УΊ	ВЕРЖД	АЮ
Ди	ректор и	нститута
		О.Ю.Долматов
«	>>>	2016 г.

БАЗОВАЯ РАБОЧАЯ ПРОГРАММА МОДУЛЯ (ДИСЦИПЛИНЫ)

Методы и средства изучения кинетических явлений

•	П <u>_14.04.02 Ядерные физика и технологии</u>
Номер кластера (для унифицирован	нных дисциплин)
<u>Вариативн</u>	ая часть
·	
Профиль(и) подготовки (специализ	зация, программа)
<u>"Изотопные технолог</u>	гии и материалы"
Квалификация (степень)	<u> Магистр</u>
Базовый учебный план приема 201	<i>14</i> Γ.
Курс 2 семестр 3	
Количество кредитов 6	
Код дисциплины М1.ВМ.4.4.2	

Виды учебной	Временной ресурс по очной форме обучения
деятельности	
Лекции, ч	16
Практические занятия, ч	32
Лабораторные занятия, ч	16
Аудиторные занятия, ч	64
Самостоятельная работа, ч	152
ИТОГО, ч	216

Вид промежуточной аттестации	
Обеспечивающее подразделение <u>каф</u>	b.Техническая физика
2 " 1 "	
Заведующий кафедрой	_ И.В. Шаманин
Руководитель ООП	И.В. Шаманин
Преподаватель	_ В.Ф. Мышкин

2016 г.

1. Цели освоения дисциплины

Целью преподавания является формирование знаний и умений способствующих: усвоению и успешному применению методов поиска и получения новой информации, необходимых для решения инженерных задач в области ядерных физики и технологий; интеграции знаний применительно к своей области деятельности; осознанию ответственности за принятие своих профессиональных решений; подготовки выпускника к самообучению и постоянному профессиональному самосовершенствованию в условиях автономии и самоуправления.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина «Методы и средства изучения кинетических явлений» относится к профессиональному циклу основной образовательной программы по направлению 14.04.02 Ядерные физика и технологии.

Дисциплина «Методы и средства изучения кинетических явлений» включает информацию по датчикам физических величин, физическим методам измерения различных параметров веществ и процессов, современным измерительным комплексам, а также методам и средствам формирования условий вакуума.

Для успешного освоения дисциплины «Методы и средства изучения кинетических явлений» необходимы знания, полученные студентами в следующих курсах (ПРЕРЕКВИЗИТЫ):

- высшая математика,
- спецглавы высшей математики (интегральные уравнения),
- информатика,
- обшая химия.
- общая физика,
- атомная физика.

3. Результаты освоения дисциплины

В соответствии с требованиями ООП освоение дисциплины «Методы и средства изучения кинетических явлений» направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с $\Phi\Gamma$ ОС:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты	Составляющие результатов обучения					
обучения (компетенции из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом
M1.BM4.1.2		методов и средств изучения	У1.22	применять методы и средства изучения		навыками выбора и применения

		кинетических		кинетических		методов и
		явлений		явлений в		средств
				профессиональной		изучения
				деятельности.		кинетических
						явлений
		алгоритмов,	У4.5	изучения	B4.5	навыками
M1.BM4.1.2		методов и		кинетических		изучения
	2/15	средств		явлений		кинетических
	J 4 .J	изучения				явлений
		кинетических				
		явлений				

В результате освоения дисциплины (модуля) «*Методы и средства* изучения кинетических явлений» студентом должны быть достигнуты следующие результаты:

Таблица 2 Планируемые результаты освоения лисшиплины (молуля)

11,	ланируемые результаты освоения дисциплины (модуля)
№ п/п	Результаты освоения дисциплины
	Применять глубокие, математические, естественно-научные,
P-1	социально-экономические и профессиональные знания для
	теоретических и экспериментальных исследований в области
	использования ядерной энергии, ядерных материалов, изотопных
	технологий и материалов в профессиональной деятельности.
	Ставить и решать инновационные инженерно-физические
P -2	задачи, реализовывать проекты в области использования ядерной
	энергии, ядерных материалов, изотопных технологий и
	материалов.
	Разрабатывать новые алгоритмы и методы: расчета
D 4	современных физических установок и устройств; исследования
P -4	изотопных технологий и материалов; измерения характеристик
	полей ионизирующих излучений.
	Самостоятельно учиться и непрерывно повышать
P-8	квалификацию в течение всего периода профессиональной
	деятельности.
	Эффективно работать индивидуально и в коллективе,
P-10	демонстрировать ответственность за результаты работы и
	готовность следовать корпоративной культуре организации.

