Ю
иректор института
Бориков В.Н.
2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ НА 2017/2018 УЧЕБНЫЙ ГОД

Материалы электронной техники

Направление (специальность) ООП 11.03.04 - Электроника и наноэлектроника Профили «Промышленная электроника» «Прикладная электронная инженерия» Квалификация (степень) бакалавр Базовый учебный план приема 2016 г. Курс_2___ семестр 3 Количество кредитов 3 Код дисциплины____

Виды учебной деятельности	Временной ресурс по очной форме обучения
Лекции, ч	24
Практические занятия, ч	8
Лабораторные занятия, ч	32
Аудиторные занятия, ч	64
Самостоятельная работа, ч	44
ИТОГО, ч	108

Вид промежуточной аттестации *зачет* Обеспечивающее подразделение *TПС*

Заведующий кафедрой	й ПМЭ	Губарев А.Ф.	ИО)
Заведующий кафедрой	i ТПС	Бориков В.Н.	IO)
Руководитель ООП		<u>Гребенников В.Б</u>	3 <u>.</u> (O)
	Преподаватели:		<u>Гормаков А.Н.</u>
			Коледа А.Н.

2017 г.

1. Цели освоения дисциплины

Цели освоения дисциплины: формирование у обучающихся: в области обучения — формирование специальных знаний, умений, навыков выбора материала в зависимости от предъявляемых требований и внешних условий; в области воспитания — научить эффективно работать индивидуально и в команде, проявлять умения и навыки, необходимые для профессионального и личностного развития; в области развития — подготовка студентов к дальнейшему освоению новых профессиональных знаний и умений, самообучению, непрерывному профессиональному самосовершенствованию.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина «Материалы электронной техники» относится к циклу Вариативная часть. Междисциплинарный профессиональный модуль. Дисциплине «Материалы электронной техники предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ): Математика 2. 1, Математика 2. 2, Химия 1.2, Физика 2.1

Содержание разделов дисциплины «Материалы электронной техники» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ): нет

3. Результаты освоения дисциплины (модуля)

В соответствии с требованиями ООП освоение дисциплины (модуля) направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты	Составляющие результатов обучения					
обучения (компетенции из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом
Р1 ОПК-1-9, ПК-1- 7, 13-18, критерий 5 АИОР (п.1.1)			У1.2	физические и химические законы для решения практических задач	B1.2	применения законов физики, химии и экологии
Р6 ОК-4, ОК-9, ПК-13-18, критерий АИОР (п.1.5)					B2.2	применения технологий изготовления материалов и элементов электронной техники

В результате освоения дисциплины «Материалы электронной техники» студентом должны быть достигнуты следующие результаты:

Таблица 2

Планируемые результаты освоения дисциплины

№	Результат
п/п	
РД1	Знать классы материалов электронной техники, их структуру и основные
	свойства.
РД2	Уметь оптимально выбирать и применять материалы на практике.
РД3	Понимать важность и значимость правильного выбора материалов.
РД4	Знать технологию получения материалов и их маркировку.

4. Структура и содержание дисциплины

Раздел 1. Общая характеристика материалов

Общая характеристика и основные требования к материалам электронной техники. Особенности выбора материалов. Внешние факторы, влияющие на свойства материалов: агрессивные среды, космическое пространство и т.д.

Раздел 2. Диэлектрики

Основные свойства диэлектриков. Поляризациядиэлектриков и её сущность. Виды поляризации. Диэлектрическая проницаемость и влияние на неё различных факторов. Электропроводимость диэлектриков. Поверхностная электропроводность твёрдых диэлектриков. Старение диэлектриков. Виды диэлектрических потерь. Влияние различных факторов на электрическую прочность диэлектриков. Физико-механические свойства диэлектриков. Классификация диэлектриков. Газообразные диэлектрики. Жидкие диэлектрики: природные и синтетические. Неорганические твёрдые диэлектрики. Слюда. Кварц. Стёкла и металлы. Органические твёрдые диэлектрики. Общие сведения о полимерах. Пластмассы. Пресс-порошки. Волокнистые материалы. Слоистые пластики. Эластомеры. Лаки и компаунды. Изоляционные материалы в электронной технике.

Перечень лабораторных работ по разделу:

- 2.1. Измерение угла диэлектрических потерь и диэлектрической проницаемости твердых диэлектриков 2 часа.
- 2.2 Измерение зависимости диэлектрической проницаемости и угла диэлектрических потерь от температуры 2 часа.
- 2.3 Измерение диэлектрической проницаемости и угла диэлектрических потерь активных диэлектриков 2 часа.
 - 2.4 Изучение прямого и обратного пьезоэффекта 2 часа.
 - 2.5 Электрический пробой в диэлектриках 2 часа.

