,

-

. .

• •

©	•••,	, 2010
©		, 2010
©		
		, 2010

, ,

1.		
1.1.		5
1.2.		12
	1.2.1	12
	1.2.2.	
	1.2.3.	
1.3.		
2.		<u> </u>
2.1.		
	2.1.1.	27
	2.1.2.	
	2.1.3.	35
	2.1.4.	
	2.1.5.	-
	2.1.6.	-
		47
2.2.		50
2.3.		
2.4.		61
3.		-
0.1	•••••	
3.1.		
3.2.		-
2.2		,
3.3.		-
	331	03
	5.5.1.	65
	332	
	5.5.2.	
		68
3.4		-
_		
4.		72

4.2.	-		4.1.
4.3.			 4.2.
4.4. 6			4.3.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.4.
4.6. , - $4.7.$		6	4.5.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		4.6.
4.8.			4.7.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 86		4.8.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	.1.1. .1.2.	.1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1.3.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.		2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2.1.	
3. 112 3. 112 4. 114 4. 5. 118 5. 118	()	.2.2. .2.3. .2.4.	
4	3 112 -		3.
5	4	•••	4.
	5		5.

· · – P U, Q δ , – P Q, U δ . , , , (),

PU- $Q_{\text{max}} \quad Q_{\text{min}}.$ PU- $Q_{\text{max}} \quad Q_{\text{min}}.$

$$I \leq I \quad , \tag{1.1}$$

 $I_{f\min} \le I_f \le I_f \quad . \tag{1.2}$

. ,

(0,9*I*).

q

I_{fmin}.

(1.2)

$$_{q\min}^{q} \leq E_{q} \leq E_{q} \quad . \tag{1.3}$$

(

. 1.1.

$$Q_{\rm max}$$
 $Q_{\rm min}$

,

$$E_{q} = \frac{U^{4} + Q \cdot U^{2} \cdot (X_{d} + X_{q}) + (P^{2} + Q^{2}) \cdot X_{d} \cdot X_{q}}{U \cdot \sqrt{U^{4} + 2 \cdot Q \cdot U^{2} \cdot X_{q} + (P^{2} + Q^{2}) \cdot X_{q}^{2}}},$$
(1.4)

.

$$P = \frac{E_q U}{X_d} \sin \delta + \frac{U^2}{2} \frac{X_d - X_q}{X_d X_q} \sin 2\delta , \qquad (1.5)$$

$$Q = \frac{E_{q}U}{X_{d}}\sin\delta + \frac{U^{2}}{2}\frac{X_{d} - X_{q}}{X_{d}X_{q}}\cos 2\delta - \frac{U^{2}}{2}\frac{X_{d} + X_{q}}{X_{d}X_{q}}.$$
 (1.6)

$$E_{q} = \frac{\sqrt{\left(U^{2} + Q X_{d}\right)^{2} + P^{2} X_{d}^{2}}}{U}, \qquad (1.7)$$

$$P = \frac{E_q U}{X_d} \sin \delta , \qquad (1.8)$$

$$Q = \frac{E_q U}{X_d} \cos \delta - \frac{U^2}{X_d}.$$
 (1.9)

$$I = \frac{\sqrt{P^2 + Q^2}}{\sqrt{3}U}.$$
 (1.10)

$$X_d = X_q.$$

$$, \qquad I = I$$

$$Q^{(I)}_{\text{max}} = \sqrt{S^2 - P^2}, \qquad (1.11)$$

 $S = \sqrt{3}I \quad U$.

•

$$(1.11) \quad S \quad ,$$

$$Q_{\max}^{(I)} = S - \sqrt{\frac{S^2}{S} - \frac{P^2}{S}}.$$
 (1.12)

(1.12)

$$S = \sqrt{3}I \quad U \quad , \qquad \qquad -S \quad = \frac{P}{\cos\varphi}.$$

$$Q_{\max}^{(I)} = S \quad \cdot \sqrt{K_I^2 \cdot \left(\frac{U}{U}\right)^2 - \left(\frac{P}{P}\right)^2 \cdot \cos\varphi} \quad . \tag{1.13}$$
$$K_I = \frac{I}{I} \quad - \qquad -$$

$$E_q = E_q$$
 . (1.8) (1.9) $E_q = E_q$

$$Q_{\max}^{(E)} = \frac{E_q U}{X_d} \cos \delta - \frac{U^2}{X_d},$$
 (1.14)

$$P = \frac{E_q \quad U}{X_d} \sin \delta . \tag{1.15}$$

-

(1.15)

•

$$\cos\delta = \sqrt{1-\sin^2\delta} = \sqrt{1-\left(\frac{P_d}{E_q}U\right)^2},$$

(1.14)

$$Q_{\max}^{(E)} = \frac{1}{d} \left(\sqrt{K_E E_q^2 U^2 - P^2 \frac{2}{d}} - U^2 \right), \qquad (1.16)$$

$$K_E = \frac{E_q}{E_q} -$$

$$Q_{\rm min}\,, \label{eq:min} E_q = E_{q\,\min}\,, \label{eq:min}$$

 $I_{\rm min}$.

,

$$I_{\min} = I_{\min}^{(0)} - KI_a, \qquad (1.17)$$

-

$$I_{\rm min}^{(0)} - I_a = 0$$
 -

$$\frac{Q_{\min}}{U} = \frac{Q_{\min(0)}}{U} - K \frac{P}{U}, \qquad (1.18)$$

•

(1.18)
$$U$$

 $Q_{\min} = Q_{\min(0)} \frac{U}{U} - KP$. (1.19)
 $Q_{\min(-)} = Q_{\min(-)}$

$$Q_{\min(1)} = Q_{\min(0)} - K \cdot P$$

$$K = \frac{Q_{\min(0)} - Q_{\min(-)}}{P}.$$

$$Q_{\min} = Q_{\min(0)} \frac{U}{U} - \left(Q_{\min(0)} - Q_{\min(1)}\right) \frac{P}{P}.$$
 (1.20)

$$P = 0.$$
 [1] -

 $Q_{\min(0)}$

$$P = 0, 4P$$
 . [1]

 Q_{\min} .

-

$$Q_{\rm m} \qquad Q_{\rm min} \qquad \begin{array}{c} (1.13), (1.16), (1.20) \\ U \qquad P \\ \end{array}$$

_

,

1.2. 1.2.1.

•

(.1.2)

$$r_{\rm T} = \frac{\Delta P_{\rm K} U^2}{S^2 \ 1000} \, .$$

,

•

$$Z = \frac{u_{K\%}}{100} \frac{U^2}{S}.$$

$$x_{\rm T} = \sqrt{Z^2 - r_{\rm T}^2},$$
(1000)

 $x_{\rm T} \approx Z$.

,

 $\dot{K}_{ ext{T}} = K^{j\delta_U}$,

 $K_{\rm T} = \frac{U}{U}$

 $x_{\rm T} >> r_{\rm T}$.

•

,

,

,

 $g_{\rm T} = \frac{\Delta P}{U^2 \ 1000}, \qquad (1.21)$

 ΔP –

 $b_{\rm T} = \frac{I_{\rm X\%}}{100} \frac{S}{U^2} \,. \tag{1.22}$

I_{x%} - ,%.

,

 $g_{T} = 0, \ b_{T} = 0.$

(.1.3),

•

.

$$r = \frac{\Delta P_{\rm K} U^2}{S^2 \ 1000},$$
$$x = \frac{u_{\rm K\%}}{100} \frac{U^2}{S}.$$

,

,

$$r_{\rm H1} = r_{\rm H2} = 2r_{\rm B}$$
.

-

_

,

 $r_{B} = 0,5r , r_{H1} = r_{H2} = r .$ (
) $x_{B} = 0,125x , x_{H1} = x_{H2} = 1,75 .$ (
)
(
)

$$K_{1} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm HH1}}, \quad K_{2} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm HH2}}$$

(.1.4).

,

_

_

$$u_{\rm KB} = \frac{1}{2} (u_{\rm KB-C} + u_{\rm KB-H} - u_{\rm KC-H}),$$

$$u_{\rm KC} = \frac{1}{2} (u_{\rm KB-C} + u_{\rm KC-H} - u_{\rm KB-H}),$$

$$u_{\rm KH} = \frac{1}{2} (u_{\rm KB-H} + u_{\rm KC-H} - u_{\rm KB-C}).$$
(1.23)

$$r_{\rm H} = r_{\rm B} = r_{\rm C} = \frac{1}{2} \frac{\Delta P_{\rm K} U^2}{S^2 \ 1000} \,.$$

$$K_{\rm BH} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm HH}}, \quad K_{\rm BC} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm CH}\left(1 \pm n\Delta U_{*}\frac{U_{\rm BH}}{U_{\rm CH}}\right)}.$$

$$K_{\rm BC} = \frac{U_{\rm BH}(1 \pm n\Delta U_{\ast})}{U_{\rm CH}}.$$

_

$$\Delta P_{\rm KB-} , \Delta P_{\rm K-} (\Delta P_{\rm KB-} , \Delta P_{\rm K-}') \\ . \Delta P_{\rm KB-}' , \Delta P_{\rm K-}' -$$

$$\Delta P_{\rm KB-} = \frac{\Delta P_{\rm KB-H}'}{\alpha^2},$$

$$\Delta P_{\rm K-} = \frac{\Delta P_{\rm K-H}'}{\alpha^2},$$
(1.24)

