Министерство образования и науки Российской Федерации Автономное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт неразрушающего контроля

Дисциплина «Материалы электронной техники»

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

Гормаков А.Н., доц. каф. ТПС ИНК НИ ТПУ, 2017 г.

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ -

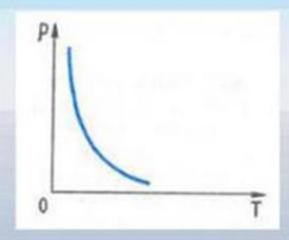
вещества, основным свойством которых является сильная зависимость электропроводности от внешних факторов

2.1 Классификация полупроводников по типу электропроводности

с.н.з. - электроны и дырки

12 простых веществ

B, C, Si, P, S, Ge, As, Sn (серое олово), Sb,


Te, Y, Se.

Зависимость сопротивления полупроводника от температуры P •Кремний •Германий •Селен ·PbS ·CdS 293 Т, К Рис.1

Электрический ток в полупроводниках

Полупроводники

Полупроводники – вещества у которых удельное сопротивление с повышением температуры уменьшается

4/5 земной коры: германий, кремний, селен и др., множеств минералов, различные оксиды, сульфиды - являются полупроводниками

- Собственная проводимость полупроводников
- Примесная проводимость полупроводников

полупроводники

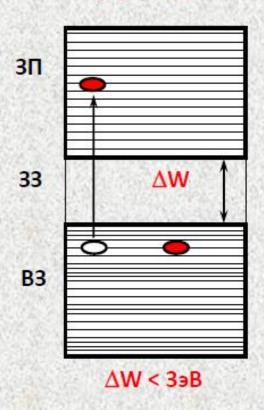


Рис. 2

$\rho_{V}^{\sim} 10^{-4} \div 10^{9} \, \text{Om} \cdot \text{M}$

A^IB^{VII} (AgCl, CaBr и др.), A^{II}B^{VI} (CdS, CdSe и др.), A^{III}B^V (GaP, GaAs и др.), A^{IV}B^{IV} (PbS, GeO₂ и др.), A^{IB}V^I (CuS и др.)

A^IB^{VII}C^{VI} (CuAlS₂, CuJnS₂ и др.); A^IB^VC^{VI} (CuSbS₂, CaAsS₂ и др.); A^IB^{VIII}C^{VI} (CuFeSe₂ и др.); A^{II}B^{IV}C^V (ZnSiAs₂, ZnGeAs и др.); A^{IV}B^VC^{VI}

Энергия активации (ΔW) — минимальная энергия, необходимая для перевода электрона в зону проводимости Достойного полупроводникового соперника электронной лампе, названного транзистором, создали в 1948 г. американские ученые Браттейн, Бардин и

Шокли.

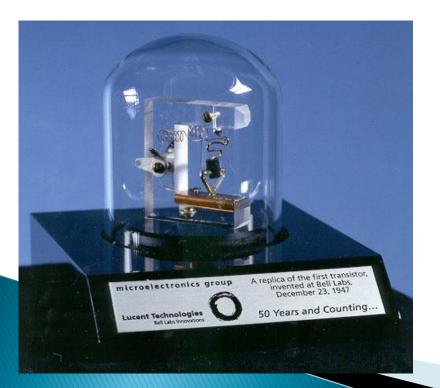


Рис. 3

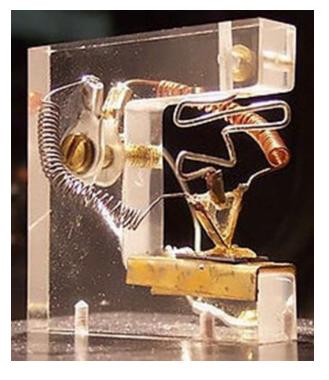
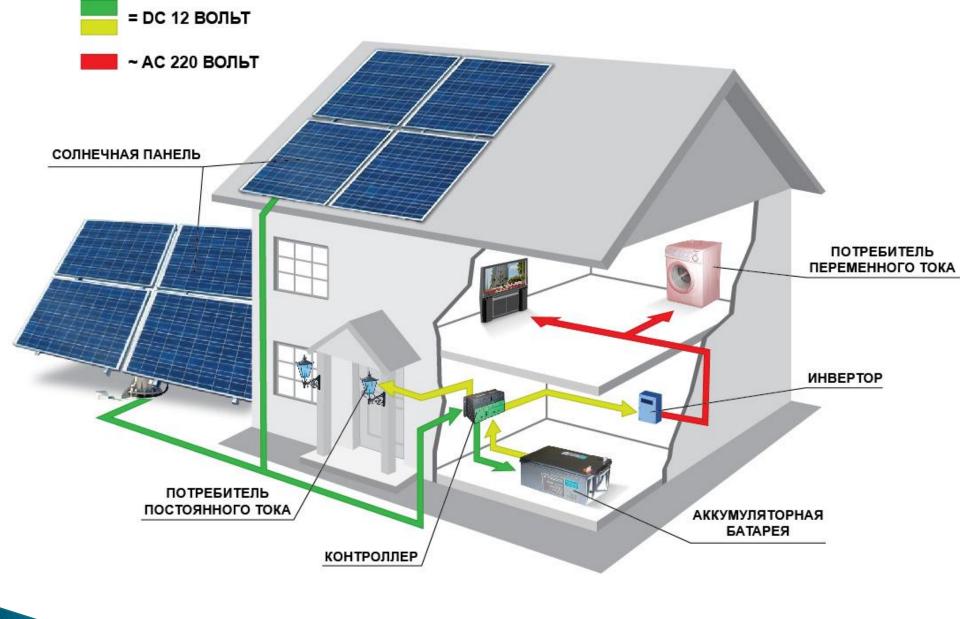


Рис. 4. Современный макет транзистора Бардина и Браттейна

В нашей стране большой вклад в разработку полупроводниковых приборов внесли А. Ф. Иоффе, Л. Д. Ландау, Б. И. Давыдова, В.Е. Лошкарев и ряд других ученых и инженеров, многие научные коллективы.


По электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока.

К группе полупроводников относится гораздо больше веществ, чем к группам проводников и непроводников, взятых вместе.

Электропроводность полупроводников сильно зависит от окружающей температуры. При очень низкой температуре, близкой к абсолютному нулю (-273 C), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводимыми, т.е. почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света. Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается.

Полупроводники могут преобразовывать энергию света в электрический ток (рис. 5-8).

Проводникам же это совершенно не свойственно.

Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается. Эти и некоторые другие свойства полупроводников были известны сравнительно давно, однако широко использовать их стали сравнительно недавно.

Германий и кремний, являющиеся исходными материалами многих современных полупроводниковых приборов, имеют во внешних слоях своих оболочек по четыре валентных электрона. Всего же в атоме германия 32 электрона, а в атоме кремния 14. Но 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях их оболочек, прочно удерживаются ядрами и ни при каких обстоятельствах не отрываются от

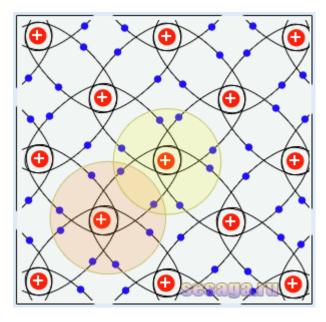
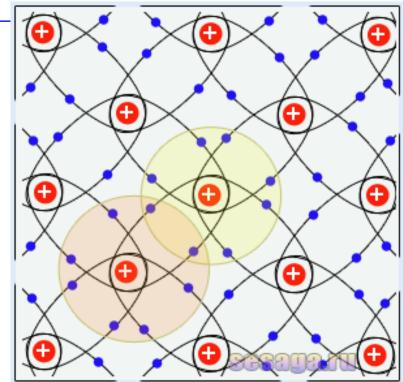


Рис.9

Только четыре валентных электрона атомов этих полупроводников могут, да и то не всегда, стать свободными.


Атом же полупроводника, потерявший хотя бы один электрон, становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Они к тому же расположены настолько близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг всех соседних атомов, связывая их в единое вещество.

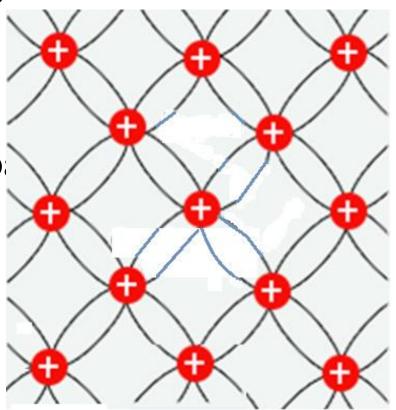
Такую взаимосвязь атомов в кристалле полупроводника можно представить себе в виде плоской схемы, как показано на рис. 9. Здесь большие шарики со знаком « + » условно изображают ядра атомов с внутренними слоями электронной оболочки (положительные ионы), а маленькие шарики - валентные электроны.

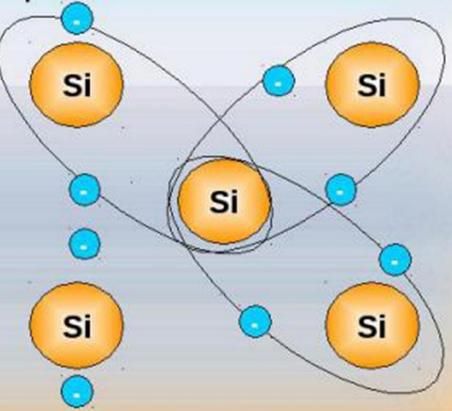
Каждый атом, как видите, окружен четырьмя точно такими же атомами. Любой из атомов связан с каждым соседним двумя валентными электронами, один из которых «свой», а второй заимствован у «соседа». Это двухэлектронная, или валентная, связь. Самая прочная связь!

Рис. 9. Схема взаимосвязи атомов в кристалле полупроводника

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и по одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов в атоме «свой», а какой «чужой», поскольку они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу.

Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис.10. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи - двумя линиями, символизирующими валентные электроны.




Рис.10

Электрический ток в полупроводниках

Собственная проводимость полупроводников

• Рассмотрим проводимость полупроводников на основе

кремния Si

Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами

При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток

ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКА

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов.