Раздел 3. Проводниковые материалы

Классификация и основные свойства. Физические процессы в проводниках в электрическом поле. Зависимость удельного электрического сопротивления от температуры, частоты и напряженности электрического поля. Размерный эффект. Влияние примесей на электрические свойства проводников. Интерметаллиды. Материалы высокой проводимости. Медь и ее сплавы. Алюминий и его сплавы. Сверхпроводники и криопроводники. Материалы высокого сопротивления: резистивные, материалы для термопар. Контактные материалы. Неметаллические проводники (Материалы на основе графита). Проводящие окислы

Перечень лабораторных работ по разделу:

3.1.Определение удельного сопротивления проводника – 2 часа.

3.2. Изучение температурной зависимости сопротивления проводников – 2 часа.

Раздел 4. Полупроводниковые материалы

Общие сведения о полупроводниках. Основные электрические свойства полупроводников. Собственная и примесная электропроводимость полупроводников. Доноры и акцепторы. Влияние различных факторов на электропроводимость полупроводников. Основные полупроводниковые материалы. Элементы, обладающие свойствами полупроводников. Способы получения полупроводниковых материалов высокой чистоты.

Перечень лабораторных работ по разделу:

- 4.1. Изучение температурной зависимости сопротивления полупроводников
- 4.2. Контактные явления в полупроводниках и барьерный фотоэффект

Раздел 5. Магнитные материалы

Общие сведения о магнитных свойствах материалов. Магнитомягкие материалы. Низкочастотные магнитомягкие материалы; железо, электротехнические стали, пермаллои, альсиферы. Сплавы с постоянной магнитной проницаемостью. Магнитострикционные материалы. Сплавы с высокой индукцией насыщения. Магнитотвёрдые материалы. Магнитотвёрдые ферриты.

Перечень лабораторных работ по разделу:

- 5.1. Снятие основной кривой намагничивания ферромагнетика 2 часа.
- 5.2. Изучение свойств ферромагнетика с помощью петли гистерезиса 2 часа.
- 5.3. Определение точки Кюри 2 часа.
- 5.4. Изучение магнитотвёрдых материалов+С36 2 часа.
- 5.5. Материалы для магнитных экранов 2 часа.

Раздел 6. Конструкционные материалы

Общие требования, предъявляемые к конструкционным материалам. Металлы и сплавы. Неметаллические материалы. Технология конструкционных материалов.

Перечень лабораторных работ по разделу:

Перечень лабораторных работ по разделу:

- 6.1. Прочность конструкционных материалов -2 часа.
- 6.2. Деформация конструкционных материалов 2часа.
- 6.3. Определение твердости материала 2 часа.
- 6.4. Теплопроводность конструкционных материалов 2 часа

5. Образовательные технологии

При изучении дисциплины «Материалы электронной техники» следующие образовательные технологии:

Таблица 3

Методы и формы организации обучения

истоды и формы организации обучения						
ФОО Методы	Лекц.	Лаб. раб.	Пр. зан./ сем.,	Тр.*, Мк**	СРС	К. пр.***
ІТ-методы	*	*	*		*	
Работа в команде		*	*			
Case-study						
Игра	*		*			
Методы проблемного	*	*	*		*	
обучения	-,4	-,4	٠,٠		*	
Обучение	*	*	*			

на основе опыта					
Опережающая	*	*	*	*	
самостоятельная работа	*	ক	*	*	
Проектный метод	*		*		
Поисковый метод					
Исследовательский метод	*	*	*		
Другие методы					

^{* –} Тренинг, ** – мастер-класс, *** – командный проект

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием Internet-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;

закрепление теоретического материала при проведении лабораторных работ с использованием учебного и научного оборудования.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа студентов включает текущую и творческую проблемноориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

Работа с лекционным материалом;

- выполнение домашних заданий;
- •опережающая самостоятельная работа;
- •подготовка к лабораторным работам, к практическим занятиям;

Творческая самостоятельная работа включает:

- •поиск, анализ, структурирование и презентация информации
- •анализ научных публикаций по заранее определенной преподавателем теме;
- •анализ статистических и фактических материалов по заданной теме.