-

,

= *S* /*S* –

,

_

. (1.24)

$$\begin{split} \Delta P_{KB} &= \frac{1}{2} \Big(\Delta P_{KB-C} + \Delta P_{KB-H} - \Delta P_{KC-H} \Big), \\ \Delta P_{KC} &= \frac{1}{2} \Big(\Delta P_{KB-C} + \Delta P_{KC-H} - \Delta P_{KB-H} \Big), \\ \Delta P_{KH} &= \frac{1}{2} \Big(\Delta P_{KB-H} + \Delta P_{KC-H} - \Delta P_{KB-C} \Big). \end{split}$$

$$r_{\rm B} = \frac{\Delta P_{\rm KB} U^2}{S^2 \ 1000}, \quad r_{\rm C} = \frac{\Delta P_{\rm KC} U^2}{S^2 \ 1000}, \quad r_{\rm H} = \frac{\Delta P_{\rm KH} U^2}{S^2 \ 1000}.$$

, $\Delta P_{\text{KB-C}}$,

$$r_{H} = r_{B} = r_{C} = \frac{1}{2} \frac{\Delta P_{\text{K}}}{S^{2}} \frac{U^{2}}{1000}$$
.
 $\Delta P_{\text{KB-H}},$

$$r_B = r_C = \left(\frac{\alpha}{\alpha+1}\right) \frac{\Delta P_{\text{KB-H}} U^2}{S^2 \ 1000}, \quad r_H = \frac{1}{\alpha} r_B.$$
18

$$\alpha = \alpha_{B} = 1 - \frac{U_{CH}}{U_{BH}}.$$
20, 25, 40%
$$\alpha_{B} = S /S \quad [3].$$

•

$$x_{B} = \frac{u_{KB\%}}{100} \frac{U^{2}}{S}, \quad x_{C} = \frac{u_{KC\%}}{100} \frac{U^{2}}{S}, \quad x_{H} = \frac{u_{KH\%}}{100} \frac{U^{2}}{S}.$$

,

,

,

 $u_{\mathrm{KB-}}$ $u_{\mathrm{K-}}$,

_

(1.23).

,

,

,

-

$$K_{\rm BH} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm HH}}, \quad K_{\rm BC} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm CH}\left(1 \pm n\Delta U_{*}\frac{U_{\rm BH}}{U_{\rm CH}}\right)},$$

,

:

,

•

 $\Delta U_* -$

50%

$$K_{\rm BC} = \frac{U_{\rm BH}}{U_{\rm CH} \left(1 \pm n\Delta U_{*} \frac{U_{\rm BH}}{U_{\rm CH}}\right)}, \quad K_{\rm BH} = \frac{U_{\rm BH}}{U_{\rm HH}}.$$
$$\frac{U_{\rm BH}}{U_{\rm CH}}, \quad K_{\rm BH} = \frac{U_{\rm BH}}{U_{\rm HH}}.$$

$$K_{\rm BC} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm CH}}, \quad K_{\rm BH} = \frac{U_{\rm BH}(1 \pm n\Delta U_{*})}{U_{\rm HH}}$$

$$r = \frac{\Delta P_{\rm K} \left(\frac{U}{\sqrt{3}}\right)^2}{S^2 \ 1000}, \ x = \frac{u_{\rm KH}}{100} \left(\frac{U}{\sqrt{3}}\right)^2.$$

1.2.2.

,

. 1.5.

300

_

_

$$Q_{C1} = \frac{1}{2} b_C U_{1}^2, \quad Q_{C2} = \frac{1}{2} b_C U_{2}^2.$$
()
$$g,$$
()
,
-

$$\Delta P_{K1} = \frac{1}{2} g U_1^2, \quad \Delta P_{K2} = \frac{1}{2} g U_2^2.$$

,

g =

•

$$(300)$$

 $r = r_0 l, x = x_0 l, b = b_0 l.$ (1.25)

$$l-$$
 (),
 $r_0(/), x_0(/), b_0(//)-$

0.

300 (1.25)

 $r = k_r r_0 l$, $x = k_x x_0 l$, $b = k b_0 l$, $k_r = 1 - \frac{l^2}{3} x_0 b_0, \quad k_x = 1 - \frac{l^2}{6} \left(x_0 b_0 - r_0^2 \frac{b_0}{x_0} \right), \quad k_c = 0.5 \frac{3 + k_r}{1 + k_r}.$ (1.26) 1%) ((1.25) 50 . 300

, .1.6). $2 \qquad \underbrace{\overset{i_3}{\checkmark} \overset{\ldots}{\checkmark} \overset{\ldots}{\overset{\ldots}{\checkmark}} \overset{u_n}{\overset{\ldots}{\checkmark}} \overset{u_n}{\overset{\ldots}{\checkmark}}$ i_2 U_2 u_1^{e} 3 1 \mathcal{U}_{n+1} . 1.6.

300

(

,

,

. 1.5). (

100

$$(. 1.8). - 1 (, ,)$$

, (-),

$${}_{2}' = {}_{2}'' = (1+)$$
 (1.28)

1.3.

,

1.

,

.

· · (, , . .) ()

»

$$P_{\rm H} = P \qquad \left[a_0 + a_1 \frac{U}{U} + a_2 \left(\frac{U}{U} \right)^2 \right], \tag{1.29}$$

$$Q_{H} = Q \qquad \left[b_{0} + b_{1} \frac{U}{U} + b_{2} \left(\frac{U}{U} \right)^{2} \right].$$
 (1.30)

,

,

n-

,

$$U$$
 -

$$a_0, a_1, a_2, b_0, b_1, b_2 - , , ,$$
, (1.29), (1.30)

,

~

$$a_0 + a_1 + a_2 = 1,$$

 $b_0 + b_1 + b_2 = 1.$

				1.2
		a_0	a_1	a_2
1	-	0,83	-0,3	0,47
		b_0	b_1	b_2
2	-	4,9	-10,1	6,2
	6 – 10			
3	-	3,7	-7	4,3
	110 – 220			

2.

. 1.9). (

,

 a_0, a_1, b_0, b_1 (1.29), (1.30) $a_2, b_2 - \ldots$

. 1.9.

. 1.9,

 $g_{\rm H} = \frac{P}{U^2}, \quad b_{\rm H} = \frac{Q}{U^2}.$

. 1.9,

$$Z_{\rm H} = r_{\rm H} + jx_{\rm H} = \frac{U^2}{S_{\rm H}}\cos\varphi_{\rm H} + j\frac{U^2}{S_{\rm H}}\sin\varphi_{\rm H}.$$

$$\varphi_{\rm H} - ,$$

$$S - ,$$

$$3. - ,$$

P = const, Q = const.

,
$$a_1, a_2, b_1, b_2$$
 (1.29), (1.30)
 a_0, b_0 – .

,

•

1.10

,

,

_

2.1.1.

,

-

,

 ω –

,

J-

 $M + M_j + M = M_T, \qquad (2.1)$

•

,

-

-

•

M - , , $M_{j} -$, $M_{T} -$, $M_{T} -$.

$$(2.1)$$

$$J\frac{d\omega}{dt} = M_T - M , \qquad (2.2)$$

, *M*.

ω

$$J \frac{\omega}{dt} = M_{T*} - M_{*}. \qquad (2.3)$$

$$J \frac{\omega}{1} = T_{j}$$
 []

$$T_{j} \frac{d\omega_{*}}{dt} = M_{T*} - M_{*}.$$
 (2.4)

2.1.2.

,

. 2.1.

$$f_A = F_A \cos \alpha,$$

$$f_B = F_A \cos(\alpha - 120^{\circ}),$$

$$f_C = F_C \cos(\alpha - 240^{\circ}).$$

(2.5)

$$f_A = F \cos \alpha,$$

$$f_B = F \cos(\alpha - 120^{\circ}),$$

$$f_C = F \cos(\alpha - 240^{\circ}).$$

(2.6)

. 2.3.

d-q

-

$$d-q.$$

$$(2.3),$$

$$f_{a} = F_{d} \cdot \cos\gamma + F_{q} \cdot \sin\gamma,$$

$$f_{b} = F_{d} \cdot \cos\left(\gamma - 120^{0}\right) + F_{q} \cdot \sin\left(\gamma - 120^{0}\right),$$

$$f_{c} = F_{d} \cdot \cos\left(\gamma - 240^{0}\right) + F_{q} \cdot \sin\left(\gamma - 240^{0}\right).$$

$$(2.7)$$

(2.7)
$$F_{d} \quad F_{q}$$

$$F_{d} = \frac{2}{3} \Big[f_{a} \cdot \cos \gamma + f_{b} \cdot \cos \left(\gamma - 120^{0} \right) + f_{c} \cdot \cos \left(\gamma - 240^{0} \right) \Big],$$

$$F_{q} = \frac{2}{3} \Big[f_{a} \cdot \sin \gamma + f_{b} \cdot \sin \left(\gamma - 120^{0} \right) + f_{c} \cdot \sin \left(\gamma - 240^{0} \right) \Big]. \quad (2.8)$$

(2.8)

•

1.

$$i_{A} = I_{m} \cdot \cos(\omega t + \alpha),$$

$$i_{B} = I_{m} \cdot \cos(\omega t + \alpha - 120^{0}),$$

$$i_{C} = I_{m} \cdot \cos(\omega t + \alpha - 240^{0}).$$

$$\gamma \qquad \qquad \gamma = \omega t + \gamma_{0}.$$
(2.0)

(2.8)

$$I_{d} = I_{m} \cdot \cos(\gamma_{0} - \alpha),$$

$$I_{q} = I_{m} \cdot \sin(\gamma_{0} - \alpha).$$

,

-

$$\gamma = \omega_1 \cdot t + \gamma_0, \quad \omega_1 \neq \omega.$$

•

$$I_{d} = I_{m} \cdot \cos\left[\left(\omega_{1} - \omega\right)t + (\gamma_{0} - \alpha)\right],$$
$$I_{q} = I_{m} \cdot \sin\left[\left(\omega_{1} - \omega\right)t + (\gamma_{0} - \alpha)\right].$$
$$\omega_{1} - \omega = \omega_{s}$$
$$d \quad q$$
$$d \quad q$$

,

$$U_A = -\frac{d\Psi_A}{dt} - r_A \cdot i_A, \qquad (2.9)$$

,

,

,

.