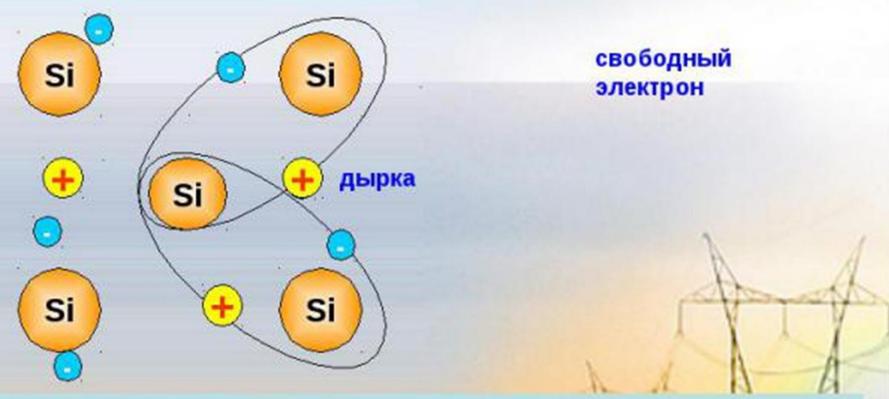


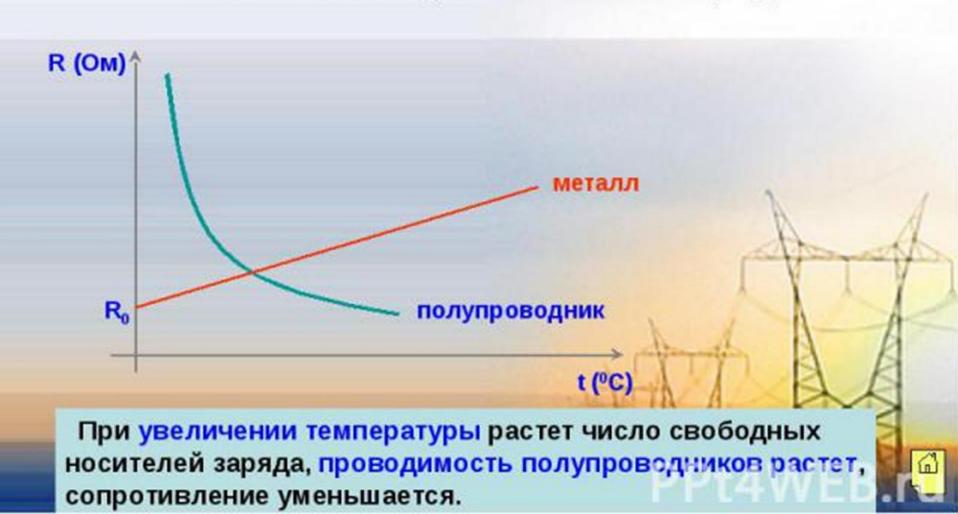
Рис.11

Но при повышении температуры связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон (рис.11) становится свободным, а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой разорвавшаяся линия электрона).

Электрический ток в полупроводниках

Рассмотрим изменения в полупроводнике при увеличении температуры

При увеличении температуры энергия электронов увеличивается и некоторые из них покидают связи, становясь свободными электронами. На их месте остаются некомпенсированные электрические заряды (виртуальные заряженные частицы), называемые дырками.



Чем выше температура полупроводника, тем больше в нем появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному заряду электрона.

Электрический ток в полупроводниках

Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц - дырок

Зависимость сопротивления от температуры

На нем схематично изображено явление возникновения тока в полупроводнике. Причиной возникновения тока служит напряжение, приложенное к полупроводнику (на рис.

9) <u>источник напряжения</u> символизируют знаки « + » и « — »). Вследствие тепловых явлений во всей массе полупроводника высвобождается из межатомных связей некоторое количество электронов (на рис. они обозначены точками со стрелками).

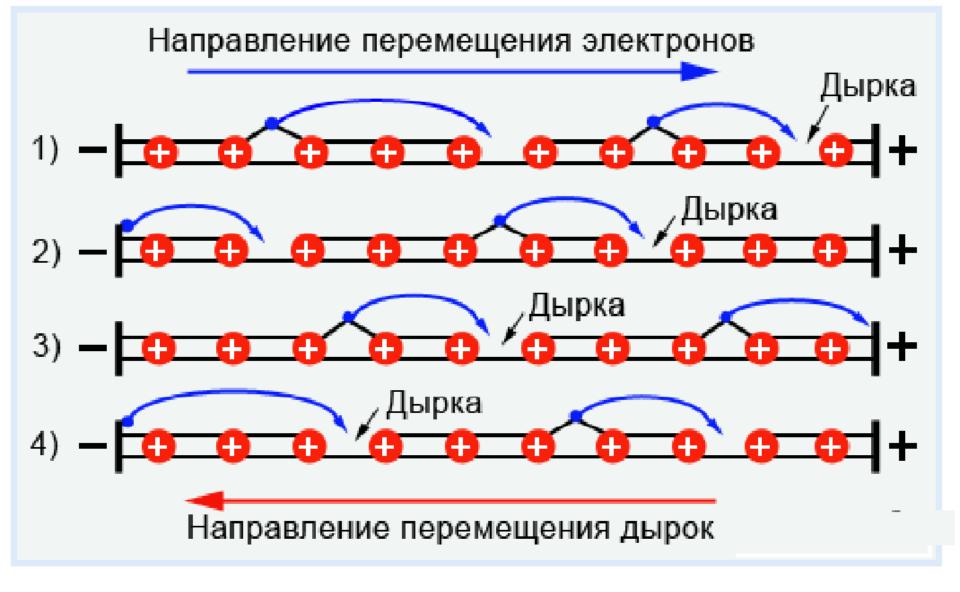


Рис.12. Схема движения электронов и дырок в полупроводнике

Электроны, освобождавшиеся вблизи положительного полюса источника напряжения, притягиваются этим полюсом и уходят из массы полупроводника, оставляя после себя дырки. Электроны, ушедшие из межатомных связей на некотором удалении от положительного полюса, тоже притягиваются им и движутся в его сторону.

Но, встретив на своем пути дырки, электроны как бы «впрыгивают» в них (рис. 12-1), происходит заполнение некоторых межатомных связей. А ближние к отрицательному полюсу дырки заполняются другими электронами, вырвавшимися из атомов, расположенных еще ближе к отрицательному полюсу (рис. 12-2). Пока в полупроводнике действует электрическое поле, этот процесс продолжается: нарушаются одни межатомные связи из них уходят валентные электроны, возникают дырки - и заполняются другие межатомные связи - в дырки «впрыгивают» электроны, освободившиеся из каких-то других межатомных связей (рис. 12-(3-4).

