ИССЛЕДОВАНИЕ ПРОСТЕЙШИХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

1. ЦЕЛЬ РАБОТЫ

Знакомство со средой Multisim. Исследование свойств простейших RC-цепей, широко использующихся в электронике при прохождении гармонических сигналов.

2. ПРЕДВАРИТЕЛЬНОЕ ЗАДАНИЕ

- 2.1. Изучите описание среды схемотехнического моделирования и анализа электрических схем Multisim.
- 2.2. Изучить темы курса "Электрические сигналы", "Резистивный делитель", "Простейшие фильтры".
- 2.3. Рассчитать коэффициент деления резистивного делителя (рис. 3.1) $K_{\text{дел расч}} = R_2/(R_1 + R_2)$. Сопротивление резистора $R_1 = 5,1$ кОм, а сопротивление резистора R_2 (в килоОмах) задается в соответствии с порядковым номером студента в журнале группы.
- 2.4. Для исследуемых RC-цепей (ФНЧ, ФВЧ, полосовой фильтр) получить аналитические выражения для АЧХ, ФЧХ, граничной частоты (ω_{rp}), частоты (для полосового фильтра), на которой коэффициент передачи по напряжению будет максимален.
- 2.5. Выяснить у преподавателя номер своего варианта. Параметры компонентов *RC*цепей задаются в соответствии с таблицей 2.1.

Таблица 2.1

№ варианта	<i>R</i> , кОм	С, нФ
1	15	6,2
2	12	10
3	10	18
4	7,5	22
5	6,8	22
6	5,1	33
7	4,7	47
8	3,0	47
9	2,2	47
10	1,5	47
11	1,2	47
12	1,0	100

2.6. Рассчитать характерные параметры исследуемых *RC*-цепей в соответствии с заданным вариантом: граничные частоты ФНЧ, ФВЧ, полосового фильтра в герцах.

3. ПРОГРАММА И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАБОТЫ

Перед началом работы необходимо зайти в систему удалённого доступа ТПУ, для это в браузере введите «**vap.tpu.ru**» и нажмите «**ENTER**», после появится окно с папками доступными для работы в удалённом доступе. Найдите папку «Электроника» и зайдите в неё; в открывшейся папке из списка программ выберите «**Multisim 14.0**»; после система откроет окно для сохранения ссылки на **Multisim**, выберите свою папку на используемом компьютере и нажмите «**Coxpанить**» (если вашей папки нет на данном компьютере, то её необходимо создать).

3.1. Исследование резистивного делителя напряжения

а) Нарисуйте схему резистивного делителя без нагрузки (рис. 3.1) в поле проекта. Номиналы сопротивлений резисторов задайте в соответствии с предварительным заданием. На вход делителя подключите источник постоянного напряжения величиной 12В. Для измерения параметров установите маркеры тока и напряжения в ключевые точки схемы. Просчитайте проект, нажав "Run" (F5). Зафиксируйте значения тока и напряжений компонентов схемы. Используя значения входного и выходного напряжений, определите коэффициент деления схемы ($K_{\text{дел эксп}}$), сравните с расчетным значением. Рассчитайте мощность, рассеиваемую на резисторах. Объясните с физической точки зрения, почему напряжение на выходе делителя меньше, чем на входе.

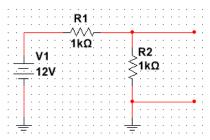


Рис 3.1. Схема резистивного делителя напряжения без нагрузки

б) В схеме, изображенной на рис. 3.1, к выходу подключите сопротивление нагрузки (рис. 3.2). Задайте величину сопротивления нагрузки из соотношения $R_3 = 10R_2$. Для измерения параметров установите маркеры тока и напряжения в ключевые точки схемы. Просчитайте проект, нажав "Run" (F5). Зафиксируйте значения токов и напряжений компонентов схемы. Используя значения входного и выходного напряжений, определите коэффициент деления схемы ($K_{\text{дел эксп}}$), сравните его со значением без нагрузки. Объясните, как влияет сопротивление нагрузки на коэффициент деления схемы.