-

,

•

,

 $\Psi_A = i_A, r_A -$

(2.7)

$$\Psi_A = \Psi_d \cdot \cos\gamma + \Psi_q \cdot \sin\gamma, \qquad (2.10)$$

$$i_A = I_d \cdot \cos\gamma + I_q \cdot \sin\gamma \tag{2.11}$$

(2.10) (2.11)

$$U_{A} = -\frac{d}{dt} \left(\psi_{d} \cos \gamma + \psi_{q} \sin \gamma \right) - I_{d} r_{A} \cos \gamma - I_{q} r_{A} \sin \gamma \qquad (2.12)$$
(2.12) , γ

$$\gamma = \omega t + \gamma_0, \qquad (2.13)$$

$$U_{A} = -\frac{d\psi_{d}}{dt}\cos\gamma + \psi_{d}\sin\gamma\frac{d\gamma}{dt} - \frac{d\psi_{q}}{dt}\sin\gamma - \psi_{q}\cos\gamma\frac{d\gamma}{dt} - (2.14)$$
$$-I_{d}r_{A}\cos\gamma - I_{q}r_{A}\sin\gamma.$$

$$U_{d} = -\frac{d\Psi_{d}}{dt} - \Psi_{q} \cdot \frac{d\gamma}{dt} - I_{d} \cdot r_{A}, \qquad (2.15)$$

$$U_{q} = -\frac{d\Psi_{q}}{dt} + \Psi_{d} \cdot \frac{d\gamma}{dt} - I_{q} \cdot r_{A}. \qquad (2.16)$$

 $\omega + \omega_s, \omega_{s-}$

- .

$$U_{d} = -\frac{d\Psi_{d}}{dt} - \Psi_{q} \cdot \omega - \Psi_{q} \cdot \omega_{s} - I_{d} \cdot r_{A}, \qquad (2.17)$$

$$U_q = -\frac{d\psi_q}{dt} + \psi_d \omega + \psi_d \omega_S - I_q r_A. \qquad (2.18)$$

(2.17) (2.18)

,

,

$$\frac{d\psi_d}{dt}, \frac{d\psi_q}{dt} = -$$

$$\psi_d \omega, \ \psi_q \omega = -$$

$$\psi_d \omega_s, \ \psi_q \omega_s = -$$

)

$$U_d = -\Psi_q \cdot \omega, \qquad (2.19)$$

$$U_q = \Psi_d \cdot \omega \,. \tag{2.20}$$

 $\ll q \gg$

«d»

,

(

(2.20) (2.19) :

«d»

$$\frac{d\Psi_f}{dt} + r_f \cdot i_f = U_f , \qquad (2.21)$$

,

-

-

$$\frac{d\psi_D}{dt} + r_D \dot{i}_D = 0, \qquad (2.22)$$

$$\frac{d\Psi_{Q}}{dt} + r_{Q} \cdot i_{Q} = 0$$
(2.23)

,

90⁰.

(. 2.5).

,

(

)

: «d» $L_d = M_{ad} + L_{\sigma},$ $L_D = M_{ad} + L_{\sigma D},$ $L_f = M_{ad} + L_{\sigma f},$

- «q»

$$\begin{split} L_{q} &= M_{aq} + L_{\sigma}, \\ L_{Q} &= M_{aq} + L_{\sigma Q}, \end{split}$$

•

.

•

_

- «d»

$$\Psi_d = -I_d \cdot L_d + i_D \cdot M_{ad} + i_f \cdot M_{ad}, \qquad (2.24)$$

$$\psi_D = i_D L_D + i_f M_{ad} - I_d M_{ad} , \qquad (2.25)$$

$$\Psi_f = i_f \cdot L_f + i_D \cdot M_{ad} - I_d \cdot M_{ad}, \qquad (2.26)$$

- «q»

$$\Psi_q = -I_q \cdot L_q + i_Q \cdot M_{aq}, \qquad (2.27)$$

$$\Psi_{Q} = i_{Q} \cdot L_{Q} - I_{q} \cdot M_{aq}, \qquad (2.28)$$

$$(2.24) - (2.28)$$
 $I_d I_q$ -

$$U_d$$
, U_q , I_d , I_q ,

 $P = U_d I_q + U_q I_d.$

•

$$(2.19) \quad (2.20)$$

$$M = \frac{P}{\omega} = -\psi_q I_d + \psi_d I_q. \quad (2.29)$$

2.1.3.

,

$$(x'_{d})$$

•

$$x'_{d} \quad x''_{d}, x''_{q}$$
, ().

,

,

_

_

,

,

L,

$$\Psi_{K} = \Psi_{L} + \Psi_{M} = Li + \Psi_{M},$$

.

 Ψ_M –

$$\frac{d\left(Li+\Psi_{M}\right)}{dt}=0.$$

$$Li + \Psi_M = \text{const}$$
.

,

.2.6.

II

,

.

$$\Delta i_1 L_1 + \Delta i_2 M = \Delta \Psi_1, \qquad (2.30)$$

$$\Delta i_2 L_2 + \Delta i_1 M = \Delta \Psi_2. \tag{2.31}$$
$$\Delta \Psi_2 = 0. -$$

$$\Delta \Psi_2 = 0. -$$

$$\Delta i_2 \qquad (2.31), \qquad (2.30) -$$

$$L = \frac{\Delta \Psi_1}{\Delta i}, \qquad -$$

$$I \qquad M^2$$

$$L = L_1 - \frac{M^2}{L_2}.$$

$$L_1 = M + L_{\sigma 1}, \quad L_2 = M + L_{\sigma 2}.$$

, -
$$x_d$$
 - x_q . -

, -
$$x_d > x_q$$
.

2.1.4.

$$\begin{split} L_f &= M_{ad} + L_{\rm of}\,, \\ L_D &= M_{ad} + L_{\rm oD}. \end{split}$$

$$L_f \frac{di_f}{dt} + i_f r_f + M_{ad} \frac{di_D}{dt} = U_f,$$
$$L_D \frac{di_D}{dt} + i_D r_D + M_{ad} \frac{di_f}{dt} = 0.$$

$$L_{f} p i_{f}(p) + i_{f}(p) r_{f} + M_{ad} p i_{D}(p) = U_{f}(p), \qquad (2.32)$$

$$L_{D} p i_{D}(p) + i_{D}(p) r_{D} + M_{ad} p i_{f}(p) = 0.$$
(2.33)
(2.33) $i_{D}(p)$ (2.32)

$$i_{f}(p)(r_{f}+L_{f}p)-\frac{M_{ad}^{2}i_{f}(p)p}{r_{D}+L_{D}p}=U_{f}(p).$$

$$\left(L_{f}L_{D}-M_{ad}^{2}\right)p^{2}+\left(L_{D}r_{f}+L_{f}r_{D}\right)p+r_{f}r_{D}=0.$$
(2.34)
$$p^{2}$$

$$L_{f}L_{D} - M_{ad}^{2} = L_{f}L_{D}\left(1 - \frac{M_{ad}^{2}}{L_{f} \cdot L_{D}}\right) = L_{f}L_{D}\sigma_{fD}, \qquad (2.35)$$

 σ_{fD} –

$$(2.34) r_f r_D (2.35)$$

$$\sigma_{fD} T_f T_D p^2 + (T_f + T_D) p + 1 = 0, \qquad (2.36)$$

$$T_f = \frac{L_f}{r_f}, \quad T_D = \frac{L_D}{r_D} -$$

$$p = -\frac{1}{T}.$$
(2.36)

$$T^{2} - (T_{f} + T_{D})T + \sigma_{fD}T_{f}T_{D} = 0.$$
(2.37)

(2.37)

•

•

$$T_{1,2} = \frac{T_f + T_D}{2} \pm \sqrt{\left(\frac{T_f + T_D}{2}\right)^2 - \sigma_{fD}T_fT_D} .$$
(2.38)

$$\sigma_{fD}$$

,

0,05–0,15,

$$\sigma_{fD}T_fT_D \ll \left(\frac{T_f + T_D}{2}\right)^2.$$

$$T_{1,2} \approx \frac{T_f + T_D}{2} \pm \left(\frac{T_f + T_D}{2} - \frac{\sigma_{fD}T_fT_D}{T_f + T_D}\right)$$

$$T_{d0}'' \approx \frac{\sigma_{fD} T_f T_D}{T_f + T_D}$$

$$T'_{d0} \approx T_f + T_D - T''_{d0}.$$

,

_

. 2.8.

