подготовка БУ к передвижке

Агрегаты и механизмы, применяемые при бурении скважин.

Для бурения скважин в настоящее время применяется в основном два типа буровых установок: **стационарные** - типа БУ-75; БУ-125; БрЭ-70 ПС и **передвижные** (мобильные) на автомобильном шасси - МБУ-125; TZJ 20; БР-125 на жестком шасси МЗКТ 79191; самоходные и передвижные установки типа УРБ-3А3, АРБ и АР:

Буровая установка (стационарная)

Буровая установка (передвижная)


Буровые установки, буровое оборудование

Буровое оборудование монтируют 3 способами:

- 1. Агрегатный (индивидуальный),
- 2. Мелко-блочный
- 3. Крупноблочным.

Наземная буровая установка включает следующее оборудование:

- √Буровая вышка;
- √Буровая лебёдка;
- √Система верхнего привода или ротор с вертлюгом;
- √Буровой ключ;
- √Талевая система;
- √Буровые насосы;
- √Ёмкости;
- Оборудование для приготовления бурового раствора;
- √Оборудование очистки бурового раствора от шлама;
- √Противовыбросовое оборудование;
- ✓ Мостки и склад хранения буровых труб, поворотный кран;
- √Генератор для обеспечения работы электроприводов оборудования

Состав и компоновка буровой установки

1-кронблок; *2*-вышка; 3 — балкон верхового; 4 - талевый канат; 5 - талевый блок; 6-крюк; 7 - вертлюг; 8-буровой рукав; 9 - успокоитель талевого каната; 10 - автоматический буровой ключ; 11 - подсвечник; *12*-ротор; *13*-лебедка; *14*- коробка передач; 15 - наклонная передача; 16 - силовые агрегаты; 17 – компрессорная станция; 18 -циркуляционная система; 19- буровой насос; 20- манифольд; 21- суммирующий редуктор силовых агрегатов; 22-регулятор подачи долота; 23-гидродинамический тормоз; 24- гидроциклоны; 25-вибросито; 26- основание лебедочного блока; 27 - приемные мостки и стеллажи; 28- консольно-поворотный кран.

Буровые установки, буровое оборудование

Классификация

•По виду бурения:

- ✓эксплуатационного
- ✓разведочного
- **√технических**

•По типу привода:

- √электрический;
- √дизельный.
- √электрогидравлический;
- √дизель-электрический;

•По технике передвижения:

- √самоходные;
- √стационарные.

•По вариантам дислокации:

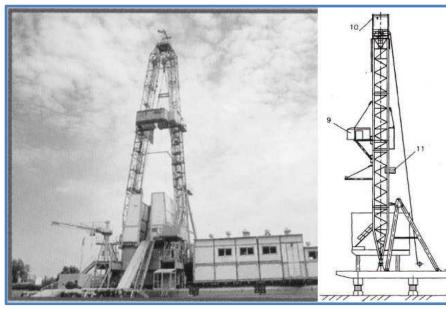
- √наземные;
- √морские.

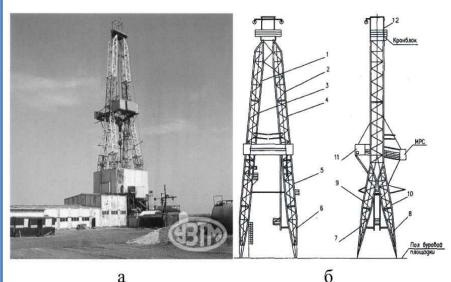
При бурении скважин возникает необходимость в подъеме и спуске бурильных труб для замены изношенного породоразрушающего инструмента, в поддерживании на весу бурильной колонны при проходке и спуске обсадной колонны для крепления стенок скважины.

Для этих целей применяют буровые вышки, которые в зависимости от назначения скважин, их глубины и конструкции имеют различные параметры технических характеристик.

При подъеме бурильных труб из скважины грузоподъемные приспособления должны обеспечить создание необходимых усилий подъема, а буровая вышка вместить весь комплект труб, находившихся в работе.

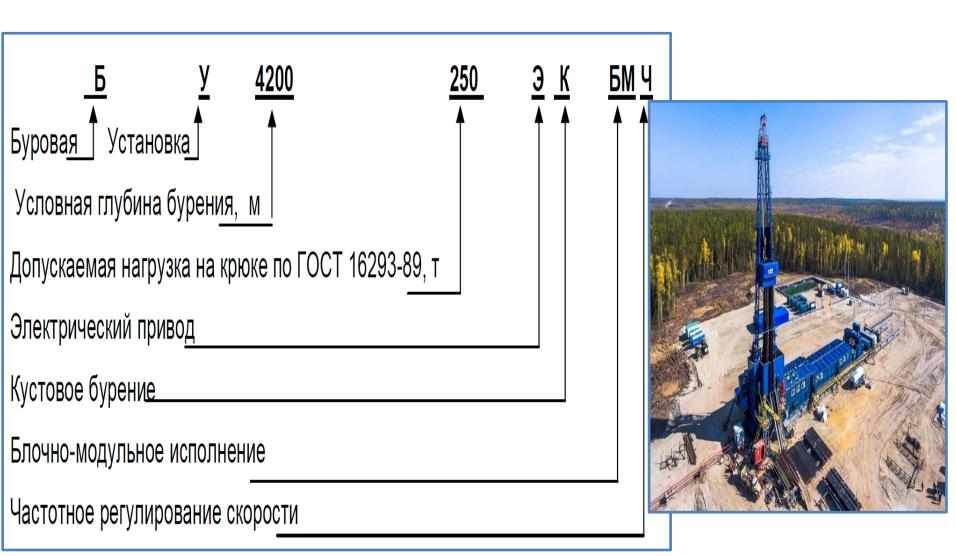

С целью сокращения затрат времени на подъем и спуск их развинчивание желательно производить свечами, имеющими большую длину.


