

	УТВЕРЖДАЮ
	Директор ИДО
	А.Ф. Федоров
 "	2007г.

ТЕОРИЯ МЕХАНИЗМОВ И МАШИН

Рабочая программа, методические указания и контрольные задания для студентов специальностей "Разработка эксплуатация нефтяных и газовых месторождений" и "Бурение нефтяных и газовых скважин" института дистанционного образования (ИДО)

Семестр	6	7
Лекции, часов	10	
Лабораторные занятия, часов	4	
Практические занятия, часов	8	
Контрольная работа, количество	2	
Курсовой проект, часов		10
Самостоятельная работа, часов	20	76
Формы контроля	экзамен	зачет

Томск 2007

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ И ОБЩИЕ МЕТО-ДИЧЕСКИЕ УКАЗАНИЯ

Учебная дисциплина "Теория механизмов и машин" базируется на механико-математической подготовке студентов, обеспечиваемой предшествующими курсами: "Высшая математика", "Физика", "Теоретическая механика", "Инженерная графика", "Информатика".

Являясь научной основой специальных курсов по созданию машин отраслевого назначения, она решает следующие важные задачи:

- учит студентов общим методам исследования и проектирования механизмов машин и приборов;
- учит понимать общие принципы осуществления движения при помощи механизмов, взаимодействие механизмов и машин;
- учит системному подходу к синтезу механизмов и машин с оптимальными параметрами по выбранному критерию качества;
- прививает навыки работы на персональных компьютерах (ПК), разработки программ расчета на ПК, выполнения практических расчетов кинематических и динамических параметров механизмов.

Учебная работа студента по освоению курса включает изучение теоретического материала, выполнение контрольных и лабораторных работ, курсового проекта, сдачу экзамена по теоретическому разделу и дифференцированного зачета по курсовому проекту.

При работе с литературой желательно составлять конспект, в котором записываются основные положения и выводы теории. Кроме того, целесообразно прослушать курс лекций по теории механизмов и машин, а также пользоваться очными или письменными консультациями преподавателей. Чтобы подготовиться к выполнению контрольных работ, следует после изучения соответствующих разделов программы разобрать примеры решения типовых задач, помещенных в задачнике по теории механизмов и машин, и самостоятельно решить ряд задач. Выполненные контрольные работы высылаются

для рецензирования согласно графику, установленному деканатом ИДО университета.

При проведении лабораторных работ студент знакомится с экспериментальными методами анализа и синтеза механизмов и машин. Перед каждым лабораторным занятием необходимо изучить соответствующие разделы курса. После выполнения лабораторных работ, оформления отчетов по ним студент сдает зачет.

К экзамену по курсу теории механизмов и машин допускаются студенты, имеющие зачет по контрольным и лабораторным работам.

Курсовой проект выполняется после изучения теоретического материала и сдачи экзамена. В процессе выполнения курсового проекта студент должен получить необходимые навыки применения основных положений и выводов теории к решению конкретных задач. Выполненный курсовой проект рецензируется преподавателем кафедры, а затем проводится его защита.

При выполнении контрольных работ и курсового проекта следует максимально привлекать современную вычислительную технику.

2. РАБОЧАЯ ПРОГРАММА

2.1. ВВЕДЕНИЕ

Теория механизмов и машин—научная основа создания новых механизмов и машин. Основные проблемы и задачи теории механизмов и машин. Этапы развития науки о проектировании механизмов, машин и систем машин. Содержание дисциплины "Теория механизмов и машин" и ее значение для инженерного образования. Связь теории механизмов и машин с другими областями знаний. История развития науки о механизмах и машинах. Роль отечественных ученых в создании научных школ. Перспективы развития науки о механизмах и машинах.

2.2. СТРУКТУРА И КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ

Тема 1. Основные понятия теории механизмов и машин

Машина. Механизм. Звено механизма. Входные и выходные звенья механизма. Ведущие и ведомые звенья. Кинематическая пара. Классификация кинематических пар по числу степеней свободы и числу связей. Низшие и высшие пары. Кинематические цепи. Кинематические соединения.

Тема 2. Основные виды механизмов

Классификация механизмов. Плоские и пространственные механизмы с низшими парами. Механизмы с высшими кинематическими парами (кулачковые, зубчатые, фрикционные механизмы). Механизмы с гибкими звеньями. Гидравлические и пневматические механизмы.

Тема 3. Структурный анализ и синтез механизмов

Обобщенные координаты механизма. Начальные звенья. Число степеней свободы механизма. Механизмы с избыточными связями. Местные подвижности механизма. Структурный синтез механизмов. Структурные группы Ассура.

Тема 4. Кинематический анализ механизмов

Задачи кинематического анализа механизмов. Методы кинематического анализа механизмов: метод преобразования координат точек звеньев в матричной форме, метод замкнутого векторного контура, метод планов. Особенности кинематического анализа механизмов с высшими кинематическими парами. Кинематический анализ зубчатых и волновых механизмов.

2.3. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ

Тема 5. Трение и износ в механизмах

Общие сведения о силах трения. Виды трения. Сила трения покоя. Сила трения скольжения. Факторы, влияющие на коэффициент трения. Жидкостное трение. Внутреннее трение в материале. Трение качения. Сопротивление качению. Трение в кинематических парах. Приведенный коэффициент трения. Явление самоторможения. Виды изнашивания. Закономерности изнашивания в механизмах.

Тема 6. Силовой анализ механизмов

Назначение силового расчета. Характеристика сил, действующих на звенья механизмов. Условие статической определимости кинематических цепей. Последовательность силового анализа механизмов. Силовой анализ механизмов с учетом трения в кинематических парах. Метод Жуковского. Мгновенный и общий коэффициенты полезного действия (КПД) механизма. Условие самоторможения и заклинивания механизма. КПД механизмов при параллельном и последовательном соединениях.

Тема 7. Уравнения движения механизмов

Динамические модели механизмов. Приведение сил и масс в плоских и пространственных механизмах. Уравнение движения механизма в форме интеграла энергии. Дифференциальное уравнение движения механизма. Кинетостатический метод составления уравнений движения механизмов. Дифференциальное уравнение движения механизмов с учетом, трения. Аналитиче-

ские и численные методы решения уравнений движения механизмов. Установившееся движение. Определение момента инерции маховика.

Тема 8. Колебания в механизмах

Приведение жесткостей упругих звеньев механизма. Приведенный коэффициент сопротивления. Типовые линейные уравнения движения механизмов с постоянными коэффициентами. Колебания в механизмах. Коэффициент динамичности и его зависимость от закона движения ведомого звена. Вибрационные машины.

Тема 9. Уравновешивание и виброзащита машин

Неуравновешенность механизмов. Уравновешивание механизмов. Статическое уравновешивание. Уравновешивание вращающихся звеньев. Балансировка жестких роторов. Автоматическая балансировка. Гибкие роторы. Защита от вибраций. Виброзащитные системы. Виброизоляция. Защита человека-оператора от вредных воздействий колебаний.

2.4. СИНТЕЗ МЕХАНИЗМОВ

Тема 10. Общие методы синтеза механизмов

Основные этапы синтеза механизмов. Входные и выходные параметры синтеза. Основные и дополнительные условия синтеза. Функции цели. Ограничения, накладываемые на условия синтеза. Локальный и глобальный минимумы.

Тема 11. Синтез зубчатых механизмов

Основные принципы образования сопряженных поверхностей зубьев. Теорема плоского зацепления (теорема Виллиса). Кинематическое условие сопряженности зацепления. Образование сопряженных поверхностей по Оливье. Цилиндрическая зубчатая передача. Эвольвентное зацепление. Основные размеры зубьев. Геометрический расчет зубчатой передачи при заданных смещениях. Особенности внутреннего зацепления. Подрезание зубьев. Косозубые колеса. Эвольвентная коническая передача. Передачи с зацеп-

лением Новикова. Начальные поверхности. Виды гиперболоидных передач. Способы изготовления зубчатых колес. Дифференциальные и планетарные зубчатые передачи. Выбор схемы планетарной передачи. Выбор чисел зубьев в планетарных передачах. Синтез бесступенчатых передач с замкнутым дифференциалом. Планетарные коробки передач.

Тема 12. Синтез кулачковых механизмов

Виды кулачковых механизмов и их особенности. Закон перемещения толкателя и его выбор. Угол давления и коэффициент возрастания сил в кинематических парах. Выбор допускаемого угла давления. Определение размеров кулачкового механизма по заданному допускаемому углу давления. Определение профиля кулачка по заданному закону движения ведомого звена. Условие качения ролика.

2.5. ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ ДВИЖЕНИЕМ В МАШИНА-АВТО-МАТАХ

Тема 13. Основные виды систем управления движением в машина-автоматах

Машина—автомат и автоматическая линия. Числовое программное управление. Следящий привод. Самонастраивающая система управления. Системы управления с записью и автоматическим воспроизведением программы.

Тема 14. Манипуляторы, промышленные роботы и системы их управления

Классификация, назначение и области применения манипуляционных роботов. Основные типы систем управления: цикловые, позиционные, контурные.

2.6. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Основная цель проведения практических занятий – развитие у студентов навыков самостоятельного решения различных задач анализа и синтеза ме-

ханизмов, их систем и машин. Решение примеров развивает технику расчета, обогащает студента представлением о новых схемах механизмов и их свойствах, расширяет его технический кругозор.

2.6.1. Тематика практических занятий

1. Структурный анализ и классификация механизмов	2ч
2. Кинематический анализ механизмов	2ч
3. Силовой анализ механизмов	2ч
4. Динамический анализ механизмов	2ч.
5. Синтез механизмов с высшими кинематическими парами:	:
а) проектирование планетарных зубчатых передач	2ч
б) проектирование кулачковых механизмов	2ч

2.7. ЛАБОРАТОРНЫЕ РАБОТЫ

Работа в лаборатории приучает учащихся использовать теоретические знания в решении практических задач, помогает вникнуть в физическую сущность изучаемых вопросов, дает навыки пользования измерительной техники и проведения экспериментальных исследований.