,

,

,

 M_{ad} .

$$L_{f}\frac{di_{f}}{dt} + i_{f}r_{f} + M_{ad}\frac{di_{D}}{dt} + M_{ad}\frac{dI_{d}}{dt} = U_{f}, \qquad (2.39)$$

$$L_{D}\frac{di_{D}}{dt} + i_{D}r_{D} + M_{ad}\frac{di_{f}}{dt} + M_{ad}\frac{dI_{d}}{dt} = 0, \qquad (2.40)$$

$$L_d \frac{dI_d}{dt} + M_{ad} \frac{d}{dt} \left(i_f + i_D \right) = 0.$$
(2.41)

(2.41)
$$\frac{dI_d}{dt}$$
, (2.39) (2.40) -

$$L_f \frac{di_f}{dt} + M \frac{di_D}{dt} + i r = U , \qquad (2.42)$$

$$L_{D} \ \frac{di_{D}}{dt} + M \ \frac{di_{f}}{dt} + i \ r = 0, \qquad (2.43)$$

$$L_f = \sigma L$$
, $L = \sigma L$, $M = M \left(1 - \frac{M_{ad}}{L_d}\right) -$

$$\sigma_{fd} = 1 - \frac{M^2}{L_f L_d}, \quad \sigma_{Dd} = 1 - \frac{M^2}{L_D L_d} -$$

•

,

, (2.38),

$$T_{f} = \frac{L_{f}}{r_{f}}$$
 $T_{D} = \frac{L_{D}}{r_{D}}$

$$\begin{split} T_{f} & T_{D}, \qquad L_{f} < L & L_{D} < L_{D}. & & \\ & & : \\ & & : \\ & T_{d}'' \approx \frac{\sigma_{fD}T_{f} T_{D}}{T_{f} + T_{D}}. \\ & & T_{d}' \approx T_{f} + T & -T'' . \\ & & , \\ & & T_{d}' = T_{d0}' \frac{x_{d}'}{x_{d}}, \quad T_{d}'' = T_{d0}'' \frac{x_{d}''}{x_{d}'}. \end{split}$$

 $T_{q0}'' \quad T_{q}''$.

•

$$T_{q}'' = T_{q0}'' \frac{x_{q}''}{x_{q}}$$

2.1.5.

•

,

_

-

, -

-

$$U_d = -\psi_q \omega, \qquad (2.44)$$

$$U_q = \psi_d \omega, \qquad (2.45)$$

$$\psi_d = -I_d L_d + i_f M_{ad}, \qquad (2.46)$$

$$\psi_f = i_f L_f - I_d M_{ad} , \qquad (2.47)$$

$$\psi_q = -I_q L_q. \tag{2.48}$$

(2.46) (2.45)

•

.

$$U_q = (i_f M_{ad} - I_d L_d) \omega.$$
(2.49)
$$I_d$$

$$x_d = L_d \omega \,. \tag{2.50}$$

$$E_q = i_f M_{ad} \omega = i_f x_{ad}, \qquad (2.51)$$

$$x_{ad} = M_{ad} \omega - .$$
(2.51), *q*
(2.51) (2.49)

 $\ll q \gg$

$$U_q = E_q - I_d x_d . (2.52)$$

-

(2.48) (2.44)
$$U_{d} = I_{q}L_{q}\omega = I_{q}x_{q}, \qquad (2.53)$$

$$x_q = L_q \omega$$

. (2.52) (2.53)
. ,

$$i_A = I_d \cos(\omega t + \gamma_0) + I_q \sin(\omega t + \gamma_0).$$

. 2.11.

(2.52) $q, (2.53) \quad d.$ $\dot{U}_q = \dot{E}_q - \dot{I}_d j x_d,$ $\dot{U}_d = \dot{I}_q j x_q.$ i_f (2.47)

$$i_f = \frac{\psi_f + I_d M_{ad}}{L_f} . \tag{2.54}$$

(2.54) (2.49)

$$U_{q} = \left[\frac{M_{ad}}{L_{f}}\left(\psi_{f} + I_{d}M_{ad}\right) - I_{d}L_{d}\right]\omega_{.}$$

,
$$I_d$$

 $U_q = \psi_f \frac{M_{ad}}{L_f} \omega - I_d \left(L_d - \frac{M_{ad}^2}{L_f} \right) \omega$. (2.55)

(2.55)

,

$$\Delta U_q = \Delta \psi_f \frac{M_{ad}}{L_f} \omega - \Delta I_d \left(L_d - \frac{M_{ad}^2}{L_f} \right) \omega \,. \tag{2.56}$$

_

, $\Delta \psi_f = 0$ (2.56)

$$\frac{\Delta U_q}{\Delta I_d} = x'_d = \left(L_d - \frac{M_{ad}^2}{L_f}\right)\omega,$$

 x'_d –

_

(2.55),
$$E'_q$$

$$E_q' = \psi_f \frac{M_{ad}}{L_f} \omega.$$

(2.55)

$$U_{q} = E'_{q} - I_{d} x'_{d} ,$$
$$x'_{d} = \left(L_{d} - \frac{M_{ad}^{2}}{L_{f}} \right) \omega ,$$
$$L_{d} = M_{ad} + L_{\sigma}, \quad L_{f} = M_{ad} + L_{\sigma f} .$$

$$\begin{aligned} x_d' &= \left(M_{ad} + L_{\sigma} - \frac{M_{ad}^2}{M_{ad} + L_{\sigma f}} \right) \omega = \\ &= \frac{M_{ad}^2 + L_{\sigma} M_{ad} + L_{\sigma f} M_{ad} + L_{\sigma} L_{\sigma f} - M_{ad}^2}{M_{ad} + L_{\sigma f}} \omega = \\ &= \frac{L_{\sigma} (M_{ad} + L_{\sigma f}) + L_{\sigma f} M_{ad}}{M_{ad} + L_{\sigma f}} \omega. \end{aligned}$$

$$x'_{d} = \left(L_{\sigma} + \frac{L_{\sigma f} M_{ad}}{M_{ad} + L_{\sigma f}}\right) \omega.$$
(2.57)

(2.57)

,

. 2.12.

2.1.6.

•

•

 $U_q = \Psi_d \omega, \qquad (2.58)$

,

$$\Psi_{d} = i_{f} M_{ad} + i_{D} M_{ad} - I_{d} L_{d} , \qquad (2.59)$$

 $\Psi_{f} = i_{f} L_{f} + i_{D} M_{ad} - I_{d} M_{ad} , \qquad (2.60)$

d

$$\Psi_D = i_D L_D + i_f M_{ad} - I_d M_{ad}. \qquad (2.61)$$

$$\Psi_{f}M_{ad} = i_{f}M_{ad}L_{f} + i_{D}M_{ad}^{2} - I_{d}M_{ad}^{2}, \qquad (2.62)$$

$$\Psi_D L_f = i_D L_D L_f + i_f M_{ad} L_f - I_d M_{ad}^2 L_f. \qquad (2.63)$$

$$(2.63) (2.62), i_D i_D I_d, - i_D$$

$$i_{D} = \frac{\Psi_{D}L_{f} - \Psi_{f}M_{ad} + I_{d}\left(M_{ad}L_{f} - M_{ad}^{2}\right)}{L_{D}L_{f} - M_{ad}^{2}}.$$
 (2.64)

$$i_{f} \qquad (2.60) \qquad L_{D}, \quad (2.61) \qquad M_{ad}$$

$$\Psi_{f}L_{D} = i_{f}L_{D}L_{f} + i_{D}M_{ad}L_{D} - I_{d}M_{ad}L_{D}. \qquad (2.65)$$

$$\Psi_D M_{ad} = i_D L_D M_{ad} + i_f M_{ad}^2 - I_d M_{ad}^2. \qquad (2.66)$$

(2.66) (2.65),
$$i_D I_d$$
, - i_f

$$i_{f} = \frac{\Psi_{f} L_{D} - \Psi_{D} M_{ad} + I_{d} \left(M_{ad} L_{D} - M_{ad}^{2} \right)}{L_{D} L_{f} - M_{ad}^{2}}.$$
(2.67)

$$U_{q} = \frac{\Psi_{f} (L_{D} - M_{ad}) M_{ad} + \Psi_{D} (L_{f} - M_{ad})}{L_{D} L_{f} - M_{ad}^{2}} \omega - I_{d} \left(L_{d} - \frac{M_{ad} L_{f} + M_{ad} L_{D} - 2M_{ad}^{2}}{L_{D} L_{f} - M_{ad}^{2}} M_{ad} \right) \omega.$$
(2.68)
$$(2.68) - I_{d} \left(M_{ad} L_{f} + M_{ad} L_{D} - M_{ad}^{2} - M_{ad} \right) \omega.$$

 E_q'' .

,

_

-

 I_d

$$-x''_d$$
. *I*_d (2.68)

_

_ _

-

,

•

•

,

$$\Delta U_{q}, \Delta I_{d}, \Delta \Psi_{f}, \Delta \Psi_{D}$$

$$\Delta \Psi_{f} = 0, \quad \Delta \Psi_{D} = 0, \quad ,$$

$$\frac{\Delta U_{q}}{\Delta I_{d}} = \left(L_{d} - \frac{M_{ad}L_{f} + M_{ad}L_{D} - 2M_{ad}^{2}}{L_{D}L_{f} - M_{ad}^{2}}M_{ad}\right)\omega = x_{d}''. \quad (2.69)$$

$$U_q = E_q'' - I_d x_d'' \,. \tag{2.70}$$

 U_d

$$U_d = -\Psi_q \omega, \qquad (2.71)$$

$$\Psi_q = i_Q M_{aq} - I_q L_q, \qquad (2.72)$$

$$\Psi_Q = i_Q L_Q - I_q M_{aq}, \qquad (2.73)$$

(2.73) i_Q

$$i_{Q} = \frac{\Psi_{Q} + I_{q}M_{aq}}{L_{Q}}.$$
 (2.74)

(2.74) (2.72)

$$\Psi_{q} = \frac{\Psi_{Q}M_{aq}}{L_{Q}} - I_{q} \left(L_{q} - \frac{M_{aq}^{2}}{L_{Q}} \right).$$
(2.75)

(2.75)

$$U_{d} = \left[-\frac{\Psi_{Q}M_{aq}}{L_{Q}} + I_{q} \left(L_{q} - \frac{M_{aq}^{2}}{L_{Q}} \right) \right] \omega. \qquad (2.76)$$

2.2.