4. Структура и содержание дисциплины

4.1. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ (лекции – 16 часов)

Раздел 1. Этапы проведения измерений параметров быстропротекающих процессов

Основные этапы и стадии проведения измерений, шумы и наводки.

Раздел 2. Преобразователи физических величин в электрический сигнал Преобразователи различных физических (оптических, тепловых, магнитных) величин в электрический сигнал.

Раздел 3. *Лазерные методы диагностики параметров быстропротекающих процессов*

Основные сведения о современных лазерных методах диагностики химического состава, скорости, концентрации

4.2. СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ (курсовой проект – 32 часа)

Выбор схемы измерения (управления), элементной базы (комплектующих) и расчет параметров информационно-измерительного комплекса по заданной теме, обеспечивающих достоверный контроль или управление.

Типовые темы для курсового проектирования.

- 1. Экспресс-анализатор изотопного состава продукции разделительных заводов
- 2. Устройство для лазерной очистки (дезактивации) поверхности металлических деталей
- 3. Термостабилизатор (термостат) для проведения непрерывных технологических эндо-(экзо-)термических процессов
- 4. Устройство для счета количества деталей на конвейере
- 5. Стабилизатор расхода (напора) жидкости в условиях пульсации напора (расхода)
- 6. Мобильное устройство для сигнализации изменения пульса (или давления) человека за пределы критических значений
- 7. Дистанционный контроль состава атмосферы (или радиоактивных выбросов) над закрытыми территориями
- 8. Дистанционный контроль распределения поля скоростей газовой (или жидкой) среды размерами 100 м и более
- 9. Дистанционный лазерный измеритель запыленности (или состава газа) выбросов производственных труб.
- 10. Оптический непрерывный измеритель состава газовой смеси (или раствора) в технологической трубе.
- 11. Оптический непрерывный измеритель запыленности в технологической трубе.
- 12. Пеленгатор определение (или обнаружение и определение) направления на источник электромагнитных волн, относительно земного меридиана
- 13. Устройство для выработки сигнала рассогласования от заданного направления относительно сторон горизонта

4.3. СОДЕРЖАНИЕ ЛАБОРАТОРНОГО РАЗДЕЛА ДИСЦИПЛИНЫ

(лабораторные занятия 16 часов)

Лабораторные работы по разделу 1:

- Работа № 1. Изучение оптических спектрометров и методов регистрации оптических спектров 4 часа
- Работа № 2. Изучение метода седиментации взвесей 4 часа
- Работа № 3. Изучения режимов использования фотоэлектронных умножителей - 4 часа
- Работа № 4. Изучение режимов использования фотодиодов 4 часа

5. Организация и учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа студентов организована как **текущая и творческая проблемно-ориентированная самостоятельная работа. Текущая СРС** заключается в проработке лекционного материла направленного на углубление и закрепление знаний студента, развитие практических умений.

Творческая проблемно-ориентированная самостоятельная работа позволяет развить интеллектуальные умения, комплекс универсальных (общекультурных) и профессиональных компетенций, повысить творческий потенциал студентов:

- поиск, анализ, структурирование и презентация информации по основным проблемам курса,
- анализ научных публикаций по заранее определенной преподавателем теме,
- анализ статистических и фактических материалов по заданной теме.