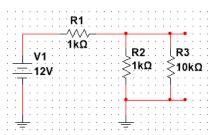


Рис. 3.2. Схема резистивного делителя напряжения с нагрузкой

в) Измените схему, изображенную на рис. 3.2, как показано на рис. 3.3: замените источник постоянного напряжения на источник гармонического напряжения (AC VOLTAGE) с параметрами $U_m = 12$ В и частотой 1к Γ ц. Для наблюдения сфазированных осциллограмм подключите к схеме осциллограф как показано на рис.3.3 (вкладка Simulate \rightarrow Instruments \rightarrow Oscilloscope). Просчитайте проект, нажав "Run" (F5). С

помощью органов управления осциллографа, установите несколько периодов сигнала на экране, удобные для наблюдения. Используя метки осциллографа и их сервисы (выпадающее меню метки), измерить амплитуды и период входного и выходного сигналов. Определите коэффициент деления схемы ($K_{\text{дел эксп}}$), сравните его со значением полученным в п.3.1,б. Рассчитайте мощность, рассеиваемую на резисторах схемы. Полученные осциллограммы сохраните (вкладка View \rightarrow Graph \rightarrow Edit \rightarrow Copy Graph).

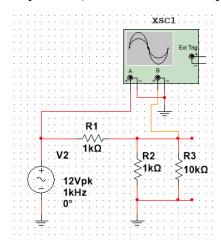


Рис. 3.3. Схема резистивного делителя напряжения с подключением осциллографа

3.2. Исследование простейших RC-цепей

а) Нарисуйте схему фильтра низких частот (рис. 3.4) в поле проекта. Номиналы сопротивлений резисторов задайте в соответствии с предварительным заданием. Ко входу схемы подключите источник гармонического сигнала (AC VOLTAGE) с параметрами $U_m = 12$ В и частотой, равной граничной. Просчитайте проект. Используя данные осциллографа, рассчитайте коэффициент передачи схемы (K_U) и фазовый сдвиг (ϕ_{KU}). Измените параметры источника сигнала, повторите расчет для случаев $0.5f_{\rm rp}$ и $1.5f_{\rm rp}$. Полученные осциллограммы сохраните.

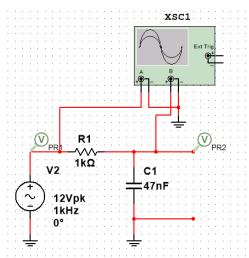


Рис. 3.4. Схема фильтра низких частот с подключением осциллографа

б) Для снятия АЧХ и ФЧХ фильтра, установите пробники на вход и выход схемы, как показано на рис. 3.4. Воспользуйтесь инструментом Bode Plotter (вкладка Simulate→Instruments→Bode Plotter). В открывшемся окне выберите анализ АС Sweep. В правом окне вкладки Output задайте отношение выходного и входного напряжений

V(PR2)/V(PR1). Просчитайте проект (кнопка Run снизу). Сохраните графики характеристик. Установите линейный масштаб по оси частот и в несколько попыток подберите конечную частоту FSTOP (AC Sweep \rightarrow Frequency Parameters) для уменьшения диапазона частот, где параметры AЧX и ФЧX не меняются. Сохраните полученные характеристики. На данные характеристики нанесите полосы пропускания и подавления.

в) повторить действия в п.3.2 а, б для фильтра высоких частот (рис. 3.5).

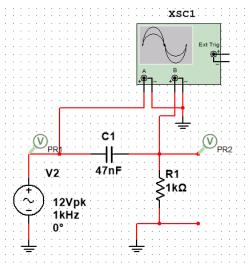


Рис.3.5. Схема фильтра высоких частот с подключением осциллографа г) повторить действия в п.3.2 а, б для полосового фильтра (рис. 3.6).

Рис. 3.6. Схема полосового фильтра с подключением осциллографа

4. СОДЕРЖАНИЕ ОТЧЕТА

- 1. Цель работы.
- 2. Программа работы (кратко).
- 3. Результаты выполнения каждого пункта программы:
 - принципиальные схемы исследуемых цепей;
 - результаты измерений;
 - графики зависимостей;
- сфазированные осциллограммы с указанием характерных параметров для всех сигналов.

- 4. Выводы (приводятся либо в конце каждого пункта по ходу выполнения, либо в конце работы).
 - 5. Ответы на контрольные вопросы (по заданию преподавателя).

5. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Поясните принцип работы резистивного делителя. Получите выражение для коэффициента передачи (деления) резистивного делителя.
 - 2. Как рассчитать мощность, рассеиваемую на резисторе.
- 3. Поясните принцип работы, исследуемых в данной работе RC-цепей, при изменении частоты входного гармонического сигнала.
- 4. Нарисуйте схему, АЧХ и ФЧХ простейшего фильтра низких (высоких) частот, полосового фильтра. Какие параметры можно определить с помощью амплитудно частотной характеристики? Поясните физический смыл этих параметров.