Следовательно, при спускоподъемных операциях основными параметрами буровой вышки являются грузоподъемность, вместимость бурильных свечей и высота.


Стандартные буровые вышки заводского изготовления для бурения скважин при поисках и разведке твердых полезных ископаемых на нефть и газ имеют значительные отличия.

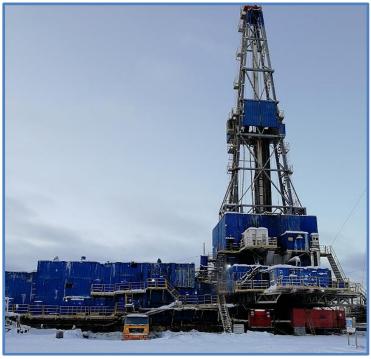
Первые имеют меньшие высоты и грузоподъемность.

Буровые установки, буровое оборудование Буровые вышки



Буровые установки делятся на 12 классов различают по глубине бурения и нагрузки на крюк

Значение параметра для буровых установок классов


Наименование параметра	эначение параметра для оуровых установок классов											
	1	2	3	4	5	6	7	8	9	10	11	12
 Допускаемая нагрузка на крюке, кН 	800	1000	1250*	1600	2000	2500	3200	4000*	5000*	6300	8000*	10000
2. Условная глубина бурения, м	1250	1600	2000	2500	3200	4000	5000	6500	8000	10000	12500	16000
 Скорость подъема крюка при расхаживании колонны, м/с 	От 0,1 до 0,25											
4. Скорость подъема крюка без нагрузки, м/с, не менее	1,5									1,3		
 Расчетная мощность, развиваемая приводом на входном валу подъемного агрегата, кВт** 	От 200 до 240	От 240 до 360	От 300 до 440	От 440 до 550	От 550 до 670	От 670 до 900	От 900 до 1100	От 1100 до 1500	От 1500 до 2200	От 2200 до 3000	От 3000 до 4000	
6. Диаметр отверстия в столе ротора, мм, не менее	440	440 520			7000				950		1250	
7. Расчетная мощность привода, кВт, не более	18	80	300		370			440	550		750	
8. Мощность бурового насоса, кВт, не менее**	375	<u>475</u> 375***	600 175***		750 600* ⁵		950		1180			
9. Высота основания (отметка пола буровой), м, не менее**	3	5	5,5		6*4			8	9	10	1	1

Условное обозначение буровой установки на примере БУ 4200/250 ЭК БМЧ

В зависимости от назначения скважины, ее глубины, геологических условий района, транспортного сообщения буровые установки стремятся укомплектовать наиболее простым НБО, обеспечивающему качественное, безаварийное, быстрое и с минимальными затратами средств, строительства скважины.

НАЗНАЧЕНИЕ БУРОВОГО ОБОРУДОВАНИЯ И ИНСТРУМЕНТА

Ротор – передает вращение поступательно движущейся бурильной колонне

Вертлюг подвешен на крюке, удерживает колонну БТ в процессе бурения и подает промывочную жидкость во вращающуюся БК

Насосы обеспечивают прокачку промывочной жидкости требуемого объема под необходимым давлением

Лебедка создает необходимые усилия для подъема и спуска БК и обеспечивает подачу БК в процессе бурения

Талевая система уменьшает усилия в канате и преобразует вращательное движение барабана лебедки в возвратно-поступательное движение крюка

Вышка предназначена для ускорения процессов подъема и спуска БК, позволяя поднимать и спускать сразу несколько труб вместе (т.н. свечи труб)

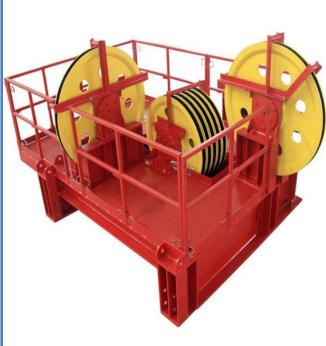
Силовой привод осуществляет передачу энергии к исполнительным механизмам с помощью трансмиссии (передачи)

ПВО (противовыбросовое оборудование) обеспечивает эксплуатацию при возникновении аварийных ситуаций в скважине (фонтанирование скважины)

ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ

- *Буровые сооружения,* предназначенные для размещения узлов и механизмов
- *Органы монтажа и демонтажа*, позволяющие осуществлять механизацию операций монтажа буровой установки
- *Транспортная база*, предусматривающая возможность транспортирования как установки в целом, так и ее отдельных блоковмодулей
- *Система жизнеобеспечения*, предназначенная для создания безопасных, комфортных условий труда
- *Органы информации* представлены информационно-измерительной системой контроля процесса бурения и работы механизмов буровой установки, включающей датчики и средства отображения информации.