5.1. Текущая СРС включает:

- проработку лекций и выполнение домашних заданий;
- изучение тем, выносимых на самостоятельную проработку,
- подготовку к контрольным работам и зачёту (экзамену).
- **5.2. Творческая самостоятельная работа, которая заключается в** выполнении индивидуальных заданий по выбору самого студента. Программа самостоятельной познавательной деятельности включает следующие разделы:

Самостоятельное изучение теоретического материала

Внеаудиторная работа студентов состоит в проработке лекционного материала. Часть теоретического материала предлагается студентам для самостоятельного более углубленного изучения с предоставлением отчета. Общее время самостоятельной работы по разделу составляет 152 часа.

Самостоятельная (внеаудиторная) работа студентов состоит в:

проработке лекционного материала
подготовке к промежуточному контролю
подготовке к практическим и лабораторным занятиям
проработка теоретических разделов, выделенных на самостоятельное изучение
20 часов,
30 часов;
60 часов;
42 часов.

<u>Темы, выносимые на самостоятельную работу</u>

- 1 Методы и аппаратура для дистанционных измерений параметров парогазовых систем, изотопного состава, поля скоростей газов и жидкостей
- 2 Автоматизированные технологические измерительно-управляющие системы в различных отраслях (принципы, состав, примеры конкретных реализаций)
- 3 Графические языки программирования для измерительно-управляющих систем (примеры конкретных реализаций)
- 4 Новые физические эффекты и их использование для изучения быстропротекающих процессов и явлений (датчики физических величин, методы измерения)
- 5 Определение времени формирования химической связи

Темы рефератов

- 1. Методы и аппаратура для дистанционных измерений параметров парогазовых систем
- 2. Методы и аппаратура для безотборных измерений изотопного состава,
- 3. Методы и аппаратура для дистанционных измерений поля скоростей газов и жидкостей
- 4. Автоматизация измерений в научных исследованиях
- 5. Автоматизация технологических операций в промышленности
- 6. Определение времени формирования химической связи
- 7. Химическая поляризация атомов
- 8. Поляризованные нейтроны
- 9. Методы формирования сверхмощных импульсов электромагнитного излучения.
- 10. Методы формирования сверхкоротких (фемто- и атто-) лазерных импульсов.
- 11. Туннелирование электромагнитного излучения различных диапазонов.
- 12. Обзор литературы по современным спектральным приборам.
- 13. Обзор литературы по современным лазерным измерительным комплексам.
- 14. Приборы и методы контроля кинетики химических реакций.
- 15. Перемещение наноразмерных объектов с помощью лазерного излучения.
- 16. Приборы и методы для контроля параметров управляемого термоядерного синтеза.
- 17. Оптический метод гальванической развязки, отсечка электромагнитных наводок.
- 18. Тепловизионный метод диагностики условий работы технологических установок и энергосистем промпредприятий.
- 19. Определение динамики электронной концентрации в низкотемпературной плазме.

- 20. Применение Оже-спектрометрии в научных исследованиях.
- 21. Современные манометрические преобразователи (измерение общих давлений).
- 22. Решение интегрального уравнения с данными физического эксперимента.

5.3 Контроль самостоятельной работы

Оценка самостоятельной работы организуется в виде промежуточного контроля два раза в семестр. В контрольные работы входят теоретические вопросы, разобранные на лекционных занятиях, а также вопросы, подлежащие самостоятельному изучению.

6. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам спелующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дисциплине
Домашняя работа 1,2	P2, P3
Контрольная работа 1,2	P5, P7, P9
Коллоквиум	P2, P3, P5, P7, P9
Зачет	P2, P3, P5, P7, P9, P11

(выполнение и защита лабораторных работ и практических заданий, защита индивидуальных заданий, презентации по тематике исследований во время проведения конференц-недели, результаты участия студентов в научной дискуссии, тестирование, экзамен и др.)

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств¹) (с примерами):

Текущий и итоговый контроль результатов изучения дисциплины ВОПРОСЫ ВХОДНОГО КОНТРОЛЯ

- 1. Дайте определение кинетической и потенциальной энергии атома.
- 2. Что такое температура?
- 3. Что такое число Авогадро и число Лошмидта?
- 4. Что означает универсальная газовая постоянная?
- 5. Как определить постоянную Больцмана?
- 6. Запишите и дайте пояснение закону Кулона.
- 7. Запишите закон Ома для проводника.