2.7.1. Перечень лабораторных работ

- 2.8. КОНТРОЛЬНЫЕ РАБОТЫ

2.8.1. Контрольная работа № 1. **Структурный и кинематический анализ механизмов**

Контрольная работа состоит из трех задач: в первой проводится структурный анализ схемы механизма, во второй — выполняется кинематический

анализ плоского механизма, в третьей – определяется передаточное отношение сложного зубчатого механизма.

Вариант контрольной работы и исходных данных студент выбирает в соответствии со своим шифром, состоящим из двух цифр. Цифры шифра соответствуют последовательно начальным буквам фамилии и имени студента. Первая цифра указывает на номер варианта работы, а вторая — на номер варианта исходных данных. Ниже в табл. 1 приведены соответствия букв и цифр.

Таблица 1

ΓД	ВБ	ЕЖЗЛНО	К	M P	ТУ	С	ФХЙЧ ШЩЭЮ	ИΠ	ΑЯ
0	1	2	3	4	5	6	7	8	9

Вариант 0

Задача 1. Определить число звеньев, число кинематических пар плоского механизма (рис. 1, 0) и дать их характеристику. Выявить структурные группы (группы Ассура) механизма, составить формулу строения и определить степень подвижности механизма с учетом пассивных связей и лишних степеней свободы при их наличии. Ведущее звено обозначено стрелкой.

Задача 2. Провести кинематическое исследование кривошипного механизма (рис. 2, θ ; табл. 2) методом планов:

- построить в масштабе планы скоростей и ускорений механизма для одного произвольного положения ведущего (обозначенного стрелкой) звена;
- определить величины и направления угловых скоростей и ускорений звеньев механизма. Направления угловых скоростей и ускорений показать

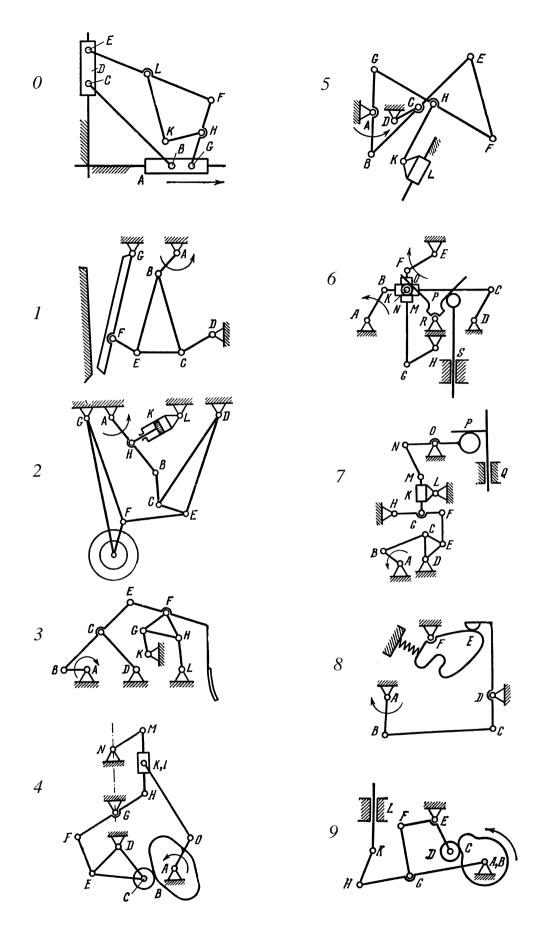


Рис. 1. Кинематические схемы плоских механизмов

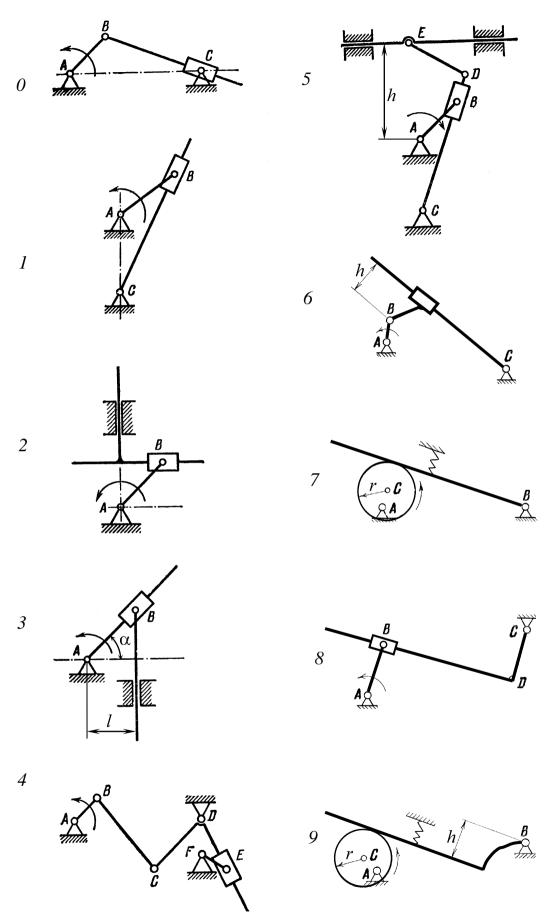


Рис. 2. К кинематическому анализу механизма

стрелками на звеньях механизма.

Заданы размер звена l_{AB} , расстояние между точками A и C (l_{AC}) и угловая скорость ведущего звена ω .

Таблица 2

Параметры .		Варианты числовых значений											
	0	1	2	3	4	5	6	7	8	9			
$l_{AB,}$ MM	50	60	70	80	90	100	110	120	130	140			
$l_{AC,}$ MM	60	100	200	180	100	250	120	300	200	350			
ω, рад/с	20	100	150	20	10	50	75	200	60	25			

Задача 3. В планетарной четырехступенчатой коробке передач, содержащей два тормоза и две муфты (рис. 3, 0; табл. 3), при первой передаче включаются тормоз T_1 и муфта M_2 , при второй — тормоза T_1 и T_2 , при третьей — муфты M_1 и M_2 . при четвертой—тормоз T_2 и муфта M_1 . Найти передаточные отношения при различных передачах и частоты вращения вала H_2 , если заданы числа зубьев колес z_1 , z_3 , z_4 , z_6 и частота вращения входного вала 1.

Таблица 3

Параметры		Варианты числовых значений												
Параметры	0	1	2	3	4	5	6	7	8	9				
z_1	25	24	22	21	20	19	18	17	16	15				
z_2	91	96	78	85	70	75	66	65	64	65				
<i>Z</i> 4	90	96	80	84	63	64	58	59	60	61				
Z ₆	46	48	42	40	35	32	28	29	30	27				
n_1 , об/мин	280	300	290	310	250	300	270	280	300	320				

Вариант 1

Задача 1. Для плоского механизма (рис. 1, I) определить число звеньев, число кинематических пар и дать их характеристику. Выявить структурные

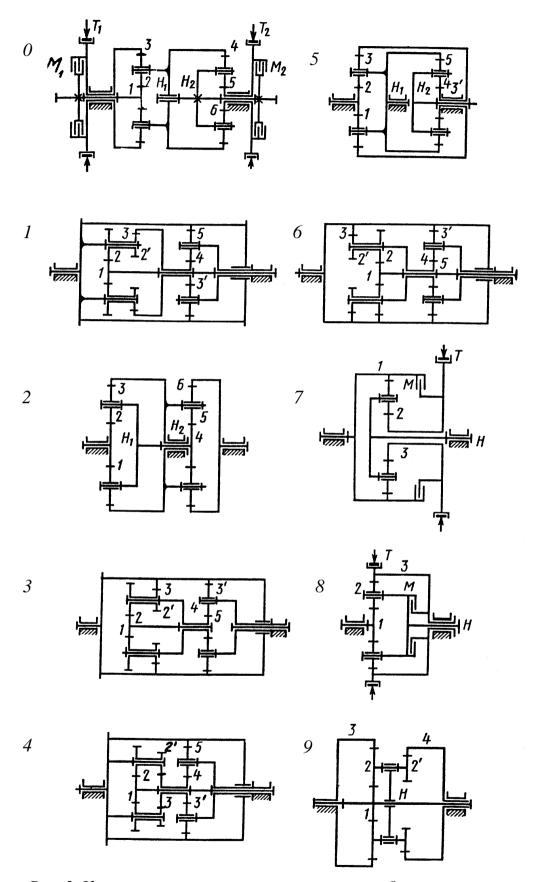


Рис. 3. К кинематическому анализу сложных зубчатых механизмов

группы (группы Ассура) механизма, составить формулу строения и определить степень подвижности механизма с учетом пассивных связей и лишних степеней свободы при их наличии. Ведущее звено отмечено стрелкой.

Задача 2. Выполнить кинематический анализ плоского механизма Витворта (рис. 2, *1*; табл. 4) методом планов:

- построить в соответствующем масштабе планы скоростей и ускорений механизма для одного произвольного положения ведущего (обозначенного стрелкой) звена;
- определить величины и направления угловых скоростей и ускорений звеньев механизма. Направления угловых скоростей и ускорений обозначить стрелками.

Заданы размер звена l_{AB} , расстояние между центрами вращения звеньев l_{AC} и угловая скорость ведущего звена ω .

Таблица 4

Параметры		Варианты числовых значений											
Тириметры	0	1	2	3	4	5	6	7	8	9			
$l_{AB,}$ MM	30	160	70	50	50	75	25	20	50	15			
$l_{AC,}$ MM	60	200	200	180	100	250	120	300	150	350			
ω, рад/с	10	25	10	200	110	50	50	15	160	15			

Задача 3. Для замкнутого дифференциального редуктора (рис. 3, 1; табл. 5) определить передаточное отношение от входного вала 1 к валу подвижного корпуса 5, а также частоту вращения корпуса. Даны числа зубьев колес $z_1 = z_{2'} = z_{3'}, \ z_2 = z_4$ и частота вращения вала 1. При решении задачи принять, что все колеса нарезаны без смещения инструмента, а их модули одинаковые.