Талевая система



Кронблок

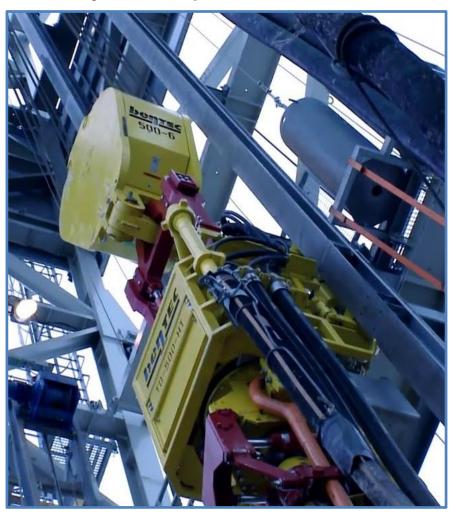
Кронблок устанавливается на верхней площадке вышки, называемой наголовником. Это - неподвижный элемент талевой системы. Конструкция кронблока зависит от типа вышки, действующей нагрузки и объема спуско - подъемных операций.

Талевый блок

Талевый блок - подвижный компонент талевой системы. Один из важнейших элементов буровой установки, неотъемлемая часть нефтегазового оборудования.

Вертлюг предназначен

- соединяющее звено между талевой системой и бурильной колонной
- воспринимает нагрузку от веса бурильной колонны
- передача промывочной жидкости из неподвижного (манифольда) в подвижный и вращающийся бурильный инструмент



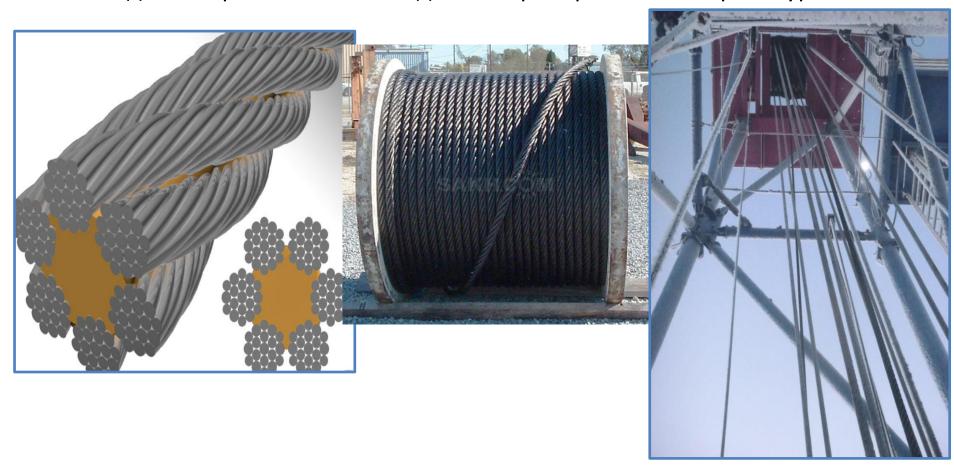

Система СВП (Система верхнего привода)

- Привод
- Направляющая
- Гидростанция
- Сервисная линия
- Электрический шкаф
- Пульт управления
- бурильщиком

Буровая лебедка - один из основных узлов подъемного комплекса. Предназначена - для создание тягового или тормозного усилия в ведущей ветви талевого каната. На барабане лебёдки крепится подвижный канат талевой системы

Вспомогательная лебёдка предназначена для подтаскивания, подъёма и спуска на буровую грузов и инструмента с приёмных мостков.

Противозатаскиватель

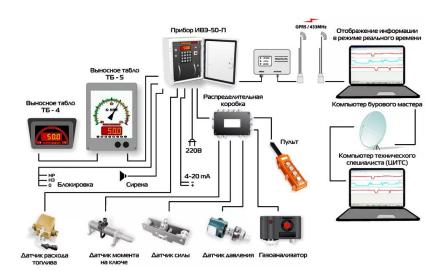

Назначение:

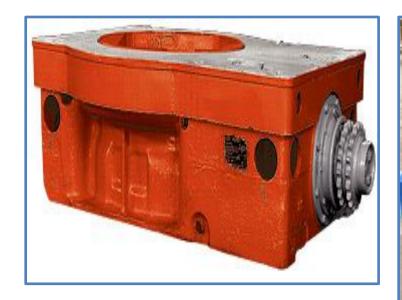
Предназначен для предотвращения подъёма талевого блока выше установленной правилами высоты, чтобы не разрушить кронвлок и не порвать талевый канат

Талевые канаты — подвергаются растяжению и переменному изгибу. На выносливость талевых канатов значительно влияет качество смазки, количество СПО, правильная укладка на барабан лебёдки. На талевый канат ведётся наработка и он ежедневно проверяется мастером буровой

Элеватор

Предназначены элеваторы для спуска и подъема бурильных, утяжелённых, обсадных труб и т.д. Диапазон нагрузок составляет от 100 до 750 тонн, а размеров — от 60мм до 530мм.




Современные буровые установки комплектуется автоматизированными системами управления (АСУ) и системами контроля параметров бурения ИВЭ.


В их состав обязательно входят следующие системы контроля и блокировки:

- •ограничитель высоты подъема талевого блока
- •индикатор веса
- •ограничитель скорости лебёдки
- •блокирующее устройство привода ротора
- •блокирующее устройство по отключению приводов буровых насосов
- •блокировка включения буровых насосов при закрытом КШЦ,
- •блокировка столкновения талевого блока с механизмом захвата свечи
- •емкостной блок циркуляционной системы (ЦС), оборудуется уровнемерами
- •приборы контроля за рабочим давлением сжатого воздуха в пневмосистеме.

Ротор приводит во вращение колонну бурильных труб путем передачи крутящего момента ведущей трубе и восприятия активного момента от забойного двигателя; предназначен для удержания на столе бурильной или обсадной колонн и др.