- контрольные вопросы, задаваемых при выполнении и защитах лабораторных работ;

- вопросы, выносимые на экзамены и зачеты и др.

¹ Элементы фонда оценивающих средств:

⁻ вопросы входного контроля;

⁻ контрольные вопросы, задаваемые при проведении практических занятий,

вопросы для самоконтроля;

⁻ вопросы тестирований;

- 8. Каково строение и свойства атома вещества, его размеры.
- 9. Какие вы знаете типы ядер и их характеристики?
- 10. Каковы размеры и состав ядра атома?
- 11. Чему равна энергия связи ядра и что такое «дефект» массы?
- 12. Что такое радиоактивность и виды радиоактивности?
- 13. Что такое термоэлектронная эмиссия и работа выхода?
- 14. Что такое ионизация газа и степень ионизации?
- 15. Дайте определение плазмы.
- 16. В чём заключается явление электромагнитной индукции?
- 17. Приведите примеры колебательного движения и его параметры.
- 18. Что такое полупроводник, электронная и дырочная проводимость?
- 19. Как вы понимаете теорию относительности и постулаты Эйнштейна?
- 20. В чём состоит смысл понятия волновых и квантовых свойств излучения?

ВОПРОРЫ ТЕКУЩЕГО КОНТРОЛЯ

- 1. Средства измерения. Основные понятия и определения.
- 2. Планирование и организация измерений.
- 3. Типовые задачи измерения физических величин.
- 4. Погрешность измерений.
- 5. Методы уменьшения погрешностей измерений.
- 6. Случайные и систематические ошибки.
- 7. Статистическая обработка данных.
- 8. Электрические наводки и их классификация
- 9. Способы подавления электромагнитных наводок.
- 10. Экранирование.
- 11. Трансформаторные и оптронные гальванические развязки.
- 12. Оцифровка электрических сигналов
- 13. Современные АЦП, ЦАП.
- 14. Системы автоматизации управления и сбора данных эксперимента.
- 15. Статистическая обработка результатов измерений.
- 16. Выбор задачи и физическое обоснование плазменного эксперимента.
- 17. Основные части плазменной установки.
- 18. Вакуумная техника вакуумные камеры.
- 19. Средства откачки.
- 20. Течеискатели.
- 21. Измерение расхода жидкостей и газов.
- 22. Обобщенная структурная схема измерения физических параметров
- 23. Преобразование физических величин в электрические.
- 24. Статические и динамические характеристики датчиков физических величин.
- 25. Калориметры.
- 26. Болометры.
- 27. Пироэлектрические приемники.
- 28. Вторично-электронные умножители (ВЭУ).

- 29. Микроканальные усилители.
- 30. ВЭУ и МКП. Темновой ток и шумы.
- 31. Преобразователи механические упругие.
- 32. Преобразователи резистивные.
- 33. Преобразователи электростатические.
- 34. Преобразователи электромагнитные.
- 35. Преобразователи тепловые. Методы измерения температуры.
- 36. Контактные методы измерения температуры: термосопротивления, термопары
- 37. Оптические методы измерения температуры. Устройство оптического пирометра.
- 38. Термоанемометр. Законы теплоотдачи от нити.
- 39. Термоанемометры постоянного тока и постоянной температуры. Частотные характеристики.
- 40. Преобразователи оптические.
- 41. Преобразователи ионизирующего излучения.
- 42. Преобразователи манометрические.
- 43. Тензо-датчики давления.
- 44. Пьезоэлектрические и емкостные преобразователи давления.
- 45. Лазерные методы диагностики газовых потоков.
- 46. Использование резонансной флуоресценции для диагностики плазмы
- 47. Измерение дисперсной фазы плазмы методом рассеяния света.
- 48. Оптическая спектроскопия и спектральные приборы.
- 49. Тепловизор.
- 50. Лазерная спектроскопия высокого разрешения.
- 51. Применение лазеров в измерительных системах.
- 52. Методы селективного возбуждения при изучении физико-химических процессов.
- 53. Спектроскопия комбинационного рассеяния.
- 54. Метод стробоскопической визуализации.
- 55. Основные принципы лазерного доплеровского измерителя скорости.
- 56. Схемы доплеровского анемометра с прямым и обратным рассеянием.
- 57. Оптические методы визуализации потоков.
- 58. Интерферометрические методы.