Механизм проводимости полупроводников

ЭЛЕКТРОННАЯ

ДЫРОЧНАЯ

Проводимость п/п, обусловленная наличием у них свободных электронов

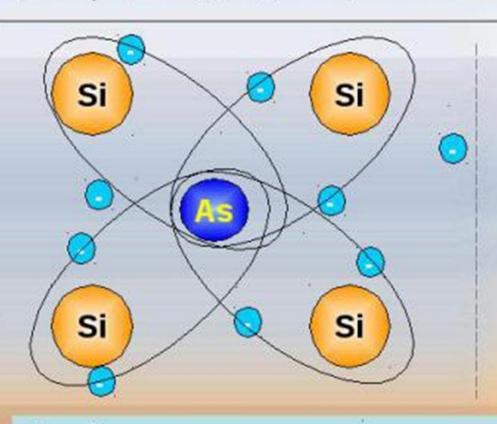
«дырка» - вакантное электронное состояние в кристаллической решетке, имеющее избыточный положительный заряд

Проводимость п/п , обусловленная перемещением «дырок».

Проводимость п/п значительно увеличивается при введении

примесей Донорная Акцепторная n - типа - типа Si Si In Рис.13

Рассматривая эти схемы, ты, конечно, заметил: электроны движутся в направлении от отрицательного полюса <u>источника напряжения</u> к положительному, а дырки перемещаются от положительного полюса к отрицательному.


При температуре выше абсолютного нуля в полупроводнике непрерывно возникают и исчезают свободные электроны и дырки даже тогда, когда нет внешних электрических полей. Но электроны и дырки движутся хаотически в разные стороны и не уходят за пределы полупроводника. В чистом полупроводнике число высвободившихся в каждый момент времени электронов равно числу образующихся при этом дырок. Общее же их число при комнатной температуре относительно невелико. Поэтому электропроводность такого полупроводника, называемая собственной, мала.

- Иными словами, такой полупроводник оказывает электрическому току довольно большое сопротивление. Но если в чистый полупроводник добавить даже ничтожное количество примеси в виде атомов других элементов, электропроводность его резко повысится. При этом в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.
- Чем различаются эти два вида электропроводности полупроводника?

Если какой-либо атом в кристалле полупроводника заменить атомом сурьмы, имеющим во внешнем слое электронной оболочки пять валентных электронов, этот атом-«пришелец» четырьмя электронами свяжется с четырьмя соседними атомами полупроводника. Пятый же валентный электрон атома сурьмы окажется «лишним» и станет свободным. Чем больше в полупроводник будет введено атомов сурьмы, тем больше в его массе окажется свободных электронов. Следовательно, полупроводник с примесью сурьмы приближается по своим свойствам к металлу: для того чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.

Электрический ток в полупроводниках

Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют), которые бывают донорные и акцепторные

Донорные примеси

При легировании
4-валентного кремния Si
5-валентным мышьяком As,
один из 5 электронов
мышьяка становится
свободным.

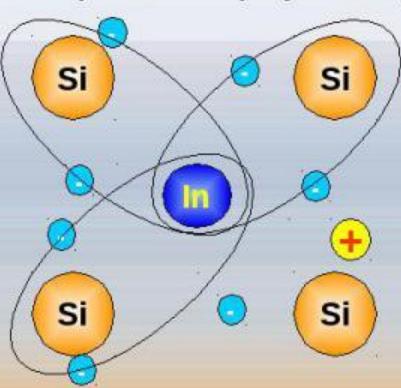
As – положительный ион. Дырки нет!

Такой полупроводник называется полупроводником n – типа, основными носителями заряда являются электроны, а примесь мышьяка, дающая свободные электроны, называется донорной.

Полупроводники, обладающие такими свойствами, называют полупроводниками с электропроводностью типа 11 или, короче, полупроводниками 11 типа.

Здесь латинская буква n - начальная буква латинского слова "negativ" (негатив), что значит «отрицательный». Этот термин в данном случае нужно понимать в том смысле, что в полупроводнике типа n основными носителями тока являются отрицательные заряды, т.е. электроны.

Совсем иная картина получится, если в полупроводник ввести атомы с тремя валентными электронами, например атомы индия.

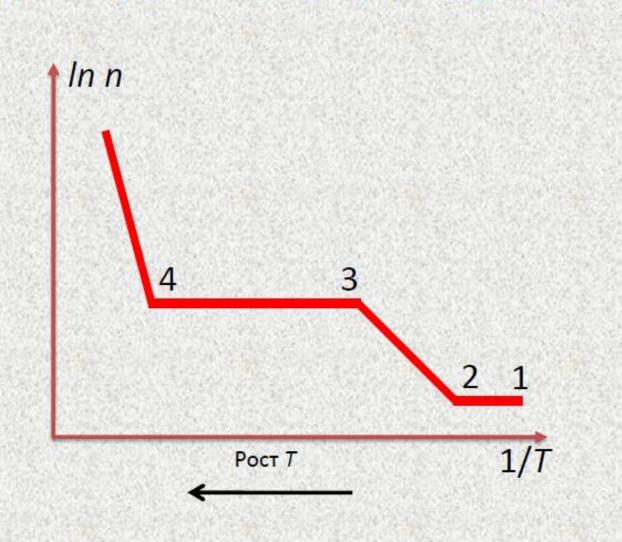

Каждый атом металла индия своими тремя электронами заполнит связи только с тремя соседними атомами полупроводника, а для заполнения связи с четвертым атомом у него не хватает одного электрона. Образуется дырка. Она, конечно, может заполниться каким-либо электроном, вырвавшимся из валентной связи с другими атомами полупроводника. Однако независимо от того, где будут дырки, в массе полупроводника с примесью индия не будет хватать электронов для их заполнения. И чем больше будет введено в полупроводник примесных атомов индия, тем больше в нем образуется дырок.