6.3. Контроль самостоятельной работы

Контроль СРС студентов проводится путем проверки ряда работ, предложенных для выполнения в качестве домашних заданий согласно разделу 6.2. и рейтинг-плану освоения дисциплины. Наряду с контролем СРС со стороны преподавателя предполагается личный самоконтроль по выполнению СРС со стороны студентов.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемноориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- выполнение домашних заданий, домашних контрольных работ;
- опережающая самостоятельная работа;
- перевод текстов с иностранных языков;
- изучение тем, вынесенных на самостоятельную проработку;
- подготовка к лабораторным работам, к практическим и семинарским занятиям;

• подготовка к контрольной работе и коллоквиуму, к зачету, экзамену.

Творческая самостоятельная работа включает:

- поиск, анализ, структурирование и презентация информации;
- выполнение расчетно-графических работ;
- исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заранее определенной преподавателем теме

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- Проверка готовности студентов к выполнению лабораторных работ.
- Проверка глубины понимания материала в процессе защиты лабораторных работ.
- Проверка готовности студента к практическому занятию.
- Оценка компетенций студента в процессе сдачи зачёта.
- Оценка способности студента к самостоятельному освоению знаний в области электронного материаловедения в процессе презентации индивидуального задания в рамках конференц-недели.

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств¹) (с примерами):

6.3.1. Пример вопросов по лабораторным работам:

- 1. Чем обусловлена высокая проводимость металлов?
- 2. Каково выражение для электропроводности с точки зрения электронной теории?
- 3. Какие нарушения кристаллического строения влияют на проводимость металлов и почему?
- 4. Назовите особенности зонных структур металлов, полупроводников и диэлектриков.
- 5. Как влияет повышение температуры на проводимость металлов и полупроводников?

6.3.2. Вопросы для самоконтроля по разделам:

Классификация и свойства материалов

- 1. Расскажите о строении металлов.
- 2. Какие физические характеристики имеют металлические материалы?
- 3. Что представляют собой диаграммы состояния сплавов металлов?
- 4. Напишите формулу, определяющую величину коэффициента линейного теплового расширения металла.
- 5. Напишите формулу для подсчета коэффициента теплопроводности.
- 6. Какие механические свойства металлов вы знаете? Начертите диаграмму растяжения металлов.
- 7. Как рассчитать удельное электрическое сопротивление металлических материалов?
- 8. Что представляет собой температурный коэффициент удельного электрического сопротивления проводникового материала и какое свойство материала он определяет?

- контрольные вопросы, задаваемых при выполнении и защитах лабораторных работ;

- контрольные вопросы, задаваемые при проведении практических занятий,
- вопросы для самоконтроля;
- вопросы тестирований;

- вопросы, выносимые на экзамены и зачеты и др.

¹ Элементы фонда оценивающих средств:

⁻ вопросы входного контроля;

- 9. Как классифицируются проводниковые материалы?
- 10. Как обеспечить жаростойкость проводниковых материалов?

Проводниковые материалы

- 1. Перечислите основные свойства и характеристики проводниковой меди и сплавов на ее основе.
- 2. Перечислите основные свойства и характеристики проводникового алюминия.
- 3. Перечислите основные свойства и характеристики проводникового железа.
- 4. Перечислите основные свойства и характеристики платины и серебра.
- 5. Что представляют собой проводниковые сплавы высокого сопротивления и где они применяются?
- 6. Каков состав манганина и константана? Каковы основные характеристики этих проводниковых сплавов?
- 7. Какие требования предъявляются к изоляции обмоточных проводов?
- 8. С какой изоляцией выпускаются монтажные провода?
- 9. Какова конструкция кабелей с резиновой изоляцией?

Диэлектрики

- 1. Что представляет собой процесс дипольной и спонтанной поляризации диэлектриков?
- 2. Какие заряженные частицы образуют ток проводимости в диэлектриках?
- 3. Что представляет собой явление пробоя диэлектриков?
- 4. Перечислите основные механические характеристики электроизоляционных материалов и единицы их измерения.
- 5. В чем разница между теплостойкостью и нагревостойкостью твердого диэлектрика?
- 6. Перечислите основные физико-химические характеристики электроизоляционных материалов.
- 7. Какие требования предъявляются к электроизоляционным жидкостям, применяемым в трансформаторах?
- 8. Перечислите электрические и физико-химические характеристики, определяющие основные свойства жидких диэлектриков.
- 9. Какие требования предъявляются к электроизоляционным жидкостям, применяемым для пропитки бумажных конденсаторов?
- 10. Каков состав минеральных электроизоляционных масел?