вопросы выходного контроля

- 1. Средства измерения. Основные понятия и определения.
- 2. Планирование и организация измерений.
- 3. Типовые задачи измерения физических величин.
- 4. Основы метрологии. Точность измерений. Погрешность.
- 5. Методы уменьшения погрешностей измерений.
- 6. Случайные и систематические ошибки. Статистическая обработка данных. Представление результатов измерений.
- 7. Электрические наводки и их классификация, способы подавления наводок.

- 8. Экранирование. Трансформаторные и оптронные гальванические развязки, оптические линии связи.
- 9. Оцифровка электрических сигналов, параметры современных АЦП, ЦАП.
- 10. Электроника в системе автоматизации экспериментов. Построение систем автоматизации управления и сбора данных на экспериментальных установках.
- 11.Подготовка данных. Статистическая обработка результатов измерений полей флуктуационных величин.
- 12. Выбор задачи и физическое обоснование плазменного эксперимента. Основные части плазменной установки.
- 13. Вакуумная техника. Вакуумные камеры. Средства откачки.
- 14. Течеискатели.
- 15. Измерение расхода жидкостей и газов.
- 16.Обобщенная структурная схема измерения и регистрации физических параметров
- 17.Способы и средства преобразования физических величин в электрические. Датчики физических величин. Статические и динамические характеристики датчика.
- 18. Калориметры.
- 19. Болометры.
- 20. Пироэлектрические приемники.
- 21.Вторично-электронные умножители (ВЭУ).
- 22. Микроканальные усилители.
- 23. Статистические и импульсные параметры ВЭУ и МКП. Темновой ток и шумы.
- 24.Преобразователи механические упругие.
- 25. Преобразователи резистивные.
- 26.Преобразователи электростатические.
- 27.Преобразователи электромагнитные.
- 28.Преобразователи тепловые. Методы измерения температуры.
- 29. Контактные методы измерения температуры: термосопротивления, термопары
- 30.Оптические методы измерения температуры. Оптический пирометр.
- 31. Термоанемометр. Законы теплоотдачи от нити.
- 32. Термоанемометры постоянного тока и постоянной температуры. Частотные характеристики.
- 33. Преобразователи оптические.
- 34. Преобразователи ионизирующего излучения.
- 35.Преобразователи манометрические.
- 36. Тензо-датчики давления.
- 37. Пьезоэлектрические и емкостные преобразователи давления.
- 38.Оптические методы диагностики газовых потоков.
- 39.Использование резонансной флуоресценции для диагностики газовых смесей и плазмы

- 40.Измерение параметров плазмы методом рассеяния света.
- 41.Спектроскопия и спектральные приборы.
- 42. Тепловизор и его использование для анализа температурных распределений.
- 43. Лазерная спектроскопия высокого разрешения.
- 44. Применение лазеров в измерительных системах.
- 45.Методы селективного возбуждения и изучения физико-химических процессов.
- 46.Спектроскопия комбинационного рассеяния.
- 47. Метод стробоскопической визуализации и его модификации.
- 48. Лазерный доплеровский измеритель скорости. Основные принципы.
- 49.Схемы доплеровского анемометра с прямым и обратным рассеянием.
- 50.Визуализация газовых потоков. Интерферометрические методы.
- 51. Интегральное уравнение Фредгольма.