,

$$k_f = \frac{1}{\sigma}.$$

,

. 2.13.

, f_0(____) .

(2.78)

•

$$P_{T} = A DH_{0}\eta,$$

$$D - (/),$$

$$A - ,$$

$$H_{0} - ,$$

$$\eta - .$$

$$P = A \ QH\eta, \qquad (2.79)$$

$$Q = (3/),$$

 $= .$
, . .
 $\mu_*($, . .

•

•

1- -

_

_

$$W(p) = \frac{1}{T p + 1},$$

T –

,

•

_

,

. 2.15.

. 2.15.

10÷15%

7 9

(. 2.16)

,

. 2.16.

 $\mu = 1$ –

.2.17.

,

()

2.3.

,

•

$$J\frac{d\omega_{R}}{dt} = M - , \qquad (2.80)$$

$$J-$$
 , ω_R- , , , ,

$$J\frac{d\omega_{R}}{dt}$$

,

,

(2.80)

,

,

(

$$\frac{d\omega}{dt} = 0. (2.81)$$

,).

$$J\frac{d(\omega - \omega_R)}{dt} = -M \quad . \tag{2.82}$$

,

,

,

ω

(2.82)

$$T \frac{ds_R}{dt} = {}_* -M {}_*, \qquad (2.83)$$

$$T = \frac{\omega}{J}$$

$$s_R = \frac{\omega - \omega_R}{\omega}$$

•

,

,

$$M = \frac{P}{\omega}.$$
 (2.84)

, ,

,

•

,

$$s = \frac{\omega - \omega_R}{\omega} = \frac{\omega - \omega \quad (1 - s_R)}{\omega}.$$
 (2.85)

. 2.18.

,

,

,

. 2.18.

,

)

(

$$P = I^{2} \frac{r}{s}.$$

$$I = \frac{U}{\sqrt{x_{K}^{2} + \left(\frac{r}{s}\right)^{2}}},$$

$$P = \frac{U^{2}rs}{x_{K}^{2}s^{2} + r^{2}}.$$
(2.86)

$$P = \frac{U^2 rs}{\left(x_K \frac{\omega}{\omega}\right)^2 s^2 r^2}.$$
 (2.87)

(

).

[1]

. 2.19.

,

$$Q = Q_K + Q_{\mu}.$$
 (2.88)

r

-

$$Q_{K} = I^{2} x_{K} \frac{\omega}{\omega} . \qquad (2.89)$$

,

(2.87)

 $I^{2} = P \frac{s}{r},$ $Q_{K} = P \frac{s}{r} x \frac{\omega}{\omega}.$ $Q_{\mu} - .$ (2.90) $Q_{\mu} - .$ (2.90)

(.2.18).

.2.20.

,

)

 Q_{μ}

,

,

$$Q_{\mu} = \frac{U^2}{x_{\mu} \frac{\omega}{\omega}} f(U). \qquad (2.91)$$

_

_

$$I_{\mu}$$
 U , Q_{μ} U -

f(U),

$$f(U) = \left(\frac{U}{U}\right)^{K_{\mu}-2}$$
. (2.92)

,

•

 K_{μ} .

,

 $(P \quad Q).$

$$P = P$$

,

$$(\cos \varphi)$$
 -

$$S = \frac{P}{K \cos \varphi}.$$
 (2.93)

(2.87),

-

_

(2.89), (2.90)

•

,

,

,

,

•

•

$$P = S \quad \left(\frac{U}{U} - \frac{U}{U}\right)^{2} \frac{r_{*}s}{(\omega_{*}x_{K}s)^{2} + r_{*}^{2}},$$
(2.94)

$$Q = P \frac{x_K s}{r_*} \omega_* + S = \frac{\omega_*}{x_{\mu^*}} \left(\frac{U}{U} - \frac{U}{U} \right)^{\kappa_{\mu^{-2}}}.$$
 (2.95)

•

U –

$$\mathcal{W}_{R}$$

$$M = M \left[* + (1 - *) \left(\frac{\omega_{R}}{\omega_{R}} \right)^{2} \right]. \quad (2.96)$$

$$M = \frac{P}{\omega} = \frac{S K \cos \varphi}{\omega},$$

$$* - (-\omega_{R} = 0),$$

 ω_{R}

$$\omega_{R} \quad \omega_{R}$$

$$\omega_{R} = (1 - S_{R})\omega \qquad \omega_{R} = (1 - S_{R})\omega \qquad .$$

$$\frac{\omega_{R}}{\omega_{R}} = \frac{1 - S_{R}}{1 - S_{R}}.$$

$$M \neq 0 \qquad \omega = 0,$$

$$M = 0 \qquad \omega \neq 0.$$
(2.96) . 2.23.

_

,

*

$$\approx 0.5$$
,

 $M = \begin{pmatrix} 1 & & \\ &$

*≈1.

2.4.

(. 2.1).

•

100%.

0

62

13 9	🤪 Mustalig - [AbioMatinka]												
8,	💱 Файлы УР Динданные Динрезультаты Утяжеление Прочие функции Установки Окна ?												
С	Стандартные АЛАР Программируемые												
	Пояснение	N	Логика		Фактор	Ni	Nj	Nn	Уставка	T1	Кв	Zk1	Zk2
				Т2	Действие	Ni	Nj	Nn	Парам1	Парам2	ПарамЗ		
		1			Время				0.100				
					Шунт	25				0.001			
				10.000	Шунт	25				-0.001			

•

Insert,					
,		(<u>12</u>).	Ni 1/	2	-
	-	().	, X = 0.001		-
		2	 ,		-
				,	-
	Ni			,	10 (12
),	1/ «—».	2 –			

•

,

3.2.

|--|

₹,	🦆 Mustang - [Автоматика]													
83	Файлы УР	Диндан	ные Ди	нрезульта	ты Утяжеление	Прочие фу	икции :	Установки	Окна	?				
C	Стандартные АЛАР Программируемые													
	Пояснение	N	Логика		Фактор		Ni	Nj	Nn	Уставка	T1	Кв	Zk1	Zk2
				T2	Действие		Ni	Nj	Nn	Парам1	Парам2	ПарамЗ		
		1			Время					0.200				
					Шунт		3				0.001			
				10.000	Шунт		3				-0.001			

3.3.

,

3.3.1.

,

. 3.1) (, • •, [5]. .3.1, 1. (1). • *Q*1. t t t = 0, 1 + 0, 12 = 0, 22 . t +t= t-• 2. , Q2, Q3 Q9. (2). t *Q*4, *Q*5, *Q*6. (-) = 0, 1+0, 12+(0, 4-0, 6) = 0, 62-0, 82. t +t= t + t

. .

••

_

()

,

-

t = t + t + t = (1-1,5) + 0,12 + (0,4-0,6) = 1,52-2,22.

•

• •

. .

•

•

$$t = t + t = 0,12 + (0,4-0,6) = 0,52 - 0,72$$

5.
$$Q^2 Q^3$$

$$t = t = 0, 4 - 0, 6$$

_

,

(

.

2	2
J	.J

₹,	🦻 Mustang - [Автоматика]												
33	🕽 Файлы УР Динданные Динрезультаты Утяжеление Прочие функции Установки Окна ?												
Ci	Стандартные АЛАР Программируемые												
	Пояснение	N	Логика		Фактор	Ni	Nj	Nn	Уставка	T1	Кв	Zk1	Zk2
				T2	Действие	Ni	Nj	Nn	Парам1	Парам2	ПарамЗ		
		1			Время				0.500				
					Шунт	10				0.020			
				0.220	Шунт	10				-0.020			
				0.220	Отключить связь	10	5						

3.4

ф,	🤪 Mustang - [Автоматика]												
33	🕽 Файлы УР Динданные Динрезультаты Утяжеление Прочие функции Установки Окна ?												
Ст	Стандартные АЛАР Программируемые												
	Пояснение	N	Логика		Фактор	Ni	Nj	Nn	Уставка	T1	Кв	Zk1	Zk2
				T2	Действие	Ni	Nj	Nn	Парам1	Парам2	ПарамЗ		
		1			Время				0.200				
		1			Шунт	4				0.010			
		1		0.220	Шунт	4				-0.010			
		1		0.220	Отключить связь	3	1						
				0.220	Отключить связь	4	5						
				0.220	Отключить связь	4	6						
				0.500	Включить связь	3	7						
				0.500	Включить связь	5	8						
				0.500	Включить связь	6	9						

,

3.4.

(. 3.3).

, 0,1 .

$$t = 0,5$$

(

,

,

W

).

3.5.