Таблица 5

Параметры		Варианты числовых значений											
	0	1	2	3	4	5	6	7	8	9			
z_1	10	11	12	13	14	13	12	11	10	14			
z_2	26	33	30	28	32	30	35	32	28	35			
n_1 , об/мин	1000	1100	1500	800	900	2500	650	700	1500	500			

Вариант 2

Задача 1. Для механизма, изображенного на рис. 1, 2, определить число звеньев, число кинематических пар и дать их характеристику. Выделить структурные группы (группы Ассура) механизма, составить формулу строения и определить степень подвижности механизма с учетом пассивных связей и лишних степеней свободы при их наличии. Ведущее звено отмечено стрелкой.

Задача 2. Выполнить кинематическое исследование синусного механизма, показанного на рис. 2, 2 (табл. 6), методом планов:

построить в приемлемом масштабе планы скоростей и ускорений механизма для одного произвольного положения ведущего (обозначенного стрелкой) звена.

Заданы размер звена l_{AB} и угловая скорость ведущего звена ω .

Таблица 6

Параметры		Варианты числовых значений												
	0	1	2	3	4	5	6	7	8	9				
$l_{AB,}$ MM	130	160	170	150	50	175	250	20	100	150				
ω, рад/с	100	25	150	200	110	50	60	150	60	15				

Задача 3. В планетарной коробке передач (рис. 2, 2; табл. 7) определить передаточные отношения от колеса 1 к колесу 6 и скорости вращения колеса

6 при заторможенном водиле H_1 , а затем при заторможенном водиле H_2 . Известны числа зубьев колес z_1 , z_2 , z_4 , z_5 и скорость вращения ω_1 колеса I. Неизвестные числа зубьев определить из условий соосности в предположении, что все колеса являются нулевыми и имеют одинаковые модули.

Таблица 7

Параметры		Варианты числовых значений												
Параметры	0	1	2	3	4	5	6	7	8	9				
<i>z</i> ₁	17	20	17	21	17	18	20	17	18	17				
z_2	29	40	32	40	36	36	42	42	38	43				
<i>Z</i> 4	24	17	18	17	18	20	17	18	17	18				
Z ₅	36	28	42	34	37	45	38	39	45	40				
ω_1 , об/мин	70	90	150	300	150	90	70	90	150	300				

Вариант 3

Задача 1. Для плоского рычажного механизма (рис. 1, 3) определить число звеньев, число кинематических пар и дать их характеристику. Выявить структурные группы (группы Ассура) механизма, составить формулу строения и определить степень подвижности механизма, учитывая пассивные связи и лишние степени свободы при их наличии. Ведущее звено обозначено стрелкой.

Задача 2. Выполнить кинематический анализ тангенсного механизма (рис. 2, *3*; табл. 8) методом планов:

построить в масштабе планы скоростей и ускорений механизма для заданного положения ведущего (обозначенного стрелкой) звена.

Заданы расстояние l, величина угла α и угловая скорость ω ведущего звена.

Таблица 8

Параметры		Варианты числовых значений											
Параметры	0	1	2	3	4	5	6	7	8	9			
$l_{,}$ MM	30	160	100	15	50	15	25	20	100	45			
а, град	30	25	60	20	45	50	60	75	60	15			
ω, рад/с	3	5	2	6	5	3	4	1	6	100			

Задача 3. Для дифференциального редуктора (рис. 3,3; табл. 9) определить передаточное отношение от вала 1 к валу подвижного барабана 3 и скорость вращения барабана. Заданы числа зубьев колес $z_1=z_2$, $z_2=z_4$ и скорость вращения вала 1. Для нахождения незаданных чисел зубьев воспользоваться условиями соосности. Все колеса имеют одинаковые модули и являются нулевыми.

Таблица 9

Параметры		Варианты числовых значений											
	0	1	2	3	4	5	6	7	8	9			
z_1	10	11	12	13	14	13	12	13	14	10			
z_2	28	32	35	30	35	28	30	28	32	26			
ω ₁ , рад/с	150	160	170	180	190	200	100	170	160	100			

Вариант 4

Задача 1. Для плоского механизма (рис. 1, 4) определить число звеньев, число кинематических пар и дать их характеристику. Выделить структурные группы (группы Ассура) механизма, записать формулу строения и определить степень подвижности механизма, учитывая пассивные связи и лишние степени свободы при их наличии. Ведущее звено выделено стрелкой.

Задача 2. Выполнить кинематическое исследование рычажного механизма (рис. 2, *4*; табл. 10) методом планов:

- построить в масштабе планы скоростей и ускорений механизма для одного произвольного положения ведущего (обозначенного стрелкой) звена;
- определить величины и направления угловых скоростей и ускорений звеньев механизма. Направления угловых скоростей и ускорений обозначить стрелками.

Заданы размеры звеньев l_{AB} , l_{BC} , l_{CD} , l_{FE} , координаты центров вращения звеньев l_{AD} , l_{AF} , l_{DF} , угол CDE и угловая скорость ведущего звена ω .

Таблица 10

Параметры			В	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
$l_{AB,}$ MM	30	160	15	100	15	40	120	20	10	25
l_{BC} , MM	50	25	25	200	20	15	60	10	90	50
l_{CD} , MM	10	5	50	150	10	5	40	10	15	25
$l_{\it FE}$, mm	50	150	65	300	45	45	90	25	40	100
l_{AD} , mm	80	150	70	300	30	30	150	35	80	60
l_{AF} , mm	70	40	45	150	5	10	75	20	70	15
l_{DF} , mm	40	130	60	250	40	40	85	20	30	85
∠CDE,град	70	50	45	60	30	40	35	75	55	65
ω, рад/с	20	10	15	5	30	25	35	20	5	20

Задача 3. Для дифференциального зубчатого редуктора (рис. 3, 4; табл. 11) вычислить передаточное отношение от входного вала 1 к валу подвижного барабана 5, а также частоту вращения барабана. Заданы числа зубьев колес $z_1=z_2=z_3$, $z_2=z_3=z_4$ и частота вращения вала 1. Недостающее значение z_5 определить из условия соосности механизма, считая, что все колеса нулевые, а их модули одинаковые.

Таблица 11

Параметры			Ва	ариант	ы числ	овых з	начені	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
z_1	10	11	12	13	14	15	15	14	13	12
z_2	30	33	36	39	38	40	35	40	36	34
n_1 , об/мин	1500	1600	1700	1800	2000	1900	1800	1700	1600	1500

Вариант 5

Задача 1. Для рычажного механизма (рис. 1, 5) определить количество звеньев, кинематических пар и дать их характеристику. Разложить механизм на группы Ассура, записать формулу строения и определить степень подвижности механизма, учитывая пассивные связи и лишние степени свободы, если они присутствуют. Ведущее звено выделено стрелкой.

Задача 2. Определить кинематические параметры кулисного механизма (рис. 2, 5; табл. 12) методом планов:

- построить планы скоростей и ускорений механизма для одного произвольного положения ведущего (обозначенного стрелкой) звена;
- определить величины и направления угловых скоростей и ускорений звеньев механизма. Направления угловых скоростей и ускорений показать стрелками.

Заданы размеры звеньев l_{AB} , l_{CD} , l_{DE} , координаты центров вращения звеньев l_{AC} и оси направляющего ползуна h, а также частота вращения ведущего звена n.

Задача 3. В планетарной коробке передач (рис. 2, 5; табл. 13) найти передаточные отношения от колеса 1 к водилу H_2 и частоты вращения водила H_2 при заторможенном водиле H_1 , а затем при заторможенном колесе 3. Заданы числа зубьев колес z_1 , z_2 , z_3 , z_4 и частота вращения n_1 колеса 1. Неизвестные значения чисел зубьев определить из условий соосности редуктора, считая,

что все колеса нарезаны без смещения и имеют одинаковые модули.

Таблица 12

Параметры			Ва	ариант	ы числ	овых з	начені	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
$l_{AB,}$ MM	10	20	25	5	15	15	10	15	10	30
l_{CD} , MM	45	75	90	25	60	55	50	60	40	100
l_{DE} , mm	30	45	50	15	40	30	35	40	30	70
l_{AC} , mm	25	50	55	15	35	30	25	35	20	65
h, mm	20	25	35	10	25	25	25	25	20	35
n, об/мин	1000	500	750	1600	2200	1750	1500	2000	800	900

Таблица 13

Параметры			Ва	ариант	ы числ	овых з	вначени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
z_1	20	17	18	20	18	17	17	24	17	18
z_2	45	30	39	42	38	34	36	36	45	40
Z3'	17	18	17	18	17	18	18	18	18	17
<i>Z</i> .4	45	29	38	42	36	33	36	37	42	39
n_1 , об/мин	1200	800	750	1000	1300	750	1300	2800	950	1800

Вариант 6

Задача 1. Определить число звеньев, кинематических пар и дать их характеристику для плоского механизма, содержащего кулачковый механизм (рис. 1, 6). Расчленить механизм на группы Ассура, составить формулу строения и определить степень подвижности механизма, учитывая пассивные связи и лишние степени свободы, если они присутствуют. Ведущие звенья выделены стрелками.

Задача 2. Выполнить кинематическое исследование кулисного механиз-

ма (рис. 2, 6; табл. 14) методом планов:

- построить планы скоростей и ускорений механизма для одного произвольного положения ведущего (обозначенного стрелкой) звена;
- найти величины и направления угловых скоростей и ускорений звеньев механизма. Направления угловых скоростей и ускорений показать стрелками.

Заданы размер звена l_{AB} , расстояние между центрами вращения звеньев l_{AC} и плечо h, а также угловая скорость ведущего звена ω .