ЗАДАЧИ К ЭКЗАМЕНАЦИОННЫМ БИЛЕТАМ

1. При фотоколориметрическом определении Fe³⁺ с сульфосалициловой кислотой из стандартного раствора с содержанием железа 10 мг/см³ приготовили ряд разведений в мерных колбах вместимостью 100 см³, измерили оптическое поглощение и получили следующие данные:

$V_{\rm cr}$, cm ³	1,0	2,0	3,0	4,0	5,0	6,0
A	0,12	0,25	0,37	0,50	0,62	0,75

Определите концентрацию Fe^{3+} в анализируемых растворах, если их оптическое поглощение равно 0,30 и 0,50.

- 2. После растворения 0,25 г. стали раствор разбавили до 100,0 мл. В три колбы вместимостью 50,0 мл поместили по 25,0 мл этого раствора и добавили: в первую колбу стандартный раствор, содержащий 0,50 мг Ті, растворы H_2O_2 и H_3PO_4 , во вторую растворы H_2O_2 и H_3PO_4 , в третью раствор H_3PO_4 (нулевой раствор). Растворы разбавили до метки и фотометрировали два первых раствора относительно третьего. Получили значения оптической плотности: $A_{x+c\tau}$ =0,650, A_x =0,250. Рассчитать массовую долю (%) титана в стали.
- 3. Для определения длины волны интересующей линии λ_x были выбраны две линии в спектре железа с известными длинами волн: λ_1 =325,436 и λ_2 =328,026 нм. На измерительной шкале микроскопа были получены следующие отсчеты: b_1 =9,12, b_2 =10,48, b_x =10,33 мм. Какова длина волны искомой линии в спектре образца?
- 4. При анализе пробы массой 0,9816г на содержание кобальта хемилюминесцентным фотографическим методом на одну фотопластинку снимали свечение пробы анализируемого раствора, стандартов и холостого опыта. В ячейки кюветы помещали по 0,5 мл раствора соли кобальта, прибавляли салицилат натрия (для устранения мешающего действия катионов меди и железа) и одинаковое количество перекиси водорода. Затем кювету выдерживали до полного прекращения свечения;

- пластинку фотометрировали на микрофотометре МФ-2. Значение ΔS стандартных растворов, содержащих 4,0; 8,0; 12,0; 16,0 мкг/мл кобальта, составили 0,17; 0,28; 0,40; 0,53 соответственно. Вычислите массовую долю (%) кобальта в пробе, если ΔS_x =0,20.
- 5. Определить интенсивность излучения, генерируемого атомами углерода при переходе 3→2 из плазменного шнура диаметром 1 см, находящегося в состоянии термодинамического равновесия при температуре 7000К и атмосферном давлении.
- 6. Определить, произойдет ли локальное испарение поверхности вольфрама при фокусировании на ней пучка импульса Nd-лазера мощностью 100 кВт и длительностью 15 нс линзой с фокусным расстоянием 10 см при расходимости пучка 2 мрад, 20 мрад.
- 7. Фотоэффект у некоторого металла начинается при частоте падающего света ν_0 =6.10¹⁴ 1/с. Определите частоту света, при которой освобождаемые им с поверхности данного металла электроны полностью задерживаются разностью потенциалов в 3 В. Найдите работу выхода для данного металла.
- 7. Определите энергию одного фотона: а) для красного света (λ =600нм); б) для жестких рентгеновских лучей (λ =0,01нм)
- 8. Найдите массу фотона: а) монохроматического света ($\lambda = 5.10^{-7}$ м); б) рентгеновских лучей ($\lambda = 0.0025$ нм); в) гамма-лучей ($\lambda = 1.24.10^{-3}$ нм)
- 9. Давление монохроматического света (λ =600нм) на черную поверхность, расположенную перпендикулярно падающим лучам, равно 0,1мкПа. Определите число N фотонов, падающих за время τ =1c на поверхность площадью S=1cм².
- 10. Плотность потока световой энергии на поверхности 7 кВт/м². Найти световое давление для случаев, когда поверхность: 1) полностью отражает все лучи; 2) полностью поглощает все падающие на нее лучи.
- 11. Световой поток мощностью N=9 Вт нормально падает на поверхность площадью S=10 см², коэффициент отражения которой R=0,8. Какое давление испытывает при этом данная поверхность.
- 12. Определить телесный угол $\Delta\Omega$, под которым виден диск радиусом R из точки D, расположенной на оси диска на расстоянии h от него. К какой величине стремится $\Delta\Omega$ при h \to 0 или R $\to \infty$?
- 13. Вычислить активность изотопа 22 Nа в образце массой 0,8 мг (период полураспада $T_{1/2}$ =2,602 года).
- 14. Определить перемещение зеркала в интерферометре Майкельсона, если интерференционная картина сместилась на 100 полос. Опыт проводился со светом с длиной волны λ=0,546 мкм.
- 15. В оба пучка света интерферометра Жамена были помещены цилиндрические трубки длиной 10 см, закрытые с обоих концов плоско-параллельными прозрачными пластинами; воздух из трубок был откачан. При этом наблюдалась интерференционная картина в виде светлых и темных полос. В одну из трубок был впущен водород, после чего