ГКШ — 8000

Автоматизированный гидравлический буровой ключ с программным управлением предназначен для быстрого, безопасного, высокоточного свинчивания и развинчивания бурильных и обсадных труб с наружными диаметрами от Ø73мм до Ø219мм

КЛЮЧ БУРОВОЙ АТТ-178ПГ, АКБ-ЗМ

Предназначен для механизации и автоматизации свинчивания и развенчивания бурильных, утяжеленных бурильных, обсадных и насосно-компрессорных труб в процессе спуско-подъёмных операций при бурении нефтяных и газовых скважин в составе буровых установок.

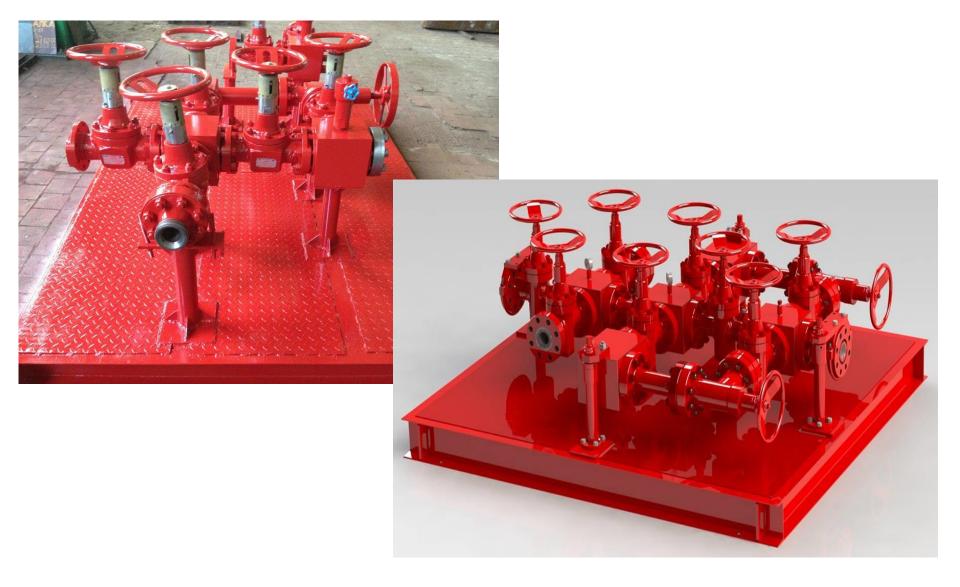
Машинный ключ

Предназначен для закрепления и расрепления труб

Пневматический клиновой захват

Клиновой захват — это мощное эффективное пневмомеханическое средство обеспечения безопасности процесса бурения, применяемое при необходимости захвата и удерживания в роторе насосно-компрессорных, бурильных, утяжеленных или обсадных труб.

Противовыбросовое оборудование (ПВО) - это комплекс оборудования, предназначенный для герметизации устья нефтяных и газовых скважин при возникновении ГНВП



Основной пульт управления ПВО, вспом. пульт

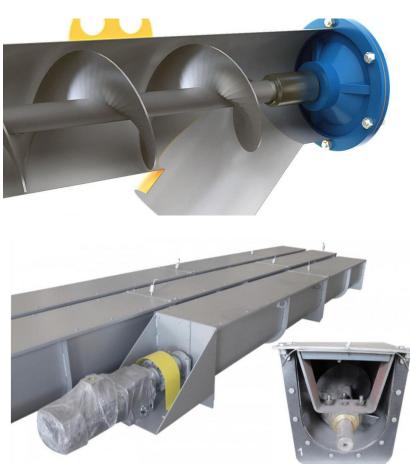
Блок глушения и дросселирования

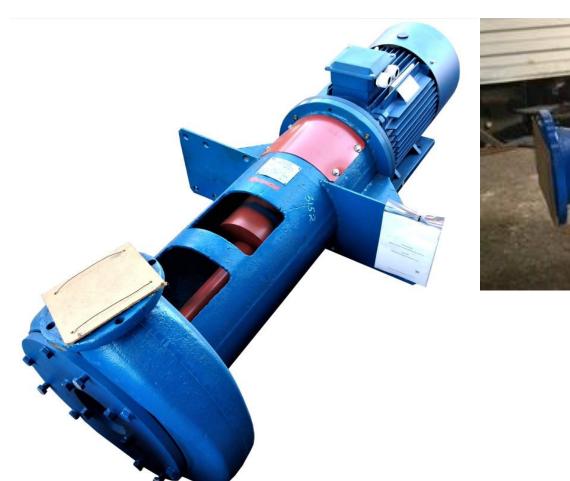
Комплекс циркуляционной системы – Дегазатор (вакуумный и механический)

Буровые насосы являются преобразователями топливной или электрической энергии двигателей привода в гидравлическую энергию потока бурового раствора. Насосы эксплуатируются в очень тяжелых и неблагоприятных условиях, что определяется в основном физическими и химическими свойствами буровых растворов. Детали и узлы насосов подвержены интенсивному абразивному износу. На работоспособность деталей насосов влияет коррозионная активность буровых растворов. В работе буровых насосов нередки кратковременные перегрузки от резкого повышения давления при осложнениях в стволе скважины. Тяжелые условия эксплуатации не позволяют в настоящее время обеспечить достаточную надежность насосов. Этим вызвана необходимость устанавливать в насосной группе БУ дополнительный резервный насос.

