Министерство образования и науки Российской Федерации Автономное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт неразрушающего контроля

Дисциплина «Материалы электронной техники»

ПРОВОДНИКИ. МЕДЬ

Гормаков А.Н., доц. каф. ТПС ИНК НИ ТПУ, 2017 г.

Электрические свойства материалов

В электротехнических и электронных узлах приборов применяют проводниковые, полупроводниковые, электроизоляционные, магнитные и другие материалы.

Для эффективного их применения необходима информация о параметрах электрических, магнитных и других специфических свойств.

Электропроводность

Электропроводность – свойство материалов проводить электрический ток, обусловленное наличием в них заряженных частиц - носителей тока.

Электрическое сопротивление – свойство материалов как проводников противодействовать электрическому току.

Природу электропроводности твердых материалов объясняет зонная теория - квантовая теория энергетического спектра электронов в твердых телах, согласно которой этот спектр состоит из чередующихся зон разрешенных и запрещенных энергий.

Согласно этой теории можно выделить три группы материалов:

- проводники,
- полупроводники,
- □ диэлектрики.

• у проводников запрещенная зона отсутствует,

• у полупроводников она не превышает 3,5 ЭВ,

. у диэлектриков она составляет десятки кЭВ.

Электрическое сопротивление материалов характеризуют удельным электрическим сопротивлением

$$\rho = \frac{R \cdot S}{l}; \quad O_{M \cdot M} \quad u_{M} \frac{O_{M \cdot MM}^{2}}{M},$$

где R – электрическое сопротивление;

S – площадь поперечного сечения образца;

I – длинна образца.

Материал	Удельное сопротивление р (Ом • м) при 20°
Серебро	1.59 × 10 ⁻⁸
Медь	1.68 × 10 ⁻⁸
Золото	2.44 × 10 ⁻⁸
Алюминий	2.82 × 10 ⁻⁸
Вольфрам	5.60 × 10 ⁻⁸
Цинк	5.90 × 10 ⁻⁸
Никель	6.99 × 10 ⁻⁸
Литий	9.28 × 10 ⁻⁸

Удельное электрическое сопротивление проводников и непроводников зависит от температуры. Сопротивление металлических проводников увеличивается с повышением температуры.

У полупроводников сопротивление сильно уменьшается при повышении температуры

У некоторых материалов при температуре, близкой к абсолютному нулю, сопротивление скачком уменьшается до нуля (явление сверхпроводимости).

Сопротивление константана (60%Cu, 40%Ni) и манганина (86%Cu, 2%Ni, 12%Mn) очень слабо зависит от температуры

$$\rho_t = \rho_{20} \left[1 + \alpha \left(t - 20^{\circ} C \right) \right]$$

- где: ρ₂₀ удельное электрическое сопротивление при t= 20°C,
- рt удельное электрическое сопротивление при температуре t,
- α температурный коэффициент электрического сопротивления

Медь – металл красновато – розового цвета с кристаллической структурой в виде ГЦК. По электропроводности медь занимает второе место после серебра. Поэтому медь является важнейшим материалом для изготовления электропроводников (проводов, шин, кабелей и т.п.). Медь также имеет высокую теплопроводность, в связи с чем широко применяется в теплообменниках (радиаторы, холодильн. и т.п.).

Медь и ее сплавы хорошо свариваются всеми видами сварки и легко поддаются пайке. На основе меди получены сплавы с очень ценными свойствами. Однако медь относится к тяжелым металлам, ее плотность 8940 кг/м3. Медь отлично обрабатывается давлением, но плохо резанием и имеет плохие литейные свойства, поскольку дает большую усадку.

```
Медь выпускают следующих марок
(\Gamma OCT 859 - 2001):
катодную – МВ4к, М00к, М0ку, М1к;
бескислородную – М00б, М0б, М1б;
катодную переплавленную – М1у;
раскисленную – М1р, М2р, М3р.
По содержанию примесей различают марки
меди
M00 (99,99 % Cu),
M0 (99,95 % Cu),
M1(99,9 % Cu),
M2 (99,7 % Cu), M3 (99,5 % Cu).
```

По составу медные сплавы подразделяют на:

латуни,

бронзы,

медно-никелевые сплавы.

Латуни Латуны (ГОСТ17711 — 93) — сплав меди с цинком.