Чтобы в таком полупроводнике электроны могли перемещаться, совершенно обязательно должны разрушаться валентные связи между атомами. Вырвавшиеся из них электроны или же электроны, поступившие в полупроводник извне, движутся от дырки к дырке. А во всей массе полупроводника в любой момент времени число дырок будет больше общего числа свободных электронов. Полупроводники, обладающие таким свойством, называют полупроводниками с дырочной электропроводностью или полупроводниками типа р.

Электрический ток в полупроводниках

Акцепторные примеси

Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка

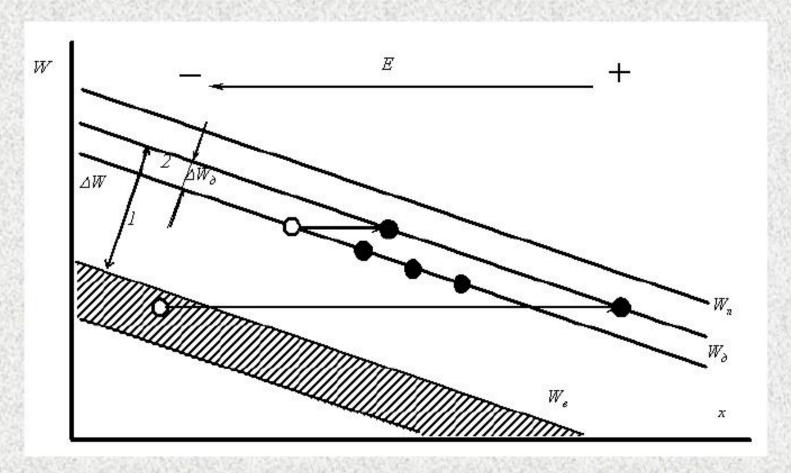


Основа дает электроны и дырки в равном количестве. Примесь – только дырки. Такой полупроводник называется полупроводником р – типа, основными носителями заряда являются дырки, а примесь индия, дающая дырки, называется акцепторной

- Латинская буква р первая буква латинского слова "positiv" (позитив), что значит «положительный». Этот термин в данном случае нужно понимать в том смысле, что явление электрического тока в массе полупроводника типа р сопровождается непрерывным возникновением и исчезновением положительных зарядов - дырок. Перемещаясь в массе полупроводника, дырки как бы являются носителями тока.
- Полупроводники типа p, так же как и полупроводники типа n, обладают во много раз лучшей электропроводностью по сравнению с чистыми полупроводниками.

Надо сказать, что практически не существует как совершенно чистых полупроводников, так и полупроводников с абсолютной электропроводностью типов n и p. В полупроводнике с примесью индия обязательно есть небольшое количество атомов некоторых других элементов, придающих ему электронную проводимость, а в полупроводнике с примесью сурьмы есть атомы элементов, создающих в нем дырочную электропроводность.

Температурная зависимость концентрации *n* с.н.з. в примесном полупроводнике



ТЕРМОРЕЗИСТОР – полупроводниковый прибор, действие которого основано на зависимости электрического сопротивления от температуры

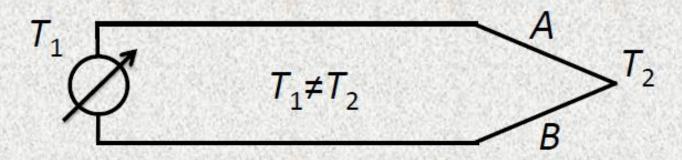
ТЕРМОРЕЗИСТОРЫ:

- 1. Кобальто-марганцевые
 - 2. Медно-марганцевые
- 3. Медно-кобальто-марганцевые

ВЛИЯНИЕ НАПРЯЖЕННОСТИ ВНЕШНЕГО ЭЛЕКТРИЧЕСКОГО ПЛОЯ НА ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ

ЭЛЕКТРОСТАТИЧЕСКАЯ ИОНИЗАЦИЯ

Полупроводниковый прибор, действие которого основано на использовании зависимости электропроводности (сопротивления) n/n от напряженности электрического поля называется

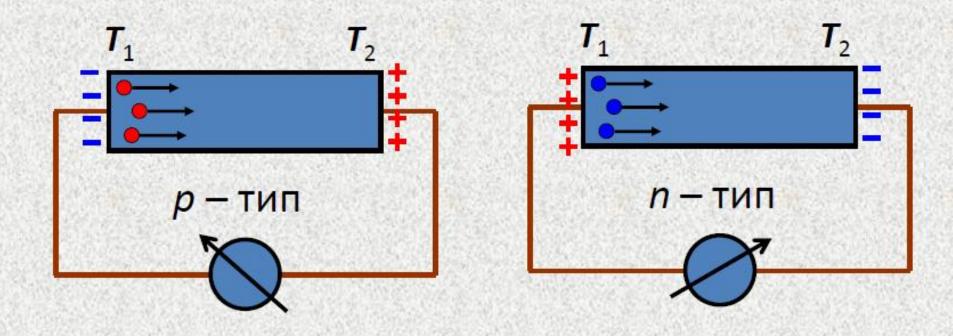

ВАРИСТОРОМ

В качестве материалов для изготовления варисторов используют:

- а) карбид кремния (СН1)
- б) селен (СН2)

2.3 ТЕРМОЭЛЕКТРИЧЕСКИЕ ЭФФЕКТЫ В ПОЛУПРОВОДНИКАХ

Эффекты Зеебека, Пельтье и Томсона.


Эффект Зеебека: если в замкнутой электрической цепи, состоящей из последовательно соединенных разнородных полупроводников, на спаях создана разность температур **∆***Т*≠**0**, то в цепи возникает термоЭДС:

$U_T = \alpha \cdot \Delta T$

 α – коэффициент термоЭДС, который зависит от материалов термопары и интервала температур

Определение типа с.н.з. с помощью эффекта Зеебека

$$T_1 > T_2$$

Эффект Пельтье: при прохождении тока через контакт двух последовательно соединенных разнородных полупроводников, место соединения нагревается или охлаждается в зависимости от направления тока.