3.5

_

ŝ,	🦸 Mustang - [Автоматика]												
33	у Файлы УР Динданные Динрезультаты Утяжеление Прочие функции Установки Окна ?												
C	Стандартные АЛАР Программируемые												
	Пояснение	N	Логика		Фактор	Ni	Nj	Nn	Уставка	T1	Кв	Zk1	Zk2
				T2	Действие	Ni	Nj	Nn	Парам1	Парам2	ПарамЗ		
		1			Время				0.500				
		1			Шунт	3				0.001			
		2			Imax	2	3		0.085	1.000			
		2	И		Umin	2			77.000				
		2		0.100	Отключить конец связи	2	3						

4.

4.1

.1.

,

							4.1
	,						
	Ui		i–j	Q_{i-j}			Q _K
						(
)	
6		5–7			10–6	G1 (1)	
7		10–6			11–6	G2 (2)	
8		10–7			10-8	G3 (3)	
9		10-8			11–9	G4 (4)	
					7–15		
					7–16		

4.

,

,

±5%

,

4.2.

							4.2
	,						
	U_i		i–j	$Q_{i\!-\!j}$			Q_{K}
						(
)	
6		5–7			10–6	G1 (1)	
7		10–6			11–6	G2 (2)	
8		10–7			10-8	G3 (3)	
9		10-8			11–9	G4 (4)	
					7–15		
					7–16		

•

4.1 4.2.

-

74

4.2.

()

1.

« ».

. 2.1.

$$-Q_2 = 27,5$$
 (-).
).
 $Q_1(U_2)$

$$Q_1(U_2) = IU_2 = \frac{U_1 - U_2}{x}U_2.$$
 (4.1)

,

$$Q_{2min} = 0,5Q_2$$
 , Q_2 , $Q_{2max} = 1,3Q_2$. (4.2)
, U_2 , -

(4.2)

-

~

, »).

,

 $\begin{array}{ccc} (4.2) & (1.29) \\ Q_2(U_2) \end{array}$

 U_2 ,

.

4.3.

, 30%. , 4.3. . .1.3 (). (1.30) : $b_0 = 2,7, b_1 = -6, b_2 = 4,3.$

(4.1) (

, 4.3. 2. 4.4 ~ **»** , 4.1 , ,

4.3

		Q_{2min}	Q_2	Q_{2max}
		13,75	27,5	35,75
Mathcad	,			
Matricau				
	,			

4.4

	U		+	jQ	U		+jQ		U		-	jQ
	()	()	()	()	()	()
-100%												
-100%												
- 100%												
-50%												
-50%												
- 50%												
-130%												
-130%												
- 130%												
-50%												
-50%												
- 50%												
-130%												
-130%												
- 130%												

3.

.1.3

•

() ».

•

4.

. 2 4.4

•

~

-

4.3.

1. 2.

•

1.

,

•

?

,

. 2.2

P = 450 , cos = 0,85 () ()

:

$$U_1 = 230$$
,
 $U_2 = 220$,
 $_0 = 0.4$ /,
 $r_0 = 0.075$ /,
 $b_0 = 2.67 \cdot 10^{-6}$ /,
 $P_H = 200$, cos = 0.85.

 $P_{H} = 200$

(. 2.2) ». -

*

	\mathbf{Q} min = -	-1000	, Q max =			
$(P_1 + jQ_1)$ (dQ)		$ \begin{array}{c} Q \\ (P_2 + jQ_2) \\ . \end{array} $,	4.5	(dP)	-
	P + jQ	$P_1 + jQ_1$	$P_2 + jQ_2$	dP	dQ	$\frac{4.5}{P_{\mu}+jQ_{\mu}}$
	~~	1 0 ~1	2 3 ~2			
-						
-						
$K_3 = 0,08$						
2.				(Ctrl I	D)
4.5.		·				
3.						
		<u> </u>		.1.4,		
	,	10 0 ((= 1000)	P. = 10),	•	
4. U =	« = 0.7, =	= 5, °Q =	$1, \mathbf{g}_{,} = 0$:	<u>-</u>

$$P$$
, Q .
 P + jQ .

5.

$$K_3 = \frac{P - -\Delta P}{P}, \qquad (4.3)$$

-

_

-

.

?

$$P - ,$$
 , $-$, $P - ,$, $\Delta P - .$

 $\Delta P = 0.$

	(4.3)			8%.
	P ,	$K_3 = 0,08$.		
		,		-
,			,	-

	$\Delta P = P - \dots$		
	<u> </u>	Р	-
	$P = -\Delta$.		-
().	4.5.	
6.			

4.4.

6

,

• •

,

:

1.

, 4.1, 4.2.

(

,

_

,

2.

. . 6±0,3 6,6 ± 0,3 .

5.

)

.

_

?

--

•

•

, ?

,

	2	\mathbf{r}
•	J	.∠.

				4.6
			(. 1.13	3)
		(,)	
$P_{14} + jQ_{14}$	$P_{37} + jQ_{37}$		$P_{14} + jQ_{14}$	
$P_{45} + jQ_{45}$	$P_{78} + jQ_{78}$		$P_{45} + jQ_{45}$	
$P_{46} + jQ_{46}$	$P_{79} + jQ_{79}$		$P_{46} + jQ_{46}$	
		(,)	
$dP_{14} + jdQ_{14}$	$dP_{37} + jdQ_{37}$		$dP_{14} + jdQ_{14}$	
$dP_{45} + jdQ_{45}$	$dP_{78} + jdQ_{78}$		$dP_{45} + jdQ_{45}$	
$dP_{46} + jdQ_{46}$	$dP_{79} + jdQ_{79}$		$dP_{46} + jdQ_{46}$	
		(()	
U_5	U_8		U_5	
U ₆	U ₉		U ₆	

,

,

•

.

?

•

4.5.

1.

2. 3. ?

,

4.

, 4.1.

	,		(1), -
1 - 2 - 3 -	10 (35 (220 (12), 13), 14).	÷	
: 6 – 13, 7	- 14, 8 - 12.	,		
1.		,	.2.1, .2	2.2 -
	().	,		, ,
2	, ,		3.	 1,
,				-
3.		4,		
, (1) 8_12_	,		(2)	
$I_{1} - I_{0} - 8 - I_{0} - 8 - I_{0}$,	3, 4.	1,	2.
4.	,	4	«	»
().	, I _{,0}		-
5.	I ,0			

, 4.7,

(. .2).

-	I ,0	-	-	I ,0	-		Ι ,0
G1			G1 + G2			G1 + G2 +	
G2 G3+G4+		2	G3+G4 -		3	G3+G4	
-			-				

4.7

,

•

,

6.

1, 2, 3.

,

4.6.

1.

?

,

•

2. Eqe(t), Eq(t) I (t).

(t = 0)

,

$$I_{(t=0)} = \frac{U}{\sqrt{3}X_d''}, \quad I_{(t=\infty)} = \frac{U}{\sqrt{3}X_d}.$$

.4,

-

-

.

4.4.

1. , 3.3, -

$$(\ .3.1, \ 1)$$

$$S \ (t), I(t), \ (t), \ (t)$$

$$U(t) - \dots ($$

$$.11).$$

$$. \dots$$

$$2. \dots 1$$

$$3. \dots$$

$$S \ (t), I(t), \ (t), \ (t)$$

$$4. \dots$$

$$(\ .3.1, \ 3). \qquad S \ (t), I(t), \ (t), \ (t)$$

$$5. \dots$$

_

,

_

-

-

_

4.8.

- 1. 2. 3. ?
 - .

,

•

•

,

4.1.

1. 3.1) (, , • 0,1 . , 0,2 . 2. **P** (t), **P** (t), **S** (t), **U** (t), **I** (t) 0,1 0,2 (-2.11). , 3. . (t $_{Q1} = 0,12$, t $_{Q2} = 0,5$). , , 4. .2 **P** (t), P (t), S (t), U (t), I (t) .2. 5. -, = 0,001 : = 10 , • 0,12 . 6. .5 P (t), P (t), S (t), U (t), I (t) .2. , 7. •

P (t),

•

•

•

•

P (t), S (t), U (t), I (t). 8. ()

P (t), **P** (t), **S** (t), **U** (t), **I** (t).

1. -.: . • . . – , 1972. – 352 . 2. . ., : , 1989. – 608 . .: 3. . . - / .: : : , 2006. – 720 . 4. , 1984. – 240 . .: 5. : , 1982. – 400 . .: 6. . ۰, , 1987. – 648 . .-2-.: 7. •, • •, • . . .: . – -, 1990.–348 .

1.1.

. .1.

, , , , , 1. , , 1 ,1.