Помимо Zn в латунь добавляют различные легирующие элементы.

Химические элементы используемые в медных сплавах обозначаются следующими индексами в марке сплавов:

Al-A	Ва – Бр	W – ВАМ, Внм, Вэл	Bi – Ви
V - B	$Cd - \Gamma_M$	Ga – Гл	$Ge-\Gamma$
Fe – Ж	As – Мш	Ni- H	Sn – O
Pb – C	$\mathbf{P} - \Phi$	Co – K(Ko)	Au – 3л
Si – Kp (K)	$Mg - M\Gamma$	Mn – Мц	Cu – M
Se – CT	\mathbf{Ag} – \mathbf{Cp}	Sb - Cy	Tu — Ти
Zn – Ц			

Все латуни по технологическому признаку подразделяют на две группы: деформируемые, из которых изготавливают листы, трубы, проволоку и другие полуфобрикаты, и литейные – для фасонного литья. Литейные латуни обладают хорошей жидкотекучестью и обладают хорошими антифрикционными свойствами.

Двойные латуни маркируют буквой Л и цифрами, показывающими содержание меди (остальное цинк). Например, Л90 – Cu 90 %; Zn10 %. Латуни перерабатывают в изделия: обработкой, давлением, литьём, резанием. Латуни хороший конструкционный материал.

Алюминиевые латуни имеют повышенные механические характеристики и коррозионную стойкость. ЛА 85 - 0.5 (Cu - 85 %; Al - 0.5 %, остальное Zn).

Многокомпонентные латуни:

ЛАНКМЦ 75 – 2 – 2,5 – 0,5 – 0,5 (Cu – 75 %; Al – 2 %; Ni – 2,5 %; Si – 0,5 %; Mn – 0,5 %, остальное Zn).

Марганцевые латуни обладают высокими механическими свойствами, обрабатываются давлением в горячем и холодном состоянии, стойки к коррозии. ЛМЦ 58 – 2; Си – 58% (Мп – 2%; Zn -40%).

Свинцовые латуни обладают антифрикционными свойствами, обрабатываются резанием. Марки: ЛС 63 – 3; ЛС 74 – 3.

Кремнистые латуни обладают высокой коррозионной стойкостью в атмосферных условиях и в морской воде. Марки: ЛК80 – 3; ЛКС65–1,5–3.

Бронзы

Бронзы — сплавы меди, основными компонентами которых являются: олово, алюминий, бериллий, кремний, свинец и др.

Бронзы обозначают буквами Бр и цифрами, аналогично маркировке латуней.

Питейные бронзы — содержат до 6 % Sn, их используют для изготовления деталей ответственных углов трения.

Оловянные бронзы (ГОСТ 613 – 79) обладают высокими антифрикционными свойствами, нечувствительны к перегреву, морозостойки, немагнитны.

Например, бронза БРОЦСН – 3 – 7 – 5 – 1 имеет следующий состав: Sn – 3%; Zn - 7%; Pb - 5%; Ni - 1%, остальное Си. Недостаток оловянных бронз – склонность к образованию пор в отливках, малая жидкотекучесть.

Деформированные оловянные бронзы содержат до 80% Sn, из них изготовляют пружины и деформируемые детали.

Бериллиевая бронза БрБ2 обладает хорошими упругими свойствами, из неё изготовливают пружины.

Сплавы меди с никелем

Медно-никелевые сплавы являются основными сплавами для изготовления технических резисторов (мельхиор, нейзильбер).

В качестве жаростойких сплавов для работы при температуре не выше 400 - 500 °C можно применять медно-никелевые сплавы типа *константан*, содержащие 40 - 50 % Ni.

Сплавы меди с никелем и другими легирующими элементами — это бронзы особого вида: мельхиор, нейзильбер, копель и др.

Мельхиор — МНЖМц 30 — 1 — 1 (Ni и Co 29 — 33 %; Fe 0,5 — 1 %; Mn 0,5 — 1 %, остальное Cu).

Нейзильбер – МНЦС 16 – 29 – 1,8 (Ni и Co 15 – 16,7 %; Pb 1,6 – 2 %; Cu 51 – 55 %, остальное Zn). *Копель* - Ni и Co 44 %, Mn 0,1 – 1 %, остальное Cu.

Куниали – МНА13-3, МНА6 – 1,5. *Манганин* - МНЦ18 – 20.