Количество теплоты $Q_{\Pi} = \pm \Pi \cdot l \cdot t$

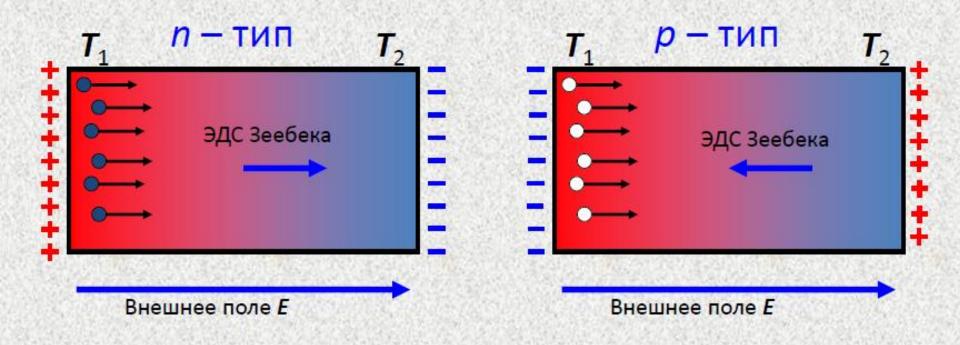
П – коэффициент Пельтье

I – величина тока, протекающего через контакт

t – время прохождения тока

Томсон установил связь: $\alpha = \Pi/T$

Эффект Томсона: при прохождении тока через полупроводник, вдоль которого есть градиент температуры, в дополнении к теплоте Джоуля, в зависимости от направления тока, выделяется или поглощается некоторое количество тепла.


Теплота Томсона: $Q_T = \tau \cdot \Delta T \cdot I \cdot t$

т – коэффициент Томсона

Между всеми термоэлектрическими явлениями существует связь.

$$\alpha = d\Pi/dT + (\tau_1 - \tau_2)$$

Механизм возникновения эффекта Томсона. $T_1 > T_2$

Гальваномагнитный эффект Холла

Если пластину полупроводника, вдоль которой течёт электрический ток /, поместить в магнитное поле B, направленное перпендикулярно направлению тока, то в полупроводнике возникнет поперечное электрическое поле Е, направленное перпендикулярно току и магнитному полю.

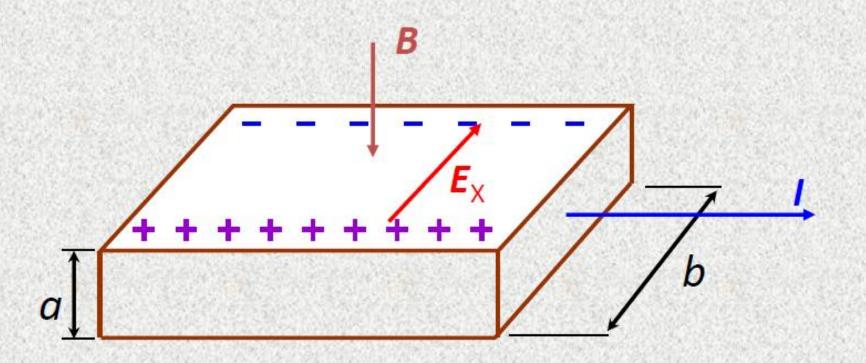
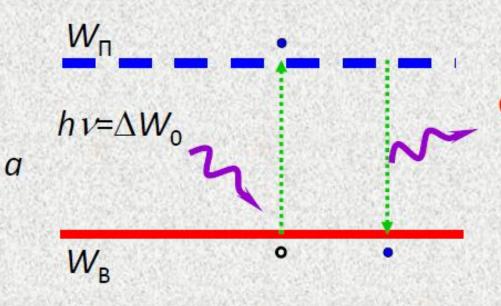


Схема возникновения ЭДС Холла U_{χ}

$$U_X = R_X \frac{I \cdot H}{a} [B]$$

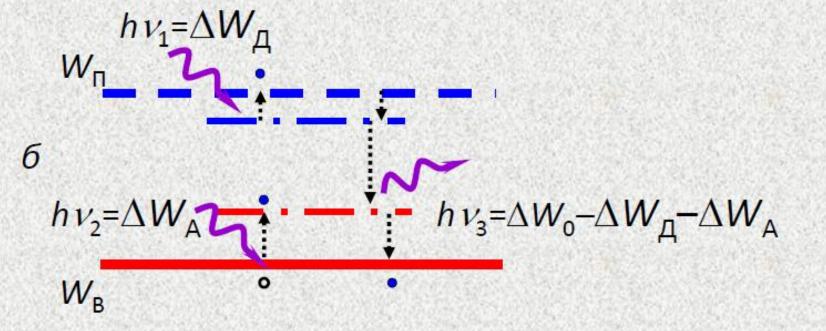
Для полупроводника n-типа: $R_X = \frac{-1}{2}$


$$R_X = \frac{-1}{en}$$

Для полупроводника p-типа: $R_X = \frac{1}{ep}$

$$R_X = \frac{1}{ep}$$

Для собственного полупроводника:


$$R_X = \frac{1}{en} \cdot \frac{\mu_p - \mu_n}{\mu_p + \mu_n}$$

Оптические и фотоэлектрические явления в полупроводниках

Оптика:

преломление, отражение, рассеяние. Характеристика – коэффициент преломления n.

2.4 Фотоэлектрические явления в полупроводниках:

- эмиссия электронов с поверхности,
- генерация свободных электронов и дырок,
- фотолюминесценция,
- нагревание,
- образование экситонов, то есть связанных электрически нейтральных пар электрондырка

Фотоэлектрические явления происходят в результате поглощения энергии фотонов полупроводником.