Циркуляционная система представляет собой комплекс механизмов и оборудования, включаемый в состав комплекта буровой установки и предназначенный:

- для приготовления и хранения бурового раствора заданной плотности и качества; подачи раствора в скважину;
- химической обработки бурового раствора; очистки бурового раствора от выбуренной породы;
- дегазации бурового раствора (при необходимости);


- долива раствора в скважину при подъеме труб; - удаления шлама в отвал или на утилизацию.



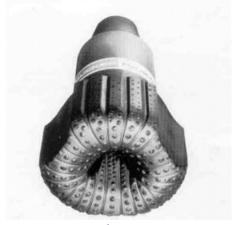
Комплекс циркуляционной системы – Центрифуга, винтовой конвейер

Комплекс циркуляционной системы — ГШН и ВШН (горизонтальный и вертикальный шламовые насосы)

Комплекс циркуляционной системы — ёмкость для хранения и оборудование для приготовления бурового раствора

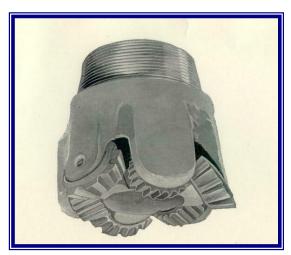
Технологический инструмент. Породоразрушающий инструмент

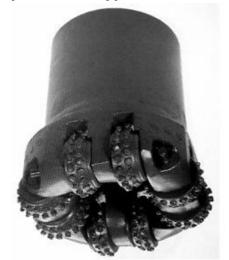
Долото предназначен для разрушения горной породы на забое при бурении скважины. По конструктивному исполнению делится на три группы: лопастные, шарошечный, секторный.



Алмазные, бицентричные, PDS долота

Технологический инструмент. Инструмент для отбора керна


Для отбора керна используется специальный породоразрушающий инструмент —



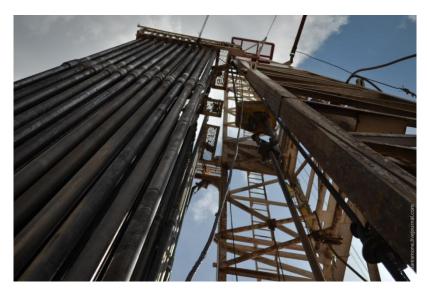
Алмазная бурголовка

Шарошечная бурголовка

Технологический инструмент. Инструмент для отбора керна

Керноотборные снаряды

Керн отобранный из скважины

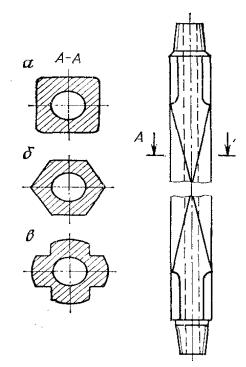

Технологический инструмент. Обсадные трубы

Бурильная колонна соединяет долото (забойный двигатель и долото) с наземным оборудованием (вертлюгом).

Предназначена для:

- -передачи вращения от ротора к долоту;
- -восприятия реактивного момента забойного двигателя;
- –подвода бурового раствора к ПРИ и забою скважины;
- -создания нагрузки на долото;
- –подъема и спуска долота;
- проведения вспомогательных работ (проработка, расширение и промывка скважины)

Технологический инструмент. Обсадные трубы


Обсадная труба — это конструкция, которая изготавливается из разных материалов и имеет цилиндрическую форму. Монтаж такой трубы производится непосредственно в пробурённую скважину. Используются подобные изделия для защиты скважины от осыпания грунта.

Технологический инструмент. Ведущие бурильные трубы

Предназначен для

- •передачи вращения БК от ротора
- •удержания реактивного момента от забойного двигателя
- •предачи промывочной жидкости в бурильные трубы

Ведушие бурильные трубы

Технологический инструмент. Стальные бурильные трубы

Стальные бурильные трубы с приваренными замками предназначены преимущественно для роторного способа бурения, но также используются и при бурении с забойными гидравлическими двигателями.

ТБП выпускают в соответствие с ГОСТ Р 50278 трех разновидностей:

- ПВ с внутренней высадкой;
- ПК с комбинированной высадкой;
- ПН с наружной высадкой.

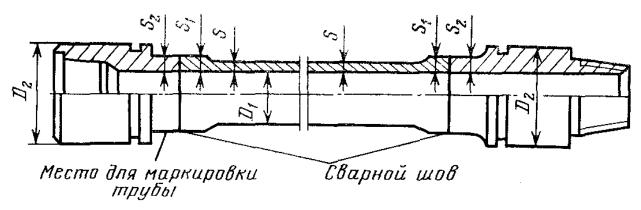
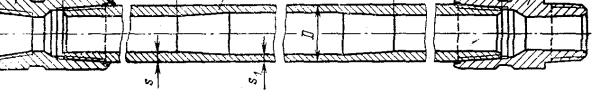



Схема стальной бурильной трубы с приваренными замками

Технологический инструмент. Легкосплавные бурильные трубы

Легкосплавные бурильные трубы сборной конструкции по ГОСТ 23786 применяют при бурении с использованием забойных гидравлических двигателей. Низкая плотность материала — 2,78 г/см³. (у стали 7,85 г/см³) позволяет значительно облегчить бурильную колонну без потери необходимой прочности.

Легкосплавные бурильные трубы сборной конструкции

Технологический инструмент. Утяжеленные бурильные трубы

Для увеличения веса и жесткости БК в ее нижней части устанавливают УБТ, позволяющие при относительно небольшой длине создавать частью их веса необходимую нагрузку на долото.