Таблица 14

Параметры			Ва	ариант	ы числ	овых з	вначени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
$l_{AB,}$ MM	10	20	15	25	50	40	12	14	35	45
l_{AC} , mm	50	105	80	130	240	250	65	70	170	230
h, mm	5	11	8	10	15	15	6	5	15	20
ω, рад/с	100	75	150	250	300	50	125	175	75	225

Задача 3. В дифференциальном редукторе (рис. 3, 6; табл. 15) определить передаточное отношение от входного вала I к выходному барабану S и скорость вращения барабана, если заданы числа зубьев колес S0 скорость вращения вала S0. Неизвестные значения чисел зубьев определить из условий соосности редуктора, принимая, что все колеса нулевые и имеют одинаковые модули.

Таблица 15

Параметры			В	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
z_1	15	14	13	12	11	10	14	10	12	13
z_2	35	32	28	30	33	25	30	28	26	26
ω ₁ , рад/с	100	150	75	200	50	75	125	125	80	120

Вариант 7

Задача 1. Для механизма, содержащего высшую кинематическую пару (рис. 1, 7), определить число звеньев, кинематических пар и дать его характеристику. Разложить механизм на группы Ассура, составить формулу строения и определить степень подвижности механизма с учетом пассивных связей и лишних степеней свободы при их наличии. Ведущее звено показано стрелкой.

Задача 2. Выполнить кинематическое исследование кулачкового механизма (рис. 2, 7; табл. 16) методом планов:

- построить планы скоростей и ускорений механизма для одного произвольного положения ведущего кулачка;
- определить величины и направления угловой скорости и углового ускорения толкателя. Направления показать стрелками.

Заданы радиус кулачка r, величина эксцентриситета l_{AC} , расположение центров вращения звеньев l_{AB} и частота вращения кулачка n.

Таблица 16

Параметры			В	ариант	ы числ	овых з	вначени	ий		
Паратегры	0	1	2	3	4	5	6	7	8	9
r, MM	25	20	15	35	55	30	12	14	33	45
l_{AC} , MM	10	10	5	30	24	22	6	7	17	23
$l_{ m AB},{ m MM}$	110	90	65	150	220	100	50	60	130	200
<i>п</i> , об/мин	500	1100	800	1500	1500	130	6005	2500	1025	2000

У к а з а н и е. Для упрощения решения задачи можно воспользоваться заменяющим механизмом.

Задача 3. Для планетарной коробки передач (рис. 3,7; табл. 17), управляемой с помощью тормоза T и муфты M, найти передаточное отношение от входного колеса I к водилу H и угловую скорость водила ω_H в двух случаях: при включенном тормозе T и выключенной муфте M; при включенной муфте

M и выключенном тормозе T.

При решении задачи число зубьев колеса *1* определить из условия соосности, считая, что все колеса являются нулевыми.

Таблица 17

Параметры			В	ариант	ы числ	овых з	начені	ий		
Тиринтетры	0	1	2	3	4	5	6	7	8	9
<i>Z</i> ₂	11	20	16	11	17	12	15	14	19	21
<i>Z</i> ₃	12	15	14	18	16	21	14	28	17	30
ω ₁ , рад/с	10	15	75	200	50	75	125	125	80	120

Вариант 8

Задача 1. Определить число звеньев, кинематических пар и дать характеристику для механизма, содержащего высшую кинематическую пару (рис. 1, 8). Разбить механизм на группы Ассура, составить формулу строения и определить степень подвижности механизма с учетом пассивных связей и лишних степеней свободы при их наличии. Ведущее звено выделено стрелкой.

Задача 2. Найти кинематические параметры плоского механизма (рис. 2, 8; табл. 18) методом планов:

- построить планы скоростей и ускорений механизма для одного произвольного положения ведущего (показано стрелкой) звена;
- найти угловую скорость и угловое ускорение ведомого звена как по величине, так и по направлению. Направления показать стрелками.

Заданы геометрические параметры звеньев l_{AB} , l_{CD} , координаты центров вращения звеньев l_{AC} и частота вращения ведущего звена n.

Задача 3. Определить для планетарной коробки передач (рис. 3, 8; табл. 19), управляемой с помощью тормоза T и муфты M, передаточное отношение от колеса I к водилу H и угловую скорость водила ω_H в двух состояниях: включен тормоз T и выключена муфта M; включена муфта M и выключен тормоз T.

Таблица 18

Параметры			Ва	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
$l_{\mathrm{AB}},\mathrm{MM}$	35	20	15	55	50	35	22	24	33	35
l_{CD} , MM	10	10	5	30	24	22	6	7	17	23
$l_{ m AC},{ m MM}$	120	90	70	160	200	150	80	100	130	250
<i>п</i> , об/мин	550	1200	1800	1000	2500	1300	600	200	1725	1200

Необходимое для решения задачи значение числа зубьев колеса 3 (z_3) определить из условия соосности, считая, что все колеса являются нулевыми.

Таблица 19

Параметры			Ва	ариант	ы числ	овых з	начені	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
z_1	21	13	14	11	17	18	22	20	15	24
z_2	15	22	16	18	30	25	30	28	24	40
ω ₁ ,рад/с	160	150	200	70	50	75	125	125	80	120

Вариант 9

Задача 1. Для плоского механизма, содержащего кулачковый механизм (рис. 1, 9), определить число звеньев, кинематических пар и дать его характеристику. Разложить механизм на группы Ассура, составить формулу строения и определить степень подвижности механизма с учетом пассивных связей и лишних степеней свободы при их наличии. Ведущее звено показано стрелкой.

Задача 2. Выполнить кинематическое исследование кулачкового механизма (рис. 2, 9; табл. 20) методом планов:

- построить планы скоростей и ускорений механизма для одного произ-

вольного положения кулачка;

 определить величины и направления угловой скорости и углового ускорения толкателя. Направления показать стрелками.

Заданы радиус кулачка r, величина эксцентриситета l_{AC} , координаты центров вращения звеньев l_{AB} , величина плеча h и угловая скорость кулачка ω .

Таблица 20

Параметры			Ва	ариант	ы числ	овых з	начени	ий		
Парамотры	0	1	2	3	4	5	6	7	8	9
r, MM	15	25	45	35	50	35	22	34	37	55
l_{AC} , MM	10	10	5	15	24	22	6	7	17	23
$l_{ m AB},$ MM	100	120	200	150	200	120	90	150	130	200
h,MM	5	11	8	15	10	13	6	25	25	20
ω, рад/с	100	120	75	150	75	80	95	150	70	120

У к а з а н и е. Для упрощения задачи следует воспользоваться заменяющим механизмом.

Задача 3. Найти передаточное отношение от колеса I к колесу 4 и частоту вращения колеса 4 для планетарного механизма с плавающим водилом H (рис. 3, 9; табл. 21). Известны числа зубьев колес z_1 , z_2 , $z_{2'}$ и частота вращения n_1 колеса I. Незаданные значения чисел зубьев определить из условия соосности, считая, что все колеса нулевые с одинаковыми модулями.

Таблица 21

Параметры			Ва	ариант	ы числ	ювых з	вначени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
z_1	21	13	14	12	17	18	26	20	15	16
z_2	24	19	30	20	26	20	32	28	18	22
Z ₂ ,	17	12	26	15	21	16	28	22	14	18
n_1 ,об/мин	1200	400	900	600	750	1600	3000	250	750	1000

2.8.2. Указания к выполнению контрольной работы № 1

К задаче 1. Структурное разложение механизма проводится следующим образом. Из числа звеньев, наиболее удаленных от начальных, необходимо попытаться выделить группу Ассура второго класса. При этом должна сохраняться замкнутость кинематической цепи. При отсутствии такой возможности проводится поиск групп более высокого класса. Разбивка оставшейся части механизма осуществляется аналогичным образом. После выделения всех групп Ассура должны остаться начальные механизмы первого класса. Следует помнить, что каждое звено и любая кинематическая пара могут входить в состав только одной группы.

К задаче 2. Здесь необходимо обратить особое внимание на наличие ускорения Кориолиса.

К задаче 3. Исследование зубчатого механизма целесообразно начинать с выяснения его структуры. Необходимо, прежде всего, в механизме выделить дифференциальную часть. Затем, пользуясь методом обращения движения (методом Виллиса), составляется соотношение, связывающее скорости звеньев дифференциальной части механизма и соотношение для скорости замыкающей передачи. Из этих соотношений можно получить выражение для искомого передаточного отношения замкнутого дифференциального механизма. Все зубчатые колеса, используемые в передачах, являются цилиндрическими, прямозубыми и эвольвентными. Нулевыми являются зубчатые колеса, изготовленные без смещения.

Условия задач, пояснения к решениям, все графические построения, необходимые уравнения и расчеты приводятся в пояснительной записке.

Примеры решения задач и оформления представлены в учебном пособии [1], которое входит в комплекс методических указаний по курсу "Теория механизмов и машин", предназначенных для студентов ИДО.

Прошедшие рецензирование и зачтенные контрольные работы студент обязан предъявить на экзамене для собеседования.

2.8.3. Контрольная работа № 2. **Уравновешивание механизмов и исследование движения механизма под действием приложенных сил**

Данная контрольная работа состоит из двух задач. В первой задаче проводится динамическая балансировка ротора и статическое уравновешивание плоского механизма, во второй — выполняется анализ уравнения движения механизма.

Вариант задания выбирается, как при решении контрольной работы № 1.

Вариант 0

Задача 1. На валу перпендикулярно к его оси размещены неподвижно пять дисков на одинаковом расстоянии друг от друга (рис.4, 0; табл. 22). Диаметры дисков равны D. На трех дисках установлены неуравновешенные массы m_n с координатами центров масс α_n и r_n , где n — порядковый номер диска. Определить наименьшие корректирующие массы m_k , m_l и координаты их центров α_k , r_k , α_l , r_l , устанавливаемые на свободных дисках k и l, для динамической балансировки системы.