_

														.1
	<u> </u>													
	-	-						_						
			P		OS	U			T_j	X_d	X'_d	X''_d	X_q	T_{d0}
63	G	1 C2	()	0.8	()			7.25	0.e.	0.e.	<i>o.e.</i>	0.e.	C
2 3	- 0	1, 02)5	0,8	10,5			7,25	13	2	61	1,5	0,15
-11	0-G	3, <i>G</i> 4	1	10	0,8	10,5		-	7,8	2,0 4	0,27 1	0,18 9	2	6,7
2 3								-						
								1			ſ			
		-	K_{π}				u_{κ} (%)		()				
			N ₁		()			()			()	
	<i>T</i> 3, 2	Τ4	22			230	11		מ	2	00	x_T		46,6
125			22			10.5	11		Ρ	- 50	50	r_T		1,28
					I	I	T		I		I	I		
	-			-						()			-
	-			-	()				C)		()
			<u> </u>				(%	6)			т 			0.6.7
	TT,	$K_{\partial I}$	ΒÑ	6	$U_{\scriptscriptstyle BH}$	230	$u_{_{KB-C}}$		11			<i>x</i>	В	96,5
63	12						u _{KB-Í}	-	32			Х	C	0
					$U_{_{\tilde{N}H}}$	38.5	$u_{_{KC-I}}$		20		320	0 <i>x</i>	Н	172
		K	BH	22			$u_{_{KB}}$	1	1,5			r	В	2,13
					$\overline{U}_{\scriptscriptstyle H\!I}$	10.5	<i>u</i> _{KC}	-(0,5			r	с.	2,13
							u _{kí}	2	0,5			r	Н	2,13
											<u> </u>			
)												
5 22	20			500	r_0	0,0	65	,		r		5,2	_	
5-22	80		-3	500	$\frac{x_0}{b_0}$	0,4	84	/	/	x b		<u>32,08</u> 227	+	
						2,0			,	0				
				-1(0-2500-	-0,35,			23	,9				
					x_L	R = ,	$r_{LR} \equiv$,			<u> </u>			
				:	()			
		1	$P_{ m H f}$	$_1 + jQ$) HÍ 1		15 + j8	,5	А					
		2	$P_{\rm Hf}$	$_{2} + jQ$	ні 2		15 + j8	,5	А					
			35	P_{c} -	$+ iQ_c$		$35 \pm i1$	08	Δ					
		2	20	P_{P}	$+ jQ_{R}$		55 + j1 60 + j3	9,8 34	A					

. .2.

,

U	δ	Р	Q	
1	1	0	0	
1	0	1	0	
0	0	1	1	

«1»,	() () – «0».				-
		_		,					_
(·)		(
		5.				(•	.2)	-
				``					U
		<i>P</i> (PU-). δ				<i>Q</i> .	_

0	Q = varianta	Q.
	,	

.2)

•

).

-

_

_

i

 $(\ .\ .3) \\ P_{{\rm f}\ 0i} + j Q_{{\rm f}\ 0i}\,,$

•	() U_i, δ_i ,	
•					$P_{\tilde{A}i} + j Q_{\tilde{A}i} ,$
•	i-	$Y_{_{\emptyset ai}} +$	$jY_{_{\phi \delta i}.}$, -
_				:	
(, .2),	,	,	0 1,	
U –		,	$Q_{ ilde{A}{ m min}}$ <	$, Q_{\tilde{A}} < Q_{\tilde{A}max}$),
dU – 0 –	(.)		(), (),	
Q 0 – U – U –				(), (), (),	
N –	,			(),	-
Q – Y a– Y –				(),	(), (),
Qmin –	(),				, -
Qmax –	().				, –
					:
<n> <</n>	> <u< td=""><td>> <u< td=""><td>> <u< td=""><td>> <qmin< td=""><td>> <qmax></qmax></td></qmin<></td></u<></td></u<></td></u<>	> <u< td=""><td>> <u< td=""><td>> <qmin< td=""><td>> <qmax></qmax></td></qmin<></td></u<></td></u<>	> <u< td=""><td>> <qmin< td=""><td>> <qmax></qmax></td></qmin<></td></u<>	> <qmin< td=""><td>> <qmax></qmax></td></qmin<>	> <qmax></qmax>
				<qmin> <0</qmin>	Qmax> -
			:		·
<n> <</n>	> <u></u>	• < > •	<u></u>	<u><q1< td=""><td>nin> <qmax></qmax></td></q1<></u>	nin> <qmax></qmax>

[1],

-

. .4. **i**-**j**
. .4. :

$$\underline{Z}_{ij} = R_{ij} + jX_{ij} -$$
 ,
 $0,5 \underline{Y}_{ij} = 0,5 \hat{A}_{ij} -$,
(),
 $\underline{Y}_{ij}^{p} = G_{ij}^{p} + jB_{ij}^{p}, \underline{Y}_{ji}^{p} = G_{ji}^{p} + jB_{ji}^{p} -$ **i**, **j**

 $\underline{\hat{E}}_{\grave{0}ij}-$

Ni, Nj – N –

,

•

,

:

,

.WIN»

) (.5). (🖏 Mustang - [УР. Исходные данные. Результаты] 👫 файлы УР Дин.-данные Дин.-результаты Утяжеление Прочие функции Установки Окна ? "Дерево" Шрифт Поиск узлов Сохранить ГСуммы дочерних папок Исходные данные Результаты Кусты узлов секция 2 20000 Код = 11 Ucrapт = 6.300 Upac = 6.295 Рнеб = -0.0000 Qнеб = 0.0000 1.088 + j1.000 0.136 6.296 -1.088 - j1.000 21000 0.136 1.088 + j1.000 0.135 FINDER 8 6.299 -1.087 - j1.000 21100 0.135 0.900 + j0.800 ДЭС 7 0.110 6.298 -0.899 - j0.800 25000-0.110 0.871 - j0.407 0.088 6.296 -0.870 + j0.407 26000 0.088 1.088 + j0.400 0.106 F∏∋C 10 6.300 -1.087 - j0.400 29000 / 0.106 <u>-5.032 - j2.791</u> секция 1 0.528 6.295 5.032 + j2.792 10000/ 0.528

,

. .5.

_

99

~

:

_

, . 1.13.

$$\underline{Z} = R + jX$$

().
 $\underline{Y} = G + jB - ()$
, $Yp = Ypa + jYpr$
, ().

10

,

,

).

(

,

$$\underline{Sp} = Pp + jQp$$

1.3.

,

$$Insert.$$

$$N -$$

$$(30)$$

$$(N)$$

$$(N)$$

$$(N)$$

$$(N)$$

$$(N)$$

$$(N)$$

$$(N)$$

$$(1) 1 \cdot 100 + 1 = 101,$$

$$N = 101,$$

$$(1) 1 \cdot 100 + 1 = 101,$$

$$(1) 1 \cdot 100 + 2 = 102,$$

$$(1) 2 \cdot 100 + 2 = 202,$$

$$(1) 2 \cdot 100 + 2 = 202,$$

$$(1) 2 \cdot 100 + 1 = 201,$$

$$(1) 2 \cdot 100 + 1 = 20,$$

$$(2) 2 \cdot 100 + 1 = 20,$$

$$(3) 2 \cdot 100 + 1 = 20$$

N								Q
	0	1	2	3	0	1	2	3
1	0.1	0.9				1		
2	-0.2	1.2			0.2	0.8		

»

-

,

«

,

<N >.

1.4.

•

•

	2.					
	2.1.					,
	1. « 2. « 3. «	» –	», ».	,		;
	1.	*	, ,	»	: •	<u></u>
\mathbf{N} –		« ,	*			:
U	, 				(), ().	
			()	$\cos = 0,$	<0, Q	
cos D – i/T	- 'i -			, (),		-
(Xd' - Xd - Xq - Xd") , -					$(\ . \ .),$ $(\ . \ .),$ $(\ . \ .),$
Xq" () Td0'	, , 	d0 9	().		[2]	-
Td0"	' _	·	(),		
'Tq0'	· _		().		

.4.

-

.4

, -

 $\mathbf{G}\mathbf{D}^2$

«

Ν	U	cos	j /Tj	Xd'	Xd	Xq	Xd"	Td0'

•

- » : <N> <U > <Xd'>
- **N** –

 $(\cdot ^{2}),$

-

- - j
 - $T_{j} = k \frac{GD^{2}n_{\hat{1}\hat{1}\hat{1}}^{2}}{D_{\hat{1}\hat{1}\hat{1}}} [\tilde{n}], \qquad (.1)$

(j)

 $n_{\hat{1}\hat{1}\hat{1}}$ [/], $P_{\hat{1}\hat{1}\hat{1}}$ – [], $k = 2.74 \times 10^{-6}$.

,

 GD^2

.5.

	GD ²	GD ² P		n	Tj	
- /	-	-				
	[2]	[²]	[]	[/];	[]	
-2-25-2	4.94	3.6	25	3000	8.5	

104

.5

-2-50-2	13,5	9,3	50	3000	11,2
-60-2	8,85	8,75	60	3000	7,25
-2-100-2	23	18,7	100	3000	10
-100-2	13	18,7	100	3000	7,8
2-150-2	30	28,5	150	3000	9,6
-165-2	17,5	28,5	165	3000	6,85
-200-2	22,4	35	200	3000	7,05
-200	25	35	200	3000	7,4
-300	31,1	48	300	3000	6,5
-320-2	30	48	300	3000	6,4
-800-2	61	111	800	3000	5,3

2.

'f −

.6

:

:

),

,

,

_

f – Alfa () –

,

. .

.7. (Kia, Kip * **»** .).

,

r		T					.7
		1	2	3	4	5	6
		0.04	0.04	0.04	0.1*	0.1	2*
	U +	6	6	6	2	2	2
	<u> </u>	-6	-6	-6	0	0	0
	Ku	50	50	50	7	7	10
	K'u	5*	5*	5*	-	-	-
	K'if	5*	5*	5*	-	-	-
	Kf	2*	2*	2*	-	-	-
	K'f	5*	5*	5*	-	-	-
	Tf	0.9	0.9	0.9	-	-	-
f							
. dU /df	А	-	-	-	1	1	1

.

*,

,

[1].