- интерференционная картина сместилась на m=23,7 полосы. Найти показатель преломления водорода. Длина волны света λ=590 нм.
- 16. Температура абсолютно черного тела возросла от 500 К до 1500 К. Во сколько раз увеличилась его излучательность?
- 17. Поток световой энергии, падающий нормально на зеркальную поверхность в 10 см2, равен 0,6 Вт. Вычислить величину светового давления.
- 18. На оси х создано возмущение плотности n(x) в начальный момент времени t=0. Найти время Δt , за которое размеры L_0 станут равными L_t за счет диффузии. Коэффициент диффузии D известен.
- 19. Сосуды объемами $V_1 = 1$ л и $V_2 = 2$ л, в которых содержится воздух, соединены малым отверстием. При комнатной температуре давление воздуха составляет $P_o = 10^{-4}$ Торр. Какие давления будут в сосудах, если первый из них нагреть до 300 °C?
- 20. Оценить верхний и нижний пределы давления, измеряемого ионизационным вакууметром в сосуде диаметром 10 см. Принять ток электронов с катода равным 5 мА.
- 21. При каком вакууме поверхность металла будет оставаться "чистой" в течение 1 часа? Считать, что поверхность "чистая", если ее заполнение кислородом не превышает $\theta = 0.5$ монослоя. Концентрация атомов металла на поверхности $\rho = 10^{15}$ см⁻², коэффициент прилипания молекулы O_2 $\alpha = 0.5$.
- 22. Оценить время откачки объема V=5 л при помощи насоса с производительностью S=1 л/с через трубопровод длиной L=1 м диаметром d=0,5 см от атмосферного давления до 1 Торр и от 1 Торр до 10^{-3} Торр. Предельное остаточное давление насоса 10^{-3} Торр.
- 23. Определить минимальное время, за которое можно измерить температуру воздуха при давлении 10^{-4} Торр с однопроцентной точностью термометром сопротивления (платиновая нить диаметром 20 мкм). Теплоемкость платины 0.16~Дж/(г·K)
- 24. Чему равно число фотонов с частотой в интервале от $v = 5,15 \cdot 10^{14}$ до $v + dv = 5,2 \cdot 10^{14}$ Гц при T = 3000 К в полости объемом V = 1 м³?
- 25. Определить дебаевский радиус экранирования для нейтральной в целом плазмы с концентрацией электронов $n_e = 10^{24} \,\mathrm{m}^{-3}$ при температуре $10^7 \,\mathrm{K}$.
- 26. Зависит ли коэффициент преобразования емкостного преобразователя уровнемера от соотношения диэлектрических проницаемостей жидкости $\varepsilon_{\rm ж}$ и ее паров $\varepsilon_{\rm n}$? Жидкость неэлектропроводна. Преобразователь представляет собой металлический цилиндр диаметром D и длиной l, внутри которого коаксиально расположен металлический неизолированный трос диаметром d.
- 27. Населенность верхнего (n_j) и нижнего (n_i) уровней равна соответственно $1 \cdot 10^{10}$ и $0.5 \cdot 10^{10}$ см⁻³. Кратность вырождения $(\frac{1}{g})$ верхнего уровня 2, нижний уровень не вырожден. Возможно ли в рассматриваемой системе усиление? Поглощение?