В настоящее время наиболее широко используются следующие типы УБТ:

- •горячекатанные (УБТ), изготавливаемые по ТУ 14-3-385;
- •сбалансированные (УБТС), изготавливаемые по ТУ 51-744.

Технологический инструмент. Переводники

Переводники предназначены для соединения элементов БК с резьбами различных типов и размеров. Переводники согласно ГОСТ 7360 разделяются на три типа:

Технологический инструмент. Специальные элементы бурильной колонны

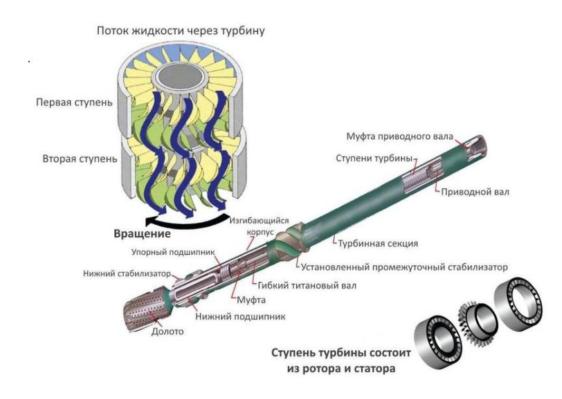
- Калибраторы служат для выравнивания стенок скважины и устанавливаются непосредственно над долотом.
- Центраторы предназначены для обеспечения совмещения оси БК с осью скважины в местах их установки.
- Стабилизаторы, имеющие длину в несколько раз большую по сравнению с длиной центраторов, созданы для стабилизации зенитного угла скважины.

Технологический инструмент. Специальные элементы бурильной колонны

- Фильтр служит для очистки бурового раствора от примесей, попавших в циркуляционную систему. Устанавливается фильтр между ведущей и бурильными трубами.
- Обратный клапан устанавливают в верхней части бурильной колонны для предотвращения выброса пластового флюида через полость БК.
- Кольца-протекторы устанавливают на БК для защиты от износа кондуктора, технической колоны, бурильных труб и их соединительных элементов в процессе бурения и спуско-подъемных операций.

Технологический инструмент. Забойный двигатель

При бурении нефтяных и газовых скважин применяют гидравлические и электрические забойные двигатели, преобразующие соответственно гидравлическую энергию бурового раствора и электрическую энергию в механическую на выходном валу двигателя. Гидравлические забойные двигатели выпускают гидродинамического и гидростатического типов. Первые из них называют турбобурами, а вторые — винтовыми забойными двигателями. Электрические забойные двигатели получили наименование электробуров.



Технологический инструмент. Турбобур

Турбобур представляет собой многоступенчатую гидравлическую турбину, к валу которой непосредственно или через редуктор присоединяется долото

Бурение и крепление скважины

Таким образом, процесс бурения скважин с различными техническими характеристиками начинается с подготовки специализированной техники.

Бурение и крепление скважины

На финишном этапе работ осуществляется освоение скважины. Происходит устройство призабойной зоны, перфорация, вызов оттока нефти.

По способу воздействия на горные породы различают механическое и немеханическое бурение. При механическом бурении буровой инструмент непосредственно воздействует на горную породу, разрушая ее, а при немеханическом разрушение происходит без непосредственного контакта с породой источника воздействия на нее. Немеханические способы (гидравлический, термический, электрофизический) находятся в стадии разработки и для бурения нефтяных и газовых скважин в настоящее время не применяются.

Оборудование для бурения и освоения скважин: буровые установки, агрегаты для освоения скважин, насосные агрегаты, оборудование устья и забоев скважины

Ремонтно-буровые агрегаты: типа АРБ-100.

Агрегаты для освоения и ремонта скважин: типа A-50M, типа AP-60, типа A60/80, типа КОРО-1-80.

Оборудование для бурения и освоения скважин: буровые установки, агрегаты для освоения скважин, насосные агрегаты, оборудование устья и забоев скважины

Агрегаты для освоения скважин:

• Компрессорные установки на шасси КРАЗ, КАМАЗ,

ЯМЗ и др.

Оборудование для бурения и освоения скважин: буровые установки, агрегаты для освоения скважин, насосные агрегаты, оборудование устья и забоев скважины

Агрегаты для освоения скважин:

• УКП-80 типа: КС-16/100, ДКС-7/200А, ДКС 3,5/200Тп, УНБ-125*40БК, СДА - самоходные азотные компрессорные станции, УКС-400В-131 - унифицированная компрессорная станция, КПУ-16/250.

- **1. По назначению строительные машины** подразделяются на следующие группы:
- *Машины для подготовительных работ*: корчеватели, кусторезы, рыхлители.
- *Машины для землеройно-транспортных работ*: бульдозеры, скреперы, грейдеры, грейдер-элеваторы.
- Машины для погрузочно-разгрузочных работ.

Погрузчики одноковшовые универсальные подразделяются на погрузчики пневмоколесные фронтальные, и гусеничные фронтальные погрузчики;

- Машины для уплотнения грунтов дорожных оснований и покрытий;
- Самоходные катки: самоходные катки на пневматических шинах и с гладкими вальцами как статического, так и вибрационного действия предназначены для уплотнения дорожных и аэродромных оснований и покрытий из грунтов гравийно-щебеночных материалов.

- Полуприцепные и прицепные катки предназначены для послойного уплотнения свежеотсыпанных грунтов различных групп при строительстве земляных оснований, насыпей, дамб и других инженерных сооружений.
- Трамбовки электрические и трамбовочные машины: электрические ручные трамбовки ИЭ4501 и ИЭ4503 состоят из электропривода, ствола с ударным механизмом, трамбующим башмака и ручки управления.