Механизмы поглощения света:

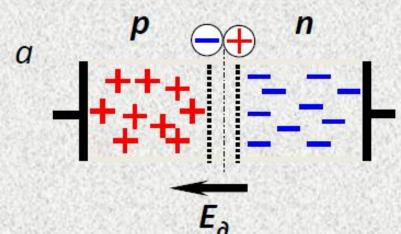
- собственное поглощение: переходы из валентной зоны в зону проводимости;
- экситонное поглощение: переходы с участием экситонных состояний;
- поглощение свободными носителями заряда: переходы электронов и дырок внутри разрешённых зон;
- примесное поглощение: переходы с участием примесных состояний;
- решёточное и фононное поглощение: поглощение энергии фотонов колебаниями кристаллической решётки.

В разных интервалах спектра преобладают различные

Фотопроводимость

удельная фотопроводимость γ_{Φ} :

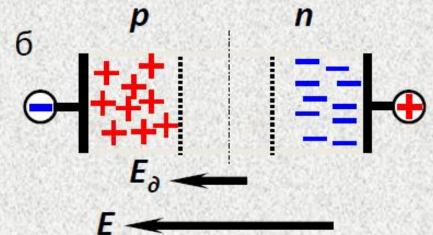
$$\gamma_{\Phi} = \gamma - \gamma_0 = e(\Delta n \mu n + \Delta p \mu p)$$


 γ_0 — удельная проводимость полупроводника в отсутствие освещения;

 γ — удельная проводимость освещенного полупроводника;

 Δn и Δp — концентрация неравновесных с.н.з., возбужденных светом

2.5 p-n переход


Электронно-дырочные переходы получают вводя в полупроводник донорные и акцепторные примеси так, чтобы одна часть полупроводника обладала электронной, а другая дырочной электропроводностью.

(a) Диффузионное поле E_{∂} возникает из-за диффузии с.н.з. Образуется запирающий слой толщиной $d \sim 10^{-5}$ см.

(б) Направление **E** совпадает с $E_∂$ и переход «заперт».

(в) Е направлено против Е_д,запирающий слой насыщаетсяс.н.з., и переход «открыт».

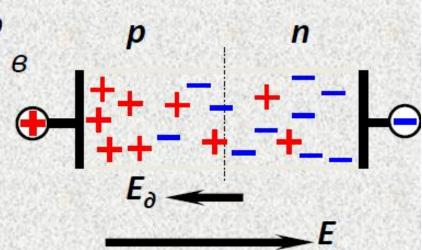
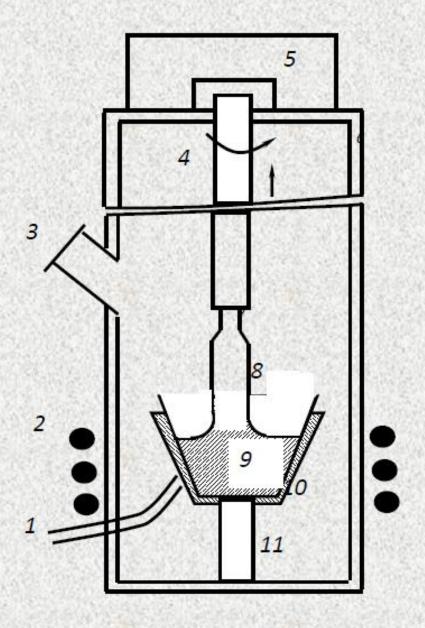



Схема установки для выращивания монокристаллов по методу Чохральского:

- 1-термопара;
- 2 индукционная печь;
- 3 окно для визуального контроля;
- 4 ось вращения;
- 5 устройство для вращения;
- 6 водяная рубашка;
- 7 монокристаллическая затравка;
- 8 выращиваемый кристалл;
- 9 расплав;
- 10 графитовый нагреватель;
- 11 теплоизоляционная подложка.