Задача 2. При закрытом распределителе 4 гидропривода (рис. 5, θ ; табл. 23) вся жидкость, подаваемая насосом I, сливается через переливной клапан 2 в сливной бак. После мгновенного открытия распределителя поршень гидродвигателя 3 получает возможность перемещаться. Количество жидкости, сливаемой через переливной клапан, уменьшается, а поступающей в гидродвигатель — увеличивается. Происходит разгон поршня. Определить время разгона поршня и его установившуюся скорость, если зависимость между давлением на выходе насоса $p_{\rm H}$ и скоростью поршня ν , определяемая статической характеристикой насосной установки, имеет вид $p_{\rm H} = p_{\rm K} - A_{\rm K} \nu$; давление $p_{\rm I}$ в напорной полости меньше $p_{\rm H}$ на $\Delta p = A_{\rm I} \nu + B_{\rm I} \nu^2$; давление $p_{\rm I}$ в сливной по-

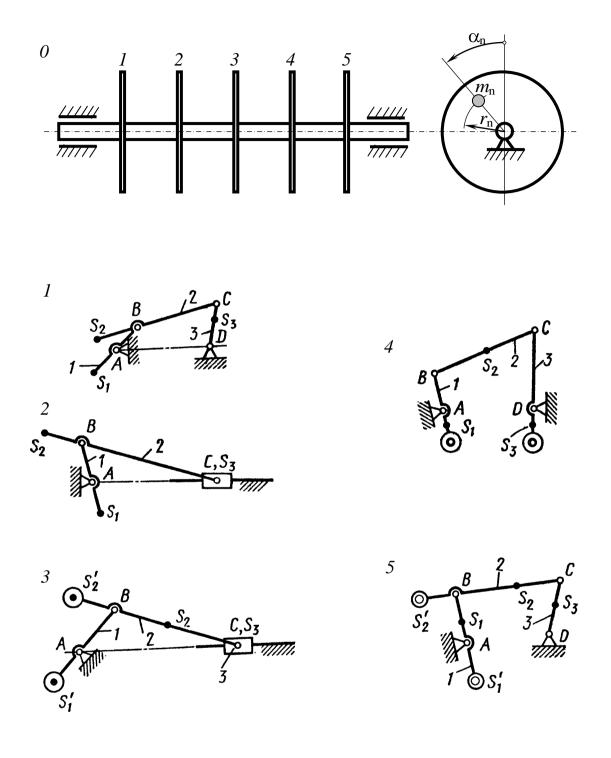


Рис. 4. Уравновешивание механизмов

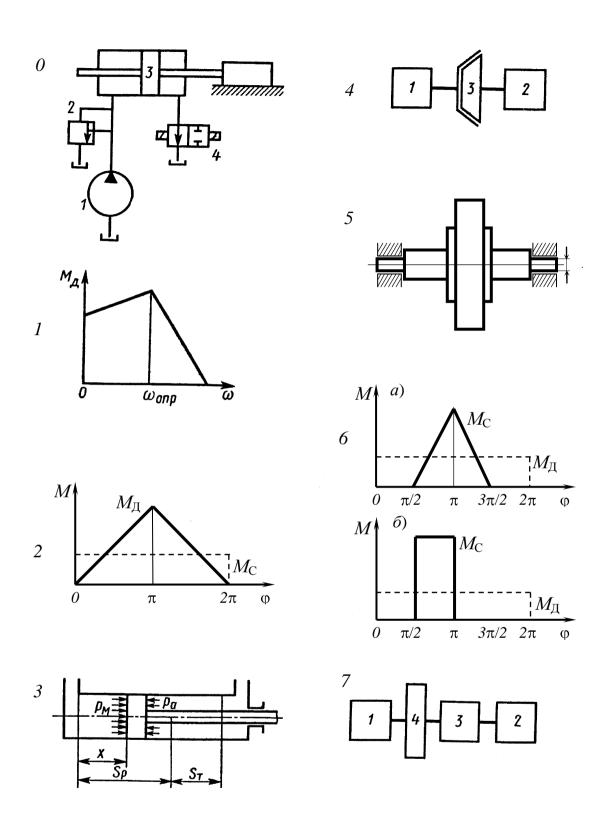


Рис. 5. К динамическому анализу механизмов

Таблица 22

Параметры			Ва	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
D, mm	115	125	145	135	150	135	122	234	137	155
m_2 , Γ	10	7	15	20	8	25	50	5	3	25
т3, Г	7	15	25	13	35	15	40	12	10	20
m_5 , Γ	30	10	50	14	70	12	5	40	5	15
r_2 , MM	110	75	65	115	24	22	65	75	117	123
<i>r</i> ₃ , MM	100	120	20	40	50	120	90	150	130	20
<i>r</i> ₅ , MM	25	50	80	15	100	130	60	125	25	120
α ₂ , рад	0,2	2,05	0,75	1,55	0,75	3,08	0,95	1,55	0,25	1,2
α ₃ , рад	1,13	2,17	3,55	1,07	1,05	0,02	1,15	2,5	3,33	3,01
α ₅ , рад	3,05	0,05	0,25	0,05	3,17	3,05	0,01	3,13	1,15	2,17

лости описывается уравнением $p_2 = A_2 v + B_2 v^2$; сила трения $F_{\rm T}$ в подвижных соединениях аппроксимируется функцией $F_{\rm T} = F_{\rm O} - A_{\rm T} v + B_{\rm T} v^2$. Известны также масса и эффективная площадь поршня m и S, суммарная масса жидкости в напорном и сливном трубопроводах m_1 и площадь их проходного сечения f. Построить диаграмму изменений скорости поршня от времени.

У к а з а н и е. Для решения задачи привести массу жидкости в трубопроводах к поршню и составить уравнение движения поршня. При приведении массы учитывать, что зависимость между скоростями жидкости в гидродвигателе и трубопроводах находится из условия равенства в них расходов жидкости.

Таблица 23

Параметры			Ba	арианты числовых значений								
Параметры	0	1	2	3	4	5	6	7	8	9		
т, кг	220	170	450	200	600	660	380	480	540	200		
m_1 , КГ	0,05	0,05	0,05	0,05	0,05	0,03	0,04	0,06	0,02	0,03		
p_{κ} , МПа	3,1	5,5	5,5	4,9	4,2	3,5	2,3	4,6	3,2	5,1		
A_{κ} , MH·c/M ³	10	17	18	12	12,5	16	13,4	14	11	14		
A_1 , MH·c/M ³	1,2	1,7	1,5	2	1,6	1,8	0,9	1,5	0,9	1,5		
A_2 , MH·c/m ³	1,8	2,3	1,6	2,6	1,6	2,5	2	1,8	0,8	1,5		
$A_{\mathrm{T}}, \ \mathrm{\kappa H} \cdot \mathrm{c/m}$	1,5	1,6	1,6	2,25	2,2	1,5	1,1	1	1,3	1		
B_1 , MH·c ² /M ⁴	7	8	6	8	5	4	2	4	2	3		
B_2 , MH·c ² /M ⁴	30	33	23	22	15	23	16	20	15	15		
B_{T} , $\kappa \mathbf{H} \cdot \mathbf{M}^2 / \mathbf{M}^4$	7	5,8	6	5	6	3,1	2,5	6,1	4,2	3,4		
S, cm^2	30	22	33	30	56	21	37	32	30	40		
f, cm ²	0,8	0,33	0,83	0,35	0,33	0,33	1,24	0,6	1,2	0,6		
F ₀ , H	560	550	700	500	720	900	600	720	450	620		

Вариант 1

Задача 1. Найти положения центров масс подвижных звеньев рычажного механизма l_{CS_3} , l_{BS_2} , l_{AS_1} (рис. 4, 1; табл. 24), при которых главный вектор сил инерции равен нулю. Заданы длины звеньев l_{AB} , l_{BC} и l_{CD} , массы звеньев m_1 , m_2 и m_3 . При решении задачи считать, что общий центр масс S подвижных звеньев совпадает с точкой A.

Задача 2. Вал рабочей машины из состояния покоя приводит в движение двигатель (рис.5, 1; табл. 25). Причем механическая характеристика двигателя состоит из двух прямолинейных участков $M_{\pi^1} = a_1 + b_1 \omega$ при $0 \le \omega \le \omega_{\text{onp}}$ и

 $M_{\rm H2} = a_2 - b_2 \omega$ при $\omega \ge \omega_{\rm onp}$. Приведенный к валу двигателя момент инерции вращающихся частей машины и двигателя J, момент сопротивления на том же валу равен $M_{\rm c}$.

Пользуясь дифференциальными уравнениями движения вала двигателя на обоих участках изменения движущего момента, определить зависимость скорости вала двигателя от времени $\omega(t)$. Вычислить скорость установившегося движения вала. Построить в масштабе графики $\omega(t)$ и $M_{\pi}(t)$.

Таблица 24

Параметры		Варианты числовых значений												
Параметры	0	1	2	3	4	5	6	7	8	9				
l_{AB} , MM	72	84	96	108	120	132	144	156	168	180				
l_{BC} , MM	300	336	360	420	480	516	564	600	660	720				
l_{CD} , MM	156	180	192	216	240	252	288	300	336	360				
m_1 , КГ	1,5	2	2,2	1,5	2,6	3,3	1,75	3,2	1,8	4,2				
m_2 , кг	4,7	5,5	6,4	5,6	9,2	6	8,2	4,5	12	9,5				
m_3 , КГ	1,8	5,2	4	2,6	2	2,2	3,6	4,3	5,5	4,9				

Таблица 25

Параметры		Варианты числовых значений												
Параметры	0	1	2	3	4	5	6	7	8	9				
$a_1, H \cdot M$	110	89	67	54	42	31	15	10	8,2	8,9				
$b_1, H \cdot M \cdot c$	0,4	0,31	0,55	0,61	0,5	0,1	0,36	0,2	0,05	0,03				
a_2 , к $H \cdot M$	1,9	2,9	2,1	2	2,5	0,4	0,41	0,22	0,15	0,19				
b_2 , $\mathbf{H} \cdot \mathbf{m} \cdot \mathbf{c}$	17	20	19	21	13,5	4,4	0,9	2,1	1,1	0,66				
J , кг \cdot м 2	10,5	3,5	6,2	4	4,5	0,9	1,5	2,9	0,8	1,2				
<i>М</i> _с , Н⋅м	90	57	56	65	26	25	17	11	9	5,2				

Вариант 2

Задача 1. На валу перпендикулярно оси установлены жестко пять дисков на одинаковом расстоянии друг от друга (рис.4, θ ; табл. 26). Диаметры дисков равны D. На трех дисках размещены неуравновешенные массы m_n с координатами центров масс α_n и r_n (n — порядковый номер диска). Подобрать наименьшие корректирующие массы m_k , m_l и координаты их центров α_k , r_k , α_l , r_l , устанавливаемые на двух свободных дисках, для динамической балансировки системы.