- Трамбовочные машины ударного действия предназначены для уплотнения связанных грунтов при устройстве насыпей дорог и гидротехнических сооружений.

Машины для устройства оснований и покрытий из грунтов, укрепленных вяжущими материалами и цементом.

- *Автобитумовозы* (буквенная часть индекса ДС) предназначены для перевозки битума с температурой до 200 С от установок по производству битума на базы потребления и с баз к технологическим машинам стабилизации грунта и на строительные объекты.
- *Автогудронаторы* предназначены для распределения битумных материалов в горячем или холодном состоянии при постройке "черных" гравийных и щебеночных дорог, для промасливания и стабилизации грунта при постройке улучшенных грунтовых дорог, выполнения гидроизоляционных работ в аэродромном, промышленном и гражданском строительстве.

Машины для укладки асфальта - асфальтоукладчики, выпускаются асфальтоукладчики на пневмоколесном и гусеничном ходу.

Машины для устройства цементобетонных покрытий:

- *Профилировщики основания* предназначены для подготовки песчаного основания под бетон или под сборные плиты.
- Распределители цементобетона предназначены для распределения бетонной смеси, выравнивания поверхности и предварительного уплотнения уложенного слоя при строительстве дорожных и аэродромных покрытий.
- *Отделочные машины* предназначены для уплотнения и отделки цементобетонных дорожных и аэродромных покрытий.
- Машины и оборудование для забивки и погружения свай: копры для забивки свай, рельсовые копры, гусеничный копер, сваебойные дизель-молоты, вибропогружатели.

Экскаваторы: одноковшовые экскаваторы, многоковшовые экскаваторы.

Передвижные компрессорные станции:

Компрессорами вырабатывается сжатый воздух. По принципу работы компрессоры подразделяются на поршневые, винтовые и ротационные.

Машины и оборудование для приготовления и транспортирования бетонных смесей и строительных растворов: бетоносмесители с двигателем внутреннего сгорания, бетоносмесители с электродвигателем, автобетоносмесители, вибраторы.

Грузоподъемные краны:

Подразделяются на башенные, приставные, гусеничные, пневмоколесные, автомобильные.

Подъемно-транспортные машины и оборудование: подъемники, автовышки и гидроподъемники, лебедки.

Строительно-отделочные машины:

- Цемент-пушка (СБ-13) предназначена для нанесения на поверхности уплотненного бетонного слоя.
- Машина для безопалубочного бетонирования (СБ-67)
- Штукатурные агрегаты
- Штукатурно-затирочные машины (СО-86)
- Мозаично-шлифовальные машины (СО-91)
- Установки для сверления отверстий в железобетоне (ИЭ-1805)
- Машины шлифовальные электрические (ИЭ-8201)
- Машины шлифовальные угловые электрические, ручные (ИЭ-2102А)
- Пиротехнический инструмент:
- Краскотерки и мелотерки (СО-1; СО-53)
- Электрокраскопульты (СО-61 и СО-22)
- Малярные станции

Строительно-отделочные машины:

- Агрегаты для перекачки битумных мастик (СО-119)
- Машины для сушки оснований кровли
- Машины для очистки и перемотки рулонных кровельных материалов (CO-98)
- Машина для нанесения битумных мастик (СО-122)

Установки для статического зондирования грунтов и бурильно-крановые машины

Установки для статического зондирования грунтов СП-59

Бурильно-крановые машины:

Бурильно-крановые машины предназначены для бурения скважин в талых и с сезонным промерзанием грунтах I - IV групп. Применяются в промышленном и гражданском строительства при устройстве свайных фундаментов здании и сооружений, установке опор линий электропередач и связи, посадке деревьев и кустарников, а также для других работ.

Бурильно-крановые машины БМ-202 и БМ-302:

Самоходные бурильно-крановые гидравлические машины БМ-202 и БМ-302 смонтированы на автомобиле высокой проходимости ГАЗ-66-02 и отличаются высокой производительностью, большой скоростью передвижения, маневренностью, высокой проходимостью и экономичностью. Их можно эксплуатировать в условиях бездорожья.

Бурильно-крановая машина БМ-204:

Бурильно-крановая гидравлическая машина БМ-204 представляет собой самоходный агрегат, рабочее оборудование которого смонтировано на тракторе «Беларусь» МТЗ-52Л. Предназначена для бурения скважин в талых и с сезонным промерзанием грунтах I - IV групп, для установки в них опор при строительстве и ремонте радиотрансляционных, телефоннотелеграфных, релейных и электрических сетей.

Бурильно-крановая машина БМ-251:

Машина смонтирована на тракторе ДТ-75С2 и предназначена для бурения вертикальных шпуров (скважин) диаметром 60, 80, 100 мм при буровзрывном способе разработки мерзлых грунтов. Базовый трактор ДТ-75С2 обладает высо¬кой проходимостью, что позволяет производить работы во все времена года, в условиях бездорожья.

Мотобур Д-10 М:

Состоит из двухступенчатого планетарного редуктора и двигателя («Дружба-4»), соединенных между собой хомутом. В хомут ввернута рукоятка, которая одновременно является регулятором оборотов двигателя.

Трубоукладчики:

Трубоукладчики являются самоходными грузоподъемными машинами специального назначения с неповоротной А-образной стрелой. Для возможности преодоления трубоукладчиком больших (до 25°) подъемов увеличено тяговое усилие на гусеницах. Максимальная скорость движения трубоукладчика Т-1530В снижена до 5,46 км/ч с целью сохранения ходовой части.