Магнитные материалы

- 1. Перечислите характерные свойства магнитомягких материалов.
- 2. Приведите состав и характерные свойства пермаллоев.
- 3. Перечислите характерные свойства магнитотвердых материалов.
- 4. Какие ферриты применяют в качестве магнитотвердых материалов?
- 5. Приведите состав и характерные свойства сплавов, применяемых в качестве магнитотвердых материалов.
- 6. Какие магнитные стали называются текстурованными?
- 7. Какими особенностями обладают ферриты?
- 8. Перечислите основные магнитные характеристики, согласно которым оцениваются магнитные свойства материалов.
- 9. Что представляют собой пермаллои и каковы их основные магнитные характеристики?
- 10. Что представляют собой электротехническая листовая сталь и каковы ее магнитные характеристики?

Полупроводниковые материалы

- 1. Перечислите характерные свойства полупроводниковых материалов.
- 2. Какие вещества называют донорными и какие акцепторными и для чего они применяются в полупроводниках?
- 3. Расскажите об образовании р-п перехода в полупроводниках.
- 4. Напишите формулу, определяющую удельную проводимость полупроводника.
- 5. Начертите вольтамперную характеристику для p-n перехода. Как она будет изменяться с повышением температуры?
- 6. Перечислите основные группы полупроводниковых материалов.
- 7. Опишите структуру и основные свойства германия и кремния.
- 8. Что представляет собой плоский германиевый или кремниевый диод?
- 9. Опишите основные свойства и характеристики карбида кремния.
- 10. Какие полупроводниковые материалы обладают нелинейным сопротивлением, и в каких электрических устройствах используется это свойство?

6.3.3. Пример билета на зачёт

- 1. Перечислите основные свойства и характеристики проводниковой меди и сплавов на ее основе.
- 2. Расскажите об образовании р-п перехода в полупроводниках.
- 3. Приведите состав и характерные свойства пермаллоев.
- 4. Что представляет собой явление пробоя диэлектриков?

7. Средства текущей и промежуточной оценки качества освоения дисциплины Оценка качества освоения дисциплины производится по результатам следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты
	обучения по
	дисциплине
Выполнение и защита лабораторных работ	РД1, РД2, РД3,
	РД4
Защита индивидуальных заданий	РД2, РД4
Презентация по тематике исследований во время проведения конференц-	РД3, РД4
недели	
зачёт	РД1, РД2, РД3,
	РД4

8. Рейтинг качества освоения дисциплины (модуля)

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора № 88/од от 29.11.2013 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины Основная литература:

- 1. Электротехническое материаловедение. Диэлектрики, проводники, сверхпроводники: учебное пособие: Санкт-Петербург: Изд-во СПбПУ, 2014.
- 2. Сорокин В.С. Материалы и элементы электронной техники. Активные диэлектрики, магнитные материалы, элементы электронной техники: учебник для вузов. В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. 2 изд. Испр. Санкт-Петербург: Лань, 2016. 378 с.

Дополнительная литература:

- 3. Раскин А.А., Прокофьева В.К Технология материалов микро- опто- и наноэлектроники, Часть 1,., Москва: БИНОМ. Лаборатория занятий, 2010 164 с..
- 4. Антипов Б.Л. Материалы и элементы электронной техники: задачи и вопросы: учебное пособие для вузов/Б.Л. Антипов, В.С. Сорокин, В.А. Терехов. 2 ен изд. СПБ: Лань, 2001. 208 с.
- 5. Сорокин В.С.. Материалы и элементы электронной техники: учебник для вузхов: в 2-х т./ В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. М.: Академия, 2006. 218 с.
- 6. Рощин В.М. Технология материалов микро- опто- и наноэлектроники: учебное пособие/ В.М. Рощин, М.В. Силибин. Ч.2 ,., Москва: БИНОМ. Лаборатория занятий, $2010-180~\rm c$.

Используемое программное обеспечение: Word, MathCad, Paint, PoverPoint

10. Материально-техническое обеспечение дисциплины

Указывается материально-техническое обеспечение дисциплины: технические средства, лабораторное оборудование и др.

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок
1	Учебная лаборатория конструирования и технологии приборостроения	Корпус 4, ауд. 210, 12 рабочих мест
2	Лаборатория САПР	Корпус 4, ауд. 105, 10 рабочих мест
3	Класс Ноутбуков	Корпус 4, ауд. 206, 10 рабочих мест
4	Коллекции материалов электронной техники	Корпус 4, ауд. 210,

Программа составлена на основе СУОС ТПУ в соответствии с требованиями ФГОС по направлению 11.03.04 «Электроника и наноэлектроника» и профилей подготовки «Прикладная электронная инженерия» и «Промышленная электроника»

едры Точного приборостроения
г.).
_Гормаков А.Н.

Рецензент Иванова В.С.