28. Фотон с энергией 12,1 эВ, поглощенный атомом водорода, находящимся в основном состоянии, переводит атом в возбужденное состояние. Каково квантовое число этого состояния?

7. Рейтинг качества освоения дисциплины (модуля)

освоения качества дисциплины ходе текущей промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами текущему контролю ПО успеваемости, промежуточной аттестации студентов Томского итоговой политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

8. Учебно-методическое и информационное обеспечение дисциплины Основная литература:

- Углов, В. В. Методы анализа элементного состава поверхностных слоев: пособие для студентов спец. 1-31 04 01 «Физика (по направлениям)» и 1-31 04 02 «Радиофизика» / В. В. Углов, Н. Н. Черенда, В. М. Анищик. Минск: БГУ, 2007. 167 с.: ил. ISBN 978-985-485-813-5.
- 2. Ляликов, А.М. Высокочувствительная голографическая интерферометрия фазовых объектов: моногр. / А.М. Ляликов. Гродно: ГрГУ, 2010. 215 с. ISBN 987-985-515
- 3. Медведев Е.М., Данилин И.М., Мельников С.Р. Лазерная локация земли и леса: Учебное пособие. 2-е изд., перераб. и доп. М.: Геолидар, Геоскосмос; Красноярск: Институт леса им. В.Н. Сукачева СО РАН, 2007. 230 с.: илл. 160; табл. 45; библиогр. 87 назв.
- 4. Ратхор Т.С. Цифровые измерения. Методы и схемотехника. М.: Техносфера, 2004. 204с. ISBN 5-94836-012-1
- 5. Делоне, Николай Борисович. Взаимодействие лазерного излучения с веществом : Курс лекций / Н. Б. Делоне. М. : Наука, 1989. 280 с.
- 6. Сошинов А. Г. Преобразователи неэлектрических величин: Учеб. пособие / ВолгГТУ, Волгоград, 2002. 36 с.
- 7. Luis Plaja, Ricardo Torres, Amelle Zaïr, Attosecond Physics. Attosecond

- Measurements and Control of Physical Systems, Springer-Verlag Berlin Heidelberg, 2013. 281 p.
- 8. Mass Spectrometry Data Analysis in Proteomics. Second Edition. Edited by Rune Matthiesen. Humana Press. Institute of Molecular Pathology and Immunology Universidade do Porto, Porto, Portugal, Springer Science+Business Media, LLC 2013. 407 p.
- 9. Экман Р., Зильберинг Е., Вестман-Бринкмальм Э., Край А. Массспектрометрия: аппаратура, толкование и приложения Москва: Техносфера, 2013. – 368 с.+ 16 с. цв. вкл., ISBN 978-5-94836-364-6

Дополнительная литература:

1. Реди Дж. Промышленные применения лазеров. М., Мир, 1981.

Internet-ресурсы (в т.ч. Перечень мировых библиотечных ресурсов):

http://rndc.ippe.obninsk.ru

http://nndc.bnl.gov

http://nds.iaea.or.at

http://ornl.gov/

Используемое программное обеспечение:

1. TEPPA

9. Материально-техническое обеспечение дисциплины

Указывается материально-техническое обеспечение дисциплины: технические средства, лабораторное оборудование и др.

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок
1	Компьютерный класс	10 к., ауд.242
2	Учебная аудитория	11 к., ауд.303
3	Лазеры и фотоприемники	10 к., ауд.316
4	Лазеры и фотоприемники	10 к., ауд.001

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению <u>14.04.02 Ядерные физика и технологии</u> и профилю подготовки <u>"Изотопные технологии и материалы"</u>

Программа одобрена на заседан	ии кафедры
Техническо	ая физика
(протокол № от «»	2016 г.).
Автор(ы)	В.Ф. Мышкин
Рецензент(ы)	