Таблица 26

Параметры			В	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
D, mm	105	120	125	200	170	105	129	134	145	95
m_1 , Γ	8	2	5	25	18	15	16	51	30	15
m_2 , Γ	17	25	35	17	22	14	20	36	12	18
<i>т</i> 3, г	40	16	25	33	15	40	55	27	32	42
r_1 , MM	99	65	65	190	26	105	12	58	139	80
r_2 , MM	50	120	47	101	169	16	120	101	120	95
<i>r</i> ₃ , MM	66	33	120	23	111	50	15	130	121	14
α ₁ , рад	5,33	1,03	0,09	4,75	6,25	0,08	5,98	6,05	1,11	0,07
α2, рад	0,05	4,11	6,2	0,2	0,01	0,26	0,26	3,55	2,75	6,01
α ₃ , рад	2,75	6,22	0,18	1,25	0,23	5,25	0,05	0,12	0,06	5,13

Задача 2. Силы и массы машинного агрегата приведены к одному звену. Движение звена приведения установилось. Угловая скорость в начале цикла установившегося движения равна ω_0 . Моменты движущих сил $M_{\rm Z}$ и сопротивления $M_{\rm C}$ изменяются в соответствии с заданными графиками (рис. 5, 2; табл. 27). Приведенный момент инерции постоянен и равен $I_{\rm II}$. Определить наибольшую $\omega_{\rm max}$ и наименьшую $\omega_{\rm min}$ угловые скорости звена приведения

при его установившемся движении и степень неравномерности движения δ . В табл. 27 приведены наибольшие значения моментов $M_{\rm II}$ и $M_{\rm C}$.

Таблица 27

Параметры			Ва	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
ω ₀ , рад/с	10	15	20	25	30	9	8	11	23	13
$M_{\rm Д},{ m H}^{\cdot}{ m M}$	50	30	26	85	45	80	60	20	60	55
<i>М</i> _С , Н [·] м	20	15	21	25	25	40	22	9	20	20
I_{Π} , кг $^{\cdot}$ м 2	2	0,5	0,3	1,2	0,22	0,3	0,2	1,5	0,25	0,6

Вариант 3

Задача 1. Масса ползуна кривошипно-ползунного механизма (рис. 4, 2; табл. 28) равна m_3 . Подобрать массы звеньев m_2 и m_1 шатуна BC и кривошипа AB таким образом, чтобы главный вектор сил инерции всех звеньев механизма был уравновешен. Координаты центров масс S_1 и S_2 звеньев AB и BC равны l_{AS_1} и l_{BS_2} . Размеры кривошипа и шатуна равны соответственно l_{AB} и l_{BC} .

Задача 2. Рабочий ход поршня пневмопривода (движение слева направо) включает участки разгона и торможения (рис. 5, 3; табл. 29). При разгоне из состояния покоя давление в левой полости пневмоцилиндра равно $p_{\rm M}$, а в правой — атмосферному давлению ($p_{\rm a}=1\cdot10^{\rm 5}\,{\rm H/M^2}$). Путь разгона S_p . С начала участка торможения левая полость соединяется с атмосферой, а в правой полости давление поддерживается равным $p_{\rm M}$. Решая дифференциальное уравнение движения поршня для обоих участков, определить время разгона, а также время и путь торможения. Рассчитать и построить графики перемещения, скорости и ускорения поршня от времени для рабочего хода поршня.

Масса подвижных деталей m, диаметры поршня и штока $D_{\rm n}$ и $D_{\rm m}$. Сила сопротивления движению поршня $F_{\rm c}$.

Таблица 28

Параметры		Варианты числовых значений												
Параметры	0	1	2	3	4	5	6	7	8	9				
m_3 , КГ	1,1	0,58	0,55	0,7	0,3	1.2	0,65	0,9	1,3	0,9				
$l_{AB}, \ \mathrm{MM}$	80	100	120	60	140	80	104	80	96	112				
$l_{BC}, \ \mathrm{MM}$	320	400	480	240	560	280	360	360	430	504				
l_{AS_I} , MM	80	100	112	56	145	70	95	90	105	145				
l_{BS_2} , MM	80	120	130	65	130	90	115	70	90	120				

Таблица 29

Параметры			Ba	рианті	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
<i>т</i> , кг	900	500	9500	750	400	700	750	650	400	900
S_{p} , M	14	9	4	4	8	10	6	9	4	7
<i>p</i> _м , МПа	0,75	0,36	0,35	0,5	0,5	0,3	0,45	0,45	0,35	0,55
<i>F</i> _c , H	5000	9000	8000	7000	5000	4000	4500	9000	3000	7500
$D_{\Pi} = 2D_{\mathrm{III}}, \ \mathrm{M}$	0,32	0,25	0,4	0,25	0,4	0,15	0,2	0,25	0,3	0,25

Вариант 4

Задача 1. На валу жестко закреплены пять дисков с диаметрами d на одинаковом расстоянии друг от друга (рис.4, θ ; табл. 30). На трех дисках установлены неуравновешенные массы m_n с координатами центров масс α_n и r_n (n-порядковый номер диска). Найти минимальные корректирующие массы m_k , m_l и их координаты центров α_k , r_k , α_l , r_l , устанавливаемые на двух свободных дисках, для выполнения условия динамической уравновешенности системы.

Таблица 30

Параметры			Ва	ариант	ы числ	овых з	начені	ий		
Парамотры	0	1	2	3	4	5	6	7	8	9
D, mm	120	100	155	220	140	124	85	125	90	70
m_1 , Γ	4	2	5	5	13	15	16	40	30	15
m_2 , Г	25	17	35	17	45	13	20	51	14	52
m_5 , Γ	25	45	15	40	15	25	15	27	32	14
r_1 , MM	15	35	65	190	90	105	60	125	80	70
r_2 , MM	45	100	47	200	139	16	80	101	50	65
<i>r</i> ₅ , MM	66	77	120	45	111	50	15	55	89	14
α ₁ , рад	3,33	6,03	5,09	3,75	6,25	0,68	0,98	0,05	1,11	2,89
α ₂ , рад	0,1	6,11	6,2	0,2	0,22	6,26	0,26	0,55	1,75	6,01
α ₅ , рад	5,75	6,22	5,18	1,25	5,23	2,25	0,05	0,12	1,06	6,13

Задача 2. На вал машинного агрегата, который является звеном приведения, имеющим приведенный момент инерции J и вращающимся с угловой скоростью ω_y , с некоторого момента времени начинает действовать тормозной момент, зависящий от времени $M_{\scriptscriptstyle \rm T}=at$. Под действием этого момента рабочая машина, двигатель которой выключен, будет совершать выбег.

Найти зависимость угловой скорости вала от времени $\omega(t)$ при выбеге. Определить зависимость от времени углового ускорения $\varepsilon(t)$ и зависимость угла поворота вала от времени $\varphi(t)$. Вычислить время выбега и число оборотов вала за время выбега. Исходные данные приведены в табл. 31.

Таблица 31

Параметры		Варианты числовых значений										
Параметры	0	1	2	3	4	5	6	7	8	9		
J , $\kappa \Gamma \cdot M^2$	12	3,9	2	5	2,6	0,6	0,8	2,7	1,6	1,5		
ωу, рад/с	86	300	120	140	225	75	320	125	122	100		
$a, H \cdot M \cdot c$	250	110	30	25	22	12	56	52	8	6		

Задача 1. Для статического уравновешивания рычажного механизма найти массы противовесов m_{n_1} и m_{n_2} (рис. 4, 3; табл. 32), которые необходимо установить на звеньях AB и BC. Координаты центров масс S_1' и S_2' противовесов равны $l_{AS_1'}$ и $l_{BS_2'}$, а координаты центров масс S_1 и S_2 звеньев имеют значения $l_{AS_1'}$ и $l_{BS_2'}$. Массы звеньев m_1 , m_2 и m_3 , а размеры звеньев равны l_{AB} и l_{BC} .

Задача 2. Двигатель I через фрикционную муфту S передает движение рабочей машине S (рис. S, S; табл. S). Движущий момент, развиваемый двигателем, равен $M_{\rm H} = a - b \omega_1$. К валу рабочей машины приложен постоянный момент сопротивления S0. Моменты инерции ведущего и ведомого валов равны соответственно S1 и S2. В момент включения фрикционной муфты ведущий вал имеет угловую скорость S00, ведомый вал неподвижен. Между ведущей и ведомой частями муфты с момента включения до полного сцепления действуют силы трения, имеющие момент S1 Силы трения в муфте замедляют движение ведущего вала и ускоряют движение ведомого вала до тех пор, пока скорости этих валов не сравняются. После этого ведущий и ведомый валы будут двигаться как одно целое.

Определить зависимость угловых скоростей ω_1 и ω_2 соответственно ведущего и ведомого валов от времени. Установить время полного сцепления

и определить общую скорость валов в момент полного сцепления. Выявить также закон изменения скорости всей системы после полного сцепления муфты и определить скорость установившегося движения системы.