_

3. ~ **»** : •-~ **»** : N – N _ $\mathbf{N} = \mathbf{0}.$ Ν . N = 0 (Eqe = const). = 0, 1, 2...6 Ν (1.4). **qe**+ – q, q –, **q** – qe+ •

(),

.

q-, q+ -			q,	-
		q–	q +	-
_	. ().			
KI –		•		
Kif – U , –				
				-

.8.

,

							.8
		1	2	3	4	5	6
		0.04	0.04	0.1	0.3	0.3	0.3
	Eq +	2	2.5	2	2	2	2
Uf	Eq –	-1.6	-2	0	0	0	0
	Eq+	2	2	2	-	-	-
If	Eq-	0.6	0.6	0.6	-	-	-
	KIf	-	-	-	1.2	1.2	-
	KI	-	-	-	_	-	0.7
5	U	-	-	-	_	0.5*	_
		-	-	-	-	10	-

, *,

•

. .

	min,	max –				(%),
D	_		,			
	[],				
	_				().	

. 9.

5-10 5 % % 0,5 0 2 1,5 2 0,5 min % 0 0 110 max % 110 D ••• -0 0,7 1,5 0

$$\mathbf{P} \quad \mathbf{in} = \mathbf{P} \qquad = 0$$

« »,« »,« », « », « » :

()

.

.9
(= 1 = 2) -2, 1 - 1 (1). [], D , D _ , (,) =1. D S K () [1]: 0.1, -1.0, 1.0, , 0.5, 0.4, 1.0, 0.9, 0.15–0.2. _ [. .]. 0.01–0.05 _ = 4. U /U () I S [%].

Sr/R –		-1 (=1), Sr –	[%]
	-		X (S),	-
Sr/R	= 70%.			

(

)

0.1,

[. .]

S1,S2,...,Sk () : , . . Mac(S) S1 < S2 < S3 < ... < Sk.[9]. < > <>, >. < > < >. , Mac(S), K(S). **(S)** – , S $\mathbf{S}=\mathbf{0}.$ d q , S=100% ().

Ctrl L. Ctrl

L

113

	4.	()	,	-
,			: (),		_
h U Tf f0	$ \begin{array}{l} = 0.01 \\ = 0.01 \\ = 0.7 \\ = 0.1 \\ = 240 \\ = 120 \\ = 50 \end{array} $), (), ,		(), (), (), ().	
	: :	,		<u> </u>	<u>-</u>
	,				_
,	, I –	(.11).		-
	(2), >	, 	, 10−8. ≪	»	-
	,		,	,	-
	,	,		 , IVA	

NOV1.KNP.

[], _	[].
:	cos .
	[A],
	[A],
_ <l><j></j></l>	
Pij –	[],
Qij –	[],
I –	[A],
I –	[],
Z –	Ι -
I - J [O],	
Z –	I - J [],
$<\!\!Z 1\!\!> <\!\!Z 2\!\!> -$	[],
R –	[],
X –	[],
<i><j>- ,</j></i>	
<n>-</n>	,
$\langle Zk1 \rangle \langle Zk2 \rangle - min max$	

_	
3	•

r	1								2.1
-		K	P_{Σ}	-	P	n _o	M	J	р
,						/		. 2	
1	2	3	4	5	6	7	8	9	10
50-60		0,8	4000	2	2000	3000	0,13	4,75	3
		0,7	660	2	330	375	0,13	300	2
		0,6	320	2	160	1000	0,15	5,1	3
		0,8	100	2	50	1000	0,12	56	2
		0,9/ 0,7	500/ 210	2	250/105	1000/750	0,1	400	2
		0,8	400	2	200	1500	0,19	190	2
		0,9	540	2	270	750	0,15	1125	2
		0,7	800	1	800	1000	0,1	1125	1
		0,67	600	2	300	1000	0,15	22	2
		0,75	1000	2	500	500	0,79	850	0
		0,6	230	1	230	500	0.9	4625	0
100– 125		0,8	6400	2	3200	3000	0,13	6	3
		0,7	1000	2	500	500	0,13	150	2
		0,6	500	2	250	1500	0,15	3	3
		0,8	190	2	95	1000	0,12	112	2
		0,9/ 0,7	800/340	2	400/170	600/500	0,1	575	2
		0,8	750	3	250	1500	0,19	220	2
		0,9	1000	2	500	750	0,15	1925	2
		0,7	1100	1	1100	1000	0,1	1125	1
		0,67	1000	2	500	750	0,15	15	2
		0.75	1600	2	800	750	0.8	1000	0

		0,6	460	2	230	500	0.9	4625	0
-		К	P_{Σ}	-	P	n_0	М	J	р
,	_	• •		•		/	• •	· ²	
1	2	3	4	5	6	7	8	9	10
160- 165		0,7	8600	2	4300	3000	0,11	54	3
		0,9	1600	2	800	375	0,12	300	2
		0,85	640	2	320	1500	0,13	3,75	3
		0,7	300	2	150	750	0,11	434	2
		0,6/0,9	1260/320	2	630/320	750/600	0,09	1575	2
		0,6	800	2	400	1500	0,15	259	2
		0,55	1600	2	800	750	0,16	3500	2
		0,7	1100	1	1100	1000	0,1	1125	1
		0,7	1000	2	500	750	0,2	10,2	2
		0,6	2000	2	1000	750	0,8	59	0
		0,7	1600	2	800	600	0,9	4625	0
200– 220		0,7	16000	2	8000	3000	0,1	1,25	3
		0,9	2500	2	1250	375	0,1	300	2
		0,85	1000	2	500	1500	0,12	3,75	3
		0,7	400	2	200	1000	0,11	550	2
		0,6/0,9	1260/640	2	630/320	750/600	0,1	1575	2
		0,6	1260	2	630	1500	0,16	382	2
		0,5	2600	2	1300	600	0,09	2812	2
		0,7	1800	1	1800	1000	0,1	1125	1
		0,7	1200	2	600	750	0,2	21,3	3
		0,6	3000	3	1000	750	0,8	59	0
		0,7	800	1	800	600	0,96	4625	0

-		K	P_{Σ}	-	P	<i>n</i> ₀	М	J	р
,						/		. 2	
1	2	3	4	5	6	7	8	9	10
300– 320		0,83	8000	1	8000	3000	0,12	1,25	3
		0,85	2000	2	1000	500	0,13	150	2
		0,91	1500	3	500	1500	0,14	3,75	3
		0,82	500	2	250	750	0,12	550	2
		0,63/ 0,85	1600/800	2	800/400	750/600	0,11	2150	2
		0,65	1250	2	630	1500	0,17	382	2
		0,71	3400	2	1700	500	0,1	5375	2
		0,5	1800	1	1800	750	0,1	1125	1
		0,64	2250	3	750	1500	0,13	27	3
		0,6	4000	4	1000	600	0,99	4634	0
		0,9	1250	1	1250	500	0,97	4625	0
500		0,93	8000	1	8000	3000	0,14	1,25	3
		0,75	2500	2	1250	375	0,14	300	2
		0,45	2500	5	500	1500	0,14	3,75	3
		0,75	750	3	250	750	0,12	550	2
		0,42/ 0,45	3000/1500	3	1000/500	750/600	0,12	3250	2
		0,65	1600	2	800	1500	0,16	436	2
		0,47	5100	3	1700	500	0,11	5375	2
		0,72	3200	1	3200	750	0,11	1125	1
		0,57	4000	4	1000	1500	0,15	27	3
		0,6	6400	4	1600	600	0,99	4634	0
		0,9	1600	2	800	500	0,97	4625	0

		0,7	3400	2	1700	3000	0,2	2000	1
-		К	P_{Σ}	-	P	n_0	М	J	р
,	—			•		/		. 2	••
1	2	3	4	5	6	7	8	9	10
800		0,96	8000	1	8000	3000	0,15	1,25	3
		0,59	5000	4	1250	375	0,15	300	2
		0,79	3000	6	500	1500	0,15	3,75	3
		0,6	1600	4	400	750	0,11	550	2
		0,7/0,8	4000/2000	4	1000/500	750/600	0,12	3250	2
		0,65	2000	2	1000	1500	0,17	436	2
		0,54	6800	4	1700	600	0,12	5375	2
		0,95	4000	2	2000	750	0,12	1125	1
		0,67	3000	6	500	3000	0,16	0,59	3
		0,75	8000	4	2000	100	0,79	4634	0
		0,8	2500	2	1250	500	0,97	4625	0
		0,7	5000	2	2500	3000	0,2	2000	1
1200		0,97	5100	3	1700	375	0,19	3000	3
	1	0,8	800	2	400	1000	0,16	6,65	3
	2	0,85	6000	3	2000	1500	0,15	12,5	3
		0,45/0,6	5000/3000	4	1250/750	750/600	0,12	3250	2
		0,7	12600	2	6300	1500	0,12	550	2
		0,8	8000	4	1700	600	0,13	5375	2
		0,7	4000	2	2000	750	0,12	1125	1
		0,6	8000	4	2000	1500	0,8	4634	0
		0,9	2500	2	1250	600	0,97	4625	0
		0,7	6000	2	3000	3000	0,2	2000	1

, -, -, -, -, -, -, 1(2) -, 1(2) -, 1(2) -, -, 1(2) -, -, 1(2) -, -

)

,

()

,

,

Б.В. Лукутин

О.Н. Свинцова

00.00.2008. 60 84/8. « ». XEROX. . . 000. .- . 000.

NATIONAL QUALITY ASSURANCE

,

ISO 9001:2000

ИЗДАТЕЛЬСТВО ТПУ. 634050, . , . , 30.