Трубоукладчики:

По сравнению с трубоукладчиком Т-1224В в навесное оборудование трубоукладчика Т-1530В введены дополнительные узлы. Одноименные узлы трубоукладчиков принципиальных конструктивных различий не имеют, часть узлов унифицирована.

Трубоукладчик Т-3560 предназначен для строительства магистральных трубопроводов диаметром 1020 мм. Механизмы трубоукладчика смонтированы на специальном тракторе Д-804 (Д-804М).

Водооткачивающие насосы. Насосы центробежные самовсасывающие:

Насосы типа НЦС — центробежные, самовсасывающие, одноступенчатые, с рабочим колесом одностороннего хода. Предназначены для подачи воды и других неагрессивных жидкостей со взвешенными частицами (песок, шлак и другие измельченные строительные отходы) и могут применяться во многих отраслях промышленности и строительства, на транспорте, в городском и сельском хозяйстве, а также для водоснабжения.

Центробежные самовсасывающие насосы НЦС-1, НЦС-2, НЦС-3 и НЦС-4: центробежные самовсасывающие водоотливные насосы НЦС-1 и НЦС-2 представляют собой передвижной агрегат, состоящий из одноступенчатого насоса и двигателя, смонтированных на одноосной передвижной тележке.

Конструкция рамы тележки позволяет эксплуатировать насосы в стационарных условиях, для чего необходимо снять с тележки колеса и переднюю опору. Тогда рама тележки явится основанием насосной установки.

Насосы НЦС-3 и НЦС-4 в отличие от насосов НЦС-1 и НЦС-2 монтируются на передвижной раме с салазками, которую можно использовать при установке насоса для работы в стационарных условиях.

Сварочные преобразователи:

Сварочные преобразователи служат для питания одного поста постоянным током при дуговой автоматической и полуавтоматической сварке в среде защитного газа плавящимся электродом с постоянной скоростью подачи.

Преобразователь ПСГ-500-1:

Сварочный преобразователь ПСГ-500-1 состоит из индуктора генератора с главными и добавочными полюсами, якоря генератора, статора двигателя, токоотвода, распределительного устройства с пускорегулирующей и контрольной аппаратурой и ходовой части.

Вахтовый транспорт:

В связи с удаленностью нефтяных и газовых месторождений от населенных пунктов в особенности в Западной Сибири, для доставки обслуживающего персонала от мест жительства до объектов добычи и кустов буровых скважин промышленность выпускает различную технику.

По способу доставки спецтехника осуществляется:

- Воздушным путем (самолеты вертолеты),
- Автодорожным путем (автобусы марки «Икарус», «КАВЗ», «ПАЗ», «Нефаз», микроавтобусы «Газель», «Мерседес» и др.),
- По труднодоступным и болотистым местам спецтанкетки, трактора, вздеходный транспорт марок ГАЗ-3808, УРАЛ, КАМАЗ со специальным оборудованием для перевозки людей оборудования и спецматериалов.

Весь вахтовый транспорт обеспечивается рациями, радиостанциями и заземляющимися устройствами.

2. Документация, ведущаяся при работе со строительными машинами и механизмами в строительстве

Основными документами являются:

- Наряд задание на выполнение работ машинами и механизмами на объекте;
- Наряд допуск при работе в охранной зоне ЛЭП;
- Журнал учета работ с машинами и механизмами;
- Журнал технического состояния агрегатов, машин, механизмов и инструмента;
- ППР (Проект производства работ на объекте) при выполнении сложных работ и участие нескольких видов машин и механизмов;
- Акты выполненных работ по отдельным этапам строительного процесса;
- Путевые листы водителей машин, агрегатов и спецтехники.

3. Техника безопасности при работе механизмов и агрегатов в строительстве

Общие требования по технике безопасности при работе спецтехники в бурении и строительстве:

- 1. Обслуживающий персонал должен состоять как минимум из трех человек: оператор, водитель-машинист и старший руководитель (прораб, мастер, помощник мастера, старший оператор);
- 2. В кабине должны быть дублирующие приборы (манометры и др.);
- 3. Перед началом работ во всех операциях со спецагрегатами подается звуковой сигнал;
- 4. При любых операциях со спецагрегатами на скважине или трассе должен быть назначен и присутствовать руководитель работ (старший);
- 5. Персонал обслуживающий спецтехнику должен быть укомплектован спецсредствами и спецодеждой (каска, очки, спец. комбинезон);
- 6. Команду «Старт» может отдать только руководитель работы, команду «Стоп», в случае нештатной ситуации, может отдать любой работник;

3. Техника безопасности при работе механизмов и агрегатов в строительстве

- 7. Вокруг работающей спецтехники и агрегата на расстоянии 25 метров должно быть установлено ограждение и красный предупреждающий знак;
- 8. При проведении на объекте или скважине спецработ с различными видами спецтехники необходимо составить план проведения работ (ГПП, ГРП, Перфорация);
- 9. При работе землеройкой и грузоподъемной техники должен выдаваться наряд-заказ на производство работ, с закреплением обученными стропальщиками для работы с грузоподъемной техникой.

Контроль знаний

- 1. Перечислите строительные машины и механизмы, применяемые в строительстве при обустройстве нефтяных месторождений.
- 2. Документация, ведущаяся при работе со строительными машинами и механизмами в строительстве.
- 3. Техника безопасности при работе механизмов и агрегатов в строительстве.