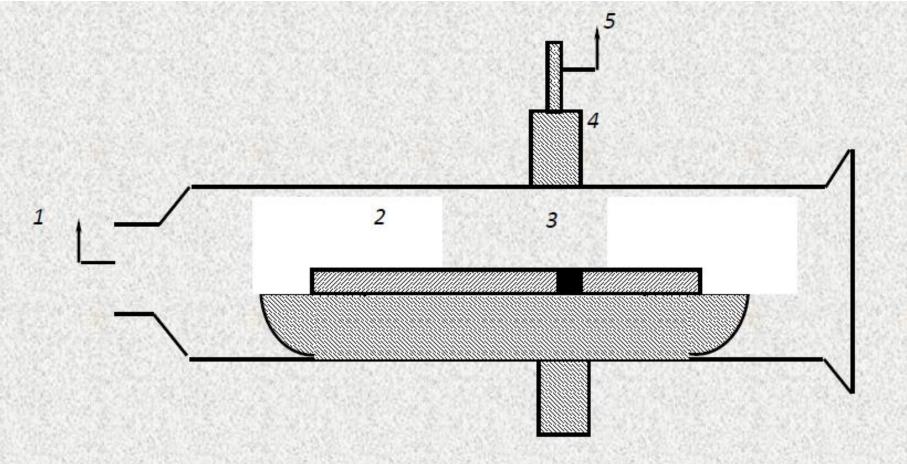
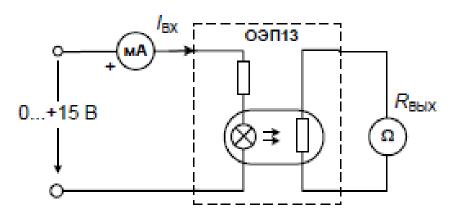
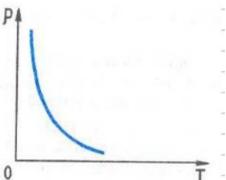
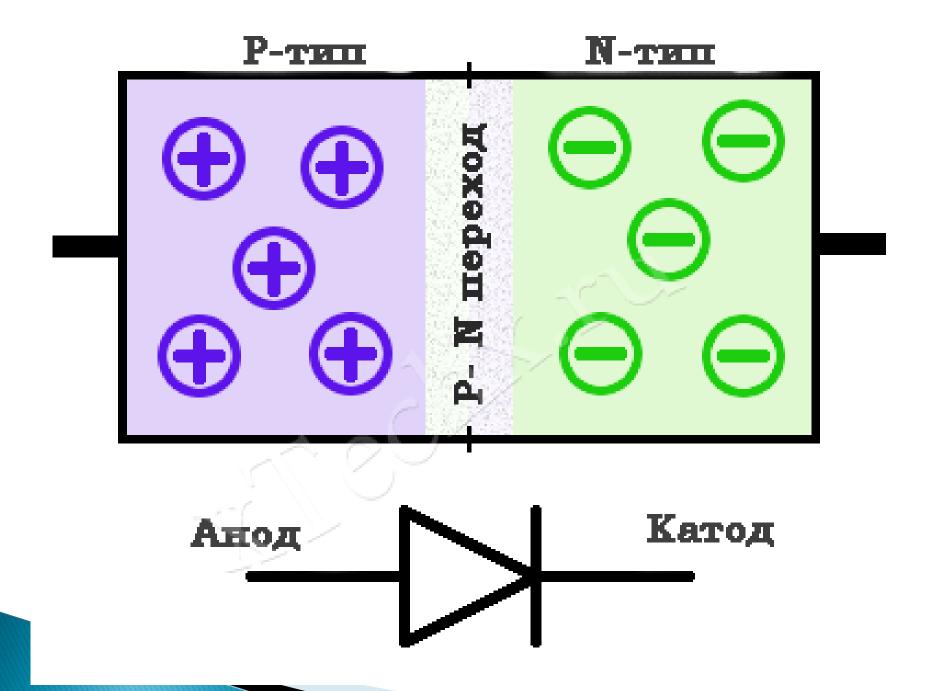
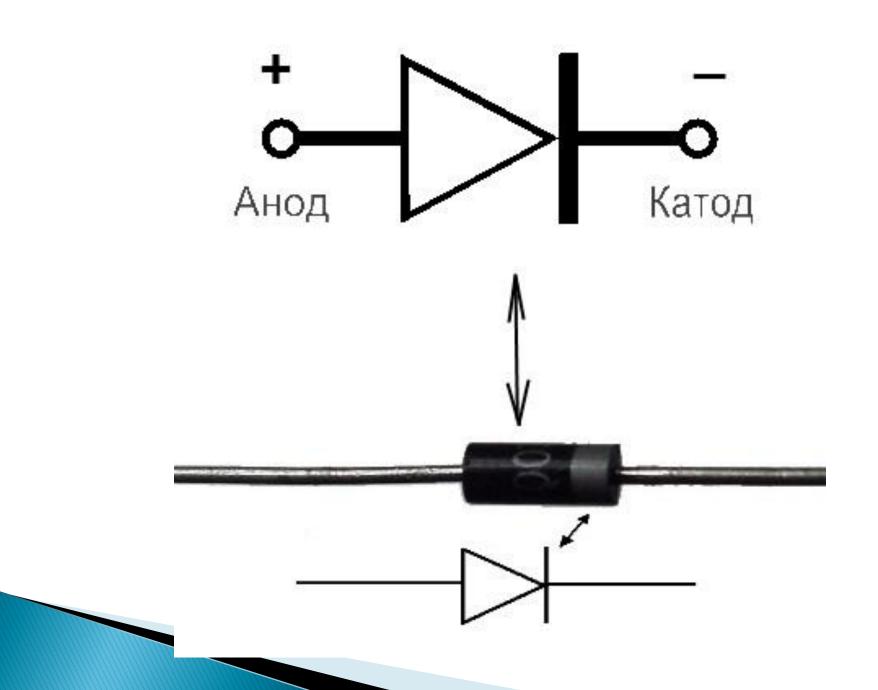
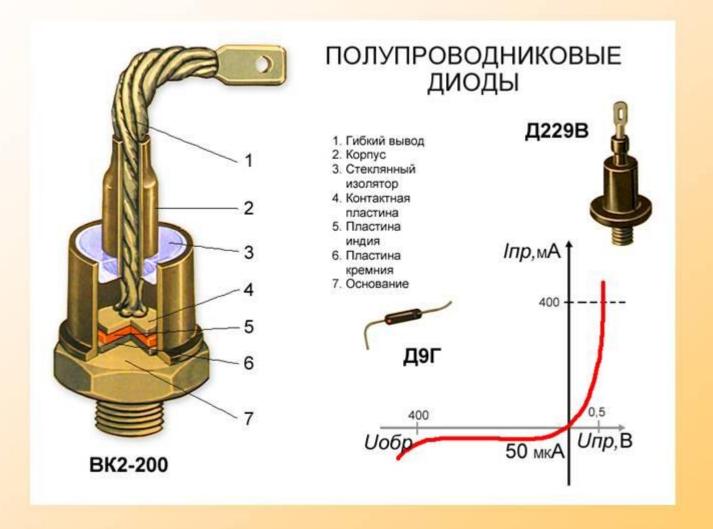



Схема установки для проведения зонной перекристаллизации: 1 — откачка на вакуум: 2 — образец в тигле; 3 — расплавленная зона; 4 — перемещаемый нагреватель; 5 — к устройству, перемещающему зону.


$$K_{s.n.} = C_{\kappa,\phi}/C_{\tau,\phi} > 1$$


Оптрон




Зависимость уд. сопротивления полупроводников от температуры

Полупроводниковый диод

СПАСИБО ЗА ВНИМАНИЕ