Таблица 32

Параметры			Ba	ариант	ы числ	овых з	вначені	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
l_{AB} , MM	70	77	85	90	55	50	42	90	100	105
l_{BC} , MM	210	240	245	280	180	140	135	280	295	350
l_{AS_1} , MM	52	55	65	70	40	40	32	70	70	75
l_{BS_2} , MM	205	160	175	180	110	100	85	175	195	210
l_{AS_1} , mm	350	280	210	450	280	210	175	420	455	425
$l_{BS_2^{+}}, \text{ MM}$	140	145	170	180	105	90	85	170	190	175
m_1 , КГ	0,31	0,9	0,15	0,1	0,14	0,9	0,1	0,9	0,14	0,5
m_2 , КГ	0,28	0,55	0,8	0,9	0,9	0,5	0,55	0,5	0,28	0,8
m_3 , КГ	1,05	0,14	1,0	0,3	1,1	0,2	0,15	0,2	1,05	0,55

Таблица 33

Параметры			Ва	риант	ы числ	ювых з	вначен	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
<i>a</i> , кН ⋅ м	3,1	4,4	2,75	0,5	2,2	2,2	0,6	1,3	1,5	2
$b, H \cdot M \cdot c$	15,5	19	16	12	15	4,2	2	1,2	2	1,5
ω ₁₀ , рад/с	126	90	75	125	85	220	175	155	145	45
$M_{\mathrm{Tp}}, \ \mathrm{H}\cdot\mathrm{M}$	160	225	150	50	160	92	75	50	15	13
$M_{c}, H \cdot M$	90	175	95	40	90	50	55	26	11	12
J_1 , кг \cdot м 2	1,2	0,7	2	0,3	1,1	0,7	1,2	0,8	2,3	0,7
J_2 , кг \cdot м 2	0,9	0,9	3,5	0,2	1,4	0,6	3,5	0,4	2	0,5

Задача 1. На валу неподвижно на одинаковом расстоянии друг от друга установлены пять дисков (рис.4, 0; табл. 34). Диаметры дисков равны D. На трех дисках закреплены неуравновешенные массы m_n с координатами центров масс α_n и r_n , где n — порядковый номер диска. Определить наименьшие корректирующие массы m_k , m_l и координаты их центров α_k , r_k , α_l , r_l , устанавливаемые на двух свободных дисках, для выполнения условия динамической уравновешенности системы.

Таблица 34

Параметры			Ва	ариант	ы числ	овых з	начени	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
D, mm	110	120	105	250	400	300	185	175	190	170
m_2 , Γ	14	4	6	5	10	3	5	25	10	15
<i>т</i> 3, г	5	42	12	9	22	15	6	20	8	10
m_4 , Γ	30	5	12	6	15	25	17	18	19	12
r_2 , MM	110	100	35	190	90	300	180	125	105	70
<i>r</i> ₃ , MM	55	100	56	235	390	16	80	170	50	170
<i>r</i> ₄ , MM	30	120	105	45	100	150	35	66	189	20
α ₂ , рад	6,05	0,05	6	4,05	1,05	0,06	2,22	0,02	4,36	2,5
α3, рад	0,05	6,11	0,01	0,2	0,01	6,26	0,26	0,03	1,75	3,5
α4, рад	0,01	2,5	2,65	6,2	6,25	0,01	6,25	0,01	0,09	4,6

Задача 2. Маховик, имеющий массу m и обладающий моментом инерции J (рис. 5, 5; табл. 35), начинает выбег при числе оборотов n, время выбега t. Определить коэффициент трения в подшипниках вала маховика, если диаметр цапф вала равен d, а угловая скорость маховика убывает по линейному закону.

Таблица 35

Параметры		Варианты числовых значений												
	0	1	2	3	4	5	6	7	8	9				
m, кг	1	0,8	0,6	0,3	0,37	1,5	0,35	1,25	1,22	0,4				
J , к Γ мм 2	1600	1500	1000	600	750	2500	700	2200	2400	1200				
d, mm	25	23	20	15	15	30	15	25	25	15				
t, c	65	120	100	150	180	90	80	50	45	130				

Задача 1. Определить координаты центров масс l_{AS_1} и l_{CS_5} , звеньев AB и CD рычажного механизма с противовесами (4, 4; табл. 36) при статическом уравновешивании механизма. Известны размеры звеньев l_{AB} , l_{BC} , l_{CD} , положение центра масс шатуна l_{BS_2} , а также массы звеньев m_1 , m_2 и m_3 .

Таблица 36

Параметры			Ва	ариант	ы числ	ювых з	вначен	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
$l_{AB}, \ \mathrm{MM}$	195	185	170	155	145	100	70	65	55	50
l_{BC} , MM	415	390	365	340	300	210	175	155	140	120
l_{CD} , MM	375	350	325	300	275	190	140	55	110	100
l_{BS_2} , mm	210	195	180	170	155	110	88	75	65	60
т₁, кг	4	3,3	4,2	1,4	1,2	2,0	1,5	1,4	0,9	0,5
m_2 , КГ	5,5	4,5	2,5	2,6	6,2	4,0	3,4	3	2,5	2,8
m_3 , КГ	3	5,2	5,4	3,2	2,8	3,3	2,7	4,5	1,7	3,1

Задача 2. В двух машинных агрегатах имеется установившееся движение с периодом, равным одному обороту входного звена, $\phi = 2\pi$. В каждом агрегате силы и массы приведены к своему входному звену. В одном агрегате

приведенный момент сопротивления изменяется по закону треугольника (рис. 5, 6, a), в другом — по закону прямоугольника (рис. 5, b, b). Приведенные движущие моменты b0 и моменты инерции b1 в обоих агрегатах постоянны по величине и равны между собой (табл. 37). Угловая скорость в начале цикла установившегося движения равна b0.

Рассчитать и построить графики: изменения угловой скорости входного и выходного звеньев; определить коэффициент неравномерности движения.

Таблица 37

Параметры	Варианты числовых значений											
	0	1	2	3	4	5	6	7	8	9		
<i>М</i> _Д , Н [·] м	20	13	15	25	12	5	17	14	21	23		
J , кг $$ м 2	10	5	12	20	7	25	15	22	25	12		
ω ₀ , рад/с	100	230	200	150	150	300	80	175	320	144		
t, c	65	120	100	150	180	90	110	50	45	130		

Вариант 8

Задача 1. Вычислить координаты центров масс противовесов l_{AS_1} , l_{BS_2} , устанавливаемых на звеньях AB и BC рычажного механизма (рис. 4, 5; табл. 38) и необходимых для статического уравновешивания. Известны размеры звеньев l_{AB} , l_{BC} , l_{CD} , координаты центров масс звеньев l_{AS_1} , l_{BS_2} , l_{CS_3} , массы звеньев m_{n_1} , m_{n_2} , m_{n_3} , а также массы противовесов m_{n_1} и m_{n_2} . При решении учесть, что общий центр масс подвижных звеньев механизма является неподвижным и находится на прямой AD.

Задача 2. Машинный комплекс (рис. 5, 7; табл. 39) состоит из двигателя I, рабочей машины 2, редуктора 3 и маховика 4. Момент, развиваемый двигателем I, равен $M_{\pi} = a - b\omega$.

Таблица 38

Параметры			Ва	ариант	ы числ	ювых з	вначен	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
$l_{AB}, \ \mathrm{MM}$	55	65	70	165	180	130	210	90	100	40
$l_{BC}, \ { m MM}$	190	210	230	550	600	430	690	300	320	200
l_{CD} , MM	135	150	160	390	420	300	480	210	220	95
$l_{AS_1}, \ { m MM}$	35	40	45	105	115	85	135	60	66	25
$l_{BS_2}, \ { m MM}$	95	105	120	270	300	220	360	155	160	70
l_{CS_3} , MM	65	70	75	180	195	140	240	100	110	46
m_1 , КГ	0,1	0,05	0,1	0,05	0,15	0,1	0,2	0,22	0,02	0,11
m_2 , КГ	1	1	0,55	0,55	0,8	1,1	0,6	1,3	0,5	0,65
m_3 , КГ	0,25	0,25	0,4	0,22	0,4	0,22	1,2	0,42	0,8	0,14
$m_{n1},$ КГ	2,7	2,5	3,2	5	4,9	6,5	2,6	4,3	4,3	3,1
$m_{n1},$ КГ	1,6	2	1,1	4,2	2,4	4,1	5,2	2,3	1,3	0,75

Технологический процесс рабочей машины состоит из рабочего и холостого ходов с продолжительностью соответственно $t_{\rm p}$ и $t_{\rm x}$. Моменты сопротивления на валу машины при рабочем и холостом ходах равны $M_{\rm p}$ и $M_{\rm x}$. Известны передаточное отношение редуктора u_{12} , момент инерции вала двигателя J_{1} , момент инерции деталей, установленных на валу рабочей машины, J_{2} .

За время рабочего хода угловая скорость вала двигателя уменьшается с ω_{max} до ω_{min} , а при холостом ходе угловая скорость вала двигателя возрастает от ω_{min} до ω_{max} .

Приведя силы и массы к валу двигателя, определить момент инерции маховика $J_{\scriptscriptstyle \mathrm{M}}$ и продолжительность холостого хода $t_{\scriptscriptstyle \mathrm{X}}$.

Таблица 39

Параметры			Ва	риант	ы числ	ювых з	вначен	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
M_{p} , к $H \cdot M$	1,7	2	2,6	2,7	4,25	2,1	2	2,5	5,2	130
M_{x} , к $H \cdot M$	1,4	0,35	0,5	0,5	0,85	0,35	0,37	0,5	1,05	2,6
J_1 , к Γ · M^2	0,7	0,34	0,17	1,7	0,5	0,35	0,07	0,12	0,52	1,3
J_2 , кг \cdot м 2	8,5	10	8,5	13,5	17	7	5,25	5	8,3	21
u_{12}	5	6	11	5	12	14	13	7	11,5	9
<i>a</i> , кН ⋅ м	1,7	4	3,5	2,55	8,5	2	2,35	4	10	39
$b, H \cdot M \cdot c$	15	35	35	18	85	14	15	25	100	260
$t_{\rm p},~{ m c}$	0,08	0,25	0,3	0,45	0,25	0,35	0,3	0,35	0,33	0,4
$\omega_{\text{макс}}$, рад/с	102	115	66	120	145	75	150	75	80	150
∞мин, рад/с	99	110	64	118	142	72	147	74	77	140

Задача 1. На валу на одинаковом расстоянии друг от друга жестко установлены пять дисков, диаметры которых равны D (рис.4, 0; табл. 40). На трех дисках закреплены неуравновешенные массы m_n с координатами центров масс α_n и r_n (n-порядковый номер диска). Вычислить минимальные корректирующие массы m_k , m_l и их координаты центров α_k , r_k , α_l , r_l , устанавливаемые на двух незанятых дисках, для динамической балансировки системы.

Задача 2. К валу машины приведены момент движущих сил от двигателя $M_{\rm L}=A-B\omega$ и постоянный от сил сопротивления $M_{\rm C}$. Постоянный приведенный момент инерции машины равен J и начальная угловая скорость вала ω_0 . Определить за время рабочего хода машины t_0 угловую скорость, угловое ускорение и угол поворота вала. Исходные данные приведены в табл. 41.

Таблица 40

Параметры			Ва	ариант	ы числ	овых з	начені	ий		
Параметры	0	1	2	3	4	5	6	7	8	9
D, mm	300	185	175	190	170	110	120	105	250	400
m_1 , Γ	3	5	25	10	15	14	4	6	5	10
m_3 , Γ	15	6	20	8	10	5	42	12	9	22
m_5 , Γ	25	17	18	19	12	30	5	12	6	15
r_1 , MM	300	180	125	105	70	110	100	35	190	90
<i>r</i> ₃ , MM	16	80	170	50	170	55	100	56	235	390
<i>r</i> ₅ , MM	150	35	66	189	20	30	120	105	45	100
α ₁ , рад	0,06	2,22	0,02	4,36	2,5	6,05	0,05	6	4,05	1,05
α ₃ , рад	6,26	0,26	0,03	1,75	3,5	0,05	6,11	0,01	0,2	0,01
α ₅ , рад	0,01	6,25	0,01	0,09	4,6	0,01	2,5	2,65	6,2	6,25

Таблица 41

Параметры		Варианты числовых значений												
Параметры	0	1	2	3	4	5	6	7	8	9				
А, кН ⋅ м	2,2	0,6	1,3	1,5	2	3,1	4,4	2,75	0,5	2,5				
$B, H \cdot M \cdot c$	4,2	2	1,2	2	1,5	15,5	19	16	12	15				
ω₀, рад/с	115	175	155	145	45	126	90	75	125	85				
t _p , c	0,1	0,05	0,2	0,11	0,3	0,03	0,3	0,25	0,06	0,6				
$M_{\rm c}$, к ${ m H}\cdot{ m m}$	5	5,5	2,6	11	12	9	17,5	9,5	4	90				
J , кг \cdot м 2	7	12	8	23	7	15	5	13	3	11				

2.8.4. Указания к выполнению контрольной работы № 2

К задаче 1. При уравновешивании ротора рекомендуется неуравновешенные инерциальные силы раскладывать на две перпендикулярные составляющие и рассматривать равновесие системы в двух взаимно перпендикулярных осевых плоскостях, искомые величины определять через результирующие силы.

При уравновешивании сил инерции механизма определяются массы противовесов или координаты их центров масс. Наиболее простое решение задачи статического уравновешивания масс плоских механизмов получается по методу замещающих масс.

К задаче 2. При динамическом исследовании механизма или машины необходимо составить дифференциальное уравнение движения звена приведе-

ния в форме
$$m\frac{dv}{dt} = m\frac{d^2x}{dt^2} = P_{\text{д}} - P_{\text{c}}$$
 или $J\frac{d\omega}{dt} = J\frac{d^2\phi}{dt^2} = M_{\text{д}} - M_{\text{c}}$

в зависимости от вида движения: поступательного или вращательного. В приведенных формулах: m — масса звена приведения; x или ϕ — перемещение; v или ω — скорость; t — время; P_{π} — приведенная движущая сила; P_{τ} — приведенная сила сопротивления; J — приведенный момент инерции подвижных звеньев механизма; M_{π} — приведенный момент движущих сил; M_{τ} — приведенный момент сил сопротивления. За звено приведения принимают звено, движение которого изучается в поставленной задаче. Интегрируя составленное дифференциальное уравнение, определяют требуемые зависимости.

Интегралы, встречающиеся при выполнении контрольной работы, можно найти в справочниках, в частности в [14, 15]. Кроме того, рекомендуется применение широко известных математических программ, таких как МАРLE [16], МАТНСАD [17], МАТLAB [18] и др., в которые включены стандартные процедуры решения математических задач достаточно широкого спектра с выдачей результатов в виде формул, а также в численном, графическом с анимацией и т. д.

ЛИТЕРАТУРА (рекомендуемая)

Основная:

- 1. Артоболевский И.И. Теория механизмов и машин. М.: Альянс, 2009. 640с.
- 2. Фролов К.В., Попов С.А., Мусатов А.К. и др. Теория механизмов и механика машин: Учебник для втузов. М.: Высшая школа, 1998. 496с.
- 3. Горбенко В.Т., Горбенко М.В. Теория механизмов и машин. Курсовое проектирование: Учебное пособие. Томск: ТПУ, 2007. –144с.
- 4. Артоболевский И.И., Эдельштейн Б.В. Сборник задач по теории механизмов и машин. М.: Альянс, 2008. –265с.
- 5. Юдин В.А., Барсов Г.А., Чупин Ю.Н. Сборник задач по теории механизмов и машин: Учебное пособие. М.: Высшая школа, 1982. –215с.
- 6. Горбенко М.В., Горбенко Т.И. Сборник задач и упражнений по теории механизмов и машин. Томский политехнический университет. Томск. Издво Томского политехнического университета. 2011. –188с.
- 7. Кореняко А.С., Кременштейн Л.И. и др. Курсовое проектирование по теории механизмов и машин. Киев. Высш. шк. 1970. –330 с.

Дополнительная:

- 8. Юдин В.А., Петрокас Л.В. Лабораторный практикум по теории механизмов и машин. М.: ГИФМЛ, 1960. 172с.
- 9. Юденич В.В. Лабораторные работы по теории механизмов и машин. М.: Высшая школа, 1962. 289с.
- 10. Сахипова Р.М. Составление кинематических схем и структурный анализ механизмов: Методические указания по выполнению лабораторной работы. Томск: ТПУ, 1997. 16с.
- 11. Горбенко В.Т., Горбенко М.В. Кинематический анализ сложных зубчатых механизмов: Методические указания по выполнению лабораторной работы. Томск: ТПУ, 2009. 22с.
- 12. Горбенко В.Т., Семененко В.М. Определение коэффициента трения скольжения: Методические указания по проведению лабораторной работы. Томск: ТПУ, 1979. 10с.
- 13. Гиндин Э.Б. Балансировка вращающихся масс, расположенных в разных плоскостях: Методические указания к выполнению лабораторной работы. Томск: ТПУ, 1992. 11с.

Вспомогательная:

- 14. Двайт Г.Б. Таблицы интегралов и другие математические формулы. М.: Наука, 1977. 224с.
- 15. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. М.: Наука, 1981. 798c.
- 16. Васильев А.Н. MAPLE 8: Самоучитель. М.: Издательский дом "Вильямс", 2003. 352c.
- 17. Дьяконов В.П. MathCAD PLUS 7.0 PRO. M.: СК ПРЕСС, 1998. 352c.
- 18. Дьяконов В.П. МАТLAВ: Учебный курс. СПб.: Питер, 2000. 312с.

СОДЕРЖАНИЕ

1.	. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ И ОБЩИЕ МЕ-	
	ТОДИЧЕСКИЕ УКАЗАНИЯ	3
2.	. РАБОЧАЯ ПРОГРАММА	5
	2.1.ВВЕДЕНИЕ	5
	2.2.СТРУКТУРА И КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗ-	
	MOB	5
	Тема 1. Основные понятия теории механизмов и машин	5
	Тема 2. Основные виды механизмов	5
	Тема 3. Структурный анализ и синтез механизмов	5
	Тема 4. Кинематический анализ механизмов	6
	2.3. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ	6
	Тема 5. Трение и износ в механизмах	6
	Тема 6. Силовой анализ механизмов	6
	Тема 7. Уравнения движения механизмов	6
	Тема 8. Колебания в механизмах	7
	Тема 9. Уравновешивание и виброзащита машин	7
	2.4. СИНТЕЗ МЕХАНИЗМОВ	7
	Тема 10. Общие методы синтеза механизмов	7
	Тема 11. Синтез зубчатых механизмов	7
	Тема 12. Синтез кулачковых механизмов	8
	2.5.ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ ДВИЖЕНИЕМ В МАШИ-	
	HA-ABTOMATAX	8
	Тема 13. Основные виды систем управления движением в маши-	
	на-автоматах	8
	Тема 14. Манипуляторы, промышленные роботы и системы их	
	уп р авления	8

2.6. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ9
2.6.1. Тематика практических занятий9
2.7.ЛАБОРАТОРНЫЕ РАБОТЫ
2.7.1. Перечень лабораторных работ 9
2.8. КОНТРОЛЬНЫЕ РАБОТЫ
2.8.1. Контрольная работа № 1. Структурный и кинематический
анализ механизмов10
2.8.2. Указания к выполнению контрольной работы № 1 27
2.8.3. Контрольная работа № 2. Уравновешивание механизмов и
исследование движения меха-
низма под действием приложен-
ных сил
2.8.4. Указания к выполнению контрольной работы № 2 46
2.9. КУРСОВОЙ ПРОЕКТ
ПИТЕРАТУРА (рекомендуемая) 47